%% %% %CopyrightBegin% %% %% Copyright Ericsson AB 2006-2017. All Rights Reserved. %% %% Licensed under the Apache License, Version 2.0 (the "License"); %% you may not use this file except in compliance with the License. %% You may obtain a copy of the License at %% %% http://www.apache.org/licenses/LICENSE-2.0 %% %% Unless required by applicable law or agreed to in writing, software %% distributed under the License is distributed on an "AS IS" BASIS, %% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %% See the License for the specific language governing permissions and %% limitations under the License. %% %% %CopyrightEnd% %% %% -module(xmerl_regexp). %% This module provides a basic set of regular expression functions %% for strings. The functions provided are taken from AWK. %% %% Note that we interpret the syntax tree of a regular expression %% directly instead of converting it to an NFA and then interpreting %% that. This method seems to go significantly faster. -export([sh_to_awk/1,parse/1,format_error/1,match/2,first_match/2,matches/2]). -export([sub/3,gsub/3,split/2,sub_match/2,sub_first_match/2]). -export([make_nfa/1,make_dfa/1,make_dfa/2,compile/1]). -import(string, [substr/2,substr/3]). -import(lists, [reverse/1,reverse/2,last/1,duplicate/2,seq/2]). -import(lists, [member/2,keysearch/3,keysort/2,map/2,foldl/3]). -import(ordsets, [is_element/2,add_element/2,union/2,subtract/2]). %%-compile([export_all]). -export([setup/1,compile_proc/2]). -include("xmerl_internal.hrl"). setup(RE0) -> RE = setup(RE0, [$^]), Pid = spawn(?MODULE,compile_proc,[self(),RE]), receive {ok,Result} -> Result after 2000 -> exit(Pid,force), parse(RE) end. %% compile(RE). %%RE. compile_proc(From,RE) -> Res = compile(RE), From ! {ok,Res}. setup([$\\,$d|S],Acc) -> setup(S,"]9-0[" ++Acc); setup([$\\,$D|S],Acc) -> setup(S,"]9-0^[" ++Acc); setup([$\\,$s|S],Acc) -> setup(S,"]s\\t\\n\\r\\[" ++Acc); setup([$\\,$S|S],Acc) -> setup(S,"]\\s\\t\\n\\r^[" ++Acc); setup([$\\,$i|S],Acc) -> setup(S,"]z-aZ-A_:[" ++Acc); %% Only Latin-1 now setup([$\\,$I|S],Acc) -> setup(S,"]z-aZ-A_:^[" ++Acc); setup([$\\,$c|S],Acc) -> setup(S,"]9-0z-aZ-A_:."++[183]++"-[" ++Acc); setup([$\\,$C|S],Acc) -> setup(S,"]9-0z-aZ-A_:."++[183]++"-^[" ++Acc); %% fixme setup([$\\,$w|S]) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup([$\\,$W|S]) -> {{comp_class,"\s\t\n\r"},S}; %% Letter, Any %% fixme setup(["\\p{L}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{L}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Letter, Uppercase %% fixme setup(["\\p{Lu}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Lu}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Letter, Lowercase %% fixme setup(["\\p{Ll}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Ll}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Letter, Titlecase %% fixme setup(["\\p{Lt}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Lt}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Letter, Modifier %% fixme setup(["\\p{Lm}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Lm}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Letter, Other %% fixme setup(["\\p{Lo}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Lo}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Mark, Any %% fixme setup(["\\p{M}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{M}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Mark, Nonspacing %% fixme setup(["\\p{Mn}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Mn}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Mark, Spacing Combining %% fixme setup(["\\p{Mc}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Mc}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Mark, Enclosing %% fixme setup(["\\p{Me}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Me}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Number, Any %% fixme setup(["\\p{N}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{N}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Number, Decimal Digit %% fixme setup(["\\p{Nd}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Nd}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Number, Letter %% fixme setup(["\\p{Nl}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Nl}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Number, Other %% fixme setup(["\\p{No}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{No}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Punctuation, Any %% fixme setup(["\\p{P}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{P}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Punctuation, Connector %% fixme setup(["\\p{Pc}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Pc}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Punctuation, Dash %% fixme setup(["\\p{Pd}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Pd}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Punctuation, Open %% fixme setup(["\\p{Ps}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Ps}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Punctuation, Close %% fixme setup(["\\p{Pe}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Pe}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Punctuation, Initial quote (may behave like Ps or Pe, depending on usage) %% fixme setup(["\\p{Pi}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Pi}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Punctuation, Final quote (may behave like Ps or Pe, depending on usage) %% fixme setup(["\\p{Pf}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Pf}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Punctuation, Other %% fixme setup(["\\p{Po}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Po}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Symbol, Any %% fixme setup(["\\p{S}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{S}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Symbol, Math %% fixme setup(["\\p{Sm}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Sm}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Symbol, Currency %% fixme setup(["\\p{Sc}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Sc}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Symbol, Modifier %% fixme setup(["\\p{Sk}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Sk}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Symbol, Other %% fixme setup(["\\p{So}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{So}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Separator, Any %% fixme setup(["\\p{Z}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Z}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Separator, Space %% fixme setup(["\\p{Zs}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Zs}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Separator, Line %% fixme setup(["\\p{Zl}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Zl}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Separator, Paragraph %% fixme setup(["\\p{Zp}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Zp}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Other, Any %% fixme setup(["\\p{C}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{C}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Other, Control %% fixme setup(["\\p{Cc}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Cc}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Other, Format %% fixme setup(["\\p{Cf}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Cf}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Other, Surrogate not supported by schema recommendation %% fixme setup(["\\p{Cs}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Cs}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Other, Private Use %% fixme setup(["\\p{Co}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Co}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; %% Other, Not assigned (no characters in the file have this property) %% fixme setup(["\\p{Cn}" ++ S) -> {{char_class,"\s\t\n\r"},S}; %% fixme setup(["\\P{Cn}" ++ S) -> {{comp_class,"\s\t\n\r"},S}; setup([A|S], Acc) -> setup(S, [A|Acc]); setup([],Acc) -> reverse([$$|Acc]). %% sh_to_awk(ShellRegExp) %% Convert a sh style regexp into a full AWK one. The main difficulty is %% getting character sets right as the conventions are different. sh_to_awk(Sh) -> "^(" ++ sh_to_awk_1(Sh). %Fix the beginning sh_to_awk_1([$*|Sh]) -> %This matches any string ".*" ++ sh_to_awk_1(Sh); sh_to_awk_1([$?|Sh]) -> %This matches any character [$.|sh_to_awk_1(Sh)]; sh_to_awk_1([$[,$^,$]|Sh]) -> %This takes careful handling "\\^" ++ sh_to_awk_1(Sh); %% Must move '^' to end. sh_to_awk_1("[^" ++ Sh) -> [$[|sh_to_awk_2(Sh, true)]; sh_to_awk_1("[!" ++ Sh) -> "[^" ++ sh_to_awk_2(Sh, false); sh_to_awk_1([$[|Sh]) -> [$[|sh_to_awk_2(Sh, false)]; sh_to_awk_1([C|Sh]) -> %% Unspecialise everything else which is not an escape character. case sh_special_char(C) of true -> [$\\,C|sh_to_awk_1(Sh)]; false -> [C|sh_to_awk_1(Sh)] end; sh_to_awk_1([]) -> ")$". %Fix the end sh_to_awk_2([$]|Sh], UpArrow) -> [$]|sh_to_awk_3(Sh, UpArrow)]; sh_to_awk_2(Sh, UpArrow) -> sh_to_awk_3(Sh, UpArrow). sh_to_awk_3([$]|Sh], true) -> "^]" ++ sh_to_awk_1(Sh); sh_to_awk_3([$]|Sh], false) -> [$]|sh_to_awk_1(Sh)]; sh_to_awk_3([C|Sh], UpArrow) -> [C|sh_to_awk_3(Sh, UpArrow)]; sh_to_awk_3([], true) -> [$^|sh_to_awk_1([])]; sh_to_awk_3([], false) -> sh_to_awk_1([]). %% -type sh_special_char(char()) -> bool(). %% Test if a character is a special character. sh_special_char($|) -> true; sh_special_char($*) -> true; sh_special_char($+) -> true; sh_special_char($?) -> true; sh_special_char($() -> true; sh_special_char($)) -> true; sh_special_char($\\) -> true; sh_special_char($^) -> true; sh_special_char($$) -> true; sh_special_char($.) -> true; sh_special_char($[) -> true; sh_special_char($]) -> true; sh_special_char($") -> true; sh_special_char(_C) -> false. %% parse(RegExp) -> {ok,RE} | {error,E}. %% Parse the regexp described in the string RegExp. parse(S) -> case catch reg(S, 0) of {R,Sc,[]} -> {ok,{regexp,{R,Sc}}}; {_R,_Sc,[C|_]} -> {error,{illegal,[C]}}; {error,E} -> {error,E} end. %% format_error(Error) -> String. format_error({interval_range,What}) -> ["illegal interval range",io_lib:write_string(What)]; format_error({illegal,What}) -> ["illegal character `",What,"'"]; format_error({unterminated,What}) -> ["unterminated `",What,"'"]; format_error({posix_cc,What}) -> ["illegal POSIX character class ",io_lib:write_string(What)]; format_error({char_class,What}) -> ["illegal character class ",io_lib:write_string(What)]. %% match(String, RegExp) -> {match,Start,Length} | nomatch | {error,E}. %% Find the longest match of RegExp in String. match(S, RegExp) when is_list(RegExp) -> case parse(RegExp) of {ok,RE} -> match(S, RE); {error,E} -> {error,E} end; match(S, {regexp,RE}) -> case match_re(RE, S, 1, 0, -1) of {Start,Len} when Len >= 0 -> {match,Start,Len}; {_Start,_Len} -> nomatch end; match(S, {comp_regexp,RE}) -> case match_comp(RE, S, 1, 0, -1) of {Start,Len} when Len >= 0 -> {match,Start,Len}; {_Start,_Len} -> nomatch end. match_re(RE, [_|Cs]=S0, P0, Mst, Mlen) -> case re_apply(S0, P0, RE) of {match,P1,_S1,_Subs} -> Len = P1-P0, if Len > Mlen -> match_re(RE, Cs, P0+1, P0, Len); true -> match_re(RE, Cs, P0+1, Mst, Mlen) end; nomatch -> match_re(RE, Cs, P0+1, Mst, Mlen); never_match -> {Mst,Mlen} %No need to go on end; match_re(_RE, _S, _P, Mst, Mlen) -> {Mst,Mlen}. match_comp(RE, [_|Cs]=S0, P0, Mst, Mlen) -> case comp_apply(S0, P0, RE) of {match,P1,_S1} -> Len = P1-P0, if Len > Mlen -> match_comp(RE, Cs, P0+1, P0, Len); true -> match_comp(RE, Cs, P0+1, Mst, Mlen) end; nomatch -> match_comp(RE, Cs, P0+1, Mst, Mlen) end; match_comp(_RE, _S, _P, Mst, Mlen) -> {Mst,Mlen}. %% match_re(RE, S0, Pos0, Mst, Mlen) -> %% case first_match_re(RE, S0, Pos0) of %% {St,Len,_} -> %Found a match %% Pos1 = St + 1, %Where to start next match %% S1 = lists:nthtail(Pos1-Pos0, S0), %% if Len > Mlen -> match_re(RE, S1, Pos1, St, Len); %% true -> match_re(RE, S1, Pos1, Mst, Mlen) %% end; %% nomatch -> {Mst,Mlen} %% end. %% match_comp(RE, S0, Pos0, Mst, Mlen) -> %% case first_match_comp(RE, S0, Pos0) of %% {St,Len} -> %Found a match %% Pos1 = St + 1, %Where to start next match %% S1 = lists:nthtail(Pos1-Pos0, S0), %% if Len > Mlen -> match_comp(RE, S1, Pos1, St, Len); %% true -> match_comp(RE, S1, Pos1, Mst, Mlen) %% end; %% nomatch -> {Mst,Mlen} %% end. %% first_match(String, RegExp) -> {match,Start,Length} | nomatch | {error,E}. %% Find the first match of RegExp in String. first_match(S, RegExp) when is_list(RegExp) -> case parse(RegExp) of {ok,RE} -> first_match(S, RE); {error,E} -> {error,E} end; first_match(S, {regexp,RE}) -> case first_match_re(RE, S, 1) of {Start,Len,_} -> {match,Start,Len}; nomatch -> nomatch end; first_match(S, {comp_regexp,RE}) -> case first_match_comp(RE, S, 1) of {Start,Len} -> {match,Start,Len}; nomatch -> nomatch end. first_match_re(RE, S, St) when S /= [] -> case re_apply(S, St, RE) of {match,P,_Rest,Subs} -> {St,P-St,Subs}; nomatch -> first_match_re(RE, tl(S), St+1); never_match -> nomatch end; first_match_re(_RE, [], _St) -> nomatch. first_match_comp(RE, S, St) when S /= [] -> case comp_apply(S, St, RE) of {match,P,_Rest} -> {St,P-St}; nomatch -> first_match_comp(RE, tl(S), St+1) end; first_match_comp(_RE, [], _St) -> nomatch. %% matches(String, RegExp) -> {match,[{Start,Length}]} | {error,E}. %% Return the all the non-overlapping matches of RegExp in String. matches(S, RegExp) when is_list(RegExp) -> case parse(RegExp) of {ok,RE} -> matches(S, RE); {error,E} -> {error,E} end; matches(S, {regexp,RE}) -> {match,matches_re(S, RE, 1)}; matches(S, {comp_regexp,RE}) -> {match,matches_comp(S, RE, 1)}. matches_re([_|Cs]=S0, RE, P0) -> case re_apply(S0, P0, RE) of {match,P0,S1,_Subs} -> %0 length match [{P0,0}|matches_re(tl(S1), RE, P0+1)]; {match,P1,S1,_Subs} -> [{P0,P1-P0}|matches_re(S1, RE, P1)]; nomatch -> matches_re(Cs, RE, P0+1); never_match -> [] end; matches_re([], _RE, _P) -> []. matches_comp([_|Cs]=S0, RE, P0) -> case comp_apply(S0, P0, RE) of {match,P0,S1} -> %0 length match [{P0,0}|matches_comp(tl(S1), RE, P0+1)]; {match,P1,S1} -> [{P0,P1-P0}|matches_comp(S1, RE, P1)]; nomatch -> matches_comp(Cs, RE, P0+1) end; matches_comp([], _RE, _P) -> []. %% sub(String, RegExp, Replace) -> {ok,RepString,RepCount} | {error,E}. %% Substitute the first match of the regular expression RegExp with %% the string Replace in String. Accept pre-parsed regular %% expressions. sub(String, RegExp, Rep) when is_list(RegExp) -> case parse(RegExp) of {ok,RE} -> sub(String, RE, Rep); {error,E} -> {error,E} end; sub(String, {regexp,RE}, Rep) -> case sub_re(String, 1, RE, [], Rep) of {yes,NewStr} -> {ok,NewStr,1}; no -> {ok,String,0} end; sub(String, {comp_regexp,RE}, Rep) -> case sub_comp(String, 1, RE, [], Rep) of {yes,NewStr} -> {ok,NewStr,1}; no -> {ok,String,0} end. %% sub_re(String, Position, Regexp, Before, Replacement) -> %% {NewString,Count}. %% sub_comp(String, Position, Regexp, Before, Replacement) -> %% {NewString,Count}. %% Step forward over String until a match is found saving stepped over %% chars in Before. Return reversed Before prepended to replacement %% and rest of string. sub_re([C|Cs]=S0, P0, RE, Bef, Rep) -> case re_apply(S0, P0, RE) of {match,P0,_S1,_} -> %Ignore 0 length match sub_re(Cs, P0+1, RE, [C|Bef], Rep); {match,P1,Rest,_Gps} -> {yes,reverse(Bef, sub_repl(Rep, substr(S0, 1, P1-P0), Rest))}; nomatch -> sub_re(Cs, P0+1, RE, [C|Bef], Rep); never_match -> no %No need to go on end; sub_re([], _P, _RE, _Bef, _Rep) -> no. sub_comp([C|Cs]=S0, P0, RE, Bef, Rep) -> case comp_apply(S0, P0, RE) of {match,P0,_S1} -> %Ignore 0 length match sub_comp(Cs, P0+1, RE, [C|Bef], Rep); {match,P1,Rest} -> {yes,reverse(Bef, sub_repl(Rep, substr(S0, 1, P1-P0), Rest))}; nomatch -> sub_comp(Cs, P0+1, RE, [C|Bef], Rep) end; sub_comp([], _P, _RE, _Bef, _Rep) -> no. sub_repl([$&|Rep], M, Rest) -> M ++ sub_repl(Rep, M, Rest); sub_repl("\\&" ++ Rep, M, Rest) -> [$&|sub_repl(Rep, M, Rest)]; sub_repl([C|Rep], M, Rest) -> [C|sub_repl(Rep, M, Rest)]; sub_repl([], _M, Rest) -> Rest. %% gsub(String, RegExp, Replace) -> {ok,RepString,RepCount} | {error,E}. %% Substitute every match of the regular expression RegExp with the %% string New in String. Accept pre-parsed regular expressions. gsub(String, RegExp, Rep) when is_list(RegExp) -> case parse(RegExp) of {ok,RE} -> gsub(String, RE, Rep); {error,E} -> {error,E} end; gsub(String, {regexp,RE}, Rep) -> case gsub_re(String, 1, RE, [], Rep) of {NewStr,N} -> {ok,NewStr,N}; no -> {ok,String,0} %No substitutions end; gsub(String, {comp_regexp,RE}, Rep) -> case gsub_comp(String, 1, RE, [], Rep) of {NewStr,N} -> {ok,NewStr,N}; no -> {ok,String,0} %No substitutions end. %% gsub_re(String, Position, Regexp, Before, Replacement) -> %% {NewString,Count}. %% gsub_comp(String, Position, Regexp, Before, Replacement) -> %% {NewString,Count}. %% Step forward over String until a match is found saving stepped over %% chars in Before. Call recursively to do rest of string after %% match. Return reversed Before prepended to return from recursive %% call. gsub_re([C|Cs]=S0, P0, RE, Bef, Rep) -> case re_apply(S0, P0, RE) of {match,P0,_S1,_} -> %Ignore 0 length match gsub_re(Cs, P0+1, RE, [C|Bef], Rep); {match,P1,S1,_Gps} -> case gsub_re(S1, P1, RE, [], Rep) of {NewStr,N0} -> %Substituitions {reverse(Bef, sub_repl(Rep, substr(S0, 1, P1-P0), NewStr)), N0+1}; no -> %No substituitions. {reverse(Bef, sub_repl(Rep, substr(S0, 1, P1-P0), S1)),1} end; %%No match so step forward saving C on Bef. nomatch -> gsub_re(Cs, P0+1, RE, [C|Bef], Rep); never_match -> no %No need to go on end; gsub_re([], _P, _RE, _Bef, _Rep) -> no. gsub_comp([C|Cs]=S0, P0, RE, Bef, Rep) -> case comp_apply(S0, P0, RE) of {match,P0,_S1} -> %Ignore 0 length match gsub_comp(Cs, P0+1, RE, [C|Bef], Rep); {match,P1,S1} -> case gsub_comp(S1, P1, RE, [], Rep) of {NewStr,N0} -> %Substituitions {reverse(Bef, sub_repl(Rep, substr(S0, 1, P1-P0), NewStr)), N0+1}; no -> %No substituitions. {reverse(Bef, sub_repl(Rep, substr(S0, 1, P1-P0), S1)),1} end; %%No match so step forward saving C on Bef. nomatch -> gsub_comp(Cs, P0+1, RE, [C|Bef], Rep) end; gsub_comp([], _P, _RE, _Bef, _Rep) -> no. %% split(String, RegExp) -> {ok,[SubString]} | {error,E}. %% Split a string into substrings where the RegExp describes the %% field seperator. The RegExp " " is specially treated. split(String, " ") -> %This is really special {ok,{regexp,RE}} = parse("[ \t]+"), case split_apply_re(String, RE, true) of [[]|Ss] -> {ok,Ss}; Ss -> {ok,Ss} end; split(String, RegExp) when is_list(RegExp) -> case parse(RegExp) of {ok,{regexp,RE}} -> {ok,split_apply_re(String, RE, false)}; {error,E} -> {error,E} end; split(String, {regexp,RE}) -> {ok,split_apply_re(String, RE, false)}; split(String, {comp_regexp,RE}) -> {ok,split_apply_comp(String, RE, false)}. split_apply_re(S, RE, Trim) -> split_apply_re(S, 1, RE, Trim, []). split_apply_re([], _P, _RE, true, []) -> []; split_apply_re([], _P, _RE, _T, Sub) -> [reverse(Sub)]; split_apply_re([C|Cs]=S, P0, RE, T, Sub) -> case re_apply(S, P0, RE) of {match,P0,_S1,_} -> %Ignore 0 length match split_apply_re(Cs, P0+1, RE, T, [C|Sub]); {match,P1,S1,_} -> [reverse(Sub)|split_apply_re(S1, P1, RE, T, [])]; nomatch -> split_apply_re(Cs, P0+1, RE, T, [C|Sub]); never_match -> [reverse(Sub, S)] %No need to go on end. split_apply_comp(S, RE, Trim) -> split_apply_comp(S, 1, RE, Trim, []). %%split_apply_comp([], _P, _RE, true, []) -> []; split_apply_comp([], _P, _RE, _T, Sub) -> [reverse(Sub)]; split_apply_comp([C|Cs]=S, P0, RE, T, Sub) -> case comp_apply(S, P0, RE) of {match,P0,_S1} -> %Ignore 0 length match split_apply_comp(Cs, P0+1, RE, T, [C|Sub]); {match,P1,S1} -> [reverse(Sub)|split_apply_comp(S1, P1, RE, T, [])]; nomatch -> split_apply_comp(Cs, P0+1, RE, T, [C|Sub]) end. %% sub_match(String, RegExp) -> %% {match,Start,Length,SubExprs} | nomatch | {error,E}. %% Find the longest match of RegExp in String. sub_match(S, RegExp) when is_list(RegExp) -> case parse(RegExp) of {ok,RE} -> sub_match(S, RE); {error,E} -> {error,E} end; sub_match(S, {regexp,RE}) -> case sub_match_re(RE, S, 1, 0, -1, none) of {Start,Len,Subs} when Len >= 0 -> {match,Start,Len,Subs}; {_Start,_Len,_Subs} -> nomatch end. sub_match_re(RE, S0, Pos0, Mst, Mlen, Msubs) -> case first_match_re(RE, S0, Pos0) of {St,Len,Subs} -> %Found a match Pos1 = St + 1, %Where to start next match S1 = lists:nthtail(Pos1-Pos0, S0), if Len > Mlen -> sub_match_re(RE, S1, Pos1, St, Len, Subs); true -> sub_match_re(RE, S1, Pos1, Mst, Mlen, Msubs) end; nomatch -> {Mst,Mlen,Msubs} end. %% sub_first_match(String, RegExp) -> %% {match,Start,Length,SubExprs} | nomatch | {error,E}. %% Find the longest match of RegExp in String, return Start and Length %% as well as tuple of sub-expression matches. sub_first_match(S, RegExp) when is_list(RegExp) -> {ok,RE} = parse(RegExp), sub_first_match(S, RE); sub_first_match(S, {regexp,RE}) -> case first_match_re(RE, S, 1) of {St,Len,Subs} -> {match,St,Len,Subs}; nomatch -> nomatch end. %% This is the regular expression grammar used. It is equivalent to the %% one used in AWK, except that we allow ^ $ to be used anywhere and fail %% in the matching. %% %% reg -> reg1 : '$1'. %% reg1 -> reg1 "|" reg2 : {'or','$1','$2'}. %% reg1 -> reg2 : '$1'. %% reg2 -> reg2 reg3 : {concat,'$1','$2'}. %% reg2 -> reg3 : '$1'. %% reg3 -> reg3 "*" : {kclosure,'$1'}. %% reg3 -> reg3 "+" : {pclosure,'$1'}. %% reg3 -> reg3 "?" : {optional,'$1'}. %% reg3 -> reg3 "{" [Min],[Max] "}" : {closure_range, Num, '$1'} see below %% reg3 -> reg4 : '$1'. %% reg4 -> "(" reg ")" : '$2'. %% reg4 -> "\\" char : '$2'. %% reg4 -> "^" : bos. %% reg4 -> "$" : eos. %% reg4 -> "." : char. %% reg4 -> "[" class "]" : {char_class,char_class('$2')} %% reg4 -> "[" "^" class "]" : {comp_class,char_class('$3')} %% reg4 -> "\"" chars "\"" : char_string('$2') %% reg4 -> char : '$1'. %% reg4 -> empty : epsilon. %% The grammar of the current regular expressions. The actual parser %% is a recursive descent implementation of the grammar. reg(S, Sc) -> reg1(S, Sc). %% reg1 -> reg2 reg1' %% reg1' -> "|" reg2 %% reg1' -> empty reg1(S0, Sc0) -> {L,Sc1,S1} = reg2(S0, Sc0), reg1p(S1, L, Sc1). reg1p([$||S0], L, Sc0) -> {R,Sc1,S1} = reg2(S0, Sc0), reg1p(S1, {'or',L,R}, Sc1); reg1p(S, L, Sc) -> {L,Sc,S}. %% reg2 -> reg3 reg2' %% reg2' -> reg3 %% reg2' -> empty reg2(S0, Sc0) -> {L,Sc1,S1} = reg3(S0, Sc0), reg2p(S1, L, Sc1). reg2p([C|S0], L, Sc0) when C /= $|, C /= $) -> {R,Sc1,S1} = reg3([C|S0], Sc0), %% reg2p(S1, {concat,L,R}, Sc1); case is_integer(R) of true -> case L of {literal,Lit} -> reg2p(S1, {literal,Lit ++[R]}, Sc1); {concat,S2,Char} when is_integer(Char) -> reg2p(S1, {concat,S2,{literal,[Char,R]}}, Sc1); {concat,S2,{literal,Lit}} -> reg2p(S1, {concat,S2,{literal,Lit ++ [R]}}, Sc1); Char when is_integer(Char) -> reg2p(S1, {literal,[Char,R]}, Sc1); _ -> reg2p(S1, {concat,L,R}, Sc1) end; false -> reg2p(S1, {concat,L,R}, Sc1) end; reg2p(S, L, Sc) -> {L,Sc,S}. %% reg3 -> reg4 reg3' %% reg3' -> "*" reg3' %% reg3' -> "+" reg3' %% reg3' -> "?" reg3' %% reg3' -> "{" [Min],[Max] "}" reg3' %% reg3' -> empty reg3(S0, Sc0) -> {L,Sc1,S1} = reg4(S0, Sc0), reg3p(S1, L, Sc1). reg3p([$*|S], L, Sc) -> reg3p(S, {kclosure,L}, Sc); reg3p([$+|S], L, Sc) -> reg3p(S, {pclosure,L}, Sc); reg3p([$?|S], L, Sc) -> reg3p(S, {optional,L}, Sc); reg3p([${|Cs0], L, Sc) -> % $} case interval_range(Cs0) of {none,none,_Cs1} -> parse_error({interval_range,[${|Cs0]}); {N,M,[$}|Cs1]} -> reg3p(Cs1, {iclosure,L,N,M}, Sc); {_N,_M,_Cs1} -> parse_error({unterminated,"{"}) end; reg3p(S, L, Sc) -> {L,Sc,S}. reg4([$(|S0], Sc0) -> Sc1 = Sc0+1, case reg(S0, Sc1) of {R,Sc2,[$)|S1]} -> {{subexpr,Sc1,R},Sc2,S1}; {_R,_Sc,_S} -> parse_error({unterminated,"("}) end; reg4([$^|S], Sc) -> {bos,Sc,S}; reg4([$$|S], Sc) -> {eos,Sc,S}; reg4([$.|S], Sc) -> {{comp_class,"\n"},Sc,S}; reg4("[^" ++ S0, Sc) -> case char_class(S0) of {Cc,[$]|S1]} -> {{comp_class,Cc},Sc,S1}; {_Cc,_S} -> parse_error({unterminated,"["}) end; reg4([$[|S0], Sc) -> case char_class(S0) of {Cc,[$]|S1]} -> {{char_class,Cc},Sc,S1}; {_Cc,_S1} -> parse_error({unterminated,"["}) end; %reg4([$"|S0], Sc) -> % case char_string(S0) of % {St,[$"|S1]} -> {St,Sc,S1}; % {St,S1} -> parse_error({unterminated,"\""}) % end; reg4([C0|S0], Sc) when is_integer(C0), C0 /= $*, C0 /= $+, C0 /= $?, C0 /= $], C0 /= $), C0 /= $} -> %% Handle \ quoted characters as well, at least those we see. {C1,S1} = char(C0, S0), {C1,Sc,S1}; reg4(S=[$)|_], Sc) -> {epsilon,Sc,S}; reg4([C|_S], _Sc) -> parse_error({illegal,[C]}); reg4([], Sc) -> {epsilon,Sc,[]}. char($\\, [O1,O2,O3|S]) when O1 >= $0, O1 =< $7, O2 >= $0, O2 =< $7, O3 >= $0, O3 =< $7 -> {(O1*8 + O2)*8 + O3 - 73*$0,S}; char($\\, [C|S]) -> {escape_char(C),S}; char($\\, []) -> parse_error({unterminated,"\\"}); char(C, S) -> {C,S}. escape_char($n) -> $\n; %\n = LF escape_char($r) -> $\r; %\r = CR escape_char($t) -> $\t; %\t = TAB escape_char($v) -> $\v; %\v = VT escape_char($b) -> $\b; %\b = BS escape_char($f) -> $\f; %\f = FF escape_char($e) -> $\e; %\e = ESC escape_char($s) -> $\s; %\s = SPACE escape_char($d) -> $\d; %\d = DEL escape_char(C) -> C. char_class([$]|S0]) -> {Cc,S1} = char_class(S0, [$]]), {pack_cc(Cc),S1}; char_class(S0) -> {Cc,S1} = char_class(S0, []), {pack_cc(Cc),S1}. pack_cc(Cc0) -> %% First sort the list. Cc1 = lists:usort(fun ({Cf1,_}, {Cf2,_}) -> Cf1 < Cf2; ({Cf1,_}, C) -> Cf1 < C; (C, {Cf,_}) -> C < Cf; (C1, C2) -> C1 =< C2 end, Cc0), pack_cc1(Cc1). pack_cc1([{Cf1,Cl1},{Cf2,Cl2}|Cc]) when Cl1 >= Cf2, Cl1 =< Cl2 -> pack_cc1([{Cf1,Cl2}|Cc]); pack_cc1([{Cf1,Cl1},{Cf2,Cl2}|Cc]) when Cl1 >= Cf2, Cl1 >= Cl2 -> pack_cc1([{Cf1,Cl1}|Cc]); pack_cc1([{Cf1,Cl1},{Cf2,Cl2}|Cc]) when Cl1+1 == Cf2 -> pack_cc1([{Cf1,Cl2}|Cc]); pack_cc1([{Cf,Cl},C|Cc]) when Cl >= C -> pack_cc1([{Cf,Cl}|Cc]); pack_cc1([{Cf,Cl},C|Cc]) when Cl+1 == C -> pack_cc1([{Cf,C}|Cc]); pack_cc1([C,{Cf,Cl}|Cc]) when C == Cf-1 -> pack_cc1([{C,Cl}|Cc]); pack_cc1([C1,C2|Cc]) when C1+1 == C2 -> pack_cc1([{C1,C2}|Cc]); pack_cc1([C|Cc]) -> [C|pack_cc1(Cc)]; pack_cc1([]) -> []. char_class("[:" ++ S0, Cc0) -> %Start of POSIX char class case posix_cc(S0, Cc0) of {Cc1,":]" ++ S1} -> char_class(S1, Cc1); {_,_S1} -> parse_error({posix_cc,"[:" ++ S0}) end; char_class([C1|S0], Cc) when C1 /= $] -> case char(C1, S0) of {Cf,[$-,C2|S1]} when C2 /= $] -> case char(C2, S1) of {Cl,S2} when Cf < Cl -> char_class(S2, [{Cf,Cl}|Cc]); {_Cl,_S2} -> parse_error({char_class,[C1|S0]}) end; {C,S1} -> char_class(S1, [C|Cc]) end; char_class(S, Cc) -> {Cc,S}. %% posix_cc(String, CharClass) -> {NewCharClass,RestString}. %% Handle POSIX character classes, use Latin-1 character set. posix_cc("alnum" ++ S, Cc) -> {[{$0,$9},{$A,$Z},{192,214},{216,223},{$a,$z},{224,246},{248,255}|Cc],S}; posix_cc("alpha" ++ S, Cc) -> {[{$A,$Z},{192,214},{216,223},{$a,$z},{224,246},{248,255}|Cc],S}; posix_cc("blank" ++ S, Cc) -> {[$\s,$\t,160|Cc],S}; posix_cc("cntrl" ++ S, Cc) -> {[{0,31},{127,159}|Cc],S}; posix_cc("digit" ++ S, Cc) -> {[{$0,$9}|Cc],S}; posix_cc("graph" ++ S, Cc) -> {[{33,126},{161,255}|Cc],S}; posix_cc("lower" ++ S, Cc) -> {[{$a,$z},{224,246},{248,255}|Cc],S}; posix_cc("print" ++ S, Cc) -> {[{32,126},{160,255}|Cc],S}; posix_cc("punct" ++ S, Cc) -> {[{$!,$/},{$:,$?},{${,$~},{161,191}|Cc],S}; posix_cc("space" ++ S, Cc) -> {[$\s,$\t,$\f,$\r,$\v,160|Cc],S}; posix_cc("upper" ++ S, Cc) -> {[{$A,$Z},{192,214},{216,223}|Cc],S}; posix_cc("xdigit" ++ S, Cc) -> {[{$a,$f},{$A,$F},{$0,$9}|Cc],S}; posix_cc(S, _Cc) -> parse_error({posix_cc,"[:" ++ S}). interval_range(Cs0) -> case number(Cs0) of {none,Cs1} -> {none,none,Cs1}; {N,[$,|Cs1]} -> case number(Cs1) of {none,Cs2} -> {N,any,Cs2}; {M,Cs2} -> {N,M,Cs2} end; {N,Cs1} -> {N,none,Cs1} end. number([C|Cs]) when C >= $0, C =< $9 -> number(Cs, C - $0); number(Cs) -> {none,Cs}. number([C|Cs], Acc) when C >= $0, C =< $9 -> number(Cs, 10*Acc + (C - $0)); number(Cs, Acc) -> {Acc,Cs}. parse_error(E) -> throw({error,E}). %char_string([C|S]) when C /= $" -> char_string(S, C); %char_string(S) -> {epsilon,S}. %char_string([C|S0], L) when C /= $" -> % char_string(S0, {concat,L,C}); %char_string(S, L) -> {L,S}. %% re_apply(String, StartPos, RegExp) -> %% {match,RestPos,Rest,SubExprs} | nomatch. %% %% Apply the (parse of the) regular expression RegExp to String. If %% there is a match return the position of the remaining string and %% the string if else return 'nomatch'. %% %% StartPos should be the real start position as it is used to decide %% if we are at the beginning of the string. re_apply(S, St, {RE,Sc}) -> Subs = erlang:make_tuple(Sc, none), %Make a sub-regexp table. Res = re_apply(RE, [], S, St, Subs), %% ?dbg("~p x ~p -> ~p\n", [RE,S,Res]), Res. re_apply(epsilon, More, S, P, Subs) -> %This always matches re_apply_more(More, S, P, Subs); re_apply({'or',RE1,RE2}, More, S, P, Subs) -> re_apply_or(re_apply(RE1, More, S, P, Subs), re_apply(RE2, More, S, P, Subs)); re_apply({concat,RE1,RE2}, More, S0, P, Subs) -> re_apply(RE1, [RE2|More], S0, P, Subs); re_apply({literal,[C|Lcs]}, More, [C|S], P, Subs) -> re_apply_lit(Lcs, More, S, P+1, Subs); %Have matched first char re_apply({kclosure,RE}, More, S0, P0, Subs0) -> %% Greedy so try RE first, no difference here actually. Loop = case re_apply(RE, [], S0, P0, Subs0) of {match,P0,_S1,_Subs1} -> %0 length match, don't loop! nomatch; {match,P1,S1,Subs1} -> re_apply_more([{kclosure,RE}|More], S1, P1, Subs1); nomatch -> nomatch; never_match -> never_match end, re_apply_or(Loop, re_apply_more(More, S0, P0, Subs0)); re_apply({pclosure,RE}, More, S, P, Subs) -> re_apply(RE, [{kclosure,RE}|More], S, P, Subs); re_apply({optional,RE}, More, S, P, Subs) -> %% Greedy so try RE first, no difference here actually. re_apply_or(re_apply(RE, More, S, P, Subs), re_apply_more(More, S, P, Subs)); re_apply({iclosure,RE,N,M}, More, S, P, Subs) when N > 0 -> re_apply(RE, [{iclosure,RE,N-1,M}|More], S, P, Subs); re_apply({iclosure,RE,0,M}, More, S, P, Subs) -> Exp = expand_opt(RE, M), re_apply(Exp, More, S, P, Subs); re_apply({subexpr,N,RE}, More, S, P, Subs) -> re_apply(RE, [{endsub,N,P}|More], S, P, Subs); re_apply({endsub,N,St}, More, S, P, Subs0) -> Subs1 = setelement(N, Subs0, {St,P-St}), %Record sub-expr re_apply_more(More, S, P, Subs1); re_apply(bos, More, S, 1, Subs) -> re_apply_more(More, S, 1, Subs); re_apply(bos, _More, _S, _, _) -> never_match; re_apply(eos, More, [$\n], P, Subs) -> re_apply_more(More, [], P, Subs); re_apply(eos, More, [], P, Subs) -> re_apply_more(More, [], P, Subs); re_apply({char_class,Cc}, More, [C|S], P, Subs) -> case in_char_class(C, Cc) of true -> re_apply_more(More, S, P+1, Subs); false -> nomatch end; re_apply({comp_class,Cc}, More, [C|S], P, Subs) -> case in_char_class(C, Cc) of true -> nomatch; false -> re_apply_more(More, S, P+1, Subs) end; re_apply(C, More, [C|S], P, Subs) when is_integer(C) -> re_apply_more(More, S, P+1, Subs); re_apply(_RE, _More, _S, _P, _Subs) -> %% ?dbg("~p : ~p\n", [_RE,_S]), nomatch. %% re_apply_more([RegExp], String, Length, SubsExprs) -> %% {match,RestPos,Rest,SubExprs} | nomatch. re_apply_more([RE|More], S, P, Subs) -> re_apply(RE, More, S, P, Subs); re_apply_more([], S, P, Subs) -> {match,P,S,Subs}. %% re_apply_lit(Literal, More, String, Position, SubExprs) -> %% {match,RestPos,Rest,SubExprs} | nomatch. re_apply_lit([C|Lit], More, [C|Cs], P, Subs) -> re_apply_lit(Lit, More, Cs, P+1, Subs); re_apply_lit([], More, Cs, P, Subs) -> re_apply_more(More, Cs, P, Subs); re_apply_lit(_Lit, _More, _Cs, _P, _Subs) -> nomatch. %% expand_iclosure(RE, N, M) -> RE. expand_iclosure(RE, 0, M) -> expand_opt(RE, M); expand_iclosure(RE, N, M) -> {concat,RE,expand_iclosure(RE, N-1, M)}. %% expand_opt(RegExp, Count) -> RE. %% Handle all the cases. expand_opt(_RE, none) -> epsilon; expand_opt(RE, any) -> {kclosure,RE}; expand_opt(_RE, 0) -> epsilon; expand_opt(RE, 1) -> {optional,RE}; expand_opt(RE, N) -> {optional,{concat,RE,expand_opt(RE, N-1)}}. %% find_prefix(PrefixStr, SourceStr) %% if PrefixStr is a prefix of Str then return {ok,RemainingStr} %% otherwise return false %% find_prefix([C|Prest], [C|Rest]) -> %% find_prefix(Prest, Rest); %% find_prefix([], Rest) -> {yes,Rest}; %% find_prefix(_, _) -> no. %% in_char_class(Char, Class) -> bool(). in_char_class(C, [{C1,C2}|_Cc]) when C >= C1, C =< C2 -> true; in_char_class(C, [C|_Cc]) -> true; in_char_class(C, [_|Cc]) -> in_char_class(C, Cc); in_char_class(_C, []) -> false. %% re_apply_or(Match1, Match2, SubExprs) -> %% {match,RestPos,Rest,SubExprs} | nomatch. %% If we want the best match then choose the longest match, else just %% choose one by trying sequentially. re_apply_or(M1={match,P1,_,_},{match,P2,_,_}) when P1 >= P2 -> M1; re_apply_or({match,_,_,_}, M2={match,_,_,_}) -> M2; re_apply_or(never_match, R2) -> R2; re_apply_or(R1, never_match) -> R1; re_apply_or(nomatch, R2) -> R2; re_apply_or(R1, nomatch) -> R1. %% Record definitions for the NFA, DFA and compiler. -record(nfa_state, {no,edges=[],accept=no}). -record(dfa_state, {no,nfa=[],trans=[],accept=no}). -record(c_state, {no,trans=[],tmin=0,smin=none,tmax=0,smax=none, accept=false,spec=[]}). %% We use standard methods, Thompson's construction and subset %% construction, to create first an NFA and then a DFA from the %% regexps. A non-standard feature is that we work with sets of %% character ranges (crs) instead sets of characters. This is most %% noticeable when constructing DFAs. The major benefit is that we can %% handle characters from any set, not just limited ASCII or 8859, %% even 16/32 bit unicode. %% %% The whole range of characters is 0-maxchar, where maxchar is a BIG %% number. We don't make any assumptions about the size of maxchar, it %% is just bigger than any character. %% %% Using character ranges makes describing many regexps very simple, %% for example the regexp "." just becomes the range %% [{0-9},{11-maxchar}]. %% make_nfa(RegExpActions) -> {ok,{NFA,StartState}} | {error,E}. %% Build a complete nfa from a list of {RegExp,Action}. The NFA field %% accept has values {yes,Action}|no. The NFA is a list of states. make_nfa(REAs0) -> case parse_reas(REAs0) of {ok,REAs1} -> {NFA,Start} = build_combined_nfa(REAs1), {ok,{NFA,Start}}; {error,E} -> {error,E} end. %% make_dfa(RegExpActions) -> {ok,{DFA,StartState}} | {error,E}. %% make_dfa(RegExpActions, LowestState) -> {ok,{DFA,StartState}} | {error,E}. %% Build a complete dfa from a list of {RegExp,Action}. The DFA field %% accept has values {yes,Action}|no. If multiple Regexps can result %% in same match string then RegExpActions list define priority. make_dfa(REAs) -> make_dfa(REAs, 0). make_dfa(REAs0, Low) -> case parse_reas(REAs0) of {ok,REAs1} -> {NFA,Start0} = build_combined_nfa(REAs1), {DFA0,Start1} = build_dfa(NFA, Start0), {DFA,Start} = minimise_dfa(DFA0, Start1, Low), {ok,{DFA,Start}}; {error,E} -> {error,E} end. parse_reas(REAs) -> parse_reas(REAs, []). parse_reas([{{regexp,{R,_Sc}},A}|REAs], S) -> %Already parsed parse_reas(REAs, [{R,A}|S]); parse_reas([{RegExp,A}|REAs], S) -> case parse(RegExp) of {ok,{regexp,{R,_Sc}}} -> parse_reas(REAs, [{R,A}|S]); {error,E} -> {error,E} end; parse_reas([], Stack) -> {ok,reverse(Stack)}. %% build_combined_nfa(RegExpActionList) -> {NFA,StartState}. %% Build the combined NFA using Thompson's construction straight out %% of the book. Build the separate NFAs in the same order as the %% rules so that the accepting have ascending states have ascending %% state numbers. Start numbering the states from 1 as we put the %% states in a tuple with the state number as the index. build_combined_nfa(REAs) -> {NFA,Starts,Next} = build_nfa_list(REAs, [], [], 1), F = #nfa_state{no=Next,edges=epsilon_trans(Starts),accept=no}, {[F|NFA],Next}. build_nfa_list([{RE,Action}|REAs], NFA0, Starts, Next0) -> {NFA1,Next1,Start} = build_nfa(RE, Next0, Action), build_nfa_list(REAs, NFA1 ++ NFA0, [Start|Starts], Next1); build_nfa_list([], NFA, Starts, Next) -> {NFA,reverse(Starts),Next}. epsilon_trans(Sts) -> [ {epsilon,S} || S <- Sts ]. %% build_nfa(RegExp, NextState, Action) -> {NFA,NextFreeState,StartState}. %% When building the NFA states for a ??? we don't build the end %% state, just allocate a State for it and return this state %% number. This allows us to avoid building unnecessary states for %% concatenation which would then have to be removed by overwriting %% an existing state. build_nfa(RE, Next, Action) -> {NFA,N,E} = build_nfa(RE, Next+1, Next, []), {[#nfa_state{no=E,accept={yes,Action}}|NFA],N,Next}. %% build_nfa(RegExp, NextState, StartState, NFA) -> {NFA,NextState,EndState}. %% The NFA is a list of nfa_state is no predefined order. The state %% number of the returned EndState is already allocated! build_nfa({'or',RE1,RE2}, N0, S, NFA0) -> {NFA1,N1,E1} = build_nfa(RE1, N0+1, N0, NFA0), {NFA2,N2,E2} = build_nfa(RE2, N1+1, N1, NFA1), E = N2, {[#nfa_state{no=S,edges=[{epsilon,N0},{epsilon,N1}]}, #nfa_state{no=E1,edges=[{epsilon,E}]}, #nfa_state{no=E2,edges=[{epsilon,E}]}|NFA2], N2+1,E}; build_nfa({literal,[]}, N, S, NFA) -> {NFA,N,S}; build_nfa({literal,[C|Cs]}, N0, S, NFA0) -> {NFA1,N1,E1} = build_nfa(C, N0, S, NFA0), build_nfa({literal,Cs}, N1, E1, NFA1); build_nfa({concat,RE1,RE2}, N0, S, NFA0) -> {NFA1,N1,E1} = build_nfa(RE1, N0, S, NFA0), {NFA2,N2,E2} = build_nfa(RE2, N1, E1, NFA1), {NFA2,N2,E2}; build_nfa({kclosure,RE}, N0, S, NFA0) -> {NFA1,N1,E1} = build_nfa(RE, N0+1, N0, NFA0), E = N1, {[#nfa_state{no=S,edges=[{epsilon,N0},{epsilon,E}]}, #nfa_state{no=E1,edges=[{epsilon,N0},{epsilon,E}]}|NFA1], N1+1,E}; build_nfa({pclosure,RE}, N0, S, NFA0) -> {NFA1,N1,E1} = build_nfa(RE, N0+1, N0, NFA0), E = N1, {[#nfa_state{no=S,edges=[{epsilon,N0}]}, #nfa_state{no=E1,edges=[{epsilon,N0},{epsilon,E}]}|NFA1], N1+1,E}; build_nfa({optional,RE}, N0, S, NFA0) -> {NFA1,N1,E1} = build_nfa(RE, N0+1, N0, NFA0), E = N1, {[#nfa_state{no=S,edges=[{epsilon,N0},{epsilon,E}]}, #nfa_state{no=E1,edges=[{epsilon,E}]}|NFA1], N1+1,E}; build_nfa({iclosure,RE,I1,I2}, N, S, NFA) -> Exp = expand_iclosure(RE, I1, I2), build_nfa(Exp, N, S, NFA); build_nfa({char_class,Cc}, N, S, NFA) -> {[#nfa_state{no=S,edges=[{nfa_char_class(Cc),N}]}|NFA],N+1,N}; build_nfa({comp_class,Cc}, N, S, NFA) -> {[#nfa_state{no=S,edges=[{nfa_comp_class(Cc),N}]}|NFA],N+1,N}; build_nfa(epsilon, N, S, NFA) -> {NFA,N,S}; build_nfa({group,RE}, N, S, NFA) -> %%% FIXME %%%%%%% build_nfa(RE, N, S, NFA); build_nfa({subexpr,_N,RE}, N, S, NFA) -> %%% FIXME %%%%%%% build_nfa(RE, N, S, NFA); build_nfa(bos, N, S, NFA) -> {[#nfa_state{no=S,edges=[{[bos],N}]}|NFA],N+1,N}; build_nfa(eos, N, S, NFA) -> {[#nfa_state{no=S,edges=[{[eos],N}]}|NFA],N+1,N}; %%{[#nfa_state{no=S,edges=[{[eos],N}]}|NFA],N+1,N}; build_nfa(C, N, S, NFA) when is_integer(C) -> {[#nfa_state{no=S,edges=[{[{C,C}],N}]}|NFA],N+1,N}. nfa_char_class(Cc) -> Crs = lists:foldl(fun({C1,C2}, Set) -> add_element({C1,C2}, Set); (C, Set) -> add_element({C,C}, Set) end, [], Cc), %% ?dbg("cc: ~p\n", [Crs]), pack_crs(Crs). pack_crs([{C1,C2}=Cr,{C3,C4}|Crs]) when C1 =< C3, C2 >= C4 -> %% C1 C2 %% C3 C4 pack_crs([Cr|Crs]); pack_crs([{C1,C2},{C3,C4}|Crs]) when C2 >= C3, C2 < C4 -> %% C1 C2 %% C3 C4 pack_crs([{C1,C4}|Crs]); pack_crs([{C1,C2},{C3,C4}|Crs]) when C2 + 1 == C3 -> %% C1 C2 %% C3 C4 pack_crs([{C1,C4}|Crs]); pack_crs([Cr|Crs]) -> [Cr|pack_crs(Crs)]; pack_crs([]) -> []. nfa_comp_class(Cc) -> Crs = nfa_char_class(Cc), %% ?dbg("comp: ~p\n", [Crs]), comp_crs(Crs, 0). comp_crs([{C1,C2}|Crs], Last) -> [{Last,C1-1}|comp_crs(Crs, C2+1)]; comp_crs([], Last) -> [{Last,maxchar}]. %% build_dfa(NFA, NfaStartState) -> {DFA,DfaStartState}. %% Build a DFA from an NFA using "subset construction". The major %% difference from the book is that we keep the marked and unmarked %% DFA states in separate lists. New DFA states are added to the %% unmarked list and states are marked by moving them to the marked %% list. We assume that the NFA accepting state numbers are in %% ascending order for the rules and use ordsets to keep this order. build_dfa(NFA0, Start) -> %% We want NFA as sorted tuple for fast access, assume lowest state 1. NFA1 = list_to_tuple(keysort(#nfa_state.no, NFA0)), D = #dfa_state{no=0,nfa=eclosure([Start], NFA1),accept=no}, {build_dfa([D], 1, [], NFA1),0}. %% build_dfa([UnMarked], NextState, [Marked], NFA) -> DFA. %% Traverse the unmarked states. Temporarily add the current unmarked %% state to the marked list before calculating translation, this is %% to avoid adding too many duplicate states. Add it properly to the %% marked list afterwards with correct translations. build_dfa([U|Us0], N0, Ms, NFA) -> {Ts,Us1,N1} = build_dfa(U#dfa_state.nfa, Us0, N0, [], [U|Ms], NFA), M = U#dfa_state{trans=Ts,accept=accept(U#dfa_state.nfa, NFA)}, build_dfa(Us1, N1, [M|Ms], NFA); build_dfa([], _N, Ms, _NFA) -> Ms. %% build_dfa([NfaState], [Unmarked], NextState, [Transition], [Marked], NFA) -> %% {Transitions,UnmarkedStates,NextState}. %% Foreach NFA state set calculate the legal translations. N.B. must %% search *BOTH* the unmarked and marked lists to check if DFA state %% already exists. As the range of characters is potentially VERY %% large we cannot explicitly test all characters. Instead we first %% calculate the set of all disjoint character ranges which are %% possible candidates to the set of NFA states. build_dfa(Set, Us, N, Ts, Ms, NFA) -> %% List of all transition sets. Crs0 = [Cr || S <- Set, {Crs,_St} <- (element(S, NFA))#nfa_state.edges, is_list(Crs), Cr <- Crs ], Crs1 = lists:usort(Crs0), %Must remove duplicates! %% Build list of disjoint test ranges. Test = disjoint_crs(Crs1), %% ?dbg("bd: ~p\n ~p\n ~p\n ~p\n", [Set,Crs0,Crs1,Test]), build_dfa(Test, Set, Us, N, Ts, Ms, NFA). %% disjoint_crs([CharRange]) -> [CharRange]. %% Take a sorted list of char ranges and make a sorted list of %% disjoint char ranges. No new char range extends past an existing %% char range. disjoint_crs([{_C1,C2}=Cr1,{C3,_C4}=Cr2|Crs]) when C2 < C3 -> %% C1 C2 %% C3 C4 [Cr1|disjoint_crs([Cr2|Crs])]; disjoint_crs([{C1,C2},{C3,C4}|Crs]) when C1 == C3 -> %% C1 C2 %% C3 C4 [{C1,C2}|disjoint_crs(add_element({C2+1,C4}, Crs))]; disjoint_crs([{C1,C2},{C3,C4}|Crs]) when C1 < C3, C2 >= C3, C2 < C4 -> %% C1 C2 %% C3 C4 [{C1,C3-1}|disjoint_crs(union([{C3,C2},{C2+1,C4}], Crs))]; disjoint_crs([{C1,C2},{C3,C4}|Crs]) when C1 < C3, C2 == C4 -> %% C1 C2 %% C3 C4 [{C1,C3-1}|disjoint_crs(add_element({C3,C4}, Crs))]; disjoint_crs([{C1,C2},{C3,C4}|Crs]) when C1 < C3, C2 > C4 -> %% C1 C2 %% C3 C4 [{C1,C3-1}|disjoint_crs(union([{C3,C4},{C4+1,C2}], Crs))]; disjoint_crs([Cr|Crs]) -> [Cr|disjoint_crs(Crs)]; disjoint_crs([]) -> []. build_dfa([Cr|Crs], Set, Us, N, Ts, Ms, NFA) -> case eclosure(move(Set, Cr, NFA), NFA) of S when S /= [] -> case keysearch(S, #dfa_state.nfa, Us) of {value,#dfa_state{no=T}} -> build_dfa(Crs, Set, Us, N, [{Cr,T}|Ts], Ms, NFA); false -> case keysearch(S, #dfa_state.nfa, Ms) of {value,#dfa_state{no=T}} -> build_dfa(Crs, Set, Us, N, [{Cr,T}|Ts], Ms, NFA); false -> U = #dfa_state{no=N,nfa=S}, build_dfa(Crs, Set, [U|Us], N+1, [{Cr,N}|Ts], Ms, NFA) end end; [] -> build_dfa(Crs, Set, Us, N, Ts, Ms, NFA) end; build_dfa([], _Set, Us, N, Ts, _Ms, _NFA) -> {Ts,Us,N}. %% eclosure([State], NFA) -> [State]. %% move([State], Char, NFA) -> [State]. %% These are straight out of the book. As eclosure uses ordsets then %% the generated state sets are in ascending order. eclosure(Sts, NFA) -> eclosure(Sts, NFA, []). eclosure([St|Sts], NFA, Ec) -> #nfa_state{edges=Es} = element(St, NFA), eclosure([ N || {epsilon,N} <- Es, not is_element(N, Ec) ] ++ Sts, NFA, add_element(St, Ec)); eclosure([], _NFA, Ec) -> Ec. move(Sts, Cr, NFA) -> [ St || N <- Sts, {Crs,St} <- (element(N, NFA))#nfa_state.edges, is_list(Crs), %% begin %% ?dbg("move1: ~p\n", [{Sts,Cr,Crs,in_crs(Cr,Crs)}]), %% true %% end, in_crs(Cr, Crs) ]. in_crs({C1,C2}, [{C3,C4}|_Crs]) when C1 >= C3, C2 =< C4 -> true; in_crs(Cr, [Cr|_Crs]) -> true; %Catch bos and eos. in_crs(Cr, [_|Crs]) -> in_crs(Cr, Crs); in_crs(_Cr, []) -> false. %% accept([State], NFA) -> true | false. %% Scan down the state list until we find an accepting state. accept([St|Sts], NFA) -> case element(St, NFA) of #nfa_state{accept={yes,A}} -> {yes,A}; #nfa_state{accept=no} -> accept(Sts, NFA) end; accept([], _NFA) -> no. %% minimise_dfa(DFA, StartState, FirstState) -> {DFA,StartState}. %% Minimise the DFA by removing equivalent states. We consider a %% state if both the transitions and the their accept state is the %% same. First repeatedly run throught the DFA state list removing %% equivalent states and updating remaining transitions with %% remaining equivalent state numbers. When no more reductions are %% possible then pack the remaining state numbers to get consecutive %% states. minimise_dfa(DFA0, Start, N) -> case min_dfa(DFA0) of {DFA1,[]} -> %No reduction! {DFA2,Rs} = pack_dfa(DFA1, N), {min_update(DFA2, Rs),min_new_state(Start, Rs)}; {DFA1,Rs} -> minimise_dfa(min_update(DFA1, Rs), min_new_state(Start, Rs), N) end. min_dfa(DFA) -> min_dfa(DFA, [], []). min_dfa([D|DFA0], Rs0, MDFA) -> {DFA1,Rs1} = min_delete(DFA0, D#dfa_state.trans, D#dfa_state.accept, D#dfa_state.no, Rs0, []), min_dfa(DFA1, Rs1, [D|MDFA]); min_dfa([], Rs, MDFA) -> {MDFA,Rs}. min_delete([#dfa_state{no=N,trans=T,accept=A}|DFA], T, A, NewN, Rs, MDFA) -> min_delete(DFA, T, A, NewN, [{N,NewN}|Rs], MDFA); min_delete([D|DFA], T, A, NewN, Rs, MDFA) -> min_delete(DFA, T, A, NewN, Rs, [D|MDFA]); min_delete([], _T, _A, _NewN, Rs, MDFA) -> {MDFA,Rs}. min_update(DFA, Rs) -> [ D#dfa_state{trans=min_update_trans(D#dfa_state.trans, Rs)} || D <- DFA ]. min_update_trans(Tr, Rs) -> [ {C,min_new_state(S, Rs)} || {C,S} <- Tr ]. min_new_state(Old, [{Old,New}|_Reds]) -> New; min_new_state(Old, [_R|Reds]) -> min_new_state(Old, Reds); min_new_state(Old, []) -> Old. pack_dfa(DFA, N) -> pack_dfa(DFA, N, [], []). pack_dfa([D|DFA], NewN, Rs, PDFA) -> pack_dfa(DFA, NewN+1, [{D#dfa_state.no,NewN}|Rs], [D#dfa_state{no=NewN}|PDFA]); pack_dfa([], _NewN, Rs, PDFA) -> {PDFA,Rs}. %% comp_apply(String, StartPos, DFAReg) -> {match,RestPos,Rest} | nomatch. %% Apply the DFA of a regular expression to a string. If %% there is a match return the position of the remaining string and %% the string if else return 'nomatch'. %% %% StartPos should be the real start position as it is used to decide %% if we are at the beginning of the string. comp_apply(Cs, P, {DFA,Start,_Fail}) -> comp_apply(element(Start, DFA), Cs, P, DFA, nomatch). comp_apply(#c_state{spec=[]}=St, Cs, P, DFA, Accept) -> comp_apply_tr(St, Cs, P, DFA, Accept); comp_apply(#c_state{spec=Sp}=St, Cs, P, DFA, Accept) -> comp_apply_sp(St, Cs, P, DFA, Accept, Sp). comp_apply_tr(#c_state{trans=none,accept=A}, Cs, P, _DFA, Accept) -> %% End state. accept_value(A, Cs, P, Accept); comp_apply_tr(#c_state{trans=Tr,tmin=Tmin,smin=Smin,tmax=Tmax,smax=Smax,accept=A}, [C|Cs]=Cs0, P, DFA, Accept) -> %% Get the next state number to go to. NextSt = if C =< Tmin -> Smin; %Below transition table C >= Tmax -> Smax; %Above transition table true -> %Otherwise use table element(C - Tmin, Tr) end, comp_apply(element(NextSt, DFA), Cs, P+1, DFA, accept_value(A, Cs0, P, Accept)); comp_apply_tr(#c_state{trans=_Tr,accept=A}, [], P, _DFA, Accept) -> accept_value(A, [], P, Accept). comp_apply_sp(_St, Cs, 1, DFA, Accept, [{bos,S}|_]) -> comp_apply(element(S, DFA), Cs, 1, DFA, Accept); comp_apply_sp(_St, [$\n], P, DFA, Accept, [{eos,S}|_]) -> comp_apply(element(S, DFA), [], P, DFA, Accept); comp_apply_sp(_St, [], P, DFA, Accept, [{eos,S}|_]) -> comp_apply(element(S, DFA), [], P, DFA, Accept); comp_apply_sp(St, Cs, P, DFA, Accept, [_|Sp]) -> comp_apply_sp(St, Cs, P, DFA, Accept, Sp); comp_apply_sp(St, Cs, P, DFA, Accept, []) -> comp_apply_tr(St, Cs, P, DFA, Accept). accept_value(true, Cs, P, _Accept) -> {match,P,Cs}; accept_value(false, _Cs, _P, Accept) -> Accept. %% compile(RegExp) -> {ok,RE} | {error,E}. %% Parse the regexp described in the string RegExp. compile(RegExp) -> case make_dfa([{RegExp,yes}], 2) of {ok,{DFA0,Start}} -> Fail = 1, DFA1 = [#dfa_state{no=Fail,accept=no,trans=[]}|DFA0], DFA = tuplelise_dfa(DFA1, 1), {ok,{comp_regexp,{DFA,Start,Fail}}}; {error,E} -> {error,E} end. %% tuplelise_dfa(DFAstates, NoAcceptState) -> {{CompState},FirstState}. tuplelise_dfa(DFA0, NoAccept) -> DFA1 = map(fun (#dfa_state{no=N,trans=Ts,accept=A}) -> {Tr,Tmin,Smin,Tmax,Smax,Sp} = build_trans(Ts, NoAccept), #c_state{no=N,trans=Tr,tmin=Tmin,smin=Smin, tmax=Tmax,smax=Smax, accept=fix_accept(A),spec=Sp} end, DFA0), list_to_tuple(keysort(#dfa_state.no, DFA1)). build_trans(Ts0, NoAccept) -> %% Split transitions into character ranges and specials. {Ts1,Sp1} = foldl(fun ({{_,_},_}=T, {Ts,Sp}) -> {[T|Ts],Sp}; ({_,_}=T, {Ts,Sp}) -> {Ts,[T|Sp]} end, {[],[]}, Ts0), if Ts1 == [] -> {none,none,none,none,none,Sp1}; true -> %% Have transitions, convert to tuple. Ts2 = keysort(1, Ts1), {Tmin,Smin,Ts3} = min_trans(Ts2, NoAccept), %% ?dbg("exptr: ~p\n", [{Ts3,Tmin}]), {Trans,Tmax,Smax} = expand_trans(Ts3, Tmin, NoAccept), {list_to_tuple(Trans),Tmin,Smin,Tmax,Smax,Sp1} end. min_trans([{{0,C2},S}|Crs], _Def) -> {C2,S,Crs}; min_trans([{{C1,_C2},_S}|_]=Crs, Def) -> {C1-1,Def,Crs}. expand_trans([{{C1,maxchar},S}], Last, Def) -> Trs = duplicate(C1-(Last+1), Def), {Trs,C1,S}; expand_trans([{{C1,C2},S}], Last, Def) -> Trs = duplicate(C1-(Last+1), Def) ++ duplicate(C2-C1+1, S), {Trs,C2+1,Def}; expand_trans([{{C1,C2},S}|Crs], Last, Def) -> {Trs0,Tmax,Smax} = expand_trans(Crs, C2, Def), Trs1 = duplicate(C1-(Last+1), Def) ++ duplicate(C2-C1+1, S) ++ Trs0, {Trs1,Tmax,Smax}. fix_accept({yes,_}) -> true; fix_accept(no) -> false.