Every example using Ets has a corresponding example in Mnesia. In general all Ets examples also apply to Dets tables.
Select/Match operations on Ets and Mnesia tables can become
very expensive operations. They usually need to scan the complete
table. You should try to structure your
data so that you minimize the need for select/match
operations. However, if you really need a select/match operation,
it will still be more efficient than using
There are exceptions when the complete table is not
scanned, for instance if part of the key is bound when searching an
When creating a record to be used in a select/match operation you want most of the fields to have the value '_'. The easiest and fastest way to do that is as follows:
#person{age = 42, _ = '_'}.
The delete operation is considered successful if the element was not present in the table. Hence all attempts to check that the element is present in the Ets/Mnesia table before deletion are unnecessary. Here follows an example for Ets tables.
DO
... ets:delete(Tab, Key), ...
DO NOT
... case ets:lookup(Tab, Key) of [] -> ok; [_|_] -> ets:delete(Tab, Key) end, ...
Do not fetch data that you already have! Consider that you
have a module that handles the abstract data type Person. You
export the interface function
If the functions
DO
%%% Interface function
print_person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print_name(Person),
print_age(Person),
print_occupation(Person);
[] ->
io:format("No person with ID = ~p~n", [PersonID])
end.
%%% Internal functions
print_name(Person) ->
io:format("No person ~p~n", [Person#person.name]).
print_age(Person) ->
io:format("No person ~p~n", [Person#person.age]).
print_occupation(Person) ->
io:format("No person ~p~n", [Person#person.occupation]).
DO NOT
%%% Interface function
print_person(PersonId) ->
%% Look up the person in the named table person,
case ets:lookup(person, PersonId) of
[Person] ->
print_name(PersonID),
print_age(PersonID),
print_occupation(PersonID);
[] ->
io:format("No person with ID = ~p~n", [PersonID])
end.
%%% Internal functionss
print_name(PersonID) ->
[Person] = ets:lookup(person, PersonId),
io:format("No person ~p~n", [Person#person.name]).
print_age(PersonID) ->
[Person] = ets:lookup(person, PersonId),
io:format("No person ~p~n", [Person#person.age]).
print_occupation(PersonID) ->
[Person] = ets:lookup(person, PersonId),
io:format("No person ~p~n", [Person#person.occupation]).
For non-persistent database storage, prefer Ets tables over
Mnesia local_content tables. Even the Mnesia
Assume we have an Ets-table, which uses
[#person{idno = 1, name = "Adam", age = 31, occupation = "mailman"}, #person{idno = 2, name = "Bryan", age = 31, occupation = "cashier"}, #person{idno = 3, name = "Bryan", age = 35, occupation = "banker"}, #person{idno = 4, name = "Carl", age = 25, occupation = "mailman"}]
If we must return all data stored in the Ets-table we
can use
DO
... ets:select(Tab,[{ #person{idno='_', name='_', age='$1', occupation = '_'}, [], ['$1']}]), ...
DO NOT
... TabList = ets:tab2list(Tab), lists:map(fun(X) -> X#person.age end, TabList), ...
If we are only interested in the age of all persons named Bryan, we should:
DO
... ets:select(Tab,[{ #person{idno='_', name="Bryan", age='$1', occupation = '_'}, [], ['$1']}]), ...
DO NOT
... TabList = ets:tab2list(Tab), lists:foldl(fun(X, Acc) -> case X#person.name of "Bryan" -> [X#person.age|Acc]; _ -> Acc end end, [], TabList), ...
REALLY DO NOT
... TabList = ets:tab2list(Tab), BryanList = lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList), lists:map(fun(X) -> X#person.age end, BryanList), ...
If we need all information stored in the Ets table about persons named Bryan we should:
DO
... ets:select(Tab, [{#person{idno='_', name="Bryan", age='_', occupation = '_'}, [], ['$_']}]), ...
DO NOT
... TabList = ets:tab2list(Tab), lists:filter(fun(X) -> X#person.name == "Bryan" end, TabList), ...
If the data in the table should be accessed so that the order
of the keys in the table is significant, the table type
An
An Ets table is a single key table (either a hash table or a
tree ordered by the key) and should be used as one. In other
words, use the key to look up things whenever possible. A
lookup by a known key in a set Ets table is constant and for a
ordered_set Ets table it is O(logN). A key lookup is always
preferable to a call where the whole table has to be
scanned. In the examples above, the field
A simple solution would be to use the
An index table for the table in the previous examples would have to be a bag (as keys would appear more than once) and could have the following contents:
[#index_entry{name="Adam", idno=1}, #index_entry{name="Bryan", idno=2}, #index_entry{name="Bryan", idno=3}, #index_entry{name="Carl", idno=4}]
Given this index table a lookup of the
... MatchingIDs = ets:lookup(IndexTable,"Bryan"), lists:map(fun(#index_entry{idno = ID}) -> [#person{age = Age}] = ets:lookup(PersonTable, ID), Age end, MatchingIDs), ...
Note that the code above never uses
Keeping an index table introduces some overhead when inserting records in the table, therefore the number of operations gained from the table has to be weighted against the number of operations inserting objects in the table. However, note that the gain when the key can be used to lookup elements is significant.
If you frequently do a lookup on a field that is not the key of the table, you will lose performance using "mnesia:select/match_object" as this function will traverse the whole table. You may create a secondary index instead and use "mnesia:index_read" to get faster access, however this will require more memory. Example:
-record(person, {idno, name, age, occupation}). ... {atomic, ok} = mnesia:create_table(person, [{index,[#person.age]}, {attributes, record_info(fields, person)}]), {atomic, ok} = mnesia:add_table_index(person, age), ... PersonsAge42 = mnesia:dirty_index_read(person, 42, #person.age), ...
Transactions is a way to guarantee that the distributed Mnesia database remains consistent, even when many different processes update it in parallel. However if you have real time requirements it is recommended to use dirty operations instead of transactions. When using the dirty operations you lose the consistency guarantee, this is usually solved by only letting one process update the table. Other processes have to send update requests to that process.
... % Using transaction Fun = fun() -> [mnesia:read({Table, Key}), mnesia:read({Table2, Key2})] end, {atomic, [Result1, Result2]} = mnesia:transaction(Fun), ... % Same thing using dirty operations ... Result1 = mnesia:dirty_read({Table, Key}), Result2 = mnesia:dirty_read({Table2, Key2}), ...