1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
|
<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>2016</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>gen_statem Behaviour</title>
<prepared></prepared>
<docno></docno>
<date></date>
<rev></rev>
<file>statem.xml</file>
</header>
<marker id="gen_statem behaviour"></marker>
<p>
This section is to be read with the
<seealso marker="stdlib:gen_statem"><c>gen_statem(3)</c></seealso>
manual page in STDLIB, where all interface functions and callback
functions are described in detail.
</p>
<!-- =================================================================== -->
<section>
<title>Event Driven State Machines</title>
<p>
Established Automata theory does not deal much with
how a state transition is triggered,
but in general assumes that the output is a function
of the input (and the state) and that they are
some kind of values.
</p>
<p>
For an Event Driven State Machine the input is an event
that triggers a state transition and the output
is actions executed during the state transition.
It can analogously to the mathematical model of a
Finite State Machine be described as
a set of relations of the form:
</p>
<pre>
State(S) x Event(E) -> Actions(A), State(S')</pre>
<p>These relations are interpreted as meaning:</p>
<p>
If we are in state <c>S</c> and event <c>E</c> occurs, we
are to perform actions <c>A</c> and make a transition to
state <c>S'</c>.
</p>
<p>
Note that <c>S'</c> may be equal to <c>S</c>.
</p>
<p>
Since <c>A</c> and <c>S'</c> depend only on
<c>S</c> and <c>E</c> the kind of state machine described
here is a Mealy Machine.
</p>
<p>
Like most <c>gen_</c> behaviours, <c>gen_statem</c> keeps
a server <c>Data</c> besides the state. This and the fact that
there is no restriction on the number of states
(assuming enough virtual machine memory)
or on the number of distinct input events actually makes
a state machine implemented with this behaviour Turing complete.
But it feels mostly like an Event Driven Mealy Machine.
</p>
<p>
The <c>gen_statem</c> behaviour supports two different
callback modes. In the mode <c>state_functions</c>,
the state transition rules are written as a number of Erlang
functions, which conform to the following convention:
</p>
<pre>
StateName(EventType, EventContent, Data) ->
.. code for actions here ...
{next_state, StateName', Data'}.</pre>
<p>
In the mode <c>handle_event_function</c> there is only one
Erlang function that implements all state transition rules:
</p>
<pre>
handle_event(EventType, EventContent, State, Data) ->
.. code for actions here ...
{next_state, State', Data'}</pre>
<p>
Both these modes allow other return tuples
that you can find in the
<seealso marker="stdlib:gen_statem#Module:StateName/3">
reference manual.
</seealso>
These other return tuples can for example stop the machine,
execute state transition actions on the machine engine itself
and send replies.
</p>
</section>
<!-- =================================================================== -->
<section>
<title>Example</title>
<p>
This is an example starting off as equivalent to the the example in the
<seealso marker="fsm"><c>gen_fsm</c> behaviour </seealso>
description. In later chapters additions and tweaks are made
using features in <c>gen_statem</c> that <c>gen_fsm</c> does not have.
At the end of this section you can find the example again
with all the added features.
</p>
<p>
A door with a code lock can be viewed as a state machine.
Initially, the door is locked. Anytime someone presses a button,
this generates an event.
Depending on what buttons have been pressed before,
the sequence so far can be correct, incomplete, or wrong.
</p>
<p>
If it is correct, the door is unlocked for 10 seconds (10000 ms).
If it is incomplete, we wait for another button to be pressed. If
it is is wrong, we start all over,
waiting for a new button sequence.
</p>
<image file="code_lock.gif">
<icaption>Code lock state diagram</icaption>
</image>
<p>
We can implement such a code lock state machine using
<c>gen_statem</c> with the following callback module:
</p>
<marker id="ex"></marker>
<code type="erl"><![CDATA[
-module(code_lock).
-behaviour(gen_statem).
-export([start_link/1]).
-export([button/1]).
-export([init/1,terminate/3,code_change/4]).
-export([locked/3,open/3]).
start_link(Code) ->
gen_statem:start_link({local,code_lock}, ?MODULE, Code, []).
button(Digit) ->
gen_statem:cast(code_lock, {button,Digit}).
init(Code) ->
do_lock(),
Data = #{code => Code, remaining => Code},
{state_functions,locked,Data}.
locked(
cast, {button,Digit},
#{code := Code, remaining := Remaining} = Data) ->
case Remaining of
[Digit] ->
do_unlock(),
{next_state,open,Data#{remaining := Code},10000};
[Digit|Rest] -> % Incomplete
{next_state,locked,Data#{remaining := Rest}};
_Wrong ->
{next_state,locked,Data#{remaining := Code}}
end.
open(timeout, _, Data) ->
do_lock(),
{next_state,locked,Data};
open(cast, {button,_}, Data) ->
do_lock(),
{next_state,locked,Data}.
do_lock() ->
io:format("Lock~n", []).
do_unlock() ->
io:format("Unlock~n", []).
terminate(_Reason, State, _Data) ->
State =/= locked andalso do_lock(),
ok.
code_change(_Vsn, State, Data, _Extra) ->
{ok,State,Data}.
]]></code>
<p>The code is explained in the next sections.</p>
</section>
<!-- =================================================================== -->
<section>
<title>Starting gen_statem</title>
<p>
In the example in the previous section, the <c>gen_statem</c> is
started by calling <c>code_lock:start_link(Code)</c>:
</p>
<code type="erl"><![CDATA[
start_link(Code) ->
gen_statem:start_link({local,code_lock}, ?MODULE, Code, []).
]]></code>
<p>
<c>start_link</c> calls the function
<seealso marker="stdlib:gen_statem#start_link/4">
<c>gen_statem:start_link/4</c>
</seealso>
which spawns and links to a new process; a <c>gen_statem</c>.
</p>
<list type="bulleted">
<item>
<p>
The first argument, <c>{local,code_lock}</c>, specifies
the name. In this case, the <c>gen_statem</c> is locally
registered as <c>code_lock</c>.
</p>
<p>
If the name is omitted, the <c>gen_statem</c> is not registered.
Instead its pid must be used. The name can also be given
as <c>{global,Name}</c>, in which case the <c>gen_statem</c> is
registered using
<seealso marker="kernel:global#register_name/2">
<c>global:register_name/2</c>.
</seealso>
</p>
</item>
<item>
<p>
The second argument, <c>?MODULE</c>, is the name of
the callback module, that is; the module where the callback
functions are located, which is this module.
</p>
<p>
The interface functions (<c>start_link/1</c> and <c>button/1</c>)
are located in the same module as the callback functions
(<c>init/1</c>, <c>locked/3</c>, and <c>open/3</c>).
It is normally good programming practice to have the client
side and the server side code contained in one module.
</p>
</item>
<item>
<p>
The third argument, <c>Code</c>, is a list of digits that
is the correct unlock code which is passsed
to the callback function <c>init/1</c>.
</p>
</item>
<item>
<p>
The fourth argument, <c>[]</c>, is a list of options. See the
<seealso marker="stdlib:gen_statem#start_link/3">
<c>gen_statem:start_link/3</c>
</seealso>
manual page for available options.
</p>
</item>
</list>
<p>
If name registration succeeds, the new <c>gen_statem</c> process
calls the callback function <c>code_lock:init(Code)</c>.
This function is expected to return <c>{CallbackMode,State,Data}</c>,
where <c>CallbackMode</c> selects callback module state function
mode, in this case <c>state_functions</c> that is each state
has got its own handler function.
<c>State</c> is the initial state of the <c>gen_statem</c>,
in this case <c>locked</c>; assuming the door is locked to begin with.
<c>Data</c> is the internal server data of the <c>gen_statem</c>.
Here the server data is a
<seealso marker="stdlib:maps">
map
</seealso>
with the key <c>code</c> that stores
the correct button sequence and the key <c>remaining</c>
that stores the remaining correct button sequence
(the same as the <c>code</c> to begin with).
</p>
<code type="erl"><![CDATA[
init(Code) ->
do_lock(),
Data = #{code => Code, remaining => Code},
{state_functions,locked,Data}.
]]></code>
<p>
<seealso marker="stdlib:gen_statem#start_link/3">
<c>gen_statem:start_link</c>
</seealso>
is synchronous. It does not return until the <c>gen_statem</c>
has been initialized and is ready to receive events.
</p>
<p>
<seealso marker="stdlib:gen_statem#start_link/3">
<c>gen_statem:start_link</c>
</seealso>
must be used if the <c>gen_statem</c>
is part of a supervision tree, that is; started by a supervisor.
There is another function;
<seealso marker="stdlib:gen_statem#start/3">
<c>gen_statem:start</c>
</seealso>
to start a standalone <c>gen_statem</c>, that is;
a <c>gen_statem</c> that is not part of a supervision tree.
</p>
</section>
<!-- =================================================================== -->
<section>
<title>Events and Handling them</title>
<p>The function notifying the code lock about a button event is
implemented using
<seealso marker="stdlib:gen_statem#cast/2">
<c>gen_statem:cast/2</c>:
</seealso>
</p>
<code type="erl"><![CDATA[
button(Digit) ->
gen_statem:cast(code_lock, {button,Digit}).
]]></code>
<p>
<c>code_lock</c> is the name of the <c>gen_statem</c> and must
agree with the name used to start it.
<c>{button,Digit}</c> is the actual event content.
</p>
<p>
The event is made into a message and sent to the <c>gen_statem</c>.
When the event is received, the <c>gen_statem</c> calls
<c>StateName(cast, Event, Data)</c>, which is expected to
return a tuple <c>{next_state,NewStateName,NewData}</c>.
<c>StateName</c> is the name of the current state and
<c>NewStateName</c> is the name of the next state to go to.
<c>NewData</c> is a new value for the server data of
the <c>gen_statem</c>.
</p>
<code type="erl"><![CDATA[
locked(
cast, {button,Digit},
#{code := Code, remaining := Remaining} = Data) ->
case Remaining of
[Digit] -> % Complete
do_unlock(),
{next_state,open,Data#{remaining := Code},10000};
[Digit|Rest] -> % Incomplete
{next_state,locked,Data#{remaining := Rest}};
[_|_] -> % Wrong
{next_state,locked,Data#{remaining := Code}}
end.
open(timeout, _, Data) ->
do_lock(),
{next_state,locked,Data};
open(cast, {button,_}, Data) ->
do_lock(),
{next_state,locked,Data}.
]]></code>
<p>
If the door is locked and a button is pressed, the pressed
button is compared with the next correct button and,
depending on the result, the door is either unlocked
and the <c>gen_statem</c> goes to state <c>open</c>,
or the door remains in state <c>locked</c>.
</p>
<p>
If the pressed button is incorrect the server data
restarts from the start of the code sequence.
</p>
<p>
In state <c>open</c> any button locks the door since
any event cancels the event timer so we will not get
a timeout event after a button event.
</p>
</section>
<section>
<title>Event Time-Outs</title>
<p>
When a correct code has been given, the door is unlocked and
the following tuple is returned from <c>locked/2</c>:
</p>
<code type="erl"><![CDATA[
{next_state,open,Data#{remaining := Code},10000};
]]></code>
<p>
10000 is a time-out value in milliseconds.
After this time, that is; 10 seconds, a time-out occurs.
Then, <c>StateName(timeout, 10000, Data)</c> is called.
The time-out occurs when the door has been in state <c>open</c>
for 10 seconds. After that the door is locked again:
</p>
<code type="erl"><![CDATA[
open(timeout, _, Data) ->
do_lock(),
{next_state,locked,Data};
]]></code>
</section>
<!-- =================================================================== -->
<section>
<title>All State Events</title>
<p>
Sometimes an event can arrive in any state of the <c>gen_statem</c>.
It is convenient to handle these in a common state handler function
that all state functions call for events not specific to the state.
</p>
<p>
Let's introduce a <c>code_length/0</c> function that returns
the length of the correct code
(that should not be sensitive to reveal...).
We'll dispatch all events that are not state specific
to the common function <c>handle_event/3</c>.
</p>
<code type="erl"><![CDATA[
...
-export([button/1,code_length/0]).
...
code_length() ->
gen_statem:call(code_lock, code_length).
...
locked(...) -> ... ;
locked(EventType, EventContent, Data) ->
handle_event(EventType, EventContent, Data).
...
open(...) -> ... ;
open(EventType, EventContent, Data) ->
handle_event(EventType, EventContent, Data).
handle_event({call,From}, code_length, #{code := Code} = Data) ->
{keep_state,Data,[{reply,From,length(Code)}]}.
]]></code>
<p>
This example uses
<seealso marker="stdlib:gen_statem#call/2">
<c>gen_statem:call/2</c>
</seealso>
which waits for a reply from the server.
The reply is sent with a <c>{reply,From,Reply}</c> tuple
in an action list in the <c>{keep_state,...}</c> tuple
that retains the current state.
</p>
</section>
<!-- =================================================================== -->
<section>
<title>One Event Handler</title>
<p>
If you use the mode <c>handle_event_function</c>
all events are handled in <c>handle_event/4</c> and we
may (but do not have to) use an event-centered approach
where we dispatch on event first and then state:
</p>
<code type="erl"><![CDATA[
...
-export([handle_event/4]).
...
init(Code) ->
Data = #{code => Code, remaining => Code},
{handle_event_function,locked,Data}.
handle_event(cast, {button,Digit}, State, #{code := Code} = Data) ->
case State of
locked ->
case maps:get(remaining, Data) of
[Digit] -> % Complete
do_unlock(),
{next_state,open,Data#{remaining := Code},10000};
[Digit|Rest] -> % Incomplete
{keep_state,Data#{remaining := Rest}};
[_|_] -> % Wrong
{keep_state,Data#{remaining := Code}}
end;
open ->
do_lock(),
{next_state,locked,Data}
end;
handle_event(timeout, _, open, Data) ->
do_lock(),
{next_state,locked,Data}.
...
]]></code>
</section>
<!-- =================================================================== -->
<section>
<title>Stopping</title>
<section>
<title>In a Supervision Tree</title>
<p>
If the <c>gen_statem</c> is part of a supervision tree,
no stop function is needed.
The <c>gen_statem</c> is automatically terminated by its supervisor.
Exactly how this is done is defined by a
<seealso marker="sup_princ#shutdown">shutdown strategy</seealso>
set in the supervisor.
</p>
<p>
If it is necessary to clean up before termination, the shutdown
strategy must be a time-out value and the <c>gen_statem</c> must
in the <c>init/1</c> function set itself to trap exit signals
by calling
<seealso marker="erts:erlang#process_flag/2">
<c>process_flag(trap_exit, true)</c>.
</seealso>
When ordered to shutdown, the <c>gen_statem</c> then calls
the callback function
<c>terminate(shutdown, State, Data)</c>:
</p>
<code type="erl"><![CDATA[
init(Args) ->
process_flag(trap_exit, true),
...
{CallbackMode,State,Data}.
]]></code>
<p>
In this example we let the <c>terminate/3</c> function
lock the door if it is open so we do not accidentally leave the door
open when the supervision tree terminates.
</p>
<code type="erl"><![CDATA[
terminate(_Reason, State, _Data) ->
State =/= locked andalso do_lock(),
ok.
]]></code>
</section>
<section>
<title>Standalone gen_statem</title>
<p>
If the <c>gen_statem</c> is not part of a supervision tree,
it can be stopped using
<seealso marker="stdlib:gen_statem#stop/1">
<c>gen_statem:stop</c>,
</seealso>
preferably through an API function:
</p>
<code type="erl"><![CDATA[
...
-export([start_link/1,stop/0]).
...
stop() ->
gen_statem:stop(code_lock).
]]></code>
<p>
This makes the <c>gen_statem</c> call the <c>terminate/3</c>
callback function just like for a supervised server
and waits for the process to terminate.
</p>
</section>
</section>
<!-- =================================================================== -->
<section>
<title>Actions</title>
<p>
In the first chapters we mentioned actions as a part of
the general state machine model, and these actions
are implemented with the code the <c>gen_statem</c>
callback module executes in an event handling
callback function before returning
to the <c>gen_statem</c> engine.
</p>
<p>
There are more specific state transition actions
that a callback function can order the <c>gen_statem</c>
engine to do after the callback function return.
These are ordered by returning a list of
<seealso marker="stdlib:gen_statem#type-action">
actions
</seealso>
in the
<seealso marker="stdlib:gen_statem#type-state_function_result">
return tuple
</seealso>
from the
<seealso marker="stdlib:gen_statem#Module:StateName/3">
callback function.
</seealso>
These state transition actions affect the <c>gen_statem</c>
engine itself. They can:
</p>
<list type="bulleted">
<item>Postpone the current event.</item>
<item>Hibernate the <c>gen_statem</c>.</item>
<item>Start an event timeout.</item>
<item>Reply to a caller.</item>
<item>Generate the next event to handle.</item>
</list>
<p>
We have mentioned the event timeout
and replying to a caller in the example above.
An example of event postponing comes in later in this chapter.
See the
<seealso marker="stdlib:gen_statem#type-action">
documentation
</seealso>
for details. You can for example actually reply to several callers
and generate multiple next events to handle.
</p>
</section>
<!-- =================================================================== -->
<section>
<title>Event Types</title>
<p>
So far we have mentioned a few
<seealso marker="stdlib:gen_statem#type-event_type">
event types.
</seealso>
Events of all types are handled in the same callback function,
for a given state, and the function gets
<c>EventType</c> and <c>EventContent</c> as arguments.
</p>
<p>
Here is the complete list of event types and where
they come from:
</p>
<taglist>
<tag><c>cast</c></tag>
<item>
Generated by
<seealso marker="stdlib:gen_statem#cast/2">
<c>gen_statem:cast</c>.
</seealso>
</item>
<tag><c>{call,From}</c></tag>
<item>
Generated by
<seealso marker="stdlib:gen_statem#call/2">
<c>gen_statem:call</c>
</seealso>
where <c>From</c> is the reply address to use
when replying either through the state transition action
<c>{reply,From,Msg}</c> or by calling
<seealso marker="stdlib:gen_statem#reply/1">
<c>gen_statem:reply</c>.
</seealso>
</item>
<tag><c>info</c></tag>
<item>
Generated by any regular process message sent to
the <c>gen_statem</c> process.
</item>
<tag><c>timeout</c></tag>
<item>
Generated by the state transition action
<c>{timeout,Time,EventContent}</c> (or its short form <c>Time</c>)
timer timing out.
</item>
<tag><c>internal</c></tag>
<item>
Generated by the state transition action
<c>{next_event,internal,EventContent}</c>.
In fact all event types above can be generated using
<c>{next_event,EventType,EventContent}</c>.
</item>
</taglist>
</section>
<!-- =================================================================== -->
<section>
<title>State Timeouts</title>
<p>
The timeout event generated by the state transition action
<c>{timeout,Time,EventContent}</c> is an event timeout,
that is; if an event arrives the timer is cancelled.
You get either an event or a timeout but not both.
</p>
<p>
Often you want a timer to not be cancelled by any event
or you want to start a timer in one state and respond
to the timeout in another. This can be accomplished
with a regular erlang timer:
<seealso marker="erts:erlang#start_timer/4">
<c>erlang:start_timer</c>.
</seealso>
</p>
<p>
Looking at the example in this chapter so far; using the
<c>gen_statem</c> event timer has the consequence that
if a button event is generated while in the <c>open</c> state,
the timeout is cancelled and the button event is delivered.
Therefore we chose to lock the door if this happended.
</p>
<p>
Suppose we do not want a button to lock the door,
instead we want to ignore button events in the <c>open</c> state.
Then we start a timer when entering the <c>open</c> state
and wait for it to expire while ignoring button events:
</p>
<code type="erl"><![CDATA[
...
locked(
cast, {button,Digit},
#{code := Code, remaining := Remaining} = Data) ->
case Remaining of
[Digit] ->
do_unlock(),
Tref = erlang:start_timer(10000, self(), lock),
{next_state,open,Data#{remaining := Code, timer := Tref}};
...
open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
do_lock(),
{next_state,locked,Data};
open(cast, {button,_}, Data) ->
{keep_state,Data};
...
]]></code>
<p>
If you need to cancel a timer due to some other event you can use
<seealso marker="erts:erlang#cancel_timer/2">
<c>erlang:cancel_timer(Tref)</c>.
</seealso>
Note that a timeout message can not arrive after this,
unless you have postponed it before (why on earth one would do that).
</p>
<p>
Another way to cancel a timer is to not cancel it,
but instead to ignore it if it arrives in a state
where it is known to be late.
</p>
</section>
<!-- =================================================================== -->
<section>
<title>Postponing Events</title>
<p>
If you want to ignore a particular event in the current state
and handle it in a future state, you can postpone the event.
A postponed event is retried after the state has
changed i.e <c>OldState =/= NewState</c>.
</p>
<p>
Postponing is ordered by the
<seealso marker="stdlib:gen_statem#type-action">
state transition action
</seealso>
<c>postpone</c>.
</p>
<p>
In this example, instead of ignoring button events
while in the <c>open</c> state we can postpone them
and they will be queued and later handled in the <c>locked</c> state:
</p>
<code type="erl"><![CDATA[
...
open(cast, {button,_}, Data) ->
{keep_state,Data,[postpone]};
...
]]></code>
<section>
<title>Fuzzy State Diagrams</title>
<p>
It is not uncommon that a state diagram does not specify
how to handle events that are not illustrated
in a particular state in the diagram.
Hopefully this is described in an associated text
or from the context.
</p>
<p>
Possible actions may be; ignore as in drop the event
(maybe log it) or deal with the event in some other state
as in postpone it.
</p>
</section>
<section>
<title>Selective Receive</title>
<p>
Erlang's selective receive statement is often used to
describe simple state machine examples in straightforward
Erlang code. Here is a possible implementation of
the first example:
</p>
<code type="erl"><![CDATA[
-module(code_lock).
-export([start_link/1,button/1]).
start_link(Code) ->
spawn(
fun () ->
true = register(code_lock, self()),
do_lock(),
locked(Code, Code)
end).
button(Digit) ->
code_lock ! {button,Digit}.
locked(Code, [Digit|Remaining]) ->
receive
{button,Digit} when Remaining =:= [] ->
do_unlock(),
open(Code);
{button,Digit} ->
locked(Code, Remaining);
{button,_} ->
locked(Code, Code)
end.
open(Code) ->
receive
after 10000 ->
do_lock(),
locked(Code, Code)
end.
do_lock() ->
io:format("Locked~n", []).
do_unlock() ->
io:format("Open~n", []).
]]></code>
<p>
The selective receive in this case causes <c>open</c>
to implicitly postpone any events to the <c>locked</c> state.
</p>
<p>
The
<seealso marker="stdlib:gen_statem#type-action">
state transition action
</seealso>
<c>postpone</c> is designed to be able to model
selective receive. Selective receive implicitly postpones
any not received events, but the <c>postpone</c>
state transition action explicitly postpones a received event.
</p>
<p>
Other than that both mechanisms have got the same theoretical
time and memory complexity, while the selective receive
language construct has got smaller constant factors.
</p>
</section>
</section>
<!-- =================================================================== -->
<section>
<title>Self Generated Events</title>
<p>
It may be beneficial in some cases to be able to generate events
to your own state machine. This can be done with the
<seealso marker="stdlib:gen_statem#type-action">
state transition action
</seealso>
<c>{next_event,EventType,EventContent}</c>.
</p>
<p>
You can generate events of any existing
<seealso marker="stdlib:gen_statem#type-action">
type,
</seealso>
but the <c>internal</c> type can only be generated through the
<c>next_event</c> action and hence can not come from an external source,
so you can be certain that an <c>internal</c> event is an event
from your state machine to itself.
</p>
<p>
One example of using self generated events may be when you have
a state machine specification that uses state entry actions.
That you could code using a dedicated function
to do the state transition. But if you want that code to be
visible besides the other state logic you can insert
an <c>internal</c> event that does the entry actions.
This has the same unfortunate consequence as using
state transition functions that everywhere you go to
the state in question you will have to explicitly
insert the <c>internal</c> event
or use state transition function.
</p>
<p>
Here is an implementation of entry actions
using <c>internal</c> events with content <c>enter</c>
utilizing a helper function <c>enter/3</c> for state entry:
</p>
<code type="erl"><![CDATA[
init(Code) ->
Data = #{code => Code},
enter(state_functions, locked, Data).
...
locked(internal, enter, _Data) ->
do_lock(),
{keep_state,Data#{remaining => Code}};
locked(
cast, {button,Digit},
#{code := Code, remaining := Remaining} = Data) ->
case Remaining of
[Digit] ->
enter(next_state, open, Data);
...
open(internal, enter, _Data) ->
Tref = erlang:start_timer(10000, self(), lock),
do_unlock(),
{keep_state,Data#{timer => Tref}};
open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
enter(next_state, locked, Data);
...
enter(Tag, State, Data) ->
{Tag,State,Data,[{next_event,internal,enter}]}.
]]></code>
</section>
<!-- =================================================================== -->
<section>
<title>Example Revisited</title>
<p>
Here is the example after all mentioned modifications
and some more utilizing the entry actions,
which deserves a new state diagram:
</p>
<image file="code_lock_2.gif">
<icaption>Code lock state diagram revisited</icaption>
</image>
<p>
Note that this state diagram does not specify how to handle
a button event in the state <c>open</c>, so you will have to
read some other place that is here that unspecified events
shall be ignored as in not consumed but handled in some other state.
Nor does it show that the <c>code_length/0</c> call shall be
handled in every state.
</p>
<section>
<title>Callback Mode: state_functions</title>
<p>
Using state functions:
</p>
<code type="erl"><![CDATA[
-module(code_lock).
-behaviour(gen_statem).
-export([start_link/1,stop/0]).
-export([button/1,code_length/0]).
-export([init/1,terminate/3,code_change/4]).
-export([locked/3,open/3]).
start_link(Code) ->
gen_statem:start_link({local,code_lock}, ?MODULE, Code, []).
stop() ->
gen_statem:stop(code_lock).
button(Digit) ->
gen_statem:cast(code_lock, {button,Digit}).
code_length() ->
gen_statem:call(code_lock, code_length).
init(Code) ->
Data = #{code => Code},
enter(state_functions, locked, Data).
locked(internal, enter, #{code := Code} = Data) ->
do_lock(),
{keep_state,Data#{remaining => Code}};
locked(
cast, {button,Digit},
#{code := Code, remaining := Remaining} = Data) ->
case Remaining of
[Digit] -> % Complete
enter(next_state, open, Data);
[Digit|Rest] -> % Incomplete
{keep_state,Data#{remaining := Rest}};
[_|_] -> % Wrong
{keep_state,Data#{remaining := Code}}
end;
locked(EventType, EventContent, Data) ->
handle_event(EventType, EventContent, Data).
open(internal, enter, Data) ->
Tref = erlang:start_timer(10000, self(), lock),
do_unlock(),
{keep_state,Data#{timer => Tref}};
open(info, {timeout,Tref,lock}, #{timer := Tref} = Data) ->
enter(next_state, locked, Data);
open(cast, {button,_}, _) ->
{keep_state_and_data,[postpone]};
open(EventType, EventContent, Data) ->
handle_event(EventType, EventContent, Data).
handle_event({call,From}, code_length, #{code := Code}) ->
{keep_state_and_data,[{reply,From,length(Code)}]}.
enter(Tag, State, Data) ->
{Tag,State,Data,[{next_event,internal,enter}]}.
do_lock() ->
io:format("Locked~n", []).
do_unlock() ->
io:format("Open~n", []).
terminate(_Reason, State, _Data) ->
State =/= locked andalso do_lock(),
ok.
code_change(_Vsn, State, Data, _Extra) ->
{ok,State,Data}.
]]></code>
</section>
<section>
<title>Callback Mode: handle_event_function</title>
<p>
What to change to use one <c>handle_event/4</c> function.
Here a clean first-dispatch-on-event approach
does not work that well due to the generated
entry actions:
</p>
<code type="erl"><![CDATA[
...
-export([handle_event/4]).
...
init(Code) ->
process_flag(trap_exit, true),
Data = #{code => Code},
enter(handle_event_function, locked, Data).
...
%% State: locked
handle_event(internal, enter, locked, #{code := Code} = Data) ->
do_lock(),
{keep_state,Data#{remaining => Code}};
handle_event(
cast, {button,Digit}, locked,
#{code := Code, remaining := Remaining} = Data) ->
case Remaining of
[Digit] -> % Complete
enter(next_state, open, Data, []);
[Digit|Rest] -> % Incomplete
{keep_state,Data#{remaining := Rest}};
[_|_] -> % Wrong
{keep_state,Data#{remaining := Code}}
end;
%%
%% State: open
handle_event(internal, enter, open, Data) ->
Tref = erlang:start_timer(10000, self(), lock),
do_unlock(),
{keep_state,Data#{timer => Tref}};
handle_event(info, {timeout,Tref,lock}, open, #{timer := Tref} = Data) ->
enter(next_state, locked, Data, []);
handle_event(cast, {button,_}, open, _) ->
{keep_state_and_data,[postpone]};
%%
%% Any state
handle_event({call,From}, code_length, _State, #{code := Code}) ->
{keep_state_and_data,[{reply,From,length(Code)}]}.
...
]]></code>
</section>
<p>
Note that postponing buttons from the <c>locked</c> state
to the <c>open</c> state feels like the wrong thing to do
for a code lock, but it illustrates event postponing.
</p>
</section>
</chapter>
|