<?xml version="1.0" encoding="latin1" ?>
<!DOCTYPE chapter SYSTEM "chapter.dtd">
<chapter>
<header>
<copyright>
<year>2001</year><year>2009</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>How to implement a driver</title>
<prepared>Jakob C</prepared>
<docno></docno>
<date>2000-11-28</date>
<rev>PA1</rev>
<file>driver.xml</file>
</header>
<note><p>This document was written a long time ago. A lot of it is still
valid, but some things have changed since it was first written.
Updates of this document are planned for the future. The reader
is encouraged to also read the
<seealso marker="erl_driver">erl_driver</seealso>, and the
<seealso marker="erl_driver">driver_entry</seealso> documentation.
</p></note>
<section>
<title>Introduction</title>
<p>This chapter tells you how to build your own driver for erlang.</p>
<p>A driver in Erlang is a library written in C, that is linked to
the Erlang emulator and called from erlang. Drivers can be used
when C is more suitable than Erlang, to speed things up, or to
provide access to OS resources not directly accessible from
Erlang.</p>
<p>A driver can be dynamically loaded, as a shared library (known as
a DLL on windows), or statically loaded, linked with the emulator
when it is compiled and linked. Only dynamically loaded drivers
are described here, statically linked drivers are beyond the scope
of this chapter.</p>
<p>When a driver is loaded it is executed in the context of the
emulator, shares the same memory and the same thread. This means
that all operations in the driver must be non-blocking, and that
any crash in the driver will bring the whole emulator down. In
short: you have to be extremely careful!</p>
<p></p>
</section>
<section>
<title>Sample driver</title>
<p>This is a simple driver for accessing a postgres
database using the libpq C client library. Postgres
is used because it's free and open source. For information
on postgres, refer to the website www.postgres.org.</p>
<p>The driver is synchronous, it uses the synchronous calls of
the client library. This is only for simplicity, and is
generally not good, since it will
halt the emulator while waiting for the database.
This will be improved on below with an asynchronous
sample driver.</p>
<p>The code is quite straight-forward: all
communication between Erlang and the driver
is done with <c><![CDATA[port_control/3]]></c>, and the
driver returns data back using the <c><![CDATA[rbuf]]></c>.</p>
<p>An Erlang driver only exports one function: the driver
entry function. This is defined with a macro,
<c><![CDATA[DRIVER_INIT]]></c>, and returns a pointer to a
C <c><![CDATA[struct]]></c> containing the entry points that are
called from the emulator. The <c><![CDATA[struct]]></c> defines the
entries that the emulator calls to call the driver, with
a <c><![CDATA[NULL]]></c> pointer for entries that are not defined
and used by the driver.</p>
<p>The <c><![CDATA[start]]></c> entry is called when the driver
is opened as a port with <c><![CDATA[open_port/2]]></c>. Here
we allocate memory for a user data structure.
This user data will be passed every time the emulator
calls us. First we store the driver handle, because it
is needed in subsequent calls. We allocate memory for
the connection handle that is used by LibPQ. We also
set the port to return allocated driver binaries, by
setting the flag <c><![CDATA[PORT_CONTROL_FLAG_BINARY]]></c>, calling
<c><![CDATA[set_port_control_flags]]></c>. (This is because
we don't know whether our data will fit in the
result buffer of <c><![CDATA[control]]></c>, which has a default size
set up by the emulator, currently 64 bytes.)</p>
<p>There is an entry <c><![CDATA[init]]></c> which is called when
the driver is loaded, but we don't use this, since
it is executed only once, and we want to have the
possibility of several instances of the driver.</p>
<p>The <c><![CDATA[stop]]></c> entry is called when the port
is closed.</p>
<p>The <c><![CDATA[control]]></c> entry is called from the emulator
when the Erlang code calls <c><![CDATA[port_control/3]]></c>,
to do the actual work. We have defined a simple set of
commands: <c><![CDATA[connect]]></c> to login to the database, <c><![CDATA[disconnect]]></c>
to log out and <c><![CDATA[select]]></c> to send a SQL-query and get the result.
All results are returned through <c><![CDATA[rbuf]]></c>.
The library <c><![CDATA[ei]]></c> in <c><![CDATA[erl_interface]]></c> is used
to encode data in binary term format. The result is returned
to the emulator as binary terms, so <c><![CDATA[binary_to_term]]></c>
is called in Erlang to convert the result to term form.</p>
<p>The code is available in <c><![CDATA[pg_sync.c]]></c> in the <c><![CDATA[sample]]></c>
directory of <c><![CDATA[erts]]></c>.</p>
<p>The driver entry contains the functions that
will be called by the emulator. In our simple
example, we only provide <c><![CDATA[start]]></c>, <c><![CDATA[stop]]></c>
and <c><![CDATA[control]]></c>.</p>
<code type="none"><![CDATA[
/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);
static void stop(ErlDrvData drv_data);
static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);
static ErlDrvEntry pq_driver_entry = {
NULL, /* init */
start,
stop,
NULL, /* output */
NULL, /* ready_input */
NULL, /* ready_output */
"pg_sync", /* the name of the driver */
NULL, /* finish */
NULL, /* handle */
control,
NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, /* flush */
NULL, /* call */
NULL /* event */
};
]]></code>
<p>We have a structure to store state needed by the driver,
in this case we only need to keep the database connection.</p>
<code type="none"><![CDATA[
typedef struct our_data_s {
PGconn* conn;
} our_data_t;
]]></code>
<p>These are control codes we have defined.</p>
<code type="none"><![CDATA[
/* Keep the following definitions in alignment with the
* defines in erl_pq_sync.erl
*/
#define DRV_CONNECT 'C'
#define DRV_DISCONNECT 'D'
#define DRV_SELECT 'S'
]]></code>
<p>This just returns the driver structure. The macro
<c><![CDATA[DRIVER_INIT]]></c> defines the only exported function.
All the other functions are static, and will not be exported
from the library.</p>
<code type="none"><![CDATA[
/* INITIALIZATION AFTER LOADING */
/*
* This is the init function called after this driver has been loaded.
* It must *not* be declared static. Must return the address to
* the driver entry.
*/
DRIVER_INIT(pq_drv)
{
return &pq_driver_entry;
}
]]></code>
<p>Here we do some initialization, <c><![CDATA[start]]></c> is called from
<c><![CDATA[open_port]]></c>. The data will be passed to <c><![CDATA[control]]></c>
and <c><![CDATA[stop]]></c>.</p>
<code type="none"><![CDATA[
/* DRIVER INTERFACE */
static ErlDrvData start(ErlDrvPort port, char *command)
{
our_data_t* data;
data = (our_data_t*)driver_alloc(sizeof(our_data_t));
data->conn = NULL;
set_port_control_flags(port, PORT_CONTROL_FLAG_BINARY);
return (ErlDrvData)data;
}
]]></code>
<p>We call disconnect to log out from the database.
(This should have been done from Erlang, but just in case.)</p>
<code type="none"><![CDATA[
static int do_disconnect(our_data_t* data, ei_x_buff* x);
static void stop(ErlDrvData drv_data)
{
do_disconnect((our_data_t*)drv_data, NULL);
}
]]></code>
<p>We use the binary format only to return data to the emulator;
input data is a string paramater for <c><![CDATA[connect]]></c> and
<c><![CDATA[select]]></c>. The returned data consists of Erlang terms.</p>
<p>The functions <c><![CDATA[get_s]]></c> and <c><![CDATA[ei_x_to_new_binary]]></c> are
utilities that is used to make the code shorter. <c><![CDATA[get_s]]></c>
duplicates the string and zero-terminates it, since the
postgres client library wants that. <c><![CDATA[ei_x_to_new_binary]]></c>
takes an <c><![CDATA[ei_x_buff]]></c> buffer and allocates a binary and
copies the data there. This binary is returned in <c><![CDATA[*rbuf]]></c>.
(Note that this binary is freed by the emulator, not by us.)</p>
<code type="none"><![CDATA[
static char* get_s(const char* buf, int len);
static int do_connect(const char *s, our_data_t* data, ei_x_buff* x);
static int do_select(const char* s, our_data_t* data, ei_x_buff* x);
/* Since we are operating in binary mode, the return value from control
* is irrelevant, as long as it is not negative.
*/
static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen)
{
int r;
ei_x_buff x;
our_data_t* data = (our_data_t*)drv_data;
char* s = get_s(buf, len);
ei_x_new_with_version(&x);
switch (command) {
case DRV_CONNECT: r = do_connect(s, data, &x); break;
case DRV_DISCONNECT: r = do_disconnect(data, &x); break;
case DRV_SELECT: r = do_select(s, data, &x); break;
default: r = -1; break;
}
*rbuf = (char*)ei_x_to_new_binary(&x);
ei_x_free(&x);
driver_free(s);
return r;
}
]]></code>
<p>In <c><![CDATA[do_connect]]></c> is where we log in to the database. If the connection
was successful we store the connection handle in our driver
data, and return ok. Otherwise, we return the error message
from postgres, and store <c><![CDATA[NULL]]></c> in the driver data.</p>
<code type="none"><![CDATA[
static int do_connect(const char *s, our_data_t* data, ei_x_buff* x)
{
PGconn* conn = PQconnectdb(s);
if (PQstatus(conn) != CONNECTION_OK) {
encode_error(x, conn);
PQfinish(conn);
conn = NULL;
} else {
encode_ok(x);
}
data->conn = conn;
return 0;
}
]]></code>
<p>If we are connected (if the connection handle is not <c><![CDATA[NULL]]></c>),
we log out from the database. We need to check if a we should
encode an ok, since we might get here from the <c><![CDATA[stop]]></c>
function, which doesn't return data to the emulator.</p>
<code type="none"><![CDATA[
static int do_disconnect(our_data_t* data, ei_x_buff* x)
{
if (data->conn == NULL)
return 0;
PQfinish(data->conn);
data->conn = NULL;
if (x != NULL)
encode_ok(x);
return 0;
}
]]></code>
<p>We execute a query and encodes the result. Encoding is done
in another C module, <c><![CDATA[pg_encode.c]]></c> which is also provided
as sample code.</p>
<code type="none"><![CDATA[
static int do_select(const char* s, our_data_t* data, ei_x_buff* x)
{
PGresult* res = PQexec(data->conn, s);
encode_result(x, res, data->conn);
PQclear(res);
return 0;
}
]]></code>
<p>Here we simply checks the result from postgres, and
if it's data we encode it as lists of lists with
column data. Everything from postgres is C strings,
so we just use <c><![CDATA[ei_x_encode_string]]></c> to send
the result as strings to Erlang. (The head of the list
contains the column names.)</p>
<code type="none"><![CDATA[
void encode_result(ei_x_buff* x, PGresult* res, PGconn* conn)
{
int row, n_rows, col, n_cols;
switch (PQresultStatus(res)) {
case PGRES_TUPLES_OK:
n_rows = PQntuples(res);
n_cols = PQnfields(res);
ei_x_encode_tuple_header(x, 2);
encode_ok(x);
ei_x_encode_list_header(x, n_rows+1);
ei_x_encode_list_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {
ei_x_encode_string(x, PQfname(res, col));
}
ei_x_encode_empty_list(x);
for (row = 0; row < n_rows; ++row) {
ei_x_encode_list_header(x, n_cols);
for (col = 0; col < n_cols; ++col) {
ei_x_encode_string(x, PQgetvalue(res, row, col));
}
ei_x_encode_empty_list(x);
}
ei_x_encode_empty_list(x);
break;
case PGRES_COMMAND_OK:
ei_x_encode_tuple_header(x, 2);
encode_ok(x);
ei_x_encode_string(x, PQcmdTuples(res));
break;
default:
encode_error(x, conn);
break;
}
}
]]></code>
</section>
<section>
<title>Compiling and linking the sample driver</title>
<p>The driver should be compiled and linked to a shared
library (DLL on windows). With gcc this is done
with the link flags <c><![CDATA[-shared]]></c> and <c><![CDATA[-fpic]]></c>.
Since we use the <c><![CDATA[ei]]></c> library we should include
it too. There are several versions of <c><![CDATA[ei]]></c>, compiled
for debug or non-debug and multi-threaded or single-threaded.
In the makefile for the samples the <c><![CDATA[obj]]></c> directory
is used for the <c><![CDATA[ei]]></c> library, meaning that we use
the non-debug, single-threaded version.</p>
</section>
<section>
<title>Calling a driver as a port in Erlang</title>
<p>Before a driver can be called from Erlang, it must be
loaded and opened. Loading is done using the <c><![CDATA[erl_ddll]]></c>
module (the <c><![CDATA[erl_ddll]]></c> driver that loads dynamic
driver, is actually a driver itself). If loading is ok
the port can be opened with <c><![CDATA[open_port/2]]></c>. The port
name must match the name of the shared library and
the name in the driver entry structure.</p>
<p>When the port has been opened, the driver can be called. In
the <c><![CDATA[pg_sync]]></c> example, we don't have any data from
the port, only the return value from the
<c><![CDATA[port_control]]></c>.</p>
<p>The following code is the Erlang part of the synchronous
postgres driver, <c><![CDATA[pg_sync.erl]]></c>.</p>
<code type="none"><![CDATA[
-module(pg_sync).
-define(DRV_CONNECT, 1).
-define(DRV_DISCONNECT, 2).
-define(DRV_SELECT, 3).
-export([connect/1, disconnect/1, select/2]).
connect(ConnectStr) ->
case erl_ddll:load_driver(".", "pg_sync") of
ok -> ok;
{error, already_loaded} -> ok;
E -> exit({error, E})
end,
Port = open_port({spawn, ?MODULE}, []),
case binary_to_term(port_control(Port, ?DRV_CONNECT, ConnectStr)) of
ok -> {ok, Port};
Error -> Error
end.
disconnect(Port) ->
R = binary_to_term(port_control(Port, ?DRV_DISCONNECT, "")),
port_close(Port),
R.
select(Port, Query) ->
binary_to_term(port_control(Port, ?DRV_SELECT, Query)).
]]></code>
<p>The api is simple: <c><![CDATA[connect/1]]></c> loads the driver, opens it
and logs on to the database, returning the Erlang port
if successful, <c><![CDATA[select/2]]></c> sends a query to the driver,
and returns the result, <c><![CDATA[disconnect/1]]></c> closes the
database connection and the driver. (It does not unload it,
however.) The connection string should be a connection
string for postgres.</p>
<p>The driver is loaded with <c><![CDATA[erl_ddll:load_driver/2]]></c>,
and if this is successful, or if it's already loaded,
it is opened. This will call the <c><![CDATA[start]]></c> function
in the driver.</p>
<p>We use the <c><![CDATA[port_control/3]]></c> function for all
calls into the driver, the result from the driver is
returned immediately, and converted to terms by calling
<c><![CDATA[binary_to_term/1]]></c>. (We trust that the terms returned
from the driver are well-formed, otherwise the
<c><![CDATA[binary_to_term]]></c> calls could be contained in a
<c><![CDATA[catch]]></c>.)</p>
</section>
<section>
<title>Sample asynchronous driver</title>
<p>Sometimes database queries can take long time to
complete, in our <c><![CDATA[pg_sync]]></c> driver, the emulator
halts while the driver is doing it's job. This is
often not acceptable, since no other Erlang processes
gets a chance to do anything. To improve on our
postgres driver, we reimplement it using the asynchronous
calls in LibPQ.</p>
<p>The asynchronous version of the driver is in the
sample files <c><![CDATA[pg_async.c]]></c> and <c><![CDATA[pg_asyng.erl]]></c>.</p>
<code type="none"><![CDATA[
/* Driver interface declarations */
static ErlDrvData start(ErlDrvPort port, char *command);
static void stop(ErlDrvData drv_data);
static int control(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen);
static void ready_io(ErlDrvData drv_data, ErlDrvEvent event);
static ErlDrvEntry pq_driver_entry = {
NULL, /* init */
start,
stop,
NULL, /* output */
ready_io, /* ready_input */
ready_io, /* ready_output */
"pg_async", /* the name of the driver */
NULL, /* finish */
NULL, /* handle */
control,
NULL, /* timeout */
NULL, /* outputv */
NULL, /* ready_async */
NULL, /* flush */
NULL, /* call */
NULL /* event */
};
typedef struct our_data_t {
PGconn* conn;
ErlDrvPort port;
int socket;
int connecting;
} our_data_t;
]]></code>
<p>Here some things have changed from <c><![CDATA[pg_sync.c]]></c>: we use the
entry <c><![CDATA[ready_io]]></c> for <c><![CDATA[ready_input]]></c> and
<c><![CDATA[ready_output]]></c> which will be called from the emulator only
when there is input to be read from the socket. (Actually, the
socket is used in a <c><![CDATA[select]]></c> function inside
the emulator, and when the socket is signalled,
indicating there is data to read, the <c><![CDATA[ready_input]]></c> entry
is called. More on this below.)</p>
<p>Our driver data is also extended, we keep track of the
socket used for communication with postgres, and also
the port, which is needed when we send data to the port with
<c><![CDATA[driver_output]]></c>. We have a flag <c><![CDATA[connecting]]></c> to tell
whether the driver is waiting for a connection or waiting
for the result of a query. (This is needed since the entry
<c><![CDATA[ready_io]]></c> will be called both when connecting and
when there is query result.)</p>
<code type="none"><![CDATA[
static int do_connect(const char *s, our_data_t* data)
{
PGconn* conn = PQconnectStart(s);
if (PQstatus(conn) == CONNECTION_BAD) {
ei_x_buff x;
ei_x_new_with_version(&x);
encode_error(&x, conn);
PQfinish(conn);
conn = NULL;
driver_output(data->port, x.buff, x.index);
ei_x_free(&x);
}
PQconnectPoll(conn);
int socket = PQsocket(conn);
data->socket = socket;
driver_select(data->port, (ErlDrvEvent)socket, DO_READ, 1);
driver_select(data->port, (ErlDrvEvent)socket, DO_WRITE, 1);
data->conn = conn;
data->connecting = 1;
return 0;
}
]]></code>
<p>The <c><![CDATA[connect]]></c> function looks a bit different too. We connect
using the asynchronous <c><![CDATA[PQconnectStart]]></c> function. After the
connection is started, we retrieve the socket for the connection
with <c><![CDATA[PQsocket]]></c>. This socket is used with the
<c><![CDATA[driver_select]]></c> function to wait for connection. When
the socket is ready for input or for output, the <c><![CDATA[ready_io]]></c>
function will be called.</p>
<p>Note that we only return data (with <c><![CDATA[driver_output]]></c>) if there
is an error here, otherwise we wait for the connection to be completed,
in which case our <c><![CDATA[ready_io]]></c> function will be called.</p>
<code type="none"><![CDATA[
static int do_select(const char* s, our_data_t* data)
{
data->connecting = 0;
PGconn* conn = data->conn;
/* if there's an error return it now */
if (PQsendQuery(conn, s) == 0) {
\011ei_x_buff x;
\011ei_x_new_with_version(&x);
\011encode_error(&x, conn);
\011driver_output(data->port, x.buff, x.index);
\011ei_x_free(&x);
}
/* else wait for ready_output to get results */
return 0;
}
]]></code>
<p>The <c><![CDATA[do_select]]></c> function initiates a select, and returns
if there is no immediate error. The actual result will be returned
when <c><![CDATA[ready_io]]></c> is called.</p>
<code type="none"><![CDATA[
static void ready_io(ErlDrvData drv_data, ErlDrvEvent event)
{
PGresult* res = NULL;
our_data_t* data = (our_data_t*)drv_data;
PGconn* conn = data->conn;
ei_x_buff x;
ei_x_new_with_version(&x);
if (data->connecting) {
\011ConnStatusType status;
\011PQconnectPoll(conn);
\011status = PQstatus(conn);
\011if (status == CONNECTION_OK)
\011 encode_ok(&x);
\011else if (status == CONNECTION_BAD)
\011 encode_error(&x, conn);
} else {
\011PQconsumeInput(conn);
\011if (PQisBusy(conn))
\011 return;
\011res = PQgetResult(conn);
\011encode_result(&x, res, conn);
\011PQclear(res);
\011for (;;) {
\011 res = PQgetResult(conn);
\011 if (res == NULL)
\011\011break;
\011 PQclear(res);
\011}
}
if (x.index > 1) {
\011driver_output(data->port, x.buff, x.index);
\011if (data->connecting)
\011 driver_select(data->port, (ErlDrvEvent)data->socket, DO_WRITE, 0);
}
ei_x_free(&x);
}
]]></code>
<p>The <c><![CDATA[ready_io]]></c> function will be called when the socket
we got from postgres is ready for input or output. Here
we first check if we are connecting to the database. In that
case we check connection status and return ok if the
connection is successful, or error if it's not. If the
connection is not yet established, we simply return; <c><![CDATA[ready_io]]></c>
will be called again.</p>
<p>If we have result from a connect, indicated that we have data in
the <c><![CDATA[x]]></c> buffer, we no longer need to select on
output (<c><![CDATA[ready_output]]></c>), so we remove this by calling
<c><![CDATA[driver_select]]></c>.</p>
<p>If we're not connecting, we're waiting for results from a
<c><![CDATA[PQsendQuery]]></c>, so we get the result and return it. The
encoding is done with the same functions as in the earlier
example.</p>
<p>We should add error handling here, for instance checking
that the socket is still open, but this is just a simple
example.</p>
<p>The Erlang part of the asynchronous driver consists of the
sample file <c><![CDATA[pg_async.erl]]></c>.</p>
<code type="none"><![CDATA[
-module(pg_async).
-define(DRV_CONNECT, $C).
-define(DRV_DISCONNECT, $D).
-define(DRV_SELECT, $S).
-export([connect/1, disconnect/1, select/2]).
connect(ConnectStr) ->
case erl_ddll:load_driver(".", "pg_async") of
\011ok -> ok;
\011{error, already_loaded} -> ok;
\011_ -> exit({error, could_not_load_driver})
end,
Port = open_port({spawn, ?MODULE}, [binary]),
port_control(Port, ?DRV_CONNECT, ConnectStr),
case return_port_data(Port) of
\011ok ->
\011 {ok, Port};
\011Error ->
\011 Error
end.
disconnect(Port) ->
port_control(Port, ?DRV_DISCONNECT, ""),
R = return_port_data(Port),
port_close(Port),
R.
select(Port, Query) ->
port_control(Port, ?DRV_SELECT, Query),
return_port_data(Port).
return_port_data(Port) ->
receive
\011{Port, {data, Data}} ->
\011 binary_to_term(Data)
end.
]]></code>
<p>The Erlang code is slightly different, this is because we
don't return the result synchronously from <c><![CDATA[port_control]]></c>,
instead we get it from <c><![CDATA[driver_output]]></c> as data in the
message queue. The function <c><![CDATA[return_port_data]]></c> above
receives data from the port. Since the data is in
binary format, we use <c><![CDATA[binary_to_term/1]]></c> to convert
it to Erlang term. Note that the driver is opened in
binary mode, <c><![CDATA[open_port/2]]></c> is called with the option
<c><![CDATA[[binary]]]></c>. This means that data sent from the driver
to the emulator is sent as binaries. Without the <c><![CDATA[binary]]></c>
option, they would have been lists of integers.</p>
</section>
<section>
<title>An asynchronous driver using driver_async</title>
<p>As a final example we demonstrate the use of <c><![CDATA[driver_async]]></c>.
We also use the driver term interface. The driver is written
in C++. This enables us to use an algorithm from STL. We will
use the <c><![CDATA[next_permutation]]></c> algorithm to get the next permutation
of a list of integers. For large lists (more than 100000
elements), this will take some time, so we will perform this
as an asynchronous task.</p>
<p>The asynchronous api for drivers are quite complicated. First
of all, the work must be prepared. In our example we do this
in <c><![CDATA[output]]></c>. We could have used <c><![CDATA[control]]></c> just as well,
but we want some variation in our examples. In our driver, we allocate
a structure that contains all needed for the asynchronous task
to do the work. This is done in the main emulator thread.
Then the asynchronous function is called from a driver thread,
separate from the main emulator thread. Note that the driver-
functions are not reentrant, so they shouldn't be used.
Finally, after the function is completed, the driver callback
<c><![CDATA[ready_async]]></c> is called from the main emulator thread,
this is where we return the result to Erlang. (We can't
return the result from within the asynchronous function, since
we can't call the driver-functions.)</p>
<p>The code below is from the sample file <c><![CDATA[next_perm.cc]]></c>.</p>
<p>The driver entry looks like before, but also contains the
call-back <c><![CDATA[ready_async]]></c>.</p>
<code type="none"><![CDATA[
static ErlDrvEntry next_perm_driver_entry = {
NULL,\011\011\011/* init */
start,
NULL, \011\011\011/* stop */
output,\011\011\011
NULL,\011\011\011/* ready_input */
NULL,\011\011\011/* ready_output */
"next_perm", /* the name of the driver */
NULL,\011\011\011/* finish */
NULL,\011\011\011/* handle */
NULL,\011\011\011/* control */
NULL,\011\011\011/* timeout */
NULL,\011\011\011/* outputv */
ready_async,
NULL,\011\011\011/* flush */
NULL,\011\011\011/* call */
NULL\011\011\011/* event */
};
]]></code>
<p>The <c><![CDATA[output]]></c> function allocates the work-area of the
asynchronous function. Since we use C++, we use a struct,
and stuff the data in it. We have to copy the original data,
it is not valid after we have returned from the <c><![CDATA[output]]></c>
function, and the <c><![CDATA[do_perm]]></c> function will be called later,
and from another thread. We return no data here, instead it will
be sent later from the <c><![CDATA[ready_async]]></c> call-back.</p>
<p>The <c><![CDATA[async_data]]></c> will be passed to the <c><![CDATA[do_perm]]></c> function.
We do not use a <c><![CDATA[async_free]]></c> function (the last argument to
<c><![CDATA[driver_async]]></c>, it's only used if the task is cancelled
programmatically.</p>
<code type="none"><![CDATA[
struct our_async_data {
bool prev;
vector<int> data;
our_async_data(ErlDrvPort p, int command, const char* buf, int len);
};
our_async_data::our_async_data(ErlDrvPort p, int command,
\011\011\011 const char* buf, int len)
: prev(command == 2),
data((int*)buf, (int*)buf + len / sizeof(int))
{
}
static void do_perm(void* async_data);
static void output(ErlDrvData drv_data, char *buf, int len)
{
if (*buf < 1 || *buf > 2) return;
ErlDrvPort port = reinterpret_cast<ErlDrvPort>(drv_data);
void* async_data = new our_async_data(port, *buf, buf+1, len);
driver_async(port, NULL, do_perm, async_data, do_free);
}
]]></code>
<p>In the <c><![CDATA[do_perm]]></c> we simply do the work, operating
on the structure that was allocated in <c><![CDATA[output]]></c>.</p>
<code type="none"><![CDATA[
static void do_perm(void* async_data)
{
our_async_data* d = reinterpret_cast<our_async_data*>(async_data);
if (d->prev)
\011prev_permutation(d->data.begin(), d->data.end());
else
\011next_permutation(d->data.begin(), d->data.end());
}
]]></code>
<p>In the <c><![CDATA[ready_async]]></c> function, the output is sent back to the
emulator. We use the driver term format instead of <c><![CDATA[ei]]></c>.
This is the only way to send Erlang terms directly to a driver,
without having the Erlang code to call <c><![CDATA[binary_to_term/1]]></c>. In
our simple example this works well, and we don't need to use
<c><![CDATA[ei]]></c> to handle the binary term format.</p>
<p>When the data is returned we deallocate our data.</p>
<code type="none"><![CDATA[
static void ready_async(ErlDrvData drv_data, ErlDrvThreadData async_data)
{
ErlDrvPort port = reinterpret_cast<ErlDrvPort>(drv_data);
our_async_data* d = reinterpret_cast<our_async_data*>(async_data);
int n = d->data.size(), result_n = n*2 + 3;
ErlDrvTermData* result = new ErlDrvTermData[result_n], * rp = result;
for (vector<int>::iterator i = d->data.begin();
\011 i != d->data.end(); ++i) {
\011*rp++ = ERL_DRV_INT;
\011*rp++ = *i;
}
*rp++ = ERL_DRV_NIL;
*rp++ = ERL_DRV_LIST;
*rp++ = n+1;
driver_output_term(port, result, result_n);
delete[] result;
delete d;
}
]]></code>
<p>This driver is called like the others from Erlang, however, since
we use <c><![CDATA[driver_output_term]]></c>, there is no need to call
binary_to_term. The Erlang code is in the sample file
<c><![CDATA[next_perm.erl]]></c>.</p>
<p>The input is changed into a list of integers and sent to
the driver.</p>
<code type="none"><![CDATA[
-module(next_perm).
-export([next_perm/1, prev_perm/1, load/0, all_perm/1]).
load() ->
case whereis(next_perm) of
\011undefined ->
\011 case erl_ddll:load_driver(".", "next_perm") of
\011\011ok -> ok;
\011\011{error, already_loaded} -> ok;
\011\011E -> exit(E)
\011 end,
\011 Port = open_port({spawn, "next_perm"}, []),
\011 register(next_perm, Port);
\011_ ->
\011 ok
end.
list_to_integer_binaries(L) ->
[<<I:32/integer-native>> || I <- L].
next_perm(L) ->
next_perm(L, 1).
prev_perm(L) ->
next_perm(L, 2).
next_perm(L, Nxt) ->
load(),
B = list_to_integer_binaries(L),
port_control(next_perm, Nxt, B),
receive
\011Result ->
\011 Result
end.
all_perm(L) ->
New = prev_perm(L),
all_perm(New, L, [New]).
all_perm(L, L, Acc) ->
Acc;
all_perm(L, Orig, Acc) ->
New = prev_perm(L),
all_perm(New, Orig, [New | Acc]).
]]></code>
</section>
</chapter>