<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE cref SYSTEM "cref.dtd">
<cref>
<header>
<copyright>
<year>2001</year><year>2017</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>erl_driver</title>
<prepared>Jakob Cederlund</prepared>
<responsible>Jakob Cederlund</responsible>
<docno>1</docno>
<approved></approved>
<checked></checked>
<date>2000-11-27</date>
<rev>PA1</rev>
<file>erl_driver.xml</file>
</header>
<lib>erl_driver</lib>
<libsummary>API functions for an Erlang driver.</libsummary>
<description>
<p>An Erlang driver is a library containing a set of native driver
callback functions that the Erlang Virtual Machine calls when certain
events occur. There can be multiple instances of a driver, each
instance is associated with an Erlang port.</p>
<marker id="WARNING"/>
<warning>
<p><em>Use this functionality with extreme care.</em></p>
<p>A driver callback is executed as a direct extension of the
native code of the VM. Execution is not made in a safe environment.
The VM <em>cannot</em> provide the same services as provided when
executing Erlang code, such as pre-emptive scheduling or memory
protection. If the driver callback function does not behave well,
the whole VM will misbehave.</p>
<list type="bulleted">
<item>
<p>A driver callback that crash will crash the whole VM.</p>
</item>
<item>
<p>An erroneously implemented driver callback can cause a VM
internal state inconsistency, which can cause a crash of the VM,
or miscellaneous misbehaviors of the VM at any point after the
call to the driver callback.</p>
</item>
<item>
<p>A driver callback doing
<seealso marker="#lengthy_work">lengthy work</seealso> before
returning degrades responsiveness of the VM and can cause
miscellaneous strange behaviors. Such strange behaviors
include, but are not limited to, extreme memory usage and bad
load balancing between schedulers. Strange behaviors that can
occur because of lengthy work can also vary between Erlang/OTP
releases.</p>
</item>
</list>
</warning>
<p>As from ERTS 5.5.3 the driver interface has been extended
(see <seealso marker="driver_entry#extended_marker">
<c>extended marker</c></seealso>). The extended interface introduces
<seealso marker="#version_management">version management</seealso>,
the possibility to pass capability flags (see
<seealso marker="driver_entry#driver_flags">
<c>driver_flags</c></seealso>) to the runtime system at driver
initialization, and some new driver API functions.</p>
<note>
<p>As from ERTS 5.9 old drivers must be recompiled
and use the extended interface. They must also be adjusted to the
<seealso marker="#rewrites_for_64_bits">
64-bit capable driver interface</seealso>.</p>
</note>
<p>The driver calls back to the emulator, using the API
functions declared in <c>erl_driver.h</c>. They are used for
outputting data from the driver, using timers, and so on.</p>
<p>Each driver instance is associated with a port. Every port
has a port owner process. Communication with the port is normally
done through the port owner process. Most of the functions take
the <c>port</c> handle as an argument. This identifies the driver
instance. Notice that this port handle must be stored by the driver,
it is not given when the driver is called from the emulator (see
<seealso marker="driver_entry#emulator">
<c>driver_entry</c></seealso>).</p>
<p>Some of the functions take a parameter of type
<c>ErlDrvBinary</c>, a driver binary. It is to be both
allocated and freed by the caller. Using a binary directly avoids
one extra copying of data.</p>
<p>Many of the output functions have a "header buffer", with
<c>hbuf</c> and <c>hlen</c> parameters. This buffer is sent as a
list before the binary (or list, depending on port mode) that is
sent. This is convenient when matching on messages received from
the port. (Although in the latest Erlang versions there is
the binary syntax, which enables you to match on the beginning of
a binary.)</p>
<p><marker id="smp_support"></marker>In the runtime system with
SMP support, drivers are locked either on driver level
or port level (driver instance level). By default
driver level locking will be used, that is, only one emulator thread
will execute code in the driver at a time. If port level locking
is used, multiple emulator threads can execute code in the driver
at the same time. Only one thread at a time will call
driver callbacks corresponding to the same port, though.
To enable port level locking, set the <c>ERL_DRV_FLAG_USE_PORT_LOCKING</c>
<seealso marker="driver_entry#driver_flags">driver flag</seealso> in
the <seealso marker="driver_entry"><c>driver_entry</c></seealso>
used by the driver. When port level locking is used,
the driver writer is responsible for synchronizing all accesses
to data shared by the ports (driver instances).</p>
<p>Most drivers written before the runtime system with SMP
support existed can run in the runtime system
with SMP support, without being rewritten, if driver
level locking is used.</p>
<note>
<p>It is assumed that drivers do not access other drivers. If
drivers access each other, they must provide their own
mechanism for thread-safe synchronization. Such "inter-driver
communication" is strongly discouraged.</p>
</note>
<p>Previously, in the runtime system without SMP support,
specific driver callbacks were always called from the same
thread. This is <em>not</em> the case in the runtime system
with SMP support. Regardless of locking scheme used, calls
to driver callbacks can be made from different threads. For example,
two consecutive calls to exactly the same callback for exactly
the same port can be made from two different threads. This
is for <em>most</em> drivers not a problem, but it can be.
Drivers that depend on all callbacks that are called in the
same thread, <em>must</em> be rewritten before they are used
in the runtime system with SMP support.</p>
<note>
<p>Regardless of locking scheme used, calls to driver
callbacks can be made from different threads.</p>
</note>
<p>Most functions in this API are <em>not</em> thread-safe, that is,
they <em>cannot</em> be called from arbitrary threads. Functions
that are not documented as thread-safe can only be called from
driver callbacks or function calls descending from a driver
callback call. Notice that driver callbacks can be called from
different threads. This, however, is not a problem for any
function in this API, as the emulator has control over
these threads.</p>
<warning>
<p>Functions not explicitly documented as thread-safe are
<em>not</em> thread safe. Also notice that some functions
are <em>only</em> thread-safe when used in a runtime
system with SMP support.</p>
<p>A function not explicitly documented as thread-safe can, at
some point in time, have a thread-safe implementation in the
runtime system. Such an implementation can however change to
a thread <em>unsafe</em> implementation at any time <em>without
any notice</em>.</p>
<p><em>Only use functions explicitly documented as thread-safe
from arbitrary threads.</em></p>
</warning>
<p><marker id="lengthy_work"/>
As mentioned in the <seealso marker="#WARNING">warning</seealso> text at
the beginning of this section, it is of vital importance that a driver
callback returns relatively fast. It is difficult to give an exact
maximum amount of time that a driver callback is allowed to work, but
usually a well-behaving driver callback is to return within 1 millisecond.
This can be achieved using different approaches.
If you have full control over the code to execute in the driver
callback, the best approach is to divide the work into multiple chunks of
work, and trigger multiple calls to the
<seealso marker="driver_entry#timeout">time-out callback</seealso> using
zero time-outs. Function <seealso marker="#erl_drv_consume_timeslice">
<c>erl_drv_consume_timeslice</c></seealso> can be useful to
determine when to trigger such time-out callback calls. However, sometimes
it cannot be implemented this way, for example when calling
third-party libraries. In this case, you typically want to dispatch the
work to another thread. Information about thread primitives is provided
below.</p>
</description>
<section>
<title>Functionality</title>
<p>All functions that a driver needs to do with Erlang are
performed through driver API functions. Functions exist
for the following functionality:</p>
<taglist>
<tag>Timer functions</tag>
<item>
<p>Control the timer that a driver can use. The timer has the
emulator call the <seealso marker="driver_entry#timeout">
<c>timeout</c></seealso> entry function after a specified time.
Only one timer is available for each driver instance.</p>
</item>
<tag>Queue handling</tag>
<item>
<p>Every driver instance has an associated queue. This queue is a
<c>SysIOVec</c>, which works as a buffer. It is mostly used for
the driver to buffer data that is to be written to a device,
it is a byte stream. If the port owner process closes the
driver, and the queue is not empty, the driver is not
closed. This enables the driver to flush its buffers before
closing.</p>
<p>The queue can be manipulated from any threads if
a port data lock is used. For more information, see
<seealso marker="#ErlDrvPDL"><c>ErlDrvPDL</c></seealso>.</p>
</item>
<tag>Output functions</tag>
<item>
<p>With these functions, the driver sends data back to the emulator.
The data is received as messages by the port owner process, see
<seealso marker="erlang:open_port/2">
<c>erlang:open_port/2</c></seealso>. The vector function and the
function taking a driver binary are faster, as they avoid
copying the data buffer. There is also a fast way of sending
terms from the driver, without going through the binary term
format.</p></item>
<tag>Failure</tag>
<item>
<p>The driver can exit and signal errors up to Erlang. This is
only for severe errors, when the driver cannot possibly keep
open.</p>
</item>
<tag>Asynchronous calls</tag>
<item>
<p>Erlang/OTP R7B and later versions have provision for
asynchronous function calls, using a thread pool provided by
Erlang. There is also a select call, which can be used for
asynchronous drivers.</p>
</item>
<tag><marker id="multi_threading"/>Multi-threading</tag>
<item>
<p>A POSIX thread like API for multi-threading is provided. The
Erlang driver thread API only provides a subset of the functionality
provided by the POSIX thread API. The subset provided is
more or less the basic functionality needed for multi-threaded
programming:</p>
<list>
<item><seealso marker="#ErlDrvTid">Threads</seealso></item>
<item><seealso marker="#ErlDrvMutex">Mutexes</seealso></item>
<item><seealso marker="#ErlDrvCond">
Condition variables</seealso></item>
<item><seealso marker="#ErlDrvRWLock">
Read/write locks</seealso></item>
<item><seealso marker="#ErlDrvTSDKey">
Thread-specific data</seealso></item>
</list>
<p>The Erlang driver thread API can be used in conjunction with
the POSIX thread API on UN-ices and with the Windows native thread
API on Windows. The Erlang driver thread API has the advantage of
being portable, but there can exist situations where you want to
use functionality from the POSIX thread API or the Windows
native thread API.</p>
<p>The Erlang driver thread API only returns error codes when it is
reasonable to recover from an error condition. If it is not reasonable
to recover from an error condition, the whole runtime system is
terminated. For example, if a create mutex operation fails, an error
code is returned, but if a lock operation on a mutex fails, the
whole runtime system is terminated.</p>
<p>Notice that there is no "condition variable wait with time-out" in
the Erlang driver thread API. This because of issues with
<c>pthread_cond_timedwait</c>. When the system clock suddenly
is changed, it is not always guaranteed that you will wake up from
the call as expected. An Erlang runtime system must be able to
cope with sudden changes of the system clock. Therefore, we have
omitted it from the Erlang driver thread API. In the Erlang driver
case, time-outs can and are to be handled with the timer functionality
of the Erlang driver API.</p>
<p>In order for the Erlang driver thread API to function, thread
support must be enabled in the runtime system. An Erlang driver
can check if thread support is enabled by use of
<seealso marker="#driver_system_info">
<c>driver_system_info</c></seealso>.
Notice that some functions in the Erlang driver API are thread-safe
only when the runtime system has SMP support, also this
information can be retrieved through
<seealso marker="#driver_system_info">
<c>driver_system_info</c></seealso>.
Also notice that many functions in the Erlang driver API are
<em>not</em> thread-safe, regardless of whether SMP support is
enabled or not. If a function is not documented as thread-safe, it
is <em>not</em> thread-safe.</p>
<note>
<p>When executing in an emulator thread, it is
<em>very important</em> that you unlock <em>all</em> locks you
have locked before letting the thread out of your control;
otherwise you are <em>very likely</em> to deadlock the whole
emulator.</p>
<p>If you need to use thread-specific data in an emulator
thread, only have the thread-specific data set while the thread is
under your control, and clear the thread-specific data before
you let the thread out of your control.</p>
</note>
<p>In the future, debug functionality will probably be
integrated with the Erlang driver thread API. All functions
that create entities take a <c>name</c> argument. Currently
the <c>name</c> argument is unused, but it will be used when
the debug functionality is implemented. If you name all
entities created well, the debug functionality will be able
to give you better error reports.</p>
</item>
<tag>Adding/removing drivers</tag>
<item>
<p>A driver can add and later remove drivers.</p>
</item>
<tag>Monitoring processes</tag>
<item>
<p>A driver can monitor a process that does not own a port.</p>
</item>
<tag><marker id="version_management"/>Version management</tag>
<item>
<p>Version management is enabled for drivers that have set the
<seealso marker="driver_entry#extended_marker">
<c>extended_marker</c></seealso> field of their
<seealso marker="driver_entry"><c>driver_entry</c></seealso>
to <c>ERL_DRV_EXTENDED_MARKER</c>. <c>erl_driver.h</c> defines:</p>
<list type="bulleted">
<item>
<p><c>ERL_DRV_EXTENDED_MARKER</c></p>
</item>
<item>
<p><c>ERL_DRV_EXTENDED_MAJOR_VERSION</c>, which is incremented when
driver incompatible changes are made to the Erlang runtime
system. Normally it suffices to recompile drivers when
<c>ERL_DRV_EXTENDED_MAJOR_VERSION</c> has changed, but it
can, under rare circumstances, mean that drivers must
be slightly modified. If so, this will of course be
documented.</p>
</item>
<item>
<p><c>ERL_DRV_EXTENDED_MINOR_VERSION</c>, which is incremented when
new features are added. The runtime system uses the minor version
of the driver to determine what features to use.</p>
</item>
</list>
<p>The runtime system normally refuses to load a driver if the major
versions differ, or if the major versions are equal and the
minor version used by the driver is greater than the one used
by the runtime system. Old drivers with lower major versions
are however allowed after a bump of the major version during
a transition period of two major releases. Such old drivers can,
however, fail if deprecated features are used.</p>
<p>The emulator refuses to load a driver that does not use
the extended driver interface, to allow for 64-bit capable drivers,
as incompatible type changes for the callbacks
<seealso marker="driver_entry#output"><c>output</c></seealso>,
<seealso marker="driver_entry#control"><c>control</c></seealso>, and
<seealso marker="driver_entry#call"><c>call</c></seealso>
were introduced in Erlang/OTP R15B. A driver written
with the old types would compile with warnings and when
called return garbage sizes to the emulator, causing it
to read random memory and create huge incorrect result blobs.</p>
<p>Therefore it is not enough to only recompile drivers written with
version management for pre R15B types; the types must be changed
in the driver suggesting other rewrites, especially regarding size
variables. <em>Investigate all warnings when recompiling.</em></p>
<p>Also, the API driver functions <c>driver_output*</c> and
<c>driver_vec_to_buf</c>, <c>driver_alloc/realloc*</c>, and the
<c>driver_*</c> queue functions were changed to have
larger length arguments and return values. This is a
lesser problem, as code that passes smaller types
gets them auto-converted in the calls, and as long as
the driver does not handle sizes that overflow an <c>int</c>,
all will work as before.</p>
</item>
<tag><marker id="time_measurement"/>Time measurement</tag>
<item>
<p>Support for time measurement in drivers:</p>
<list type="bulleted">
<item><seealso marker="#ErlDrvTime">
<c>ErlDrvTime</c></seealso></item>
<item><seealso marker="#ErlDrvTimeUnit">
<c>ErlDrvTimeUnit</c></seealso></item>
<item><seealso marker="#erl_drv_monotonic_time">
<c>erl_drv_monotonic_time</c></seealso></item>
<item><seealso marker="#erl_drv_time_offset">
<c>erl_drv_time_offset</c></seealso></item>
<item><seealso marker="#erl_drv_convert_time_unit">
<c>erl_drv_convert_time_unit</c></seealso></item>
</list>
</item>
</taglist>
</section>
<section>
<marker id="rewrites_for_64_bits"/>
<title>Rewrites for 64-Bit Driver Interface</title>
<p>ERTS 5.9 introduced two new integer types,
<seealso marker="#ErlDrvSizeT"><c>ErlDrvSizeT</c></seealso> and
<seealso marker="#ErlDrvSSizeT"><c>ErlDrvSSizeT</c></seealso>,
which can hold 64-bit sizes if necessary.</p>
<p>To not update a driver and only recompile, it probably works
when building for a 32-bit machine creating a false sense of security.
Hopefully that will generate many important warnings.
But when recompiling the same driver later on for a 64-bit machine,
there <em>will</em> be warnings and almost certainly crashes.
So it is a <em>bad</em> idea to postpone updating the driver and
not fixing the warnings.</p>
<p>When recompiling with <c>gcc</c>, use flag <c>-Wstrict-prototypes</c>
to get better warnings. Try to find a similar flag if you use
another compiler.</p>
<p>The following is a checklist for rewriting a pre ERTS 5.9 driver,
most important first:</p>
<taglist>
<tag>Return types for driver callbacks</tag>
<item>
<p>Rrewrite driver callback
<seealso marker="driver_entry#control"><c>control</c></seealso>
to use return type <c>ErlDrvSSizeT</c> instead of <c>int</c>.</p>
<p>Rewrite driver callback
<seealso marker="driver_entry#call"><c>call</c></seealso>
to use return type <c>ErlDrvSSizeT</c> instead of <c>int</c>.</p>
<note>
<p>These changes are essential not to crash the emulator
or worse cause malfunction.
Without them a driver can return garbage in the high 32 bits
to the emulator, causing it to build a huge result from random
bytes, either crashing on memory allocation or succeeding with
a random result from the driver call.</p>
</note>
</item>
<tag>Arguments to driver callbacks</tag>
<item>
<p>Driver callback
<seealso marker="driver_entry#output"><c>output</c></seealso>
now gets <c>ErlDrvSizeT</c> as 3rd argument instead
of previously <c>int</c>.</p>
<p>Driver callback
<seealso marker="driver_entry#control"><c>control</c></seealso>
now gets <c>ErlDrvSizeT</c> as 4th and 6th arguments instead
of previously <c>int</c>.</p>
<p>Driver callback
<seealso marker="driver_entry#call"><c>call</c></seealso>
now gets <c>ErlDrvSizeT</c> as 4th and 6th arguments instead
of previously <c>int</c>.</p>
<p>Sane compiler's calling conventions probably make these changes
necessary only for a driver to handle data chunks that require
64-bit size fields (mostly larger than 2 GB, as that is what
an <c>int</c> of 32 bits can hold). But it is possible to think
of non-sane calling conventions that would make the driver
callbacks mix up the arguments causing malfunction.</p>
<note>
<p>The argument type change is from signed to unsigned. This
can cause problems for, for example, loop termination conditions or
error conditions if you only change the types all over the place.
</p>
</note>
</item>
<tag>Larger <c>size</c> field in <c>ErlIOVec</c></tag>
<item>
<p>The <c>size</c> field in
<seealso marker="#ErlIOVec"><c>ErlIOVec</c></seealso>
has been changed to <c>ErlDrvSizeT</c> from <c>int</c>.
Check all code that use that field.</p>
<p>Automatic type-casting probably makes these changes necessary only
for a driver that encounters sizes > 32 bits.</p>
<note>
<p>The <c>size</c> field changed from signed to unsigned. This
can cause problems for, for example, loop termination conditions or
error conditions if you only change the types all over the place.
</p>
</note>
</item>
<tag>Arguments and return values in the driver API</tag>
<item>
<p>Many driver API functions have changed argument type
and/or return value to <c>ErlDrvSizeT</c> from mostly <c>int</c>.
Automatic type-casting probably makes these changes necessary only
for a driver that encounters sizes > 32 bits.</p>
<taglist>
<tag><seealso marker="#driver_output">
<c>driver_output</c></seealso></tag>
<item>3rd argument</item>
<tag><seealso marker="#driver_output2">
<c>driver_output2</c></seealso></tag>
<item>3rd and 5th arguments</item>
<tag><seealso marker="#driver_output_binary">
<c>driver_output_binary</c></seealso></tag>
<item>3rd, 5th, and 6th arguments</item>
<tag><seealso marker="#driver_outputv">
<c>driver_outputv</c></seealso></tag>
<item>3rd and 5th arguments</item>
<tag><seealso marker="#driver_vec_to_buf">
<c>driver_vec_to_buf</c></seealso></tag>
<item>3rd argument and return value</item>
<tag><seealso marker="#driver_alloc">
<c>driver_alloc</c></seealso></tag>
<item>1st argument</item>
<tag><seealso marker="#driver_realloc">
<c>driver_realloc</c></seealso></tag>
<item>2nd argument</item>
<tag><seealso marker="#driver_alloc_binary">
<c>driver_alloc_binary</c></seealso></tag>
<item>1st argument</item>
<tag><seealso marker="#driver_realloc_binary">
<c>driver_realloc_binary</c></seealso></tag>
<item>2nd argument</item>
<tag><seealso marker="#driver_enq">
<c>driver_enq</c></seealso></tag>
<item>3rd argument</item>
<tag><seealso marker="#driver_pushq">
<c>driver_pushq</c></seealso></tag>
<item>3rd argument</item>
<tag><seealso marker="#driver_deq">
<c>driver_deq</c></seealso></tag>
<item>2nd argument and return value</item>
<tag><seealso marker="#driver_sizeq">
<c>driver_sizeq</c></seealso></tag>
<item>Return value</item>
<tag><seealso marker="#driver_enq_bin">
<c>driver_enq_bin</c></seealso></tag>
<item>3rd and 4th arguments</item>
<tag><seealso marker="#driver_pushq_bin">
<c>driver_pushq_bin</c></seealso></tag>
<item>3rd and 4th arguments</item>
<tag><seealso marker="#driver_enqv">
<c>driver_enqv</c></seealso></tag>
<item>3rd argument</item>
<tag><seealso marker="#driver_pushqv">
<c>driver_pushqv</c></seealso></tag>
<item>3rd argument</item>
<tag><seealso marker="#driver_peekqv">
<c>driver_peekqv</c></seealso></tag>
<item>Return value</item>
</taglist>
<note>
<p>This is a change from signed to unsigned. This can cause
problems for, for example, loop termination conditions and error
conditions if you only change the types all over the place.</p>
</note>
</item>
</taglist>
</section>
<section>
<title>Data Types</title>
<taglist>
<tag><marker id="ErlDrvSizeT"/><c>ErlDrvSizeT</c></tag>
<item>
<p>An unsigned integer type to be used as <c>size_t</c>.</p>
</item>
<tag><marker id="ErlDrvSSizeT"/><c>ErlDrvSSizeT</c></tag>
<item>
<p>A signed integer type, the size of <c>ErlDrvSizeT</c>.</p>
</item>
<tag><marker id="ErlDrvSysInfo"/><c>ErlDrvSysInfo</c></tag>
<item>
<code type="none">
typedef struct ErlDrvSysInfo {
int driver_major_version;
int driver_minor_version;
char *erts_version;
char *otp_release;
int thread_support;
int smp_support;
int async_threads;
int scheduler_threads;
int nif_major_version;
int nif_minor_version;
int dirty_scheduler_support;
} ErlDrvSysInfo;</code>
<p>The <c>ErlDrvSysInfo</c> structure is used for storage of
information about the Erlang runtime system.
<seealso marker="#driver_system_info">
<c>driver_system_info</c></seealso>
writes the system information when passed a reference to
a <c>ErlDrvSysInfo</c> structure. The fields in the structure
are as follows:</p>
<taglist>
<tag><c>driver_major_version</c></tag>
<item>
<p>The value of <seealso marker="#version_management">
<c>ERL_DRV_EXTENDED_MAJOR_VERSION</c></seealso>
when the runtime system was compiled. This value is the same
as the value of <seealso marker="#version_management">
<c>ERL_DRV_EXTENDED_MAJOR_VERSION</c></seealso>
used when compiling the driver; otherwise the runtime system
would have refused to load the driver.</p>
</item>
<tag><c>driver_minor_version</c></tag>
<item>
<p>The value of <seealso marker="#version_management">
<c>ERL_DRV_EXTENDED_MINOR_VERSION</c></seealso>
when the runtime system was compiled. This value can differ
from the value of <seealso marker="#version_management">
<c>ERL_DRV_EXTENDED_MINOR_VERSION</c></seealso>
used when compiling the driver.</p>
</item>
<tag><c>erts_version</c></tag>
<item>
<p>A string containing the version number of the runtime system
(the same as returned by
<seealso marker="erlang#system_info_version">
<c>erlang:system_info(version)</c></seealso>).</p>
</item>
<tag><c>otp_release</c></tag>
<item>
<p>A string containing the OTP release number
(the same as returned by
<seealso marker="erlang#system_info_otp_release">
<c>erlang:system_info(otp_release)</c></seealso>).</p>
</item>
<tag><c>thread_support</c></tag>
<item>
<p>A value <c>!= 0</c> if the runtime system has thread support;
otherwise <c>0</c>.</p>
</item>
<tag><c>smp_support</c></tag>
<item>
<p>A value <c>!= 0</c> if the runtime system has SMP support;
otherwise <c>0</c>.</p>
</item>
<tag><c>async_threads</c></tag>
<item>
<p>The number of async threads in the async thread pool used by
<seealso marker="#driver_async"><c>driver_async</c></seealso>
(the same as returned by
<seealso marker="erlang#system_info_thread_pool_size">
<c>erlang:system_info(thread_pool_size)</c></seealso>).</p>
</item>
<tag><c>scheduler_threads</c></tag>
<item>
<p>The number of scheduler threads used by the runtime system
(the same as returned by
<seealso marker="erlang#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso>).</p>
</item>
<tag><c>nif_major_version</c></tag>
<item>
<p>The value of <c>ERL_NIF_MAJOR_VERSION</c> when the runtime
system was compiled.</p>
</item>
<tag><c>nif_minor_version</c></tag>
<item>
<p>The value of <c>ERL_NIF_MINOR_VERSION</c> when the runtime
system was compiled.</p>
</item>
<tag><c>dirty_scheduler_support</c></tag>
<item>
<p>A value <c>!= 0</c> if the runtime system has support for dirty
scheduler threads; otherwise <c>0</c>.</p>
</item>
</taglist>
</item>
<tag><marker id="ErlDrvBinary"/><c>ErlDrvBinary</c></tag>
<item>
<code type="none">
typedef struct ErlDrvBinary {
ErlDrvSint orig_size;
char orig_bytes[];
} ErlDrvBinary;</code>
<p>The <c>ErlDrvBinary</c> structure is a binary, as sent
between the emulator and the driver. All binaries are
reference counted; when <c>driver_binary_free</c> is called,
the reference count is decremented, when it reaches zero,
the binary is deallocated. <c>orig_size</c> is the binary size
and <c>orig_bytes</c> is the buffer.
<c>ErlDrvBinary</c> has not a fixed size, its size is
<c>orig_size + 2 * sizeof(int)</c>.</p>
<note>
<p>The <c>refc</c> field has been removed. The reference count of
an <c>ErlDrvBinary</c> is now stored elsewhere. The
reference count of an <c>ErlDrvBinary</c> can be accessed through
<seealso marker="#driver_binary_get_refc">
<c>driver_binary_get_refc</c></seealso>,
<seealso marker="#driver_binary_inc_refc">
<c>driver_binary_inc_refc</c></seealso>, and
<seealso marker="#driver_binary_dec_refc">
<c>driver_binary_dec_refc</c></seealso>.</p>
</note>
<p>Some driver calls, such as <c>driver_enq_binary</c>,
increment the driver reference count, and others, such as
<c>driver_deq</c> decrement it.</p>
<p>Using a driver binary instead of a normal buffer is often
faster, as the emulator needs not to copy the data,
only the pointer is used.</p>
<p>A driver binary allocated in the driver, with
<c>driver_alloc_binary</c>, is to be freed in the driver
(unless otherwise stated)
with <c>driver_free_binary</c>. (Notice that this does not
necessarily deallocate it, if the driver is still referred
in the emulator, the ref-count will not go to zero.)</p>
<p>Driver binaries are used in the <c>driver_output2</c> and
<c>driver_outputv</c> calls, and in the queue. Also the
driver callback <seealso marker="driver_entry#outputv">
<c>outputv</c></seealso> uses driver binaries.</p>
<p>If the driver for some reason wants to keep a
driver binary around, for example in a static variable, the
reference count is to be incremented, and the binary can later
be freed in the <seealso marker="driver_entry#stop">
<c>stop</c></seealso> callback, with <c>driver_free_binary</c>.</p>
<p>Notice that as a driver binary is shared by the driver and
the emulator. A binary received from the emulator or sent to
the emulator must not be changed by the driver.</p>
<p>Since ERTS 5.5 (Erlang/OTP R11B), <c>orig_bytes</c> is
guaranteed to be properly aligned for storage of an array of
doubles (usually 8-byte aligned).</p>
</item>
<tag><c>ErlDrvData</c></tag>
<item>
<p>A handle to driver-specific data,
passed to the driver callbacks. It is a pointer, and is
most often type cast to a specific pointer in the driver.</p>
</item>
<tag><c>SysIOVec</c></tag>
<item>
<p>A system I/O vector, as used by <c>writev</c> on
Unix and <c>WSASend</c> on Win32. It is used in
<c>ErlIOVec</c>.</p>
</item>
<tag><marker id="ErlIOVec"/><c>ErlIOVec</c></tag>
<item>
<code type="none">
typedef struct ErlIOVec {
int vsize;
ErlDrvSizeT size;
SysIOVec* iov;
ErlDrvBinary** binv;
} ErlIOVec;</code>
<p>The I/O vector used by the emulator and drivers is a list
of binaries, with a <c>SysIOVec</c> pointing to the buffers
of the binaries. It is used in <c>driver_outputv</c> and the
<seealso marker="driver_entry#outputv"><c>outputv</c></seealso>
driver callback. Also, the driver queue is an
<c>ErlIOVec</c>.</p>
</item>
<tag><c>ErlDrvMonitor</c></tag>
<item>
<p>When a driver creates a monitor for a process, a
<c>ErlDrvMonitor</c> is filled in. This is an opaque
data type that can be assigned to, but not compared without
using the supplied compare function (that is, it behaves like
a struct).</p>
<p>The driver writer is to provide the memory for storing the
monitor when calling <seealso marker="#driver_monitor_process">
<c>driver_monitor_process</c></seealso>. The
address of the data is not stored outside of the driver, so
<c>ErlDrvMonitor</c> can be used as any other data, it
can be copied, moved in memory, forgotten, and so on.</p>
</item>
<tag><marker id="ErlDrvNowData"/><c>ErlDrvNowData</c></tag>
<item>
<p>The <c>ErlDrvNowData</c> structure holds a time stamp
consisting of three values measured from some arbitrary
point in the past. The three structure members are:</p>
<taglist>
<tag><c>megasecs</c></tag>
<item>The number of whole megaseconds elapsed since the arbitrary
point in time</item>
<tag><c>secs</c></tag>
<item>The number of whole seconds elapsed since the arbitrary
point in time</item>
<tag><c>microsecs</c></tag>
<item>The number of whole microseconds elapsed since the arbitrary
point in time</item>
</taglist>
</item>
<tag><marker id="ErlDrvPDL"/><c>ErlDrvPDL</c></tag>
<item>
<p>If certain port-specific data must be accessed from other
threads than those calling the driver callbacks, a port data lock
can be used to synchronize the operations on the data.
Currently, the only port-specific data that the emulator
associates with the port data lock is the driver queue.</p>
<p>Normally a driver instance has no port data lock. If
the driver instance wants to use a port data lock, it must
create the port data lock by calling
<seealso marker="#driver_pdl_create">
<c>driver_pdl_create</c></seealso>.</p>
<note>
<p>Once the port data lock has been created, every
access to data associated with the port data lock must be done
while the port data lock is locked. The port data lock is
locked and unlocked by
<seealso marker="#driver_pdl_lock">
<c>driver_pdl_lock</c></seealso>, and
<seealso marker="#driver_pdl_unlock">
<c>driver_pdl_unlock</c></seealso>, respectively.</p>
</note>
<p>A port data lock is reference counted, and when the reference
count reaches zero, it is destroyed. The emulator at
least increments the reference count once when the lock is
created and decrements it once the port associated with
the lock terminates. The emulator also increments the
reference count when an async job is enqueued and decrements
it when an async job has been invoked.
Also, the driver is responsible for ensuring that
the reference count does not reach zero before the last use
of the lock by the driver has been made. The reference count
can be read, incremented, and decremented by
<seealso marker="#driver_pdl_get_refc">
<c>driver_pdl_get_refc</c></seealso>,
<seealso marker="#driver_pdl_inc_refc">
<c>driver_pdl_inc_refc</c></seealso>, and
<seealso marker="#driver_pdl_dec_refc">
<c>driver_pdl_dec_refc</c></seealso>, respectively.</p>
</item>
<tag><marker id="ErlDrvTid"/><c>ErlDrvTid</c></tag>
<item>
<p>Thread identifier.</p>
<p>See also <seealso marker="#erl_drv_thread_create">
<c>erl_drv_thread_create</c></seealso>,
<seealso marker="#erl_drv_thread_exit">
<c>erl_drv_thread_exit</c></seealso>,
<seealso marker="#erl_drv_thread_join">
<c>erl_drv_thread_join</c></seealso>,
<seealso marker="#erl_drv_thread_self">
<c>erl_drv_thread_self</c></seealso>, and
<seealso marker="#erl_drv_equal_tids">
<c>erl_drv_equal_tids</c></seealso>.</p>
</item>
<tag><marker id="ErlDrvThreadOpts"/><c>ErlDrvThreadOpts</c></tag>
<item>
<code type="none">
int suggested_stack_size;</code>
<p>Thread options structure passed to
<seealso marker="#erl_drv_thread_create">
<c>erl_drv_thread_create</c></seealso>.
The following fields exists:</p>
<taglist>
<tag><c>suggested_stack_size</c></tag>
<item>A suggestion, in kilowords, on how large a stack to use.
A value < 0 means default size.
</item>
</taglist>
<p>See also <seealso marker="#erl_drv_thread_opts_create">
<c>erl_drv_thread_opts_create</c></seealso>,
<seealso marker="#erl_drv_thread_opts_destroy">
<c>erl_drv_thread_opts_destroy</c></seealso>, and
<seealso marker="#erl_drv_thread_create">
<c>erl_drv_thread_create</c></seealso>.</p>
</item>
<tag><marker id="ErlDrvMutex"/><c>ErlDrvMutex</c></tag>
<item>
<p>Mutual exclusion lock. Used for synchronizing access to shared data.
Only one thread at a time can lock a mutex.</p>
<p>See also <seealso marker="#erl_drv_mutex_create">
<c>erl_drv_mutex_create</c></seealso>,
<seealso marker="#erl_drv_mutex_destroy">
<c>erl_drv_mutex_destroy</c></seealso>,
<seealso marker="#erl_drv_mutex_lock">
<c>erl_drv_mutex_lock</c></seealso>,
<seealso marker="#erl_drv_mutex_trylock">
<c>erl_drv_mutex_trylock</c></seealso>, and
<seealso marker="#erl_drv_mutex_unlock">
<c>erl_drv_mutex_unlock</c></seealso>.</p>
</item>
<tag><marker id="ErlDrvCond"/><c>ErlDrvCond</c></tag>
<item>
<p>Condition variable. Used when threads must wait for a specific
condition to appear before continuing execution. Condition variables
must be used with associated mutexes.</p>
<p>See also <seealso marker="#erl_drv_cond_create">
<c>erl_drv_cond_create</c></seealso>,
<seealso marker="#erl_drv_cond_destroy">
<c>erl_drv_cond_destroy</c></seealso>,
<seealso marker="#erl_drv_cond_signal">
<c>erl_drv_cond_signal</c></seealso>,
<seealso marker="#erl_drv_cond_broadcast">
<c>erl_drv_cond_broadcast</c></seealso>, and
<seealso marker="#erl_drv_cond_wait">
<c>erl_drv_cond_wait</c></seealso>.</p>
</item>
<tag><marker id="ErlDrvRWLock"/><c>ErlDrvRWLock</c></tag>
<item>
<p>Read/write lock. Used to allow multiple threads to read shared data
while only allowing one thread to write the same data. Multiple
threads can read lock an rwlock at the same time, while only
one thread can read/write lock an rwlock at a time.</p>
<p>See also <seealso marker="#erl_drv_rwlock_create">
<c>erl_drv_rwlock_create</c></seealso>,
<seealso marker="#erl_drv_rwlock_destroy">
<c>erl_drv_rwlock_destroy</c></seealso>,
<seealso marker="#erl_drv_rwlock_rlock">
<c>erl_drv_rwlock_rlock</c></seealso>,
<seealso marker="#erl_drv_rwlock_tryrlock">
<c>erl_drv_rwlock_tryrlock</c></seealso>,
<seealso marker="#erl_drv_rwlock_runlock">
<c>erl_drv_rwlock_runlock</c></seealso>,
<seealso marker="#erl_drv_rwlock_rwlock">
<c>erl_drv_rwlock_rwlock</c></seealso>,
<seealso marker="#erl_drv_rwlock_tryrwlock">
<c>erl_drv_rwlock_tryrwlock</c></seealso>, and
<seealso marker="#erl_drv_rwlock_rwunlock">
<c>erl_drv_rwlock_rwunlock</c></seealso>.</p>
</item>
<tag><marker id="ErlDrvTSDKey"/><c>ErlDrvTSDKey</c></tag>
<item>
<p>Key that thread-specific data can be associated with.</p>
<p>See also <seealso marker="#erl_drv_tsd_key_create">
<c>erl_drv_tsd_key_create</c></seealso>,
<seealso marker="#erl_drv_tsd_key_destroy">
<c>erl_drv_tsd_key_destroy</c></seealso>,
<seealso marker="#erl_drv_tsd_set">
<c>erl_drv_tsd_set</c></seealso>, and
<seealso marker="#erl_drv_tsd_get">
<c>erl_drv_tsd_get</c></seealso>.</p>
</item>
<tag><marker id="ErlDrvTime"/><c>ErlDrvTime</c></tag>
<item>
<p>A signed 64-bit integer type for time representation.</p>
</item>
<tag><marker id="ErlDrvTimeUnit"/><c>ErlDrvTimeUnit</c></tag>
<item>
<p>An enumeration of time units supported by the driver API:</p>
<taglist>
<tag><c>ERL_DRV_SEC</c></tag>
<item>Seconds</item>
<tag><c>ERL_DRV_MSEC</c></tag>
<item>Milliseconds</item>
<tag><c>ERL_DRV_USEC</c></tag>
<item>Microseconds</item>
<tag><c>ERL_DRV_NSEC</c></tag>
<item>Nanoseconds</item>
</taglist>
</item>
</taglist>
</section>
<funcs>
<func>
<name><ret>void</ret><nametext>add_driver_entry(ErlDrvEntry
*de)</nametext></name>
<fsummary>Add a driver entry.</fsummary>
<desc>
<marker id="add_driver_entry"></marker>
<p>Adds a driver entry to the list of drivers known by Erlang.
The <seealso marker="driver_entry#init"><c>init</c></seealso>
function of parameter <c>de</c> is called.</p>
<note>
<p>To use this function for adding drivers residing in
dynamically loaded code is dangerous. If the driver code
for the added driver resides in the same dynamically
loaded module (that is, <c>.so</c> file) as a normal
dynamically loaded driver (loaded with the <c>erl_ddll</c>
interface), the caller is to call
<seealso marker="#driver_lock_driver">
<c>driver_lock_driver</c></seealso> before
adding driver entries.</p>
<p><em>Use of this function is generally deprecated.</em></p>
</note>
</desc>
</func>
<func>
<name><ret>void *</ret>
<nametext>driver_alloc(ErlDrvSizeT size)</nametext></name>
<fsummary>Allocate memory.</fsummary>
<desc>
<marker id="driver_alloc"></marker>
<p>Allocates a memory block of the size specified
in <c>size</c>, and returns it. This fails only on out of
memory, in which case <c>NULL</c> is returned. (This is most
often a wrapper for <c>malloc</c>).</p>
<p>Memory allocated must be explicitly freed with a corresponding
call to <seealso marker="#driver_free"><c>driver_free</c></seealso>
(unless otherwise stated).</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvBinary *</ret>
<nametext>driver_alloc_binary(ErlDrvSizeT size)</nametext></name>
<fsummary>Allocate a driver binary.</fsummary>
<desc>
<marker id="driver_alloc_binary"></marker>
<p>Allocates a driver binary with a memory block
of at least <c>size</c> bytes, and returns a pointer to it,
or <c>NULL</c> on failure (out of memory). When a driver binary has
been sent to the emulator, it must not be changed. Every
allocated binary is to be freed by a corresponding call to
<seealso marker="#driver_free_binary">
<c>driver_free_binary</c></seealso> (unless otherwise stated).</p>
<p>Notice that a driver binary has an internal reference counter.
This means that calling <c>driver_free_binary</c>, it may not
actually dispose of it. If it is sent to the emulator, it can
be referenced there.</p>
<p>The driver binary has a field, <c>orig_bytes</c>, which
marks the start of the data in the binary.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>long</ret><nametext>driver_async(ErlDrvPort port, unsigned
int* key, void (*async_invoke)(void*), void* async_data, void
(*async_free)(void*))</nametext></name>
<fsummary>Perform an asynchronous call within a driver.</fsummary>
<desc>
<marker id="driver_async"></marker>
<p>Performs an asynchronous call. The function
<c>async_invoke</c> is invoked in a thread separate from the
emulator thread. This enables the driver to perform
time-consuming, blocking operations without blocking the
emulator.</p>
<p>The async thread pool size can be set with command-line argument
<seealso marker="erl#async_thread_pool_size"><c>+A</c></seealso>
in <seealso marker="erl"><c>erl(1)</c></seealso>.
If an async thread pool is unavailable, the call is made
synchronously in the thread calling <c>driver_async</c>. The
current number of async threads in the async thread pool can be
retrieved through <seealso marker="#driver_system_info">
<c>driver_system_info</c></seealso>.</p>
<p>If a thread pool is available, a thread is used.
If argument <c>key</c> is <c>NULL</c>, the threads from the
pool are used in a round-robin way, each call to
<c>driver_async</c> uses the next thread in the pool. With
argument <c>key</c> set, this behavior is changed. The two
same values of <c>*key</c> always get the same thread.</p>
<p>To ensure that a driver instance always uses the same
thread, the following call can be used:</p>
<code type="none"><![CDATA[
unsigned int myKey = driver_async_port_key(myPort);
r = driver_async(myPort, &myKey, myData, myFunc); ]]></code>
<p>It is enough to initialize <c>myKey</c> once for each
driver instance.</p>
<p>If a thread is already working, the calls are
queued up and executed in order. Using the same thread for
each driver instance ensures that the calls are made in sequence.</p>
<p>The <c>async_data</c> is the argument to the functions
<c>async_invoke</c> and <c>async_free</c>. It is typically a
pointer to a structure containing a pipe or event that
can be used to signal that the async operation completed.
The data is to be freed in <c>async_free</c>.</p>
<p>When the async operation is done,
<seealso marker="driver_entry#ready_async">
<c>ready_async</c></seealso> driver
entry function is called. If <c>ready_async</c> is <c>NULL</c> in
the driver entry, the <c>async_free</c> function is called
instead.</p>
<p>The return value is <c>-1</c> if the <c>driver_async</c> call
fails.</p>
<note>
<p>As from ERTS 5.5.4.3 the default stack size for
threads in the async-thread pool is 16 kilowords,
that is, 64 kilobyte on 32-bit architectures.
This small default size has been chosen because the
amount of async-threads can be quite large. The
default stack size is enough for drivers delivered
with Erlang/OTP, but is possibly not sufficiently large
for other dynamically linked-in drivers that use the
<c>driver_async</c> functionality. A suggested stack size
for threads in the async-thread pool can be configured
through command-line argument
<seealso marker="erl#async_thread_stack_size"><c>+a</c></seealso>
in <seealso marker="erl"><c>erl(1)</c></seealso>.</p>
</note>
</desc>
</func>
<func>
<name><ret>unsigned int</ret><nametext>driver_async_port_key(ErlDrvPort
port)</nametext></name>
<fsummary>Calculate an async key from an ErlDrvPort.</fsummary>
<desc>
<marker id="driver_async_port_key"></marker>
<p>Calculates a key for later use in <seealso
marker="#driver_async"><c>driver_async</c></seealso>. The keys are
evenly distributed so that a fair mapping between port IDs
and async thread IDs is achieved.</p>
<note>
<p>Before Erlang/OTP R16, the port ID could be used as a key
with proper casting, but after the rewrite of the port
subsystem, this is no longer the case. With this function, you
can achieve the same distribution based on port IDs as before
Erlang/OTP R16.</p>
</note>
</desc>
</func>
<func>
<name><ret>long</ret>
<nametext>driver_binary_dec_refc(ErlDrvBinary *bin)</nametext></name>
<fsummary>Decrement the reference count of a driver binary.</fsummary>
<desc>
<marker id="driver_binary_dec_refc"></marker>
<p>Decrements the reference count on <c>bin</c> and returns
the reference count reached after the decrement.</p>
<p>This function is thread-safe.</p>
<note>
<p>The reference count of driver binary is normally to be decremented
by calling <seealso marker="#driver_free_binary">
<c>driver_free_binary</c></seealso>.</p>
<p><c>driver_binary_dec_refc</c> does <em>not</em> free
the binary if the reference count reaches zero. <em>Only</em>
use <c>driver_binary_dec_refc</c> when you are sure
<em>not</em> to reach a reference count of zero.</p>
</note>
</desc>
</func>
<func>
<name><ret>long</ret>
<nametext>driver_binary_get_refc(ErlDrvBinary *bin)</nametext></name>
<fsummary>Get the reference count of a driver binary.</fsummary>
<desc>
<marker id="driver_binary_get_refc"></marker>
<p>Returns the current reference count on <c>bin</c>.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>long</ret>
<nametext>driver_binary_inc_refc(ErlDrvBinary *bin)</nametext></name>
<fsummary>Increment the reference count of a driver binary.</fsummary>
<desc>
<marker id="driver_binary_inc_refc"></marker>
<p>Increments the reference count on <c>bin</c> and returns
the reference count reached after the increment.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvTermData</ret><nametext>driver_caller(ErlDrvPort
port)</nametext></name>
<fsummary>Return the process making the driver call.</fsummary>
<desc>
<marker id="driver_caller"></marker>
<p>Returns the process ID of the process that
made the current call to the driver. The process ID can be used with
<seealso marker="#driver_send_term"><c>driver_send_term</c></seealso>
to send back data to the caller.
<c>driver_caller</c> only returns valid data
when currently executing in one of the following driver callbacks:</p>
<taglist>
<tag><seealso marker="driver_entry#start">
<c>start</c></seealso></tag>
<item>Called from <seealso marker="erlang:open_port/2">
<c>erlang:open_port/2</c></seealso>.</item>
<tag><seealso marker="driver_entry#output">
<c>output</c></seealso></tag>
<item>Called from <seealso marker="erlang:send/2">
<c>erlang:send/2</c></seealso> and
<seealso marker="erlang:port_command/2">
<c>erlang:port_command/2</c></seealso>.</item>
<tag><seealso marker="driver_entry#outputv">
<c>outputv</c></seealso></tag>
<item>Called from <seealso marker="erlang:send/2">
<c>erlang:send/2</c></seealso> and
<seealso marker="erlang:port_command/2">
<c>erlang:port_command/2</c></seealso>.</item>
<tag><seealso marker="driver_entry#control">
<c>control</c></seealso></tag>
<item>Called from <seealso marker="erlang:port_control/3">
<c>erlang:port_control/3</c></seealso>.</item>
<tag><seealso marker="driver_entry#call">
<c>call</c></seealso></tag>
<item>Called from <seealso marker="erlang:port_call/3">
<c>erlang:port_call/3</c></seealso>.</item>
</taglist>
<p>Notice that this function is <em>not</em> thread-safe, not
even when the emulator with SMP support is used.</p>
</desc>
</func>
<func>
<name><ret>int</ret>
<nametext>driver_cancel_timer(ErlDrvPort port)</nametext></name>
<fsummary>Cancel a previously set timer.</fsummary>
<desc>
<marker id="driver_cancel_timer"></marker>
<p>Cancels a timer set with
<seealso marker="#driver_set_timer">
<c>driver_set_timer</c></seealso>.</p>
<p>The return value is <c>0</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_compare_monitors(const ErlDrvMonitor
*monitor1, const ErlDrvMonitor *monitor2)</nametext></name>
<fsummary>Compare two monitors.</fsummary>
<desc>
<marker id="driver_compare_monitors"></marker>
<p>Compares two <c>ErlDrvMonitor</c>s.
Can also be used to imply some artificial order on monitors,
for whatever reason.</p>
<p>Returns <c>0</c> if <c>monitor1</c> and <c>monitor2</c> are equal,
< <c>0</c> if <c>monitor1</c> < <c>monitor2</c>, and
> <c>0</c> if <c>monitor1</c> > <c>monitor2</c>.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvTermData</ret><nametext>driver_connected(ErlDrvPort
port)</nametext></name>
<fsummary>Return the port owner process.</fsummary>
<desc>
<marker id="driver_connected"></marker>
<p>Returns the port owner process.</p>
<p>Notice that this function is <em>not</em> thread-safe, not
even when the emulator with SMP support is used.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvPort</ret><nametext>driver_create_port(ErlDrvPort port,
ErlDrvTermData owner_pid, char* name,
ErlDrvData drv_data)</nametext></name>
<fsummary>Create a new port (driver instance).</fsummary>
<desc>
<p>Creates a new port executing the same driver
code as the port creating the new port.</p>
<taglist>
<tag><c>port</c></tag>
<item>The port handle of the port (driver instance) creating
the new port.</item>
<tag><c>owner_pid</c></tag>
<item>The process ID of the Erlang process to become
owner of the new port. This process will be linked
to the new port. You usually want to use
<c>driver_caller(port)</c> as <c>owner_pid</c>.</item>
<tag><c>name</c></tag>
<item>The port name of the new port. You usually want to
use the same port name as the driver name
(<seealso marker="driver_entry#driver_name">
<c>driver_name</c></seealso> field of the
<seealso marker="driver_entry"><c>driver_entry</c></seealso>).
</item>
<tag><c>drv_data</c></tag>
<item>The driver-defined handle that is passed in later
calls to driver callbacks. Notice that the
<seealso marker="driver_entry#start">driver start
callback</seealso> is not called for this new driver instance.
The driver-defined handle is normally created in the
<seealso marker="driver_entry#start">driver start callback</seealso>
when a port is created through
<seealso marker="erlang#open_port/2">
<c>erlang:open_port/2</c></seealso>.
</item>
</taglist>
<p>The caller of <c>driver_create_port</c> is allowed to
manipulate the newly created port when <c>driver_create_port</c>
has returned. When
<seealso marker="#smp_support">port level locking</seealso>
is used, the creating port is only allowed to
manipulate the newly created port until the current driver
callback, which was called by the emulator, returns.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_demonitor_process(ErlDrvPort port,
const ErlDrvMonitor *monitor)</nametext></name>
<fsummary>Stop monitoring a process from a driver.</fsummary>
<desc>
<marker id="driver_demonitor_process"></marker>
<p>Cancels a monitor created earlier.</p>
<p>Returns <c>0</c> if a monitor was removed and > 0 if the monitor
no longer exists.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvSizeT</ret><nametext>driver_deq(ErlDrvPort port,
ErlDrvSizeT size)</nametext></name>
<fsummary>Dequeue data from the head of the driver queue.</fsummary>
<desc>
<marker id="driver_deq"></marker>
<p>Dequeues data by moving the head pointer
forward in the driver queue by <c>size</c> bytes. The data
in the queue is deallocated.</p>
<p>Returns the number of bytes remaining in the queue on success,
otherwise <c>-1</c>.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_enq(ErlDrvPort port, char* buf,
ErlDrvSizeT len)</nametext></name>
<fsummary>Enqueue data in the driver queue.</fsummary>
<desc>
<marker id="driver_enq"></marker>
<p>Enqueues data in the driver queue. The data in
<c>buf</c> is copied (<c>len</c> bytes) and placed at the
end of the driver queue. The driver queue is normally used
in a FIFO way.</p>
<p>The driver queue is available to queue output from the
emulator to the driver (data from the driver to the emulator
is queued by the emulator in normal Erlang message
queues). This can be useful if the driver must wait for
slow devices, and so on, and wants to yield back to the
emulator. The driver queue is implemented as an <c>ErlIOVec</c>.</p>
<p>When the queue contains data, the driver does not close until
the queue is empty.</p>
<p>The return value is <c>0</c>.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_enq_bin(ErlDrvPort port,
ErlDrvBinary *bin, ErlDrvSizeT offset, ErlDrvSizeT len)</nametext>
</name>
<fsummary>Enqueue binary in the driver queue.</fsummary>
<desc>
<marker id="driver_enq_bin"></marker>
<p>Enqueues a driver binary in the driver
queue. The data in <c>bin</c> at <c>offset</c> with length
<c>len</c> is placed at the end of the queue. This function
is most often faster than
<seealso marker="#driver_enq"><c>driver_enq</c></seealso>,
because no data must be copied.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
<p>The return value is <c>0</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_enqv(ErlDrvPort port, ErlIOVec *ev,
ErlDrvSizeT skip)</nametext></name>
<fsummary>Enqueue vector in the driver queue.</fsummary>
<desc>
<marker id="driver_enqv"></marker>
<p>Enqueues the data in <c>ev</c>, skipping the
first <c>skip</c> bytes of it, at the end of the driver
queue. It is faster than
<seealso marker="#driver_enq"><c>driver_enq</c></seealso>,
because no data must be copied.</p>
<p>The return value is <c>0</c>.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_failure(ErlDrvPort port, int
error)</nametext></name>
<name><ret>int</ret><nametext>driver_failure_atom(ErlDrvPort port, char
*string)</nametext></name>
<name><ret>int</ret><nametext>driver_failure_posix(ErlDrvPort port, int
error)</nametext></name>
<fsummary>Fail with error.</fsummary>
<desc>
<marker id="driver_failure_atom"></marker>
<marker id="driver_failure_posix"></marker>
<marker id="driver_failure"></marker>
<p>Signals to Erlang that the driver has
encountered an error and is to be closed. The port is
closed and the tuple <c>{'EXIT', error, Err}</c> is sent to
the port owner process, where error is an error atom
(<c>driver_failure_atom</c> and
<c>driver_failure_posix</c>) or an integer
(<c>driver_failure</c>).</p>
<p>The driver is to fail only when in severe error situations,
when the driver cannot possibly keep open, for example,
buffer allocation gets out of memory. For normal errors
it is more appropriate to send error codes with
<seealso marker="#driver_output"><c>driver_output</c></seealso>.</p>
<p>The return value is <c>0</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_failure_eof(ErlDrvPort
port)</nametext></name>
<fsummary>Fail with EOF.</fsummary>
<desc>
<marker id="driver_failure_eof"></marker>
<p>Signals to Erlang that the driver has
encountered an EOF and is to be closed, unless the port was
opened with option <c>eof</c>, in which case <c>eof</c> is sent
to the port. Otherwise the port is closed and an
<c>'EXIT'</c> message is sent to the port owner process.</p>
<p>The return value is <c>0</c>.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>driver_free(void *ptr)</nametext></name>
<fsummary>Free an allocated memory block.</fsummary>
<desc>
<marker id="driver_free"></marker>
<p>Frees the memory pointed to by <c>ptr</c>. The
memory is to have been allocated with
<c>driver_alloc</c>. All allocated memory is to be
deallocated, only once. There is no garbage collection in
drivers.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret>
<nametext>driver_free_binary(ErlDrvBinary *bin)</nametext></name>
<fsummary>Free a driver binary.</fsummary>
<desc>
<marker id="driver_free_binary"></marker>
<p>Frees a driver binary <c>bin</c>, allocated previously with
<seealso marker="#driver_alloc_binary">
<c>driver_alloc_binary</c></seealso>. As binaries
in Erlang are reference counted, the binary can still be around.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvTermData</ret>
<nametext>driver_get_monitored_process(ErlDrvPort port, const
ErlDrvMonitor *monitor)</nametext></name>
<fsummary>Retrieve the process ID from a monitor.</fsummary>
<desc>
<marker id="driver_get_monitored_process"></marker>
<p>Returns the process ID associated with a living
monitor. It can be used in the
<seealso marker="driver_entry#process_exit">
<c>process_exit</c></seealso> callback to
get the process identification for the exiting process.</p>
<p>Returns <c>driver_term_nil</c> if the monitor no longer exists.</p>
</desc>
</func>
<func>
<name><ret>int</ret>
<nametext>driver_get_now(ErlDrvNowData *now)</nametext></name>
<fsummary>Read a system time stamp.</fsummary>
<desc>
<marker id="driver_get_now"></marker>
<warning>
<p><em>This function is deprecated. Do not use it.</em> Use
<seealso marker="#erl_drv_monotonic_time">
<c>erl_drv_monotonic_time</c></seealso> (perhaps in combination with
<seealso marker="#erl_drv_time_offset">
<c>erl_drv_time_offset</c></seealso>) instead.</p>
</warning>
<p>Reads a time stamp into the memory pointed to by
parameter <c>now</c>. For information about specific fields, see
<seealso marker="#ErlDrvNowData"><c>ErlDrvNowData</c></seealso>.</p>
<p>The return value is <c>0</c>, unless the <c>now</c> pointer is
invalid, in which case it is < <c>0</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_lock_driver(ErlDrvPort
port)</nametext></name>
<fsummary>Ensure the driver is never unloaded.</fsummary>
<desc>
<marker id="driver_lock_driver"></marker>
<p>Locks the driver used by the port <c>port</c>
in memory for the rest of the emulator process'
lifetime. After this call, the driver behaves as one of Erlang's
statically linked-in drivers.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvTermData</ret><nametext>driver_mk_atom(char*
string)</nametext></name>
<fsummary>Make an atom from a name.</fsummary>
<desc>
<marker id="driver_mk_atom"></marker>
<p>Returns an atom given a name
<c>string</c>. The atom is created and does not change, so the
return value can be saved and reused, which is faster than
looking up the atom several times.</p>
<p>Notice that this function is <em>not</em> thread-safe, not
even when the emulator with SMP support is used.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvTermData</ret><nametext>driver_mk_port(ErlDrvPort
port)</nametext></name>
<fsummary>Make an Erlang term port from a port.</fsummary>
<desc>
<marker id="driver_mk_port"></marker>
<p>Converts a port handle to the Erlang term format, usable in
<seealso marker="#erl_drv_output_term">
<c>erl_drv_output_term</c></seealso> and
<seealso marker="#erl_drv_send_term">
<c>erl_drv_send_term</c></seealso>.</p>
<p>Notice that this function is <em>not</em> thread-safe, not
even when the emulator with SMP support is used.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_monitor_process(ErlDrvPort port,
ErlDrvTermData process, ErlDrvMonitor *monitor)</nametext></name>
<fsummary>Monitor a process from a driver.</fsummary>
<desc>
<marker id="driver_monitor_process"></marker>
<p>Starts monitoring a process from a driver. When a process is
monitored, a process exit results in a call to the provided
<seealso marker="driver_entry#process_exit">
<c>process_exit</c></seealso> callback
in the <seealso marker="driver_entry"><c>ErlDrvEntry</c></seealso>
structure. The <c>ErlDrvMonitor</c> structure is filled in, for later
removal or compare.</p>
<p>Parameter <c>process</c> is to be the return value of an
earlier call to <seealso marker="#driver_caller">
<c>driver_caller</c></seealso> or
<seealso marker="#driver_connected"><c>driver_connected</c></seealso>
call.</p>
<p>Returns <c>0</c> on success, < 0 if no callback is
provided, and > 0 if the process is no longer alive.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_output(ErlDrvPort port, char *buf,
ErlDrvSizeT len)</nametext></name>
<fsummary>Send data from driver to port owner.</fsummary>
<desc>
<marker id="driver_output"></marker>
<p>Sends data from the driver up to the emulator. The data is received
as terms or binary data, depending on how the driver port was
opened.</p>
<p>The data is queued in the port owner process' message
queue. Notice that this does not yield to the emulator (as
the driver and the emulator run in the same thread).</p>
<p>Parameter <c>buf</c> points to the data to send, and
<c>len</c> is the number of bytes.</p>
<p>The return value for all output functions is <c>0</c> for normal use.
If the driver is used for distribution, it can fail and return
<c>-1</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_output_binary(ErlDrvPort port, char
*hbuf, ErlDrvSizeT hlen, ErlDrvBinary* bin, ErlDrvSizeT offset,
ErlDrvSizeT len)</nametext></name>
<fsummary>Send data from a driver binary to port owner.</fsummary>
<desc>
<marker id="driver_output_binary"></marker>
<p>Sends data to a port owner process from a
driver binary. It has a header buffer (<c>hbuf</c>
and <c>hlen</c>) just like
<seealso marker="#driver_output2"><c>driver_output2</c></seealso>.
Parameter <c>hbuf</c> can be <c>NULL</c>.</p>
<p>Parameter <c>offset</c> is an offset into the binary and
<c>len</c> is the number of bytes to send.</p>
<p>Driver binaries are created with
<seealso marker="#driver_alloc_binary">
<c>driver_alloc_binary</c></seealso>.</p>
<p>The data in the header is sent as a list and the binary as
an Erlang binary in the tail of the list.</p>
<p>For example, if <c>hlen</c> is <c>2</c>, the port owner process
receives <c><![CDATA[[H1, H2 | <<T>>]]]></c>.</p>
<p>The return value is <c>0</c> for normal use.</p>
<p>Notice that, using the binary syntax in Erlang, the driver
application can match the header directly from the binary,
so the header can be put in the binary, and <c>hlen</c> can be set
to <c>0</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_output_term(ErlDrvPort port,
ErlDrvTermData* term, int n)</nametext></name>
<fsummary>Send term data from driver to port owner.</fsummary>
<desc>
<marker id="driver_output_term"></marker>
<warning>
<p><em>This function is deprecated.</em>
Use <seealso marker="#erl_drv_send_term">
<c>erl_drv_output_term</c></seealso>instead.</p>
</warning>
<p>Parameters <c>term</c> and <c>n</c> work as in
<seealso marker="#erl_drv_output_term">
<c>erl_drv_output_term</c></seealso>.</p>
<p>Notice that this function is <em>not</em> thread-safe, not
even when the emulator with SMP support is used.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_output2(ErlDrvPort port, char *hbuf,
ErlDrvSizeT hlen, char *buf, ErlDrvSizeT len)</nametext></name>
<fsummary>Send data and binary data to port owner.</fsummary>
<desc>
<marker id="driver_output2"></marker>
<p>First sends <c>hbuf</c>
(length in <c>hlen</c>) data as a list, regardless of port
settings. Then sends <c>buf</c> as a binary or list.
For example, if <c>hlen</c> is <c>3</c>, the port owner process
receives <c>[H1, H2, H3 | T]</c>.</p>
<p>The point of sending data as a list header, is to facilitate
matching on the data received.</p>
<p>The return value is <c>0</c> for normal use.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_outputv(ErlDrvPort port, char* hbuf,
ErlDrvSizeT hlen, ErlIOVec *ev, ErlDrvSizeT skip)</nametext></name>
<fsummary>Send vectorized data to port owner.</fsummary>
<desc>
<marker id="driver_outputv"></marker>
<p>Sends data from an I/O vector, <c>ev</c>, to
the port owner process. It has a header buffer (<c>hbuf</c>
and <c>hlen</c>), just like <seealso marker="#driver_output2">
<c>driver_output2</c></seealso>.</p>
<p>Parameter <c>skip</c> is a number of bytes to skip of
the <c>ev</c> vector from the head.</p>
<p>You get vectors of <c>ErlIOVec</c> type from the driver
queue (see below), and the
<seealso marker="driver_entry#outputv"><c>outputv</c></seealso>
driver entry function. You can also make them yourself, if you want to
send several <c>ErlDrvBinary</c> buffers at once. Often
it is faster to use
<seealso marker="#driver_output"><c>driver_output</c></seealso> or
<seealso marker="#driver_output_binary"></seealso>.</p>
<p>For example, if <c>hlen</c> is <c>2</c> and <c>ev</c> points to an
array of three binaries, the port owner process receives
<c><![CDATA[[H1, H2, <<B1>>, <<B2>> | <<B3>>]]]></c>.</p>
<p>The return value is <c>0</c> for normal use.</p>
<p>The comment for <c>driver_output_binary</c> also applies for
<c>driver_outputv</c>.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvPDL</ret>
<nametext>driver_pdl_create(ErlDrvPort port)</nametext></name>
<fsummary>Create a port data lock.</fsummary>
<desc>
<marker id="driver_pdl_create"></marker>
<p>Creates a port data lock associated with the <c>port</c>.</p>
<note>
<p>Once a port data lock has been created, it must be locked during
all operations on the driver queue of the <c>port</c>.</p>
</note>
<p>Returns a newly created port data lock on success,
otherwise <c>NULL</c>. The function fails
if <c>port</c> is invalid or if a port data lock already has
been associated with the <c>port</c>.</p>
</desc>
</func>
<func>
<name><ret>long</ret><nametext>driver_pdl_dec_refc(ErlDrvPDL
pdl)</nametext></name>
<fsummary></fsummary>
<desc>
<marker id="driver_pdl_dec_refc"></marker>
<p>Decrements the reference count of
the port data lock passed as argument (<c>pdl</c>).</p>
<p>The current reference count after the decrement has
been performed is returned.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>long</ret>
<nametext>driver_pdl_get_refc(ErlDrvPDL pdl)</nametext></name>
<fsummary></fsummary>
<desc>
<marker id="driver_pdl_get_refc"></marker>
<p>Returns the current reference count of
the port data lock passed as argument (<c>pdl</c>).</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>long</ret>
<nametext>driver_pdl_inc_refc(ErlDrvPDL pdl)</nametext></name>
<fsummary></fsummary>
<desc>
<marker id="driver_pdl_inc_refc"></marker>
<p>Increments the reference count of
the port data lock passed as argument (<c>pdl</c>).</p>
<p>The current reference count after the increment has
been performed is returned.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret>
<nametext>driver_pdl_lock(ErlDrvPDL pdl)</nametext></name>
<fsummary>Lock port data lock.</fsummary>
<desc>
<marker id="driver_pdl_lock"></marker>
<p>Locks the port data lock passed as argument (<c>pdl</c>).</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret>
<nametext>driver_pdl_unlock(ErlDrvPDL pdl)</nametext></name>
<fsummary>Unlock port data lock.</fsummary>
<desc>
<marker id="driver_pdl_unlock"></marker>
<p>Unlocks the port data lock passed as argument (<c>pdl</c>).</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>SysIOVec *</ret><nametext>driver_peekq(ErlDrvPort port, int
*vlen)</nametext></name>
<fsummary>Get the driver queue as a vector.</fsummary>
<desc>
<marker id="driver_peekq"></marker>
<p>Retrieves the driver queue as a pointer to an
array of <c>SysIOVec</c>s. It also returns the number of
elements in <c>vlen</c>. This is one of two ways to get data
out of the queue.</p>
<p>Nothing is removed from the queue by this function, that must be done
with <seealso marker="#driver_deq"><c>driver_deq</c></seealso>.</p>
<p>The returned array is suitable to use with the Unix system
call <c>writev</c>.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvSizeT</ret><nametext>driver_peekqv(ErlDrvPort port,
ErlIOVec *ev)</nametext></name>
<fsummary>Get the driver queue as an I/O vector.</fsummary>
<desc>
<marker id="driver_peekqv"></marker>
<p>Retrieves the driver queue into a supplied
<c>ErlIOVec</c> <c>ev</c>. It also returns the queue size.
This is one of two ways to get data out of the queue.</p>
<p>If <c>ev</c> is <c>NULL</c>, all ones that is <c>-1</c> type cast to
<c>ErlDrvSizeT</c> are returned.</p>
<p>Nothing is removed from the queue by this function, that must be done
with <seealso marker="#driver_deq"><c>driver_deq</c></seealso>.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_pushq(ErlDrvPort port, char* buf,
ErlDrvSizeT len)</nametext></name>
<fsummary>Push data at the head of the driver queue.</fsummary>
<desc>
<marker id="driver_pushq"></marker>
<p>Puts data at the head of the driver queue. The
data in <c>buf</c> is copied (<c>len</c> bytes) and placed
at the beginning of the queue.</p>
<p>The return value is <c>0</c>.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_pushq_bin(ErlDrvPort port,
ErlDrvBinary *bin, ErlDrvSizeT offset, ErlDrvSizeT len)</nametext>
</name>
<fsummary>Push binary at the head of the driver queue.</fsummary>
<desc>
<marker id="driver_pushq_bin"></marker>
<p>Puts data in the binary <c>bin</c>, at
<c>offset</c> with length <c>len</c> at the head of the
driver queue. It is most often faster than
<seealso marker="#driver_pushq"><c>driver_pushq</c></seealso>,
because no data must be copied.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
<p>The return value is <c>0</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_pushqv(ErlDrvPort port, ErlIOVec
*ev, ErlDrvSizeT skip)</nametext></name>
<fsummary>Push vector at the head of the driver queue.</fsummary>
<desc>
<marker id="driver_pushqv"></marker>
<p>Puts the data in <c>ev</c>, skipping the first
<c>skip</c> bytes of it, at the head of the driver queue.
It is faster than
<seealso marker="#driver_pushq"><c>driver_pushq</c></seealso>,
because no data must be copied.</p>
<p>The return value is <c>0</c>.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_read_timer(ErlDrvPort port, unsigned
long *time_left)</nametext></name>
<fsummary>Read the time left before time-out.</fsummary>
<desc>
<marker id="driver_read_timer"></marker>
<p>Reads the current time of a timer, and places
the result in <c>time_left</c>. This is the time in
milliseconds, before the time-out occurs.</p>
<p>The return value is <c>0</c>.</p>
</desc>
</func>
<func>
<name><ret>void *</ret>
<nametext>driver_realloc(void *ptr, ErlDrvSizeT size)</nametext></name>
<fsummary>Resize an allocated memory block.</fsummary>
<desc>
<marker id="driver_realloc"></marker>
<p>Resizes a memory block, either in place, or by
allocating a new block, copying the data, and freeing the old
block. A pointer is returned to the reallocated memory. On
failure (out of memory), <c>NULL</c> is returned. (This is
most often a wrapper for <c>realloc</c>.)</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvBinary *</ret>
<nametext>driver_realloc_binary(ErlDrvBinary *bin, ErlDrvSizeT size)
</nametext></name>
<fsummary>Resize a driver binary.</fsummary>
<desc>
<marker id="driver_realloc_binary"></marker>
<p>Resizes a driver binary, while keeping the data.</p>
<p>Returns the resized driver binary on success. Returns <c>NULL</c>
on failure (out of memory).</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_select(ErlDrvPort port, ErlDrvEvent
event, int mode, int on)</nametext></name>
<fsummary>Provides an event for having the emulator call the driver.
</fsummary>
<desc>
<marker id="driver_select"></marker>
<p>This function is used by drivers to provide the emulator with
events to check for. This enables the emulator to call the driver
when something has occurred asynchronously.</p>
<p>Parameter <c>event</c> identifies an OS-specific event object.
On Unix systems, the functions <c>select</c>/<c>poll</c> are used.
The event object must be a socket or pipe (or other object that
<c>select</c>/<c>poll</c> can use).
On Windows, the Win32 API function <c>WaitForMultipleObjects</c>
is used. This places other restrictions on the event object;
see the Win32 SDK documentation.</p>
<p>Parameter <c>on</c> is to be <c>1</c> for setting events
and <c>0</c> for clearing them.</p>
<p>Parameter <c>mode</c> is a bitwise OR combination of
<c>ERL_DRV_READ</c>, <c>ERL_DRV_WRITE</c>, and <c>ERL_DRV_USE</c>.
The first two specify whether to wait for read events and/or write
events. A fired read event calls
<seealso marker="driver_entry#ready_input">
<c>ready_input</c></seealso> and a fired write event calls
<seealso marker="driver_entry#ready_output">
<c>ready_output</c></seealso>.</p>
<note>
<p>Some OS (Windows) do not differentiate between read and write
events. The callback for a fired event then only depends on the
value of <c>mode</c>.</p>
</note>
<p><c>ERL_DRV_USE</c> specifies if we are using the event object or
if we want to close it.
On an emulator with SMP support, it is not safe to clear all events
and then close the event object after <c>driver_select</c> has
returned. Another thread can still be using the event object
internally. To safely close an event object, call
<c>driver_select</c> with <c>ERL_DRV_USE</c> and <c>on==0</c>, which
clears all events and then either calls
<seealso marker="driver_entry#stop_select"><c>stop_select</c></seealso>
or schedules it to be called when it is safe to close the event
object. <c>ERL_DRV_USE</c> is to be set together with the first event
for an event object. It is harmless to set <c>ERL_DRV_USE</c>
even if it already has been done. Clearing all events but keeping
<c>ERL_DRV_USE</c> set indicates that we are using the event
object and probably will set events for it again.</p>
<note>
<p><c>ERL_DRV_USE</c> was added in Erlang/OTP R13. Old drivers still
work as before, but it is recommended to update them to use
<c>ERL_DRV_USE</c> and <c>stop_select</c> to ensure that event
objects are closed in a safe way.</p>
</note>
<p>The return value is <c>0</c>, unless
<c>ready_input</c>/<c>ready_output</c> is <c>NULL</c>, in which case
it is <c>-1</c>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_send_term(ErlDrvPort port,
ErlDrvTermData receiver, ErlDrvTermData* term, int n)</nametext></name>
<fsummary>Send term data to other process than port owner process.
</fsummary>
<desc>
<marker id="driver_send_term"></marker>
<warning>
<p><em>This function is deprecated.</em>
Use <seealso marker="#erl_drv_send_term">
<c>erl_drv_send_term</c></seealso> instead.</p>
</warning>
<note>
<p>The parameters of this function
cannot be properly checked by the runtime system when
executed by arbitrary threads. This can cause the
function not to fail when it should.</p>
</note>
<p>Parameters <c>term</c> and <c>n</c> work as in
<seealso marker="#erl_drv_output_term">
<c>erl_drv_output_term</c></seealso>.</p>
<p>This function is only thread-safe when the emulator with SMP
support is used.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>driver_set_timer(ErlDrvPort port, unsigned
long time)</nametext></name>
<fsummary>Set a timer to call the driver.</fsummary>
<desc>
<marker id="driver_set_timer"></marker>
<p>Sets a timer on the driver, which will count
down and call the driver when it is timed out. Parameter
<c>time</c> is the time in milliseconds before the timer expires.</p>
<p>When the timer reaches <c>0</c> and expires, the driver entry
function <seealso marker="driver_entry#timeout">
<c>timeout</c></seealso> is called.</p>
<p>Notice that only one timer exists on each driver instance;
setting a new timer replaces an older one.</p>
<p>Return value is <c>0</c>, unless the <c>timeout</c>
driver function is <c>NULL</c>, in which case it is <c>-1</c>.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvSizeT</ret>
<nametext>driver_sizeq(ErlDrvPort port)</nametext></name>
<fsummary>Return the size of the driver queue.</fsummary>
<desc>
<marker id="driver_sizeq"></marker>
<p>Returns the number of bytes currently in the driver queue.</p>
<p>This function can be called from any thread if a
<seealso marker="#ErlDrvPDL">port data lock</seealso>
associated with the <c>port</c> is locked by the calling
thread during the call.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>driver_system_info(ErlDrvSysInfo
*sys_info_ptr, size_t size)</nametext></name>
<fsummary>Get information about the Erlang runtime system.</fsummary>
<desc>
<marker id="driver_system_info"></marker>
<p>Writes information about the Erlang runtime system into the
<seealso marker="#ErlDrvSysInfo"><c>ErlDrvSysInfo</c></seealso>
structure referred to by the first argument. The second
argument is to be the size of the
<seealso marker="#ErlDrvSysInfo"><c>ErlDrvSysInfo</c></seealso>
structure, that is, <c>sizeof(ErlDrvSysInfo)</c>.</p>
<p>For information about specific fields, see
<seealso marker="#ErlDrvSysInfo"><c>ErlDrvSysInfo</c></seealso>.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvSizeT</ret><nametext>driver_vec_to_buf(ErlIOVec *ev,
char *buf, ErlDrvSizeT len)</nametext></name>
<fsummary>Collect data segments into a buffer.</fsummary>
<desc>
<marker id="driver_vec_to_buf"></marker>
<p>Collects several segments of data, referenced
by <c>ev</c>, by copying them in order to the buffer
<c>buf</c>, of the size <c>len</c>.</p>
<p>If the data is to be sent from the driver to the port owner
process, it is faster to use
<seealso marker="#driver_outputv"><c>driver_outputv</c></seealso>.</p>
<p>The return value is the space left in the buffer, that is, if
<c>ev</c> contains less than <c>len</c> bytes it is the
difference, and if <c>ev</c> contains <c>len</c> bytes or more,
it is <c>0</c>. This is faster if there is more than one header byte,
as the binary syntax can construct integers directly from
the binary.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_busy_msgq_limits(ErlDrvPort port,
ErlDrvSizeT *low, ErlDrvSizeT *high)</nametext></name>
<fsummary>Set and get limits for busy port message queue.</fsummary>
<desc>
<marker id="erl_drv_busy_msgq_limits"></marker>
<p>Sets and gets limits that will be used for controlling the
busy state of the port message queue.</p>
<p>The port message queue is set into a busy
state when the amount of command data queued on the
message queue reaches the <c>high</c> limit. The port
message queue is set into a not busy state when the
amount of command data queued on the message queue falls
below the <c>low</c> limit. Command data is in this
context data passed to the port using either
<c>Port ! {Owner, {command, Data}}</c> or
<c>port_command/[2,3]</c>. Notice that these limits
only concerns command data that have not yet reached the
port. The <seealso marker="#set_busy_port">busy port</seealso>
feature can be used for data that has reached the port.</p>
<p>Valid limits are values in the range
<c>[ERL_DRV_BUSY_MSGQ_LIM_MIN, ERL_DRV_BUSY_MSGQ_LIM_MAX]</c>.
Limits are automatically adjusted to be sane. That is,
the system adjusts values so that the low limit used is
lower than or equal to the high limit used. By default the high
limit is 8 kB and the low limit is 4 kB.</p>
<p>By passing a pointer to an integer variable containing
the value <c>ERL_DRV_BUSY_MSGQ_READ_ONLY</c>, the currently used
limit is read and written back to the integer variable.
A new limit can be set by passing a pointer to an integer
variable containing a valid limit. The passed value is
written to the internal limit. The internal limit is then
adjusted. After this the adjusted limit is written
back to the integer variable from which the new value was
read. Values are in bytes.</p>
<p>The busy message queue feature can be disabled either
by setting the <c>ERL_DRV_FLAG_NO_BUSY_MSGQ</c>
<seealso marker="driver_entry#driver_flags">driver flag</seealso>
in the <seealso marker="driver_entry"><c>driver_entry</c></seealso>
used by the driver, or by calling this function with
<c>ERL_DRV_BUSY_MSGQ_DISABLED</c> as a limit (either low or
high). When this feature has been disabled, it cannot be
enabled again. When reading the limits, both are
<c>ERL_DRV_BUSY_MSGQ_DISABLED</c> if this
feature has been disabled.</p>
<p>Processes sending command data to the port are suspended
if either the port is busy or if the port message queue is
busy. Suspended processes are resumed when neither the
port or the port message queue is busy.</p>
<p>For information about busy port functionality, see
<seealso marker="#set_busy_port"><c>set_busy_port</c></seealso>.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_cond_broadcast(ErlDrvCond
*cnd)</nametext></name>
<fsummary>Broadcast on a condition variable.</fsummary>
<desc>
<marker id="erl_drv_cond_broadcast"></marker>
<p>Broadcasts on a condition variable. That is, if
other threads are waiting on the condition variable being
broadcast on, <em>all</em> of them are woken.</p>
<p><c>cnd</c> is a pointer to a condition variable to broadcast on.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvCond *</ret><nametext>erl_drv_cond_create(char
*name)</nametext></name>
<fsummary>Create a condition variable.</fsummary>
<desc>
<marker id="erl_drv_cond_create"></marker>
<p>Creates a condition variable and returns a pointer to it.</p>
<p><c>name</c> is a string identifying the created condition variable.
It is used to identify the condition variable in planned
future debug functionality.</p>
<p>Returns <c>NULL</c> on failure. The driver
creating the condition variable is responsible for
destroying it before the driver is unloaded.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_cond_destroy(ErlDrvCond
*cnd)</nametext></name>
<fsummary>Destroy a condition variable.</fsummary>
<desc>
<marker id="erl_drv_cond_destroy"></marker>
<p>Destroys a condition variable previously created by
<seealso marker="#erl_drv_cond_create">
<c>erl_drv_cond_create</c></seealso>.</p>
<p><c>cnd</c> is a pointer to a condition variable to destroy.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>char *</ret><nametext>erl_drv_cond_name(ErlDrvCond
*cnd)</nametext></name>
<fsummary>Get name of driver mutex.</fsummary>
<desc>
<marker id="erl_drv_cnd_name"></marker>
<p>Returns a pointer to the name of the condition.</p>
<p><c>cnd</c> is a pointer to an initialized condition.</p>
<note>
<p>This function is intended for debugging purposes only.</p>
</note>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_cond_signal(ErlDrvCond
*cnd)</nametext></name>
<fsummary>Signal on a condition variable.</fsummary>
<desc>
<marker id="erl_drv_cond_signal"></marker>
<p>Signals on a condition variable. That is, if
other threads are waiting on the condition variable being
signaled, <em>one</em> of them is woken.</p>
<p><c>cnd</c> is a pointer to a condition variable to signal on.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_cond_wait(ErlDrvCond *cnd,
ErlDrvMutex *mtx)</nametext></name>
<fsummary>Wait on a condition variable.</fsummary>
<desc>
<marker id="erl_drv_cond_wait"></marker>
<p>Waits on a condition variable. The calling
thread is blocked until another thread wakes it by signaling
or broadcasting on the condition variable. Before the calling
thread is blocked, it unlocks the mutex passed as argument.
When the calling thread is woken, it locks the same mutex before
returning. That is, the mutex currently must be locked by
the calling thread when calling this function.</p>
<p><c>cnd</c> is a pointer to a condition variable to wait on.
<c>mtx</c> is a pointer to a mutex to unlock while waiting.</p>
<note>
<p><c>erl_drv_cond_wait</c> can return even if
no one has signaled or broadcast on the condition
variable. Code calling <c>erl_drv_cond_wait</c> is
always to be prepared for <c>erl_drv_cond_wait</c>
returning even if the condition that the thread was
waiting for has not occurred. That is, when returning from
<c>erl_drv_cond_wait</c>, always check if the condition
has occurred, and if not call <c>erl_drv_cond_wait</c> again.</p>
</note>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_consume_timeslice(ErlDrvPort port,
int percent)</nametext></name>
<fsummary>Give the runtime system a hint about how much CPU time the
current driver callback call has consumed.</fsummary>
<desc>
<marker id="erl_drv_consume_timeslice"></marker>
<p>Gives the runtime system a hint about how much CPU time the current
driver callback call has consumed since the last hint, or since the
the start of the callback if no previous hint has been given.</p>
<taglist>
<tag><c>port</c></tag>
<item>Port handle of the executing port.</item>
<tag><c>percent</c></tag>
<item>Approximate consumed fraction of a full
time-slice in percent.</item>
</taglist>
<p>The time is specified as a fraction, in percent, of a full time-slice
that a port is allowed to execute before it is to surrender the
CPU to other runnable ports or processes. Valid range is
<c>[1, 100]</c>. The scheduling time-slice is not an exact entity,
but can usually be approximated to about 1 millisecond.</p>
<p>Notice that it is up to the runtime system to determine if and
how to use this information. Implementations on some platforms
can use other means to determine the consumed fraction
of the time-slice. Lengthy driver callbacks should, regardless of
this, frequently call this function to determine if it is allowed
to continue execution or not.</p>
<p>This function returns a non-zero value
if the time-slice has been exhausted, and zero if the callback is
allowed to continue execution. If a non-zero value is
returned, the driver callback is to return as soon as possible in
order for the port to be able to yield.</p>
<p>This function is provided to better support co-operative scheduling,
improve system responsiveness, and to make it easier to prevent
misbehaviors of the VM because of a port monopolizing a scheduler
thread. It can be used when dividing lengthy work into some repeated
driver callback calls, without the need to use threads.</p>
<p>See also the important <seealso marker="#WARNING">warning</seealso>
text at the beginning of this manual page.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvTime</ret><nametext>erl_drv_convert_time_unit(ErlDrvTime
val, ErlDrvTimeUnit from, ErlDrvTimeUnit to)</nametext></name>
<fsummary>Convert time unit of a time value.</fsummary>
<desc>
<marker id="erl_drv_convert_time_unit"></marker>
<p>Converts the <c>val</c> value of time unit <c>from</c> to
the corresponding value of time unit <c>to</c>. The result is
rounded using the floor function.</p>
<taglist>
<tag><c>val</c></tag>
<item>Value to convert time unit for.</item>
<tag><c>from</c></tag>
<item>Time unit of <c>val</c>.</item>
<tag><c>to</c></tag>
<item>Time unit of returned value.</item>
</taglist>
<p>Returns <c>ERL_DRV_TIME_ERROR</c> if called with an invalid
time unit argument.</p>
<p>See also <seealso marker="#ErlDrvTime">
<c>ErlDrvTime</c></seealso> and
<seealso marker="#ErlDrvTimeUnit">
<c>ErlDrvTimeUnit</c></seealso>.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_equal_tids(ErlDrvTid tid1,
ErlDrvTid tid2)</nametext></name>
<fsummary>Compare thread identifiers for equality.</fsummary>
<desc>
<marker id="erl_drv_equal_tids"></marker>
<p>Compares two thread identifiers, <c>tid1</c> and <c>tid2</c>,
for equality.</p>
<p>Returns <c>0</c> it they are not equal, and a value not equal to
<c>0</c> if they are equal.</p>
<note>
<p>A thread identifier can be reused very quickly after
a thread has terminated. Therefore, if a thread
corresponding to one of the involved thread identifiers
has terminated since the thread identifier was saved,
the result of <c>erl_drv_equal_tids</c> does possibly not give
the expected result.</p>
</note>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_getenv(const char *key, char
*value, size_t *value_size)</nametext></name>
<fsummary>Get the value of an environment variable.</fsummary>
<desc>
<marker id="erl_drv_getenv"></marker>
<p>Retrieves the value of an environment variable.</p>
<taglist>
<tag><c>key</c></tag>
<item>A <c>NULL</c>-terminated string containing the
name of the environment variable.</item>
<tag><c>value</c></tag>
<item>A pointer to an output buffer.</item>
<tag><c>value_size</c></tag>
<item>A pointer to an integer. The integer is used both for
passing input and output sizes (see below).</item>
</taglist>
<p>When this function is called, <c>*value_size</c> is to contain the
size of the <c>value</c> buffer.</p>
<p>On success, <c>0</c> is returned,
the value of the environment variable has been written to
the <c>value</c> buffer, and <c>*value_size</c> contains the
string length (excluding the terminating <c>NULL</c> character) of
the value written to the <c>value</c> buffer.</p>
<p>On failure, that is, no such environment variable was found,
a value < <c>0</c> is returned. When the size of the <c>value</c>
buffer is too small, a value > <c>0</c> is returned and
<c>*value_size</c> has been set to the buffer size needed.</p>
<warning>
<p>This function reads the emulated environment used by
<seealso marker="os:getenv/1"><c>os:getenv/1</c></seealso> and not
the environment used by libc's <c>getenv(3)</c> or similar. Drivers
that <em>require</em> that these are in sync will need to do so
themselves, but keep in mind that they are segregated for a reason;
<c>getenv(3)</c> and its friends are <em>not thread-safe</em> and
may cause unrelated code to misbehave or crash the emulator.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_init_ack(ErlDrvPort port,
ErlDrvData res)</nametext></name>
<fsummary>Acknowledge the start of the port.</fsummary>
<desc>
<marker id="erl_drv_init_ack"></marker>
<p>Acknowledges the start of the port.</p>
<taglist>
<tag><c>port</c></tag>
<item>The port handle of the port (driver instance)
doing the acknowledgment.
</item>
<tag><c>res</c></tag>
<item>The result of the port initialization. Can be the same
values as the return value of <seealso marker="driver_entry#start">
<c>start</c></seealso>, that is, any of the error codes or the
<c>ErlDrvData</c> that is to be used for this port.
</item>
</taglist>
<p>When this function is called the initiating <c>erlang:open_port</c>
call is returned as if the <seealso marker="driver_entry#start">
<c>start</c></seealso> function had just been called. It can only be
used when flag <seealso marker="driver_entry#driver_flags">
<c>ERL_DRV_FLAG_USE_INIT_ACK</c></seealso>
has been set on the linked-in driver.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvTime</ret>
<nametext>erl_drv_monotonic_time(ErlDrvTimeUnit time_unit)</nametext>
</name>
<fsummary>Get Erlang monotonic time.</fsummary>
<desc>
<marker id="erl_drv_monotonic_time"></marker>
<p>Returns <seealso marker="time_correction#Erlang_Monotonic_Time">
Erlang monotonic time</seealso>. Notice that negative values are
not uncommon.</p>
<p><c>time_unit</c> is time unit of returned value.</p>
<p>Returns <c>ERL_DRV_TIME_ERROR</c> if called with an invalid
time unit argument, or if called from a thread that is not a
scheduler thread.</p>
<p>See also <seealso marker="#ErlDrvTime"><c>ErlDrvTime</c></seealso>
and <seealso marker="#ErlDrvTimeUnit">
<c>ErlDrvTimeUnit</c></seealso>.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvMutex *</ret><nametext>erl_drv_mutex_create(char
*name)</nametext></name>
<fsummary>Create a mutex.</fsummary>
<desc>
<marker id="erl_drv_mutex_create"></marker>
<p>Creates a mutex and returns a pointer to it.</p>
<p><c>name</c> is a string identifying the created mutex. It is used
to identify the mutex in planned future debug functionality.</p>
<p>Returns <c>NULL</c> on failure. The driver creating the mutex is
responsible for destroying it before the driver is unloaded.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_mutex_destroy(ErlDrvMutex
*mtx)</nametext></name>
<fsummary>Destroy a mutex.</fsummary>
<desc>
<marker id="erl_drv_mutex_destroy"></marker>
<p>Destroys a mutex previously created by
<seealso marker="#erl_drv_mutex_create">
<c>erl_drv_mutex_create</c></seealso>.
The mutex must be in an unlocked state before it is destroyed.</p>
<p><c>mtx</c> is a pointer to a mutex to destroy.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_mutex_lock(ErlDrvMutex
*mtx)</nametext></name>
<fsummary>Lock a mutex.</fsummary>
<desc>
<marker id="erl_drv_mutex_lock"></marker>
<p>Locks a mutex. The calling thread is blocked until the mutex has
been locked. A thread that has currently locked the mutex
<em>cannot</em> lock the same mutex again.</p>
<p><c>mtx</c> is a pointer to a mutex to lock.</p>
<warning>
<p>If you leave a mutex locked in an emulator thread
when you let the thread out of your control, you will
<em>very likely</em> deadlock the whole emulator.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>char *</ret><nametext>erl_drv_mutex_name(ErlDrvMutex
*mtx)</nametext></name>
<fsummary>Get name of driver mutex.</fsummary>
<desc>
<marker id="erl_drv_mutex_name"></marker>
<p>Returns a pointer to the mutex name.</p>
<p><c>mtx</c> is a pointer to an initialized mutex.</p>
<note>
<p>This function is intended for debugging purposes only.</p>
</note>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_mutex_trylock(ErlDrvMutex
*mtx)</nametext></name>
<fsummary>Try lock a mutex.</fsummary>
<desc>
<marker id="erl_drv_mutex_trylock"></marker>
<p>Tries to lock a mutex. A thread that has currently locked the mutex
<em>cannot</em> try to lock the same mutex again.</p>
<p><c>mtx</c> is a pointer to a mutex to try to lock.</p>
<p>Returns <c>0</c> on success, otherwise <c>EBUSY</c>.</p>
<warning>
<p>If you leave a mutex locked in an emulator thread
when you let the thread out of your control, you will
<em>very likely</em> deadlock the whole emulator.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_mutex_unlock(ErlDrvMutex
*mtx)</nametext></name>
<fsummary>Unlock a mutex.</fsummary>
<desc>
<marker id="erl_drv_mutex_unlock"></marker>
<p>Unlocks a mutex. The mutex currently must be
locked by the calling thread.</p>
<p><c>mtx</c> is a pointer to a mutex to unlock.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_output_term(ErlDrvTermData port,
ErlDrvTermData* term, int n)</nametext></name>
<fsummary>Send term data from driver to port owner.</fsummary>
<desc>
<marker id="erl_drv_output_term"></marker>
<p>Sends data in the special driver term
format to the port owner process. This is a fast way to
deliver term data from a driver. It needs no binary
conversion, so the port owner process receives data as
normal Erlang terms. The <seealso marker="#erl_drv_send_term">
<c>erl_drv_send_term</c></seealso>
functions can be used for sending to any process
on the local node.</p>
<note>
<p>Parameter <c>port</c> is <em>not</em>
an ordinary port handle, but a port handle converted using
<seealso marker="#driver_mk_port">
<c>driver_mk_port</c></seealso>.</p>
</note>
<p>Parameter <c>term</c> points to an array of
<c>ErlDrvTermData</c> with <c>n</c> elements. This array
contains terms described in the driver term format. Every
term consists of 1-4 elements in the array. The
first term has a term type and then arguments.
Parameter <c>port</c> specifies the sending port.</p>
<p>Tuples, maps, and lists (except strings, see below)
are built in reverse polish notation, so that to build a
tuple, the elements are specified first, and then the tuple
term, with a count. Likewise for lists and maps.</p>
<list type="bulleted">
<item>
<p>A tuple must be specified with the number of elements. (The
elements precede the <c>ERL_DRV_TUPLE</c> term.)</p>
</item>
<item>
<p>A map must be specified with the number of key-value pairs
<c>N</c>. The key-value pairs must precede the <c>ERL_DRV_MAP</c>
in this order: <c>key1,value1,key2,value2,...,keyN,valueN</c>.
Duplicate keys are not allowed.</p>
</item>
<item>
<p>A list must be specified with the number of elements,
including the tail, which is the last term preceding
<c>ERL_DRV_LIST</c>.</p>
</item>
</list>
<p>The special term <c>ERL_DRV_STRING_CONS</c> is used to
"splice" in a string in a list, a string specified this way is
not a list in itself, but the elements are elements of the
surrounding list.</p>
<pre>
Term type Arguments
--------- ---------
ERL_DRV_NIL
ERL_DRV_ATOM ErlDrvTermData atom (from driver_mk_atom(char *string))
ERL_DRV_INT ErlDrvSInt integer
ERL_DRV_UINT ErlDrvUInt integer
ERL_DRV_INT64 ErlDrvSInt64 *integer_ptr
ERL_DRV_UINT64 ErlDrvUInt64 *integer_ptr
ERL_DRV_PORT ErlDrvTermData port (from driver_mk_port(ErlDrvPort port))
ERL_DRV_BINARY ErlDrvBinary *bin, ErlDrvUInt len, ErlDrvUInt offset
ERL_DRV_BUF2BINARY char *buf, ErlDrvUInt len
ERL_DRV_STRING char *str, int len
ERL_DRV_TUPLE int sz
ERL_DRV_LIST int sz
ERL_DRV_PID ErlDrvTermData pid (from driver_connected(ErlDrvPort port)
or driver_caller(ErlDrvPort port))
ERL_DRV_STRING_CONS char *str, int len
ERL_DRV_FLOAT double *dbl
ERL_DRV_EXT2TERM char *buf, ErlDrvUInt len
ERL_DRV_MAP int sz</pre>
<p>The unsigned integer data type <c>ErlDrvUInt</c> and the
signed integer data type <c>ErlDrvSInt</c> are 64 bits wide
on a 64-bit runtime system and 32 bits wide on a 32-bit
runtime system. They were introduced in ERTS 5.6
and replaced some of the <c>int</c> arguments in the list above.</p>
<p>The unsigned integer data type <c>ErlDrvUInt64</c> and the
signed integer data type <c>ErlDrvSInt64</c> are always 64 bits
wide. They were introduced in ERTS 5.7.4.</p>
<p>To build the tuple <c>{tcp, Port, [100 | Binary]}</c>, the
following call can be made.</p>
<code type="none"><![CDATA[
ErlDrvBinary* bin = ...
ErlDrvPort port = ...
ErlDrvTermData spec[] = {
ERL_DRV_ATOM, driver_mk_atom("tcp"),
ERL_DRV_PORT, driver_mk_port(drvport),
ERL_DRV_INT, 100,
ERL_DRV_BINARY, bin, 50, 0,
ERL_DRV_LIST, 2,
ERL_DRV_TUPLE, 3,
};
erl_drv_output_term(driver_mk_port(drvport), spec, sizeof(spec) / sizeof(spec[0])); ]]></code>
<p>Here <c>bin</c> is a driver binary of length at least 50 and
<c>drvport</c> is a port handle. Notice that <c>ERL_DRV_LIST</c>
comes after the elements of the list, likewise
<c>ERL_DRV_TUPLE</c>.</p>
<p>The <c>ERL_DRV_STRING_CONS</c> term is a way to construct
strings. It works differently from how <c>ERL_DRV_STRING</c>
works. <c>ERL_DRV_STRING_CONS</c> builds a string list in
reverse order (as opposed to how <c>ERL_DRV_LIST</c>
works), concatenating the strings added to a list. The tail
must be specified before <c>ERL_DRV_STRING_CONS</c>.</p>
<p><c>ERL_DRV_STRING</c> constructs a string, and ends
it. (So it is the same as <c>ERL_DRV_NIL</c> followed by
<c>ERL_DRV_STRING_CONS</c>.)</p>
<code type="none"><![CDATA[
/* to send [x, "abc", y] to the port: */
ErlDrvTermData spec[] = {
ERL_DRV_ATOM, driver_mk_atom("x"),
ERL_DRV_STRING, (ErlDrvTermData)"abc", 3,
ERL_DRV_ATOM, driver_mk_atom("y"),
ERL_DRV_NIL,
ERL_DRV_LIST, 4
};
erl_drv_output_term(driver_mk_port(drvport), spec, sizeof(spec) / sizeof(spec[0])); ]]></code>
<code type="none"><![CDATA[
/* to send "abc123" to the port: */
ErlDrvTermData spec[] = {
ERL_DRV_NIL, /* with STRING_CONS, the tail comes first */
ERL_DRV_STRING_CONS, (ErlDrvTermData)"123", 3,
ERL_DRV_STRING_CONS, (ErlDrvTermData)"abc", 3,
};
erl_drv_output_term(driver_mk_port(drvport), spec, sizeof(spec) / sizeof(spec[0])); ]]></code>
<p>The <c>ERL_DRV_EXT2TERM</c> term type is used for passing a
term encoded with the
<seealso marker="erl_ext_dist">external format</seealso>,
that is, a term that has been encoded by
<seealso marker="erlang#term_to_binary/2">
<c>erlang:term_to_binary</c></seealso>,
<seealso marker="erl_interface:ei"><c>erl_interface:ei(3)</c></seealso>,
and so on.
For example, if <c>binp</c> is a pointer to an <c>ErlDrvBinary</c>
that contains term <c>{17, 4711}</c> encoded with the
<seealso marker="erl_ext_dist">external format</seealso>,
and you want to wrap it in a two-tuple with the tag <c>my_tag</c>,
that is, <c>{my_tag, {17, 4711}}</c>, you can do as follows:</p>
<code type="none"><![CDATA[
ErlDrvTermData spec[] = {
ERL_DRV_ATOM, driver_mk_atom("my_tag"),
ERL_DRV_EXT2TERM, (ErlDrvTermData) binp->orig_bytes, binp->orig_size
ERL_DRV_TUPLE, 2,
};
erl_drv_output_term(driver_mk_port(drvport), spec, sizeof(spec) / sizeof(spec[0])); ]]></code>
<p>To build the map <c>#{key1 => 100, key2 => {200, 300}}</c>, the
following call can be made.</p>
<code type="none"><![CDATA[
ErlDrvPort port = ...
ErlDrvTermData spec[] = {
ERL_DRV_ATOM, driver_mk_atom("key1"),
ERL_DRV_INT, 100,
ERL_DRV_ATOM, driver_mk_atom("key2"),
ERL_DRV_INT, 200,
ERL_DRV_INT, 300,
ERL_DRV_TUPLE, 2,
ERL_DRV_MAP, 2
};
erl_drv_output_term(driver_mk_port(drvport), spec, sizeof(spec) / sizeof(spec[0])); ]]></code>
<p>If you want to pass a binary and do not already have the content
of the binary in an <c>ErlDrvBinary</c>, you can benefit from using
<c>ERL_DRV_BUF2BINARY</c> instead of creating an <c>ErlDrvBinary</c>
through <seealso marker="#driver_alloc_binary">
<c>driver_alloc_binary</c></seealso> and then pass the binary through
<c>ERL_DRV_BINARY</c>. The runtime system often allocates
binaries smarter if <c>ERL_DRV_BUF2BINARY</c> is used.
However, if the content of the binary to pass already resides in
an <c>ErlDrvBinary</c>, it is normally better to pass the binary using
<c>ERL_DRV_BINARY</c> and the <c>ErlDrvBinary</c> in question.</p>
<p>The <c>ERL_DRV_UINT</c>, <c>ERL_DRV_BUF2BINARY</c>, and
<c>ERL_DRV_EXT2TERM</c> term types were introduced in
ERTS 5.6.</p>
<p>This function is only thread-safe when the emulator with SMP
support is used.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_putenv(const char *key, char
*value)</nametext></name>
<fsummary>Set the value of an environment variable.</fsummary>
<desc>
<marker id="erl_drv_putenv"></marker>
<p>Sets the value of an environment variable.</p>
<p><c>key</c> is a <c>NULL</c>-terminated string containing the
name of the environment variable.</p>
<p><c>value</c> is a <c>NULL</c>-terminated string containing the
new value of the environment variable.</p>
<p>Returns <c>0</c> on success, otherwise a value <c>!= 0</c>.</p>
<note>
<p>The result of passing the empty string (<c>""</c>) as a value
is platform-dependent. On some platforms the variable value
is set to the empty string, on others the
environment variable is removed.</p>
</note>
<warning>
<p>This function modifies the emulated environment used by
<seealso marker="os:putenv/2"><c>os:putenv/2</c></seealso> and not
the environment used by libc's <c>putenv(3)</c> or similar. Drivers
that <em>require</em> that these are in sync will need to do so
themselves, but keep in mind that they are segregated for a reason;
<c>putenv(3)</c> and its friends are <em>not thread-safe</em> and
may cause unrelated code to misbehave or crash the emulator.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvRWLock *</ret><nametext>erl_drv_rwlock_create(char
*name)</nametext></name>
<fsummary>Create an rwlock.</fsummary>
<desc>
<marker id="erl_drv_rwlock_create"></marker>
<p>Creates an rwlock and returns a pointer to it.</p>
<p><c>name</c> is a string identifying the created rwlock.
It is used to identify the rwlock in planned future
debug functionality.</p>
<p>Returns <c>NULL</c> on failure. The driver creating the rwlock
is responsible for destroying it before the driver is unloaded.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_rwlock_destroy(ErlDrvRWLock
*rwlck)</nametext></name>
<fsummary>Destroy an rwlock.</fsummary>
<desc>
<marker id="erl_drv_rwlock_destroy"></marker>
<p>Destroys an rwlock previously created by
<seealso marker="#erl_drv_rwlock_create">
<c>erl_drv_rwlock_create</c></seealso>.
The rwlock must be in an unlocked state before it is destroyed.</p>
<p><c>rwlck</c> is a pointer to an rwlock to destroy.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>char *</ret><nametext>erl_drv_rwlock_name(ErlDrvRWLock
*rwlck)</nametext></name>
<fsummary>Get name of driver mutex.</fsummary>
<desc>
<marker id="erl_drv_rwlock_name"></marker>
<p>Returns a pointer to the name of the rwlock.</p>
<p><c>rwlck</c> is a pointer to an initialized rwlock.</p>
<note>
<p>This function is intended for debugging purposes only.</p>
</note>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_rwlock_rlock(ErlDrvRWLock
*rwlck)</nametext></name>
<fsummary>Read lock an rwlock.</fsummary>
<desc>
<marker id="erl_drv_rwlock_rlock"></marker>
<p>Read locks an rwlock. The calling thread is
blocked until the rwlock has been read locked. A thread
that currently has read or read/write locked the rwlock
<em>cannot</em> lock the same rwlock again.</p>
<p><c>rwlck</c> is a pointer to the rwlock to read lock.</p>
<warning>
<p>If you leave an rwlock locked in an emulator thread
when you let the thread out of your control, you will
<em>very likely</em> deadlock the whole emulator.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_rwlock_runlock(ErlDrvRWLock
*rwlck)</nametext></name>
<fsummary>Read unlock an rwlock.</fsummary>
<desc>
<marker id="erl_drv_rwlock_runlock"></marker>
<p>Read unlocks an rwlock. The rwlock currently must
be read locked by the calling thread.</p>
<p><c>rwlck</c> is a pointer to an rwlock to read unlock.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_rwlock_rwlock(ErlDrvRWLock
*rwlck)</nametext></name>
<fsummary>Read/write lock an rwlock.</fsummary>
<desc>
<marker id="erl_drv_rwlock_rwlock"></marker>
<p>Read/write locks an rwlock. The calling thread
is blocked until the rwlock has been read/write locked.
A thread that currently has read or read/write locked the
rwlock <em>cannot</em> lock the same rwlock again.</p>
<p><c>rwlck</c> is a pointer to an rwlock to read/write lock.</p>
<warning>
<p>If you leave an rwlock locked in an emulator thread
when you let the thread out of your control, you will
<em>very likely</em> deadlock the whole emulator.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_rwlock_rwunlock(ErlDrvRWLock
*rwlck)</nametext></name>
<fsummary>Read/write unlock an rwlock.</fsummary>
<desc>
<marker id="erl_drv_rwlock_rwunlock"></marker>
<p>Read/write unlocks an rwlock. The rwlock currently must be
read/write locked by the calling thread.</p>
<p><c>rwlck</c> is a pointer to an rwlock to read/write unlock.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_rwlock_tryrlock(ErlDrvRWLock
*rwlck)</nametext></name>
<fsummary>Try to read lock an rwlock.</fsummary>
<desc>
<marker id="erl_drv_rwlock_tryrlock"></marker>
<p>Tries to read lock an rwlock.</p>
<p><c>rwlck</c> is a pointer to an rwlock to try to read lock.</p>
<p>Returns <c>0</c> on success, otherwise <c>EBUSY</c>.
A thread that currently has read or read/write locked the
rwlock <em>cannot</em> try to lock the same rwlock again.</p>
<warning>
<p>If you leave an rwlock locked in an emulator thread
when you let the thread out of your control, you will
<em>very likely</em> deadlock the whole emulator.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_rwlock_tryrwlock(ErlDrvRWLock
*rwlck)</nametext></name>
<fsummary>Try to read/write lock an rwlock.</fsummary>
<desc>
<marker id="erl_drv_rwlock_tryrwlock"></marker>
<p>Tries to read/write lock an rwlock.
A thread that currently has read or read/write locked the
rwlock <em>cannot</em> try to lock the same rwlock again.</p>
<p><c>rwlck</c>is pointer to an rwlock to try to read/write lock.</p>
<p>Returns <c>0</c> on success, otherwise <c>EBUSY</c>.</p>
<warning>
<p>If you leave an rwlock locked in an emulator thread
when you let the thread out of your control, you will
<em>very likely</em> deadlock the whole emulator.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_send_term(ErlDrvTermData port,
ErlDrvTermData receiver, ErlDrvTermData* term, int n)</nametext></name>
<fsummary>Send term data to other process than port owner process.
</fsummary>
<desc>
<marker id="erl_drv_send_term"></marker>
<p>This function is the only way for a driver to send data to
<em>other</em> processes than the port owner process. Parameter
<c>receiver</c> specifies the process to receive the data.</p>
<note>
<p>Parameter <c>port</c> is <em>not</em> an ordinary port handle, but
a port handle converted using
<seealso marker="#driver_mk_port">
<c>driver_mk_port</c></seealso>.</p>
</note>
<p>Parameters <c>port</c>, <c>term</c>, and <c>n</c> work as in
<seealso marker="#erl_drv_output_term">
<c>erl_drv_output_term</c></seealso>.</p>
<p>This function is only thread-safe when the emulator with SMP
support is used.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_set_os_pid(ErlDrvPort port,
ErlDrvSInt pid)</nametext></name>
<fsummary>Set the os_pid for the port.</fsummary>
<desc>
<marker id="erl_drv_set_os_pid"></marker>
<p>Sets the <c>os_pid</c> seen when doing
<seealso marker="erlang:port_info/2">
<c>erlang:port_info/2</c></seealso> on this port.</p>
<p><c>port</c> is the port handle of the port (driver instance) to set
the pid on. <c>pid</c>is the pid to set.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_thread_create(char *name, ErlDrvTid
*tid, void * (*func)(void *), void *arg, ErlDrvThreadOpts
*opts)</nametext></name>
<fsummary>Create a thread.</fsummary>
<desc>
<marker id="erl_drv_thread_create"></marker>
<p>Creates a new thread.</p>
<taglist>
<tag><c>name</c></tag>
<item>A string identifying the created thread. It is used to
identify the thread in planned future debug functionality.
</item>
<tag><c>tid</c></tag>
<item>A pointer to a thread identifier variable.</item>
<tag><c>func</c></tag>
<item>A pointer to a function to execute in the created thread.</item>
<tag><c>arg</c></tag>
<item>A pointer to argument to the <c>func</c> function.</item>
<tag><c>opts</c></tag>
<item>A pointer to thread options to use or <c>NULL</c>.</item>
</taglist>
<p>Returns <c>0</c> on success,
otherwise an <c>errno</c> value is returned to indicate the error.
The newly created thread begins executing in the function pointed
to by <c>func</c>, and <c>func</c> is passed <c>arg</c> as
argument. When <c>erl_drv_thread_create</c> returns, the thread
identifier of the newly created thread is available in
<c>*tid</c>. <c>opts</c> can be either a <c>NULL</c> pointer, or a
pointer to an
<seealso marker="#ErlDrvThreadOpts"><c>ErlDrvThreadOpts</c></seealso>
structure. If <c>opts</c> is a <c>NULL</c> pointer, default options
are used, otherwise the passed options are used.</p>
<warning>
<p>You are not allowed to allocate the
<seealso marker="#ErlDrvThreadOpts">
<c>ErlDrvThreadOpts</c></seealso> structure by yourself.
It must be allocated and initialized by
<seealso marker="#erl_drv_thread_opts_create">
<c>erl_drv_thread_opts_create</c></seealso>.</p>
</warning>
<p>The created thread terminates either when <c>func</c> returns or if
<seealso marker="#erl_drv_thread_exit">
<c>erl_drv_thread_exit</c></seealso>
is called by the thread. The exit value of the thread is either
returned from <c>func</c> or passed as argument to
<seealso marker="#erl_drv_thread_exit">
<c>erl_drv_thread_exit</c></seealso>.
The driver creating the thread is responsible for joining the
thread, through <seealso marker="#erl_drv_thread_join">
<c>erl_drv_thread_join</c></seealso>,
before the driver is unloaded. "Detached" threads cannot be created,
that is, threads that do not need to be joined.</p>
<warning>
<p>All created threads must be joined by the driver before
it is unloaded. If the driver fails to join all threads
created before it is unloaded, the runtime system
most likely crashes when the driver code is unloaded.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_thread_exit(void
*exit_value)</nametext></name>
<fsummary>Terminate calling thread.</fsummary>
<desc>
<marker id="erl_drv_thread_exit"></marker>
<p>Terminates the calling thread with the exit value passed as
argument. <c>exit_value</c> is a pointer to an exit value or
<c>NULL</c>.</p>
<p>You are only allowed to terminate threads created with
<seealso marker="#erl_drv_thread_create">
<c>erl_drv_thread_create</c></seealso>.</p>
<p>The exit value can later be retrieved by another thread through
<seealso marker="#erl_drv_thread_join">
<c>erl_drv_thread_join</c></seealso>.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_thread_join(ErlDrvTid tid, void
**exit_value)</nametext></name>
<fsummary>Join with another thread.</fsummary>
<desc>
<marker id="erl_drv_thread_join"></marker>
<p>Joins the calling thread with another thread, that is,
the calling thread is blocked until the thread identified by
<c>tid</c> has terminated.</p>
<p><c>tid</c> is the thread identifier of the thread to join.
<c>exit_value</c> is a pointer to a pointer to an exit value,
or <c>NULL</c>.</p>
<p>Returns <c>0</c> on success, otherwise an <c>errno</c>
value is returned to indicate the error.</p>
<p>A thread can only be joined once. The behavior of joining
more than once is undefined, an emulator crash is likely. If
<c>exit_value == NULL</c>, the exit value of the terminated thread
is ignored, otherwise the exit value of the terminated thread
is stored at <c>*exit_value</c>.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>char *</ret><nametext>erl_drv_thread_name(ErlDrvTid
tid)</nametext></name>
<fsummary>Get name of driver mutex.</fsummary>
<desc>
<marker id="erl_drv_rwlock_name"></marker>
<p>Returns a pointer to the name of the thread.</p>
<p><c>tid</c> is a thread identifier.</p>
<note>
<p>This function is intended for debugging purposes only.</p>
</note>
</desc>
</func>
<func>
<name><ret>ErlDrvThreadOpts *</ret>
<nametext>erl_drv_thread_opts_create(char *name)</nametext></name>
<fsummary>Create thread options.</fsummary>
<desc>
<marker id="erl_drv_thread_opts_create"></marker>
<p>Allocates and initializes a thread option structure.</p>
<p><c>name</c> is a string identifying the created thread options.
It is used to identify the thread options in planned future debug
functionality.</p>
<p>Returns <c>NULL</c> on failure. A thread option
structure is used for passing options to
<seealso marker="#erl_drv_thread_create">
<c>erl_drv_thread_create</c></seealso>.
If the structure is not modified before it is passed to
<seealso marker="#erl_drv_thread_create">
<c>erl_drv_thread_create</c></seealso>,
the default values are used.</p>
<warning>
<p>You are not allowed to allocate the
<seealso marker="#ErlDrvThreadOpts">
<c>ErlDrvThreadOpts</c></seealso>
structure by yourself. It must be allocated and initialized by
<c>erl_drv_thread_opts_create</c>.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret>
<nametext>erl_drv_thread_opts_destroy(ErlDrvThreadOpts *opts)</nametext>
</name>
<fsummary>Destroy thread options.</fsummary>
<desc>
<marker id="erl_drv_thread_opts_destroy"></marker>
<p>Destroys thread options previously created by
<seealso marker="#erl_drv_thread_opts_create">
<c>erl_drv_thread_opts_create</c></seealso>.</p>
<p><c>opts</c> is a pointer to thread options to destroy.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvTid</ret>
<nametext>erl_drv_thread_self(void)</nametext></name>
<fsummary>Get the thread identifier of the current thread.</fsummary>
<desc>
<marker id="erl_drv_thread_self"></marker>
<p>Returns the thread identifier of the calling thread.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>ErlDrvTime</ret><nametext>erl_drv_time_offset(ErlDrvTimeUnit
time_unit)</nametext></name>
<fsummary>Get current time offset.</fsummary>
<desc>
<marker id="erl_drv_time_offset"></marker>
<p>Returns the current time offset between
<seealso marker="time_correction#Erlang_Monotonic_Time">
Erlang monotonic time</seealso> and
<seealso marker="time_correction#Erlang_System_Time">
Erlang system time</seealso>
converted into the <c>time_unit</c> passed as argument.</p>
<p><c>time_unit</c> is time unit of returned value.</p>
<p>Returns <c>ERL_DRV_TIME_ERROR</c> if called with an invalid
time unit argument, or if called from a thread that is not a
scheduler thread.</p>
<p>See also <seealso marker="#ErlDrvTime">
<c>ErlDrvTime</c></seealso> and
<seealso marker="#ErlDrvTimeUnit">
<c>ErlDrvTimeUnit</c></seealso>.</p>
</desc>
</func>
<func>
<name><ret>void *</ret><nametext>erl_drv_tsd_get(ErlDrvTSDKey
key)</nametext></name>
<fsummary>Get thread-specific data.</fsummary>
<desc>
<marker id="erl_drv_tsd_get"></marker>
<p>Returns the thread-specific data
associated with <c>key</c> for the calling thread.</p>
<p><c>key</c> is a thread-specific data key.</p>
<p>Returns <c>NULL</c> if no data has been associated
with <c>key</c> for the calling thread.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>erl_drv_tsd_key_create(char *name,
ErlDrvTSDKey *key)</nametext></name>
<fsummary>Create a thread-specific data key.</fsummary>
<desc>
<marker id="erl_drv_tsd_key_create"></marker>
<p>Creates a thread-specific data key.</p>
<p><c>name</c> is a string identifying the created key. It is used
to identify the key in planned future debug functionality.</p>
<p><c>key</c> is a pointer to a thread-specific data key variable.</p>
<p>Returns <c>0</c> on success, otherwise an <c>errno</c> value is
returned to indicate the error. The driver creating the key is
responsible for destroying it before the driver is unloaded.</p>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_tsd_key_destroy(ErlDrvTSDKey
key)</nametext></name>
<fsummary>Destroy a thread-specific data key.</fsummary>
<desc>
<marker id="erl_drv_tsd_key_destroy"></marker>
<p>Destroys a thread-specific data key previously created by
<seealso marker="#erl_drv_tsd_key_create">
<c>erl_drv_tsd_key_create</c></seealso>.
All thread-specific data using this key in all threads
must be cleared (see <seealso marker="#erl_drv_tsd_set">
<c>erl_drv_tsd_set</c></seealso>)
before the call to <c>erl_drv_tsd_key_destroy</c>.</p>
<p><c>key</c> is a thread-specific data key to destroy.</p>
<warning>
<p>A destroyed key is very likely to be reused soon.
Therefore, if you fail to clear the thread-specific
data using this key in a thread before destroying
the key, you will <em>very likely</em> get unexpected
errors in other parts of the system.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>erl_drv_tsd_set(ErlDrvTSDKey key, void
*data)</nametext></name>
<fsummary>Set thread-specific data.</fsummary>
<desc>
<marker id="erl_drv_tsd_set"></marker>
<p>Sets thread-specific data associated with
<c>key</c> for the calling thread. You are only allowed to set
thread-specific data for threads while they are fully under your
control. For example, if you set thread-specific data in a thread
calling a driver callback function, it must be cleared, that is,
set to <c>NULL</c>, before returning from the driver callback
function.</p>
<p><c>key</c> is a thread-specific data key.</p>
<p><c>data</c> is a pointer to data to associate with <c>key</c>
in the calling thread.</p>
<warning>
<p>If you fail to clear thread-specific data in an
emulator thread before letting it out of your control,
you might never be able to clear this data with
later unexpected errors in other parts of the system as
a result.</p>
</warning>
<p>This function is thread-safe.</p>
</desc>
</func>
<func>
<name><ret>char *</ret><nametext>erl_errno_id(int error)</nametext></name>
<fsummary>Get Erlang error atom name from error number.</fsummary>
<desc>
<marker id="erl_errno_id"></marker>
<p>Returns the atom name of the Erlang error,
given the error number in <c>error</c>. The error atoms are
<c>einval</c>, <c>enoent</c>, and so on. It can be used to make
error terms from the driver.</p>
</desc>
</func>
<func>
<name><ret>int</ret><nametext>remove_driver_entry(ErlDrvEntry
*de)</nametext></name>
<fsummary>Remove a driver entry.</fsummary>
<desc>
<marker id="remove_driver_entry"></marker>
<p>Removes a driver entry <c>de</c> previously added with
<seealso marker="#add_driver_entry">
<c>add_driver_entry</c></seealso>.</p>
<p>Driver entries added by the <c>erl_ddll</c> Erlang interface
cannot be removed by using this interface.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>set_busy_port(ErlDrvPort port, int
on)</nametext></name>
<fsummary>Signal or unsignal port as busy.</fsummary>
<desc>
<marker id="set_busy_port"></marker>
<p>Sets and unsets the busy state of the port. If
<c>on</c> is non-zero, the port is set to busy. If it is zero,
the port is set to not busy. You typically want to combine
this feature with the <seealso marker="#erl_drv_busy_msgq_limits">
busy port message queue</seealso> functionality.</p>
<p>Processes sending command data to the port are suspended
if either the port or the port message queue
is busy. Suspended processes are resumed when neither the
port or the port message queue is busy. Command data
is in this context data passed to the port using either
<c>Port ! {Owner, {command, Data}}</c> or
<c>port_command/[2,3]</c>.</p>
<p>If the <seealso marker="driver_entry#driver_flags">
<![CDATA[ERL_DRV_FLAG_SOFT_BUSY]]></seealso> has been set in the
<seealso marker="driver_entry"><c>driver_entry</c></seealso>,
data can be forced into the driver through
<seealso marker="erlang#port_command/3">
<c>erlang:port_command(Port, Data, [force])</c></seealso>
even if the driver has signaled that it is busy.</p>
<p>For information about busy port message queue functionality, see
<seealso marker="#erl_drv_busy_msgq_limits">
<c>erl_drv_busy_msgq_limits</c></seealso>.</p>
</desc>
</func>
<func>
<name><ret>void</ret><nametext>set_port_control_flags(ErlDrvPort port,
int flags)</nametext></name>
<fsummary>Set flags on how to handle control entry function.</fsummary>
<desc>
<marker id="set_port_control_flags"></marker>
<p>Sets flags for how the <seealso marker="driver_entry#control">
<c>control</c></seealso> driver entry
function will return data to the port owner process.
(The <c>control</c> function is called from
<seealso marker="erlang:port_control/3">
<c>erlang:port_control/3</c></seealso>.)</p>
<p>Currently there are only two meaningful values for
<c>flags</c>: <c>0</c> means that data is returned in a list,
and <c>PORT_CONTROL_FLAG_BINARY</c> means data is returned as
a binary from <c>control</c>.</p>
</desc>
</func>
</funcs>
<section>
<title>See Also</title>
<p><seealso marker="driver_entry"><c>driver_entry(3)</c></seealso>,
<seealso marker="erlang"><c>erlang(3)</c></seealso>,
<seealso marker="kernel:erl_ddll"><c>erl_ddll(3)</c></seealso>,
section <seealso marker="alt_dist">How to Implement an Alternative
Carrier for the Erlang Distribution></seealso> in the User's Guide</p>
</section>
</cref>