<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>1996</year><year>2017</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>erlang</title>
<prepared></prepared>
<docno></docno>
<date></date>
<rev></rev>
<file>erlang.xml</file>
</header>
<module>erlang</module>
<modulesummary>The Erlang BIFs.</modulesummary>
<description>
<p>By convention, most Built-In Functions (BIFs) are included
in this module. Some of the BIFs are viewed more
or less as part of the Erlang programming language and are
<em>auto-imported</em>. Thus, it is not necessary to specify the
module name. For example, the calls <c>atom_to_list(Erlang)</c>
and <c>erlang:atom_to_list(Erlang)</c> are identical.</p>
<p>Auto-imported BIFs are listed without module prefix.
BIFs listed with module prefix are not auto-imported.</p>
<p>BIFs can fail for various reasons. All BIFs fail with
reason <c>badarg</c> if they are called with arguments of an
incorrect type. The other reasons are described in the
description of each individual BIF.</p>
<p>Some BIFs can be used in guard tests and are marked with
"Allowed in guard tests".</p>
</description>
<datatypes>
<datatype>
<name>ext_binary()</name>
<desc>
<p>A binary data object, structured according to
the Erlang external term format.</p>
</desc>
</datatype>
<datatype>
<name>iovec()</name>
<desc>
<p>A list of binaries. This datatype is useful to use
together with <seealso marker="erl_nif#enif_inspect_iovec">
<c>enif_inspect_iovec</c></seealso>.</p>
</desc>
</datatype>
<datatype>
<name name="message_queue_data"></name>
<desc>
<p>See <seealso marker="#process_flag_message_queue_data">
<c>process_flag(message_queue_data, MQD)</c></seealso>.</p>
</desc>
</datatype>
<datatype>
<name name="timestamp"></name>
<desc>
<p>See <seealso marker="#timestamp/0">
<c>erlang:timestamp/0</c></seealso>.</p>
</desc>
</datatype>
<datatype>
<name name="time_unit"></name>
<desc>
<marker id="type_time_unit"/>
<p>Supported time unit representations:</p>
<taglist>
<tag><c>PartsPerSecond :: integer() >= 1</c></tag>
<item>
<p>Time unit expressed in parts per second. That is,
the time unit equals <c>1/PartsPerSecond</c> second.</p>
</item>
<tag><c>second</c></tag>
<item>
<p>Symbolic representation of the time unit
represented by the integer <c>1</c>.</p>
</item>
<tag><c>millisecond</c></tag>
<item>
<p>Symbolic representation of the time unit
represented by the integer <c>1000</c>.</p>
</item>
<tag><c>microsecond</c></tag>
<item>
<p>Symbolic representation of the time unit
represented by the integer <c>1000000</c>.</p>
</item>
<tag><c>nanosecond</c></tag>
<item>
<p>Symbolic representation of the time unit
represented by the integer <c>1000000000</c>.</p>
</item>
<tag><c>native</c></tag>
<item>
<p>Symbolic representation of the native time unit
used by the Erlang runtime system.</p>
<p>The <c>native</c> time unit is determined at
runtime system start, and remains the same until
the runtime system terminates. If a runtime system
is stopped and then started again (even on the same
machine), the <c>native</c> time unit of the new
runtime system instance can differ from the
<c>native</c> time unit of the old runtime system
instance.</p>
<p>One can get an approximation of the <c>native</c>
time unit by calling
<seealso marker="erlang:convert_time_unit/3">
<c>erlang:convert_time_unit(1, second, native)</c></seealso>.
The result equals the number
of whole <c>native</c> time units per second. If
the number of <c>native</c> time units per second does not
add up to a whole number, the result is rounded downwards.</p>
<note>
<p>The value of the <c>native</c> time unit gives
you more or less no information about the
quality of time values. It sets a limit for the
<seealso marker="time_correction#Time_Resolution">
resolution</seealso> and for the
<seealso marker="time_correction#Time_Precision">
precision</seealso> of time values,
but it gives no information about the
<seealso marker="time_correction#Time_Accuracy">
accuracy</seealso> of time values. The resolution of
the <c>native</c> time unit and the resolution of time
values can differ significantly.</p>
</note>
</item>
<tag><c>perf_counter</c></tag>
<item>
<p>Symbolic representation of the performance counter
time unit used by the Erlang runtime system.</p>
<p>The <c>perf_counter</c> time unit behaves much in the same way
as the <c>native</c> time unit. That is, it can differ between
runtime restarts. To get values of this type, call
<seealso marker="kernel:os#perf_counter/0">
<c>os:perf_counter/0</c></seealso>.</p>
</item>
<tag><seealso marker="#type_deprecated_time_unit"><c>deprecated_time_unit()</c></seealso></tag>
<item><p>
Deprecated symbolic representations kept for backwards-compatibility.
</p></item>
</taglist>
<p>The <c>time_unit/0</c> type can be extended.
To convert time values between time units, use
<seealso marker="#convert_time_unit/3">
<c>erlang:convert_time_unit/3</c></seealso>.</p>
</desc>
</datatype>
<datatype>
<name name="deprecated_time_unit"></name>
<desc><marker id="type_deprecated_time_unit"/>
<p>The <seealso marker="#type_time_unit"><c>time_unit()</c></seealso>
type also consist of the following <em>deprecated</em> symbolic
time units:</p>
<taglist>
<tag><c>seconds</c></tag>
<item><p>Same as <seealso marker="#type_time_unit"><c>second</c></seealso>.</p></item>
<tag><c>milli_seconds</c></tag>
<item><p>Same as <seealso marker="#type_time_unit"><c>millisecond</c></seealso>.</p></item>
<tag><c>micro_seconds</c></tag>
<item><p>Same as <seealso marker="#type_time_unit"><c>microsecond</c></seealso>.</p></item>
<tag><c>nano_seconds</c></tag>
<item><p>Same as <seealso marker="#type_time_unit"><c>nanosecond</c></seealso>.</p></item>
</taglist>
</desc>
</datatype>
</datatypes>
<funcs>
<func>
<name name="abs" arity="1" clause_i="1"/>
<name name="abs" arity="1" clause_i="2"/>
<fsummary>Arithmetical absolute value.</fsummary>
<type>
<v>Float = float()</v>
<v>Int = integer()</v>
</type>
<desc>
<p>Returns an integer or float that is the arithmetical
absolute value of <c><anno>Float</anno></c> or
<c><anno>Int</anno></c>, for example:</p>
<pre>
> <input>abs(-3.33).</input>
3.33
> <input>abs(-3).</input>
3</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="adler32" arity="1"/>
<fsummary>Compute adler32 checksum.</fsummary>
<desc>
<p>Computes and returns the adler32 checksum for
<c><anno>Data</anno></c>.</p>
</desc>
</func>
<func>
<name name="adler32" arity="2"/>
<fsummary>Compute adler32 checksum.</fsummary>
<desc>
<p>Continues computing the adler32 checksum by combining
the previous checksum, <c><anno>OldAdler</anno></c>, with
the checksum of <c><anno>Data</anno></c>.</p>
<p>The following code:</p>
<code>
X = erlang:adler32(Data1),
Y = erlang:adler32(X,Data2).</code>
<p>assigns the same value to <c>Y</c> as this:</p>
<code>
Y = erlang:adler32([Data1,Data2]).</code>
</desc>
</func>
<func>
<name name="adler32_combine" arity="3"/>
<fsummary>Combine two adler32 checksums.</fsummary>
<desc>
<p>Combines two previously computed adler32 checksums.
This computation requires the size of the data object for
the second checksum to be known.</p>
<p>The following code:</p>
<code>
Y = erlang:adler32(Data1),
Z = erlang:adler32(Y,Data2).</code>
<p>assigns the same value to <c>Z</c> as this:</p>
<code>
X = erlang:adler32(Data1),
Y = erlang:adler32(Data2),
Z = erlang:adler32_combine(X,Y,iolist_size(Data2)).</code>
</desc>
</func>
<func>
<name name="append_element" arity="2"/>
<fsummary>Append an extra element to a tuple.</fsummary>
<desc>
<p>Returns a new tuple that has one element more than
<c><anno>Tuple1</anno></c>, and contains the elements in
<c><anno>Tuple1</anno></c>
followed by <c><anno>Term</anno></c> as the last element.
Semantically equivalent to
<c>list_to_tuple(tuple_to_list(<anno>Tuple1</anno>) ++
[<anno>Term</anno>])</c>, but much faster. Example:</p>
<pre>
> <input>erlang:append_element({one, two}, three).</input>
{one,two,three}</pre>
</desc>
</func>
<func>
<name name="apply" arity="2"/>
<fsummary>Apply a function to an argument list.</fsummary>
<desc>
<p>Calls a fun, passing the elements in <c><anno>Args</anno></c>
as arguments.</p>
<p>If the number of elements in the arguments are known at
compile time, the call is better written as
<c><anno>Fun</anno>(Arg1, Arg2, ... ArgN)</c>.</p>
<warning>
<p>Earlier, <c><anno>Fun</anno></c> could also be specified as
<c>{Module, Function}</c>, equivalent to
<c>apply(Module, Function, Args)</c>. <em>This use is
deprecated and will stop working in a future release.</em></p>
</warning>
</desc>
</func>
<func>
<name name="apply" arity="3"/>
<fsummary>Apply a function to an argument list.</fsummary>
<desc>
<p>Returns the result of applying <c>Function</c> in
<c><anno>Module</anno></c> to <c><anno>Args</anno></c>.
The applied function must
be exported from <c>Module</c>. The arity of the function is
the length of <c>Args</c>. Example:</p>
<pre>
> <input>apply(lists, reverse, [[a, b, c]]).</input>
[c,b,a]
> <input>apply(erlang, atom_to_list, ['Erlang']).</input>
"Erlang"</pre>
<p>If the number of arguments are known at compile time,
the call is better written as
<c><anno>Module</anno>:<anno>Function</anno>(Arg1, Arg2, ...,
ArgN)</c>.</p>
<p>Failure: <seealso marker="kernel:error_handler#undefined_function/3">
<c>error_handler:undefined_function/3</c></seealso> is called
if the applied function is not exported. The error handler
can be redefined (see
<seealso marker="#process_flag/2"><c>process_flag/2</c></seealso>).
If <c>error_handler</c> is undefined, or if the user has
redefined the default <c>error_handler</c> so the replacement
module is undefined, an error with reason <c>undef</c>
is generated.</p>
</desc>
</func>
<func>
<name name="atom_to_binary" arity="2"/>
<fsummary>Return the binary representation of an atom.</fsummary>
<desc>
<p>Returns a binary corresponding to the text
representation of <c><anno>Atom</anno></c>.
If <c><anno>Encoding</anno></c>
is <c>latin1</c>, one byte exists for each character
in the text representation. If <c><anno>Encoding</anno></c> is
<c>utf8</c> or
<c>unicode</c>, the characters are encoded using UTF-8 where
characters may require multiple bytes.</p>
<note>
<p>As from Erlang/OTP 20, atoms can contain any Unicode character
and <c>atom_to_binary(<anno>Atom</anno>, latin1)</c> may fail if the
text representation for <c><anno>Atom</anno></c> contains a Unicode
character > 255.</p>
</note>
<p>Example:</p>
<pre>
> <input>atom_to_binary('Erlang', latin1).</input>
<<"Erlang">></pre>
</desc>
</func>
<func>
<name name="atom_to_list" arity="1"/>
<fsummary>Text representation of an atom.</fsummary>
<desc>
<p>Returns a string corresponding to the text
representation of <c><anno>Atom</anno></c>, for example:</p>
<pre>
> <input>atom_to_list('Erlang').</input>
"Erlang"</pre>
</desc>
</func>
<func>
<name name="binary_part" arity="2"/>
<fsummary>Extract a part of a binary.</fsummary>
<desc>
<p>Extracts the part of the binary described by
<c><anno>PosLen</anno></c>.</p>
<p>Negative length can be used to extract bytes at the end
of a binary, for example:</p>
<code>
1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary_part(Bin,{byte_size(Bin), -5}).
<<6,7,8,9,10>></code>
<p>Failure: <c>badarg</c> if <c><anno>PosLen</anno></c> in any way
references outside the binary.</p>
<p><c><anno>Start</anno></c> is zero-based, that is:</p>
<code>
1> Bin = <<1,2,3>>
2> binary_part(Bin,{0,2}).
<<1,2>></code>
<p>For details about the <c><anno>PosLen</anno></c> semantics, see
<seealso marker="stdlib:binary"><c>binary(3)</c></seealso>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="binary_part" arity="3"/>
<fsummary>Extract a part of a binary.</fsummary>
<desc>
<p>The same as <c>binary_part(<anno>Subject</anno>,
{<anno>Start</anno>, <anno>Length</anno>})</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="binary_to_atom" arity="2"/>
<fsummary>Convert from text representation to an atom.</fsummary>
<desc>
<p>Returns the atom whose text representation is
<c><anno>Binary</anno></c>.
If <c><anno>Encoding</anno></c> is <c>latin1</c>, no
translation of bytes in the binary is done.
If <c><anno>Encoding</anno></c>
is <c>utf8</c> or <c>unicode</c>, the binary must contain
valid UTF-8 sequences.</p>
<note>
<p>As from Erlang/OTP 20, <c>binary_to_atom(<anno>Binary</anno>, utf8)</c>
is capable of encoding any Unicode character. Earlier versions would
fail if the binary contained Unicode characters > 255.
For more information about Unicode support in atoms, see the
<seealso marker="erl_ext_dist#utf8_atoms">note on UTF-8
encoded atoms</seealso>
in section "External Term Format" in the User's Guide.</p>
</note>
<p>Examples:</p>
<pre>
> <input>binary_to_atom(<<"Erlang">>, latin1).</input>
'Erlang'
> <input>binary_to_atom(<<1024/utf8>>, utf8).</input>
'Ѐ'</pre>
</desc>
</func>
<func>
<name name="binary_to_existing_atom" arity="2"/>
<fsummary>Convert from text representation to an atom.</fsummary>
<desc>
<p>As
<seealso marker="#binary_to_atom/2"><c>binary_to_atom/2</c></seealso>,
but the atom must exist.</p>
<p>Failure: <c>badarg</c> if the atom does not exist.</p>
<note>
<p>Note that the compiler may optimize away atoms. For
example, the compiler will rewrite
<c>atom_to_list(some_atom)</c> to <c>"some_atom"</c>. If
that expression is the only mention of the atom
<c>some_atom</c> in the containing module, the atom will not
be created when the module is loaded, and a subsequent call
to <c>binary_to_existing_atom(<<"some_atom">>, utf8)</c>
will fail.</p>
</note>
</desc>
</func>
<func>
<name name="binary_to_float" arity="1"/>
<fsummary>Convert from text representation to a float.</fsummary>
<desc>
<p>Returns the float whose text representation is
<c><anno>Binary</anno></c>, for example:</p>
<pre>
> <input>binary_to_float(<<"2.2017764e+0">>).</input>
2.2017764</pre>
<p>Failure: <c>badarg</c> if <c><anno>Binary</anno></c> contains a bad
representation of a float.</p>
</desc>
</func>
<func>
<name name="binary_to_integer" arity="1"/>
<fsummary>Convert from text representation to an integer.</fsummary>
<desc>
<p>Returns an integer whose text representation is
<c><anno>Binary</anno></c>, for example:</p>
<pre>
> <input>binary_to_integer(<<"123">>).</input>
123</pre>
<p>Failure: <c>badarg</c> if <c><anno>Binary</anno></c> contains a bad
representation of an integer.</p>
</desc>
</func>
<func>
<name name="binary_to_integer" arity="2"/>
<fsummary>Convert from text representation to an integer.</fsummary>
<desc>
<p>Returns an integer whose text representation in base
<c><anno>Base</anno></c> is <c><anno>Binary</anno></c>, for
example:</p>
<pre>
> <input>binary_to_integer(<<"3FF">>, 16).</input>
1023</pre>
<p>Failure: <c>badarg</c> if <c><anno>Binary</anno></c> contains a bad
representation of an integer.</p>
</desc>
</func>
<func>
<name name="binary_to_list" arity="1"/>
<fsummary>Convert a binary to a list.</fsummary>
<desc>
<p>Returns a list of integers corresponding to the bytes of
<c><anno>Binary</anno></c>.</p>
</desc>
</func>
<func>
<name name="binary_to_list" arity="3"/>
<fsummary>Convert part of a binary to a list.</fsummary>
<type_desc variable="Start">1..byte_size(<c><anno>Binary</anno></c>)
</type_desc>
<desc>
<p>As <c>binary_to_list/1</c>, but returns a list of integers
corresponding to the bytes from position <c><anno>Start</anno></c> to
position <c><anno>Stop</anno></c> in <c><anno>Binary</anno></c>.
The positions in the
binary are numbered starting from 1.</p>
<note>
<p><em>The one-based indexing for binaries used by
this function is deprecated.</em> New code is to use
<seealso marker="stdlib:binary#bin_to_list/3">
<c>binary:bin_to_list/3</c></seealso>
in STDLIB instead. All functions in module
<c>binary</c> consistently use zero-based indexing.</p>
</note>
</desc>
</func>
<func>
<name name="binary_to_term" arity="1"/>
<fsummary>Decode an Erlang external term format binary.</fsummary>
<desc>
<p>Returns an Erlang term that is the result of decoding
binary object <c><anno>Binary</anno></c>, which must be encoded
according to the <seealso marker="erts:erl_ext_dist">
Erlang external term format</seealso>.</p>
<pre>
> <input>Bin = term_to_binary(hello).</input>
<<131,100,0,5,104,101,108,108,111>>
> <input>hello = binary_to_term(Bin).</input>
hello
</pre>
<warning>
<p>When decoding binaries from untrusted sources,
consider using <c>binary_to_term/2</c> to prevent Denial
of Service attacks.</p>
</warning>
<p>See also
<seealso marker="#term_to_binary/1"><c>term_to_binary/1</c></seealso>
and <seealso marker="#binary_to_term/2">
<c>binary_to_term/2</c></seealso>.</p>
</desc>
</func>
<func>
<name name="binary_to_term" arity="2"/>
<fsummary>Decode an Erlang external term format binary.</fsummary>
<desc>
<p>As <c>binary_to_term/1</c>, but takes options that affect decoding
of the binary.</p>
<p>Option:</p>
<taglist>
<tag><c>safe</c></tag>
<item>
<p>Use this option when receiving binaries from an untrusted
source.</p>
<p>When enabled, it prevents decoding data that can be used to
attack the Erlang system. In the event of receiving unsafe
data, decoding fails with a <c>badarg</c> error.</p>
<p>This prevents creation of new atoms directly,
creation of new atoms indirectly (as they are embedded in
certain structures, such as process identifiers,
refs, and funs), and
creation of new external function references.
None of those resources are garbage collected, so unchecked
creation of them can exhaust available memory.</p>
</item>
</taglist>
<p>Failure: <c>badarg</c> if <c>safe</c> is specified and unsafe
data is decoded.</p>
<pre>
> <input>binary_to_term(<<131,100,0,5,104,101,108,108,111>>, [safe]).</input>
** exception error: bad argument
> <input>hello.</input>
hello
> <input>binary_to_term(<<131,100,0,5,104,101,108,108,111>>, [safe]).</input>
hello
</pre>
<p>See also
<seealso marker="#term_to_binary/1"><c>term_to_binary/1</c></seealso>,
<seealso marker="#binary_to_term/1">
<c>binary_to_term/1</c></seealso>, and
<seealso marker="#list_to_existing_atom/1">
<c>list_to_existing_atom/1</c></seealso>.</p>
</desc>
</func>
<func>
<name name="bit_size" arity="1"/>
<fsummary>Return the size of a bitstring.</fsummary>
<desc>
<p>Returns an integer that is the size in bits of
<c><anno>Bitstring</anno></c>, for example:</p>
<pre>
> <input>bit_size(<<433:16,3:3>>).</input>
19
> <input>bit_size(<<1,2,3>>).</input>
24</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="bitstring_to_list" arity="1"/>
<fsummary>Convert a bitstring to a list.</fsummary>
<desc>
<p>Returns a list of integers corresponding to the bytes of
<c><anno>Bitstring</anno></c>. If the number of bits in the binary
is not divisible by 8, the last element of the list is a bitstring
containing the remaining 1-7 bits.</p>
</desc>
</func>
<func>
<name name="bump_reductions" arity="1"/>
<fsummary>Increment the reduction counter.</fsummary>
<desc>
<p>This implementation-dependent function increments
the reduction counter for the calling process. In the Beam
emulator, the reduction counter is normally incremented by
one for each function and BIF call. A context switch is
forced when the counter reaches the maximum number of
reductions for a process (2000 reductions in Erlang/OTP R12B).</p>
<warning>
<p>This BIF can be removed in a future version of the Beam
machine without prior warning. It is unlikely to be
implemented in other Erlang implementations.</p>
</warning>
</desc>
</func>
<func>
<name name="byte_size" arity="1"/>
<fsummary>Return the size of a bitstring (or binary).</fsummary>
<desc>
<p>Returns an integer that is the number of bytes needed to
contain <c><anno>Bitstring</anno></c>. That is, if the number of bits
in <c><anno>Bitstring</anno></c> is not divisible by 8, the resulting
number of bytes is rounded <em>up</em>. Examples:</p>
<pre>
> <input>byte_size(<<433:16,3:3>>).</input>
3
> <input>byte_size(<<1,2,3>>).</input>
3</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="cancel_timer" arity="1"/>
<fsummary>Cancel a timer.</fsummary>
<desc>
<p>Cancels a timer. The same as calling
<seealso marker="#cancel_timer/2">
<c>erlang:cancel_timer(TimerRef, [])</c></seealso>.</p>
</desc>
</func>
<func>
<name name="cancel_timer" arity="2"/>
<fsummary>Cancel a timer.</fsummary>
<desc>
<p>Cancels a timer that has been created by
<seealso marker="#start_timer/4">
<c>erlang:start_timer</c></seealso> or
<seealso marker="#send_after/4"><c>erlang:send_after</c></seealso>.
<c><anno>TimerRef</anno></c> identifies the timer, and
was returned by the BIF that created the timer.</p>
<p><c><anno>Option</anno></c>s:</p>
<taglist>
<tag><c>{async, Async}</c></tag>
<item>
<p>Asynchronous request for cancellation. <c>Async</c>
defaults to <c>false</c>, which causes the
cancellation to be performed synchronously. When
<c>Async</c> is set to <c>true</c>, the cancel
operation is performed asynchronously. That is,
<c>cancel_timer()</c> sends an asynchronous
request for cancellation to the timer service that
manages the timer, and then returns <c>ok</c>.</p>
</item>
<tag><c>{info, Info}</c></tag>
<item>
<p>Requests information about the <c><anno>Result</anno></c>
of the cancellation. <c>Info</c> defaults to <c>true</c>,
which means the <c><anno>Result</anno></c> is
given. When <c>Info</c> is set to <c>false</c>, no
information about the result of the cancellation
is given.</p>
<list type="bulleted">
<item>
<p>When <c>Async</c> is <c>false</c>:
if <c>Info</c> is <c>true</c>, the <c>Result</c> is
returned by <c>erlang:cancel_timer()</c>. otherwise
<c>ok</c> is returned.</p>
</item>
<item>
<p>When <c>Async</c> is <c>true</c>:
if <c>Info</c> is <c>true</c>, a message on the form
<c>{cancel_timer, <anno>TimerRef</anno>,
<anno>Result</anno>}</c> is sent to the
caller of <c>erlang:cancel_timer()</c> when the
cancellation operation has been performed, otherwise
no message is sent.</p>
</item>
</list>
</item>
</taglist>
<p>More <c><anno>Option</anno></c>s may be added in the future.</p>
<p>If <c><anno>Result</anno></c> is an integer, it represents
the time in milliseconds left until the canceled timer would
have expired.</p>
<p>If <c><anno>Result</anno></c> is <c>false</c>, a
timer corresponding to <c><anno>TimerRef</anno></c> could not
be found. This can be either because the timer had expired,
already had been canceled, or because <c><anno>TimerRef</anno></c>
never corresponded to a timer. Even if the timer had expired,
it does not tell you if the time-out message has
arrived at its destination yet.</p>
<note>
<p>The timer service that manages the timer can be co-located
with another scheduler than the scheduler that the calling
process is executing on. If so, communication
with the timer service takes much longer time than if it
is located locally. If the calling process is in critical
path, and can do other things while waiting for the result
of this operation, or is not interested in the result of
the operation, you want to use option <c>{async, true}</c>.
If using option <c>{async, false}</c>, the calling
process blocks until the operation has been performed.</p>
</note>
<p>See also
<seealso marker="#send_after/4"><c>erlang:send_after/4</c></seealso>,
<seealso marker="#start_timer/4">
<c>erlang:start_timer/4</c></seealso>, and
<seealso marker="#read_timer/2">
<c>erlang:read_timer/2</c></seealso>.</p>
</desc>
</func>
<func>
<name name="ceil" arity="1"/>
<fsummary>Returns the smallest integer not less than the argument</fsummary>
<desc>
<p>Returns the smallest integer not less than
<c><anno>Number</anno></c>.
For example:</p>
<pre>
> <input>ceil(5.5).</input>
6</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="check_old_code" arity="1"/>
<fsummary>Check if a module has old code.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Module</anno></c> has old code,
otherwise <c>false</c>.</p>
<p>See also <seealso marker="kernel:code">
<c>code(3)</c></seealso>.</p>
</desc>
</func>
<func>
<name name="check_process_code" arity="2"/>
<fsummary>Check if a process executes old code for a module.</fsummary>
<desc>
<p>The same as
<seealso marker="#check_process_code/3">
<c>check_process_code(<anno>Pid</anno>, <anno>Module</anno>, [])</c>
</seealso>.</p>
</desc>
</func>
<func>
<name name="check_process_code" arity="3"/>
<fsummary>Check if a process executes old code for a module.</fsummary>
<desc>
<p>Checks if the node local process identified by
<c><anno>Pid</anno></c>
executes old code for <c><anno>Module</anno></c>.</p>
<p><c><anno>Option</anno></c>s:</p>
<taglist>
<tag><c>{allow_gc, boolean()}</c></tag>
<item>
<p>Determines if garbage collection is allowed when performing
the operation. If <c>{allow_gc, false}</c> is passed, and
a garbage collection is needed to determine the
result of the operation, the operation is aborted (see
information on <c><anno>CheckResult</anno></c> below).
The default is to allow garbage collection, that is,
<c>{allow_gc, true}</c>.</p>
</item>
<tag><c>{async, RequestId}</c></tag>
<item>
<p>The function <c>check_process_code/3</c> returns
the value <c>async</c> immediately after the request
has been sent. When the request has been processed, the
process that called this function is passed a
message on the form <c>{check_process_code, <anno>RequestId</anno>,
<anno>CheckResult</anno>}</c>.</p>
</item>
</taglist>
<p>If <c><anno>Pid</anno></c> equals <c>self()</c>, and
no <c>async</c> option has been passed, the operation
is performed at once. Otherwise a request for
the operation is sent to the process identified by
<c><anno>Pid</anno></c>, and is handled when
appropriate. If no <c>async</c> option has been passed,
the caller blocks until <c><anno>CheckResult</anno></c>
is available and can be returned.</p>
<p><c><anno>CheckResult</anno></c> informs about the result of
the request as follows:</p>
<taglist>
<tag><c>true</c></tag>
<item>
<p>The process identified by <c><anno>Pid</anno></c>
executes old code for <c><anno>Module</anno></c>.
That is, the current call of the process executes old
code for this module, or the process has references
to old code for this module, or the process contains
funs that references old code for this module.</p>
</item>
<tag><c>false</c></tag>
<item>
<p>The process identified by <c><anno>Pid</anno></c> does
not execute old code for <c><anno>Module</anno></c>.</p>
</item>
<tag><c>aborted</c></tag>
<item>
<p>The operation was aborted, as the process needed to
be garbage collected to determine the operation result,
and the operation was requested
by passing option <c>{allow_gc, false}</c>.</p>
</item>
</taglist>
<note>
<p>
Up until ERTS version 8.*, the check process code operation
checks for all types of references to the old code. That is,
direct references (e.g. return addresses on the process
stack), indirect references (<c>fun</c>s in process
context), and references to literals in the code.
</p>
<p>
As of ERTS version 9.0, the check process code operation
only checks for direct references to the code. Indirect
references via <c>fun</c>s will be ignored. If such
<c>fun</c>s exist and are used after a purge of the old
code, an exception will be raised upon usage (same as
the case when the <c>fun</c> is received by the process
after the purge). Literals will be taken care of (copied)
at a later stage. This behavior can as of ERTS version
8.1 be enabled when
<seealso marker="doc/installation_guide:INSTALL#Advanced-configuration-and-build-of-ErlangOTP_Configuring">building OTP</seealso>,
and will automatically be enabled if dirty scheduler
support is enabled.
</p>
</note>
<p>See also <seealso marker="kernel:code">
<c>code(3)</c></seealso>.</p>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>If <c><anno>Pid</anno></c> is not a node local process
identifier.
</item>
<tag><c>badarg</c></tag>
<item>If <c><anno>Module</anno></c> is not an atom.
</item>
<tag><c>badarg</c></tag>
<item>If <c><anno>OptionList</anno></c> is an invalid list of options.
</item>
</taglist>
</desc>
</func>
<func>
<name name="convert_time_unit" arity="3"/>
<fsummary>Convert time unit of a time value.</fsummary>
<desc>
<p>Converts the <c><anno>Time</anno></c> value of time unit
<c><anno>FromUnit</anno></c> to the corresponding
<c><anno>ConvertedTime</anno></c> value of time unit
<c><anno>ToUnit</anno></c>. The result is rounded
using the floor function.</p>
<warning>
<p>You can lose accuracy and precision when converting
between time units. To minimize such loss, collect all
data at <c>native</c> time unit and do the conversion on the end
result.</p>
</warning>
</desc>
</func>
<func>
<name name="crc32" arity="1"/>
<fsummary>Compute crc32 (IEEE 802.3) checksum.</fsummary>
<desc>
<p>Computes and returns the crc32 (IEEE 802.3 style) checksum
for <c><anno>Data</anno></c>.</p>
</desc>
</func>
<func>
<name name="crc32" arity="2"/>
<fsummary>Compute crc32 (IEEE 802.3) checksum.</fsummary>
<desc>
<p>Continues computing the crc32 checksum by combining
the previous checksum, <c><anno>OldCrc</anno></c>, with the checksum
of <c><anno>Data</anno></c>.</p>
<p>The following code:</p>
<code>
X = erlang:crc32(Data1),
Y = erlang:crc32(X,Data2).</code>
<p>assigns the same value to <c>Y</c> as this:</p>
<code>
Y = erlang:crc32([Data1,Data2]).</code>
</desc>
</func>
<func>
<name name="crc32_combine" arity="3"/>
<fsummary>Combine two crc32 (IEEE 802.3) checksums.</fsummary>
<desc>
<p>Combines two previously computed crc32 checksums.
This computation requires the size of the data object for
the second checksum to be known.</p>
<p>The following code:</p>
<code>
Y = erlang:crc32(Data1),
Z = erlang:crc32(Y,Data2).</code>
<p>assigns the same value to <c>Z</c> as this:</p>
<code>
X = erlang:crc32(Data1),
Y = erlang:crc32(Data2),
Z = erlang:crc32_combine(X,Y,iolist_size(Data2)).</code>
</desc>
</func>
<func>
<name name="date" arity="0"/>
<fsummary>Current date.</fsummary>
<desc>
<p>Returns the current date as <c>{Year, Month, Day}</c>.</p>
<p>The time zone and Daylight Saving Time correction depend on
the underlying OS. Example:</p>
<pre>
> <input>date().</input>
{1995,2,19}</pre>
</desc>
</func>
<func>
<name name="decode_packet" arity="3"/>
<fsummary>Extract a protocol packet from a binary.</fsummary>
<desc>
<p>Decodes the binary <c><anno>Bin</anno></c> according to the packet
protocol specified by <c><anno>Type</anno></c>. Similar to the packet
handling done by sockets with option
<c>{packet,<anno>Type</anno>}.</c></p>
<p>If an entire packet is contained in <c><anno>Bin</anno></c>, it is
returned together with the remainder of the binary as
<c>{ok,<anno>Packet</anno>,<anno>Rest</anno>}</c>.</p>
<p>If <c><anno>Bin</anno></c> does not contain the entire packet,
<c>{more,<anno>Length</anno>}</c> is returned.
<c><anno>Length</anno></c> is either the
expected <em>total size</em> of the packet, or <c>undefined</c>
if the expected packet size is unknown. <c>decode_packet</c>
can then be called again with more data added.</p>
<p>If the packet does not conform to the protocol format,
<c>{error,<anno>Reason</anno>}</c> is returned.</p>
<p><c>Type</c>s:</p>
<taglist>
<tag><c>raw | 0</c></tag>
<item>
<p>No packet handling is done. The entire binary is
returned unless it is empty.</p>
</item>
<tag><c>1 | 2 | 4</c></tag>
<item>
<p>Packets consist of a header specifying the number of
bytes in the packet, followed by that number of bytes.
The length of the header can be one, two, or four bytes;
the order of the bytes is big-endian. The header
is stripped off when the packet is returned.</p>
</item>
<tag><c>line</c></tag>
<item>
<p>A packet is a line-terminated by a delimiter byte,
default is the latin-1 newline character. The delimiter
byte is included in the returned packet unless the line
was truncated according to option <c>line_length</c>.</p>
</item>
<tag><c>asn1 | cdr | sunrm | fcgi | tpkt</c></tag>
<item>
<p>The header is <em>not</em> stripped off.</p>
<p>The meanings of the packet types are as follows:</p>
<taglist>
<tag><c>asn1</c> - ASN.1 BER</tag><item></item>
<tag><c>sunrm</c> - Sun's RPC encoding</tag><item></item>
<tag><c>cdr</c> - CORBA (GIOP 1.1)</tag><item></item>
<tag><c>fcgi</c> - Fast CGI</tag><item></item>
<tag><c>tpkt</c> - TPKT format [RFC1006]</tag><item></item>
</taglist>
</item>
<tag><c>http | httph | http_bin | httph_bin</c></tag>
<item>
<p>The Hypertext Transfer Protocol. The packets
are returned with the format according to
<c><anno>HttpPacket</anno></c> described earlier.
A packet is either a
request, a response, a header, or an end of header
mark. Invalid lines are returned as
<c><anno>HttpError</anno></c>.</p>
<p>Recognized request methods and header fields are returned
as atoms. Others are returned as strings. Strings of
unrecognized header fields are formatted with only
capital letters first and after hyphen characters, for
example, <c>"Sec-Websocket-Key"</c>.</p>
<p>The protocol type <c>http</c> is only to be used for
the first line when an <c><anno>HttpRequest</anno></c> or an
<c><anno>HttpResponse</anno></c> is expected.
The following calls are to use <c>httph</c> to get
<c><anno>HttpHeader</anno></c>s until
<c>http_eoh</c> is returned, which marks the end of the
headers and the beginning of any following message body.</p>
<p>The variants <c>http_bin</c> and <c>httph_bin</c> return
strings (<c>HttpString</c>) as binaries instead of lists.</p>
</item>
</taglist>
<p>Options:</p>
<taglist>
<tag><c>{packet_size, integer() >= 0}</c></tag>
<item><p>Sets the maximum allowed size of the packet body.
If the packet header indicates that the length of the
packet is longer than the maximum allowed length, the
packet is considered invalid. Defaults to 0, which means
no size limit.</p>
</item>
<tag><c>{line_length, integer() >= 0}</c></tag>
<item>
<p>For packet type <c>line</c>, lines longer than
the indicated length are truncated.</p>
<p>Option <c>line_length</c> also applies to <c>http*</c>
packet types as an alias for option <c>packet_size</c>
if <c>packet_size</c> itself is not set. This use is
only intended for backward compatibility.</p>
</item>
<tag><c>{line_delimiter, 0 =< byte() =< 255}</c></tag>
<item><p>For packet type <c>line</c>, sets the delimiting byte.
Default is the latin-1 character <c>$\n</c>.</p>
</item>
</taglist>
<p>Examples:</p>
<pre>
> <input>erlang:decode_packet(1,<<3,"abcd">>,[]).</input>
{ok,<<"abc">>,<<"d">>}
> <input>erlang:decode_packet(1,<<5,"abcd">>,[]).</input>
{more,6}</pre>
</desc>
</func>
<func>
<name name="delete_element" arity="2"/>
<fsummary>Delete element at index in a tuple.</fsummary>
<type_desc variable="Index">1..tuple_size(<anno>Tuple1</anno>)</type_desc>
<desc>
<p>Returns a new tuple with element at <c><anno>Index</anno></c>
removed from tuple <c><anno>Tuple1</anno></c>, for example:</p>
<pre>
> <input>erlang:delete_element(2, {one, two, three}).</input>
{one,three}</pre>
</desc>
</func>
<func>
<name name="delete_module" arity="1"/>
<fsummary>Make the current code for a module old.</fsummary>
<desc>
<p>Makes the current code for <c><anno>Module</anno></c> become old
code and deletes all references for this module from the export table.
Returns <c>undefined</c> if the module does not exist,
otherwise <c>true</c>.</p>
<warning>
<p>This BIF is intended for the code server (see
<seealso marker="kernel:code"><c>code(3)</c></seealso>)
and is not to be used elsewhere.</p>
</warning>
<p>Failure: <c>badarg</c> if there already is an old version of
<c>Module</c>.</p>
</desc>
</func>
<func>
<name name="demonitor" arity="1"/>
<fsummary>Stop monitoring.</fsummary>
<desc>
<p>If <c><anno>MonitorRef</anno></c> is a reference that the
calling process obtained by calling
<seealso marker="#monitor/2"><c>monitor/2</c></seealso>,
this monitoring is turned off. If the monitoring is already
turned off, nothing happens.</p>
<p>Once <c>demonitor(<anno>MonitorRef</anno>)</c> has returned, it is
guaranteed that no <c>{'DOWN',
<anno>MonitorRef</anno>, _, _, _}</c> message,
because of the monitor, will be placed in the caller message queue
in the future. However, a <c>{'DOWN',
<anno>MonitorRef</anno>, _, _, _}</c> message
can have been placed in the caller message queue before
the call. It is therefore usually advisable
to remove such a <c>'DOWN'</c> message from the message queue
after monitoring has been stopped.
<seealso marker="#demonitor/2">
<c>demonitor(<anno>MonitorRef</anno>, [flush])</c></seealso>
can be used instead of <c>demonitor(<anno>MonitorRef</anno>)</c>
if this cleanup is wanted.</p>
<note>
<p>Before Erlang/OTP R11B (ERTS 5.5) <c>demonitor/1</c>
behaved completely asynchronously, that is, the monitor was active
until the "demonitor signal" reached the monitored entity. This
had one undesirable effect. You could never know when
you were guaranteed <em>not</em> to receive a <c>DOWN</c> message
because of the monitor.</p>
<p>The current behavior can be viewed as two combined operations:
asynchronously send a "demonitor signal" to the monitored entity
and ignore any future results of the monitor.</p>
</note>
<p>Failure: It is an error if <c><anno>MonitorRef</anno></c> refers to a
monitoring started by another process. Not all such cases are
cheap to check. If checking is cheap, the call fails with
<c>badarg</c>, for example if <c><anno>MonitorRef</anno></c> is a
remote reference.</p>
</desc>
</func>
<func>
<name name="demonitor" arity="2"/>
<fsummary>Stop monitoring.</fsummary>
<desc>
<p>The returned value is <c>true</c> unless <c>info</c> is part
of <c><anno>OptionList</anno></c>.</p>
<p><c>demonitor(<anno>MonitorRef</anno>, [])</c> is equivalent to
<seealso marker="#demonitor/1">
<c>demonitor(<anno>MonitorRef</anno>)</c></seealso>.</p>
<p><c><anno>Option</anno></c>s:</p>
<taglist>
<tag><c>flush</c></tag>
<item>
<p>Removes (one) <c>{_,
<anno>MonitorRef</anno>, _, _, _}</c> message,
if there is one, from the caller message queue after
monitoring has been stopped.</p>
<p>Calling <c>demonitor(<anno>MonitorRef</anno>, [flush])</c>
is equivalent to the following, but more efficient:</p>
<code type="none">
demonitor(MonitorRef),
receive
{_, MonitorRef, _, _, _} ->
true
after 0 ->
true
end</code>
</item>
<tag><c>info</c></tag>
<item>
<p>The returned value is one of the following:</p>
<taglist>
<tag><c>true</c></tag>
<item><p>The monitor was found and removed. In this case,
no <c>'DOWN'</c> message corresponding to this
monitor has been delivered and will not be delivered.</p>
</item>
<tag><c>false</c></tag>
<item><p>The monitor was not found and could not be removed.
This probably because someone already has placed a
<c>'DOWN'</c> message corresponding to this monitor
in the caller message queue.</p>
</item>
</taglist>
<p>If option <c>info</c> is combined with option <c>flush</c>,
<c>false</c> is returned if a flush was needed,
otherwise <c>true</c>.</p>
</item>
</taglist>
<note>
<p>More options can be added in a future release.</p>
</note>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>If <c><anno>OptionList</anno></c> is not a list.
</item>
<tag><c>badarg</c></tag>
<item>If <c><anno>Option</anno></c> is an invalid option.
</item>
<tag><c>badarg</c></tag>
<item>The same failure as for
<seealso marker="#demonitor/1"><c>demonitor/1</c></seealso>.
</item>
</taglist>
</desc>
</func>
<func>
<name name="disconnect_node" arity="1"/>
<fsummary>Force the disconnection of a node.</fsummary>
<desc>
<p>Forces the disconnection of a node. This appears to
the node <c><anno>Node</anno></c> as if the local node has crashed.
This BIF is mainly used in the Erlang network authentication
protocols.</p>
<p>Returns <c>true</c> if disconnection succeeds,
otherwise <c>false</c>. If the local node is not alive,
<c>ignored</c> is returned.</p>
</desc>
</func>
<func>
<name name="display" arity="1"/>
<fsummary>Print a term on standard output.</fsummary>
<desc>
<p>Prints a text representation of <c><anno>Term</anno></c> on the
standard output.</p>
<warning>
<p>This BIF is intended for debugging only.</p>
</warning>
</desc>
</func>
<func>
<name name="element" arity="2"/>
<fsummary>Return the Nth element of a tuple.</fsummary>
<type_desc variable="N">1..tuple_size(<anno>Tuple</anno>)</type_desc>
<desc>
<p>Returns the <c><anno>N</anno></c>th element (numbering from 1) of
<c><anno>Tuple</anno></c>, for example:</p>
<pre>
> <input>element(2, {a, b, c}).</input>
b</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="erase" arity="0"/>
<fsummary>Return and delete the process dictionary.</fsummary>
<desc>
<p>Returns the process dictionary and deletes it, for
example:</p>
<pre>
> <input>put(key1, {1, 2, 3}),</input>
<input>put(key2, [a, b, c]),</input>
<input>erase().</input>
[{key1,{1,2,3}},{key2,[a,b,c]}]</pre>
</desc>
</func>
<func>
<name name="erase" arity="1"/>
<fsummary>Return and delete a value from the process dictionary.
</fsummary>
<desc>
<p>Returns the value <c><anno>Val</anno></c> associated with
<c><anno>Key</anno></c> and deletes it from the process dictionary.
Returns <c>undefined</c> if no value is associated with
<c><anno>Key</anno></c>. Example:</p>
<pre>
> <input>put(key1, {merry, lambs, are, playing}),</input>
<input>X = erase(key1),</input>
<input>{X, erase(key1)}.</input>
{{merry,lambs,are,playing},undefined}</pre>
</desc>
</func>
<func>
<name name="error" arity="1"/>
<fsummary>Stop execution with a specified reason.</fsummary>
<desc>
<p>Stops the execution of the calling process with the reason
<c><anno>Reason</anno></c>, where <c><anno>Reason</anno></c>
is any term. The exit reason is
<c>{<anno>Reason</anno>, Where}</c>, where <c>Where</c>
is a list of the functions most recently called (the current
function first). As evaluating this function causes
the process to terminate, it has no return value. Example:</p>
<pre>
> <input>catch error(foobar).</input>
{'EXIT',{foobar,[{erl_eval,do_apply,5},
{erl_eval,expr,5},
{shell,exprs,6},
{shell,eval_exprs,6},
{shell,eval_loop,3}]}}</pre>
</desc>
</func>
<func>
<name name="error" arity="2"/>
<fsummary>Stop execution with a specified reason.</fsummary>
<desc>
<p>Stops the execution of the calling process with the reason
<c><anno>Reason</anno></c>, where <c><anno>Reason</anno></c>
is any term. The exit reason is
<c>{<anno>Reason</anno>, Where}</c>, where <c>Where</c>
is a list of the functions most recently called (the current
function first). <c><anno>Args</anno></c> is expected to be the
list of arguments for the current function; in Beam it is used
to provide the arguments for the current function in
the term <c>Where</c>. As evaluating this function causes
the process to terminate, it has no return value.</p>
</desc>
</func>
<func>
<name name="exit" arity="1"/>
<fsummary>Stop execution with a specified reason.</fsummary>
<desc>
<p>Stops the execution of the calling process with exit reason
<c><anno>Reason</anno></c>, where <c><anno>Reason</anno></c>
is any term. As
evaluating this function causes the process to terminate, it
has no return value. Example:</p>
<pre>
> <input>exit(foobar).</input>
** exception exit: foobar
> <input>catch exit(foobar).</input>
{'EXIT',foobar}</pre>
</desc>
</func>
<func>
<name name="exit" arity="2"/>
<fsummary>Send an exit signal to a process or a port.</fsummary>
<desc>
<p>Sends an exit signal with exit reason <c><anno>Reason</anno></c> to
the process or port identified by <c><anno>Pid</anno></c>.</p>
<p>The following behavior applies if <c><anno>Reason</anno></c>
is any term, except <c>normal</c> or <c>kill</c>:</p>
<list type="bulleted">
<item><p>If <c><anno>Pid</anno></c> is not trapping exits,
<c><anno>Pid</anno></c>
itself exits with exit reason <c><anno>Reason</anno></c>.</p>
</item>
<item><p>If <c><anno>Pid</anno></c> is trapping exits, the exit
signal is transformed into a message
<c>{'EXIT', From, <anno>Reason</anno>}</c>
and delivered to the message queue of <c><anno>Pid</anno></c>.</p>
</item>
<item><p><c>From</c> is the process identifier of the process
that sent the exit signal. See also
<seealso marker="#process_flag/2">
<c>process_flag/2</c></seealso>.</p>
</item>
</list>
<p>If <c><anno>Reason</anno></c> is the atom <c>normal</c>,
<c><anno>Pid</anno></c>
does not exit. If it is trapping exits, the exit signal is
transformed into a message <c>{'EXIT', From, normal}</c>
and delivered to its message queue.</p>
<p>If <c><anno>Reason</anno></c> is the atom <c>kill</c>,
that is, if <c>exit(<anno>Pid</anno>, kill)</c> is called,
an untrappable exit signal is sent to <c><anno>Pid</anno></c>,
which unconditionally exits with exit reason <c>killed</c>.</p>
</desc>
</func>
<func>
<name name="external_size" arity="1"/>
<fsummary>Calculate the maximum size for a term encoded in the Erlang
external term format.</fsummary>
<desc>
<p>Calculates, without doing the encoding, the maximum byte size for
a term encoded in the Erlang external term format. The following
condition applies always:</p>
<pre>
> <input>Size1 = byte_size(term_to_binary(<anno>Term</anno>)),</input>
> <input>Size2 = erlang:external_size(<anno>Term</anno>),</input>
> <input>true = Size1 =< Size2.</input>
true</pre>
<p>This is equivalent to a call to:</p>
<code>
erlang:external_size(<anno>Term</anno>, [])</code>
</desc>
</func>
<func>
<name name="external_size" arity="2"/>
<fsummary>Calculate the maximum size for a term encoded in the Erlang
external term format.</fsummary>
<desc>
<p>Calculates, without doing the encoding, the maximum byte size for
a term encoded in the Erlang external term format. The following
condition applies always:</p>
<pre>
> <input>Size1 = byte_size(term_to_binary(<anno>Term</anno>, <anno>Options</anno>)),</input>
> <input>Size2 = erlang:external_size(<anno>Term</anno>, <anno>Options</anno>),</input>
> <input>true = Size1 =< Size2.</input>
true</pre>
<p>Option <c>{minor_version, <anno>Version</anno>}</c> specifies how
floats are encoded. For a detailed description, see
<seealso marker="#term_to_binary/2">
<c>term_to_binary/2</c></seealso>.</p>
</desc>
</func>
<func>
<name name="float" arity="1"/>
<fsummary>Convert a number to a float.</fsummary>
<desc>
<p>Returns a float by converting <c><anno>Number</anno></c> to a float,
for example:</p>
<pre>
> <input>float(55).</input>
55.0</pre>
<p>Allowed in guard tests.</p>
<note>
<p>If used on the top level in a guard, it tests whether the
argument is a floating point number; for clarity, use
<seealso marker="#is_float/1"><c>is_float/1</c></seealso>
instead.</p>
<p>When <c>float/1</c> is used in an expression in a guard,
such as '<c>float(A) == 4.0</c>', it converts a number as
described earlier.</p>
</note>
</desc>
</func>
<func>
<name name="float_to_binary" arity="1"/>
<fsummary>Text representation of a float.</fsummary>
<desc>
<p>The same as
<c>float_to_binary(<anno>Float</anno>,[{scientific,20}])</c>.</p>
</desc>
</func>
<func>
<name name="float_to_binary" arity="2"/>
<fsummary>Text representation of a float formatted using specified
options.</fsummary>
<desc>
<p>Returns a binary corresponding to the text
representation of <c><anno>Float</anno></c> using fixed decimal
point formatting. <c><anno>Options</anno></c> behaves in the same
way as <seealso marker="#float_to_list/2">
<c>float_to_list/2</c></seealso>. Examples:</p>
<pre>
> <input>float_to_binary(7.12, [{decimals, 4}]).</input>
<<"7.1200">>
> <input>float_to_binary(7.12, [{decimals, 4}, compact]).</input>
<<"7.12">></pre>
</desc>
</func>
<func>
<name name="float_to_list" arity="1"/>
<fsummary>Text representation of a float.</fsummary>
<desc>
<p>The same as
<c>float_to_list(<anno>Float</anno>,[{scientific,20}])</c>.</p>
</desc>
</func>
<func>
<name name="float_to_list" arity="2"/>
<fsummary>Text representation of a float formatted using specified
options.</fsummary>
<desc>
<p>Returns a string corresponding to the text representation
of <c>Float</c> using fixed decimal point formatting.</p>
<p>Available options:</p>
<list type="bulleted">
<item><p>If option <c>decimals</c> is specified, the returned value
contains at most <c>Decimals</c> number of digits past the
decimal point. If the number does not fit in the internal
static buffer of 256 bytes, the function throws <c>badarg</c>.</p>
</item>
<item><p>If option <c>compact</c> is specified, the trailing zeros
at the end of the list are truncated. This option is only
meaningful together with option <c>decimals</c>.</p>
</item>
<item><p>If option <c>scientific</c> is specified, the float is
formatted using scientific notation with <c>Decimals</c>
digits of precision.</p>
</item>
<item><p>If <c>Options</c> is <c>[]</c>, the function behaves as
<seealso marker="#float_to_list/1">
<c>float_to_list/1</c></seealso>.</p>
</item>
</list>
<p>Examples:</p>
<pre>
> <input>float_to_list(7.12, [{decimals, 4}]).</input>
"7.1200"
> <input>float_to_list(7.12, [{decimals, 4}, compact]).</input>
"7.12"</pre>
</desc>
</func>
<func>
<name name="floor" arity="1"/>
<fsummary>Returns the largest integer not greater than the argument</fsummary>
<desc>
<p>Returns the largest integer not greater than
<c><anno>Number</anno></c>.
For example:</p>
<pre>
> <input>floor(-10.5).</input>
-11</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="fun_info" arity="1"/>
<fsummary>Information about a fun.</fsummary>
<desc>
<p>Returns a list with information about the fun
<c><anno>Fun</anno></c>. Each list element is a tuple. The order
of the tuples is undefined, and more tuples can be added in a
future release.</p>
<warning>
<p>This BIF is mainly intended for debugging, but it can
sometimes be useful in library functions that need
to verify, for example, the arity of a fun.</p>
</warning>
<p>Two types of funs have slightly different semantics:</p>
<list type="bulleted">
<item><p>A fun created by <c>fun M:F/A</c> is called an
<em>external</em> fun. Calling it will always call the
function <c>F</c> with arity <c>A</c> in the latest code for
module <c>M</c>. Notice that module <c>M</c> does not even
need to be loaded when the fun <c>fun M:F/A</c> is created.</p>
</item>
<item><p>All other funs are called <em>local</em>. When a local fun
is called, the same version of the code that created the fun
is called (even if a newer version of the module has been
loaded).</p>
</item>
</list>
<p>The following elements are always present in the list
for both local and external funs:</p>
<taglist>
<tag><c>{type, Type}</c></tag>
<item>
<p><c>Type</c> is <c>local</c> or <c>external</c>.</p>
</item>
<tag><c>{module, Module}</c></tag>
<item>
<p><c>Module</c> (an atom) is the module name.</p>
<p>If <c>Fun</c> is a local fun, <c>Module</c> is the module
in which the fun is defined.</p>
<p>If <c>Fun</c> is an external fun, <c>Module</c> is the
module that the fun refers to.</p>
</item>
<tag><c>{name, Name}</c></tag>
<item>
<p><c>Name</c> (an atom) is a function name.</p>
<p>If <c>Fun</c> is a local fun, <c>Name</c> is the name
of the local function that implements the fun.
(This name was generated by the compiler, and is
only of informational use. As it is a local function, it
cannot be called directly.)
If no code is currently loaded for the fun, <c>[]</c>
is returned instead of an atom.</p>
<p>If <c>Fun</c> is an external fun, <c>Name</c> is the name
of the exported function that the fun refers to.</p>
</item>
<tag><c>{arity, Arity}</c></tag>
<item>
<p><c>Arity</c> is the number of arguments that the fun
is to be called with.</p>
</item>
<tag><c>{env, Env}</c></tag>
<item>
<p><c>Env</c> (a list) is the environment or free variables
for the fun. For external funs, the returned list is
always empty.</p>
</item>
</taglist>
<p>The following elements are only present in the list if
<c>Fun</c> is local:</p>
<taglist>
<tag><c>{pid, Pid}</c></tag>
<item>
<p><c>Pid</c> is the process identifier of the process
that originally created the fun.</p>
</item>
<tag><c>{index, Index}</c></tag>
<item>
<p><c>Index</c> (an integer) is an index into the module
fun table.</p>
</item>
<tag><c>{new_index, Index}</c></tag>
<item>
<p><c>Index</c> (an integer) is an index into the module
fun table.</p>
</item>
<tag><c>{new_uniq, Uniq}</c></tag>
<item>
<p><c>Uniq</c> (a binary) is a unique value for this fun. It
is calculated from the compiled code for the entire module.</p>
</item>
<tag><c>{uniq, Uniq}</c></tag>
<item>
<p><c>Uniq</c> (an integer) is a unique value for this fun.
As from Erlang/OTP R15, this integer is calculated from the
compiled code for the entire module. Before Erlang/OTP R15, this
integer was based on only the body of the fun.</p>
</item>
</taglist>
</desc>
</func>
<func>
<name name="fun_info" arity="2"/>
<fsummary>Information about a fun.</fsummary>
<type name="fun_info_item"/>
<desc>
<p>Returns information about <c><anno>Fun</anno></c> as specified by
<c><anno>Item</anno></c>, in the form
<c>{<anno>Item</anno>,<anno>Info</anno>}</c>.</p>
<p>For any fun, <c><anno>Item</anno></c> can be any of the atoms
<c>module</c>, <c>name</c>, <c>arity</c>, <c>env</c>, or
<c>type</c>.</p>
<p>For a local fun, <c><anno>Item</anno></c> can also be any of the
atoms <c>index</c>, <c>new_index</c>, <c>new_uniq</c>,
<c>uniq</c>, and <c>pid</c>. For an external fun, the value
of any of these items is always the atom <c>undefined</c>.</p>
<p>See
<seealso marker="#fun_info/1"><c>erlang:fun_info/1</c></seealso>.</p>
</desc>
</func>
<func>
<name name="fun_to_list" arity="1"/>
<fsummary>Text representation of a fun.</fsummary>
<desc>
<p>Returns a string corresponding to the text
representation of <c><anno>Fun</anno></c>.</p>
</desc>
</func>
<func>
<name name="function_exported" arity="3"/>
<fsummary>Check if a function is exported and loaded.</fsummary>
<desc>
<p>Returns <c>true</c> if the module <c><anno>Module</anno></c> is
loaded and contains an exported function
<c><anno>Function</anno>/<anno>Arity</anno></c>,
or if there is a BIF (a built-in function implemented in C)
with the specified name, otherwise returns <c>false</c>.</p>
<note>
<p>This function used to return <c>false</c> for BIFs
before Erlang/OTP 18.0.</p>
</note>
</desc>
</func>
<func>
<name name="garbage_collect" arity="0"/>
<fsummary>Force an immediate garbage collection of the calling process.
</fsummary>
<desc>
<p>Forces an immediate garbage collection of the
executing process. The function is not to be used unless
it has been noticed (or there are good reasons to suspect)
that the spontaneous garbage collection will occur too late
or not at all.</p>
<warning>
<p>Improper use can seriously degrade system performance.</p>
</warning>
</desc>
</func>
<func>
<name name="garbage_collect" arity="1"/>
<fsummary>Garbage collect a process.</fsummary>
<desc>
<p>The same as
<seealso marker="#garbage_collect/2">
<c>garbage_collect(<anno>Pid</anno>, [])</c></seealso>.</p>
</desc>
</func>
<func>
<name name="garbage_collect" arity="2"/>
<fsummary>Garbage collect a process.</fsummary>
<desc>
<p>Garbage collects the node local process identified by
<c><anno>Pid</anno></c>.</p>
<p><c><anno>Option</anno></c>:</p>
<taglist>
<tag><c>{async, RequestId}</c></tag>
<item>The function <c>garbage_collect/2</c> returns
the value <c>async</c> immediately after the request
has been sent. When the request has been processed, the
process that called this function is passed a message on
the form <c>{garbage_collect,
<anno>RequestId</anno>, <anno>GCResult</anno>}</c>.
</item>
<tag><c>{type, 'major' | 'minor'}</c></tag>
<item>Triggers garbage collection of requested type. Default value is
<c>'major'</c>, which would trigger a fullsweep GC.
The option <c>'minor'</c> is considered a hint and may lead to
either minor or major GC run.</item>
</taglist>
<p>If <c><anno>Pid</anno></c> equals <c>self()</c>, and
no <c>async</c> option has been passed, the garbage
collection is performed at once, that is, the same as calling
<seealso marker="#garbage_collect/0">
<c>garbage_collect/0</c></seealso>.
Otherwise a request for garbage collection
is sent to the process identified by <c><anno>Pid</anno></c>,
and will be handled when appropriate. If no <c>async</c>
option has been passed, the caller blocks until
<c><anno>GCResult</anno></c> is available and can be returned.</p>
<p><c><anno>GCResult</anno></c> informs about the result of
the garbage collection request as follows:</p>
<taglist>
<tag><c>true</c></tag>
<item>
The process identified by <c><anno>Pid</anno></c> has
been garbage collected.
</item>
<tag><c>false</c></tag>
<item>
No garbage collection was performed, as
the process identified by <c><anno>Pid</anno></c>
terminated before the request could be satisfied.
</item>
</taglist>
<p>Notice that the same caveats apply as for
<seealso marker="#garbage_collect/0">
<c>garbage_collect/0</c></seealso>.</p>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Pid</anno></c> is not a node local process identifier.
</item>
<tag><c>badarg</c></tag>
<item>
If <c><anno>OptionList</anno></c> is an invalid list of options.
</item>
</taglist>
</desc>
</func>
<func>
<name name="get" arity="0"/>
<fsummary>Return the process dictionary.</fsummary>
<desc>
<p>Returns the process dictionary as a list of
<c>{<anno>Key</anno>, <anno>Val</anno>}</c> tuples, for example:</p>
<pre>
> <input>put(key1, merry),</input>
<input>put(key2, lambs),</input>
<input>put(key3, {are, playing}),</input>
<input>get().</input>
[{key1,merry},{key2,lambs},{key3,{are,playing}}]</pre>
</desc>
</func>
<func>
<name name="get" arity="1"/>
<fsummary>Return a value from the process dictionary.</fsummary>
<desc>
<p>Returns the value <c><anno>Val</anno></c> associated with
<c><anno>Key</anno></c> in the process dictionary, or <c>undefined</c>
if <c><anno>Key</anno></c> does not exist. Example:</p>
<pre>
> <input>put(key1, merry),</input>
<input>put(key2, lambs),</input>
<input>put({any, [valid, term]}, {are, playing}),</input>
<input>get({any, [valid, term]}).</input>
{are,playing}</pre>
</desc>
</func>
<func>
<name name="get_cookie" arity="0"/>
<fsummary>Get the magic cookie of the local node.</fsummary>
<desc>
<p>Returns the magic cookie of the local node if the node is
alive, otherwise the atom <c>nocookie</c>.</p>
</desc>
</func>
<func>
<name name="get_keys" arity="0"/>
<fsummary>Return a list of all keys from the process dictionary.
</fsummary>
<desc>
<p>Returns a list of all keys present in the process dictionary,
for example:</p>
<pre>
> <input>put(dog, {animal,1}),</input>
<input>put(cow, {animal,2}),</input>
<input>put(lamb, {animal,3}),</input>
<input>get_keys().</input>
[dog,cow,lamb]</pre>
</desc>
</func>
<func>
<name name="get_keys" arity="1"/>
<fsummary>Return a list of keys from the process dictionary.</fsummary>
<desc>
<p>Returns a list of keys that are associated with the value
<c><anno>Val</anno></c> in the process dictionary, for example:</p>
<pre>
> <input>put(mary, {1, 2}),</input>
<input>put(had, {1, 2}),</input>
<input>put(a, {1, 2}),</input>
<input>put(little, {1, 2}),</input>
<input>put(dog, {1, 3}),</input>
<input>put(lamb, {1, 2}),</input>
<input>get_keys({1, 2}).</input>
[mary,had,a,little,lamb]</pre>
</desc>
</func>
<func>
<name name="get_stacktrace" arity="0"/>
<fsummary>Get the call stack back-trace of the last exception.</fsummary>
<type name="stack_item"/>
<desc>
<p>Gets the call stack back-trace (<em>stacktrace</em>) for an
exception that has just been caught
in the calling process as a list of
<c>{<anno>Module</anno>,<anno>Function</anno>,<anno>Arity</anno>,<anno>Location</anno>}</c>
tuples. Field <c><anno>Arity</anno></c> in the first tuple can be the
argument list of that function call instead of an arity integer,
depending on the exception.</p>
<p>If there has not been any exceptions in a process, the
stacktrace is <c>[]</c>. After a code change for the process,
the stacktrace can also be reset to <c>[]</c>.</p>
<p><c>erlang:get_stacktrace/0</c> is only guaranteed to return
a stacktrace if called (directly or indirectly) from within the
scope of a <c>try</c> expression. That is, the following call works:</p>
<pre>
try Expr
catch
C:R ->
{C,R,erlang:get_stacktrace()}
end</pre>
<p>As does this call:</p>
<pre>
try Expr
catch
C:R ->
{C,R,helper()}
end
helper() ->
erlang:get_stacktrace().</pre>
<warning><p>In a future release,
<c>erlang:get_stacktrace/0</c> will return <c>[]</c> if called
from outside a <c>try</c> expression.</p></warning>
<p>The stacktrace is the same data as operator <c>catch</c>
returns, for example:</p>
<pre>
{'EXIT',{badarg,Stacktrace}} = catch abs(x)</pre>
<p><c><anno>Location</anno></c> is a (possibly empty) list
of two-tuples that
can indicate the location in the source code of the function.
The first element is an atom describing the type of
information in the second element. The following
items can occur:</p>
<taglist>
<tag><c>file</c></tag>
<item>The second element of the tuple is a string (list of
characters) representing the filename of the source file
of the function.
</item>
<tag><c>line</c></tag>
<item>The second element of the tuple is the line number
(an integer > 0) in the source file
where the exception occurred or the function was called.
</item>
</taglist>
<p>See also
<seealso marker="#error/1"><c>error/1</c></seealso> and
<seealso marker="#error/2"><c>error/2</c></seealso>.</p>
</desc>
</func>
<func>
<name name="group_leader" arity="0"/>
<fsummary>Get the group leader for the calling process.</fsummary>
<desc>
<p>Returns the process identifier of the group leader for the
process evaluating the function.</p>
<p>Every process is a member of some process group and all
groups have a <em>group leader</em>. All I/O from the group
is channeled to the group leader. When a new process is
spawned, it gets the same group leader as the spawning
process. Initially, at system startup, <c>init</c> is both
its own group leader and the group leader of all processes.</p>
</desc>
</func>
<func>
<name name="group_leader" arity="2"/>
<fsummary>Set the group leader for a process.</fsummary>
<desc>
<p>Sets the group leader of <c><anno>Pid</anno></c>
to <c><anno>GroupLeader</anno></c>.
Typically, this is used when a process started from a
certain shell is to have another group leader than
<c>init</c>.</p>
<p>See also
<seealso marker="#group_leader/0"><c>group_leader/0</c></seealso>.</p>
</desc>
</func>
<func>
<name name="halt" arity="0"/>
<fsummary>Halt the Erlang runtime system and indicate normal exit to
the calling environment.</fsummary>
<desc>
<p>The same as
<seealso marker="#halt/2"><c>halt(0, [])</c></seealso>. Example:</p>
<pre>
> <input>halt().</input>
os_prompt%</pre>
</desc>
</func>
<func>
<name name="halt" arity="1"/>
<fsummary>Halt the Erlang runtime system.</fsummary>
<desc>
<p>The same as <seealso marker="#halt/2">
<c>halt(<anno>Status</anno>, [])</c></seealso>. Example:</p>
<pre>
> <input>halt(17).</input>
os_prompt% <input>echo $?</input>
17
os_prompt%</pre>
</desc>
</func>
<func>
<name name="halt" arity="2"/>
<fsummary>Halt the Erlang runtime system.</fsummary>
<desc>
<p><c><anno>Status</anno></c> must be a non-negative integer, a string,
or the atom <c>abort</c>.
Halts the Erlang runtime system. Has no return value.
Depending on <c><anno>Status</anno></c>, the following occurs:</p>
<taglist>
<tag>integer()</tag>
<item>The runtime system exits with integer value
<c><anno>Status</anno></c>
as status code to the calling environment (OS).
<note>
<p>On many platforms, the OS supports only status
codes 0-255. A too large status code is truncated by clearing
the high bits.</p>
</note>
</item>
<tag>string()</tag>
<item>An Erlang crash dump is produced with <c><anno>Status</anno></c>
as slogan. Then the runtime system exits with status code <c>1</c>.
The string will be truncated if longer than 200 characters.
<note>
<p>Before ERTS 9.1 (OTP-20.1) only code points in the range 0-255
was accepted in the string. Now any unicode string is valid.</p>
</note>
</item>
<tag><c>abort</c></tag>
<item>The runtime system aborts producing a core dump, if that is
enabled in the OS.
</item>
</taglist>
<p>For integer <c><anno>Status</anno></c>, the Erlang runtime system
closes all ports and allows async threads to finish their
operations before exiting. To exit without such flushing, use
<c><anno>Option</anno></c> as <c>{flush,false}</c>.</p>
<p>For statuses <c>string()</c> and <c>abort</c>, option
<c>flush</c> is ignored and flushing is <em>not</em> done.</p>
</desc>
</func>
<func>
<name name="hd" arity="1"/>
<fsummary>Head of a list.</fsummary>
<desc>
<p>Returns the head of <c><anno>List</anno></c>, that is,
the first element, for example:</p>
<pre>
> <input>hd([1,2,3,4,5]).</input>
1</pre>
<p>Allowed in guard tests.</p>
<p>Failure: <c>badarg</c> if <c><anno>List</anno></c> is the empty
list <c>[]</c>.</p>
</desc>
</func>
<func>
<name name="hibernate" arity="3"/>
<fsummary>Hibernate a process until a message is sent to it.</fsummary>
<desc>
<p>Puts the calling process into a wait state where its memory
allocation has been reduced as much as possible. This is
useful if the process does not expect to receive any messages
soon.</p>
<p>The process is awaken when a message is sent to it, and control
resumes in <c><anno>Module</anno>:<anno>Function</anno></c> with
the arguments specified by <c><anno>Args</anno></c> with the call
stack emptied, meaning that the process terminates when that
function returns. Thus <c>erlang:hibernate/3</c> never
returns to its caller.</p>
<p>If the process has any message in its message queue,
the process is awakened immediately in the same way as
described earlier.</p>
<p>In more technical terms, <c>erlang:hibernate/3</c>
discards the call stack for the process,
and then garbage collects the process. After this,
all live data is in one continuous heap. The heap
is then shrunken to the exact same size as the live data
that it holds (even if that size is less than the minimum
heap size for the process).</p>
<p>If the size of the live data in the process is less than
the minimum heap size, the first garbage collection occurring
after the process is awakened ensures that the heap
size is changed to a size not smaller than the minimum heap
size.</p>
<p>Notice that emptying the call stack means that any surrounding
<c>catch</c> is removed and must be re-inserted after
hibernation. One effect of this is that processes started
using <c>proc_lib</c> (also indirectly, such as
<c>gen_server</c> processes), are to use
<seealso marker="stdlib:proc_lib#hibernate/3">
<c>proc_lib:hibernate/3</c></seealso>
instead, to ensure that the exception handler continues to work
when the process wakes up.</p>
</desc>
</func>
<func>
<name name="insert_element" arity="3"/>
<fsummary>Insert an element at index in a tuple.</fsummary>
<type_desc variable="Index">1..tuple_size(<anno>Tuple1</anno>)
+ 1</type_desc>
<desc>
<p>Returns a new tuple with element <c><anno>Term</anno></c>
inserted at position
<c><anno>Index</anno></c> in tuple <c><anno>Tuple1</anno></c>.
All elements from position <c><anno>Index</anno></c> and upwards are
pushed one step higher in the new tuple <c><anno>Tuple2</anno></c>.
Example:</p>
<pre>
> <input>erlang:insert_element(2, {one, two, three}, new).</input>
{one,new,two,three}</pre>
</desc>
</func>
<func>
<name name="integer_to_binary" arity="1"/>
<fsummary>Text representation of an integer.</fsummary>
<desc>
<p>Returns a binary corresponding to the text
representation of <c><anno>Integer</anno></c>, for example:</p>
<pre>
> <input>integer_to_binary(77).</input>
<<"77">></pre>
</desc>
</func>
<func>
<name name="integer_to_binary" arity="2"/>
<fsummary>Text representation of an integer.</fsummary>
<desc>
<p>Returns a binary corresponding to the text
representation of <c><anno>Integer</anno></c> in base
<c><anno>Base</anno></c>, for example:</p>
<pre>
> <input>integer_to_binary(1023, 16).</input>
<<"3FF">></pre>
</desc>
</func>
<func>
<name name="integer_to_list" arity="1"/>
<fsummary>Text representation of an integer.</fsummary>
<desc>
<p>Returns a string corresponding to the text
representation of <c><anno>Integer</anno></c>, for example:</p>
<pre>
> <input>integer_to_list(77).</input>
"77"</pre>
</desc>
</func>
<func>
<name name="integer_to_list" arity="2"/>
<fsummary>Text representation of an integer.</fsummary>
<desc>
<p>Returns a string corresponding to the text
representation of <c><anno>Integer</anno></c> in base
<c><anno>Base</anno></c>, for example:</p>
<pre>
> <input>integer_to_list(1023, 16).</input>
"3FF"</pre>
</desc>
</func>
<func>
<name name="iolist_size" arity="1"/>
<fsummary>Size of an iolist.</fsummary>
<desc>
<p>Returns an integer, that is the size in bytes,
of the binary that would be the result of
<c>iolist_to_binary(<anno>Item</anno>)</c>, for example:</p>
<pre>
> <input>iolist_size([1,2|<<3,4>>]).</input>
4</pre>
</desc>
</func>
<func>
<name name="iolist_to_binary" arity="1"/>
<fsummary>Convert an iolist to a binary.</fsummary>
<desc>
<p>Returns a binary that is made from the integers and
binaries in <c><anno>IoListOrBinary</anno></c>, for example:</p>
<pre>
> <input>Bin1 = <<1,2,3>>.</input>
<<1,2,3>>
> <input>Bin2 = <<4,5>>.</input>
<<4,5>>
> <input>Bin3 = <<6>>.</input>
<<6>>
> <input>iolist_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).</input>
<<1,2,3,1,2,3,4,5,4,6>></pre>
</desc>
</func>
<func>
<name name="iolist_to_iovec" arity="1"/>
<fsummary>Converts an iolist to a iovec.</fsummary>
<desc>
<p>Returns an iovec that is made from the integers and binaries in
<c><anno>IoListOrBinary</anno></c>.</p>
</desc>
</func>
<func>
<name name="is_alive" arity="0"/>
<fsummary>Check whether the local node is alive.</fsummary>
<desc>
<p>Returns <c>true</c> if the local node is alive (that is, if
the node can be part of a distributed system), otherwise
<c>false</c>.</p>
</desc>
</func>
<func>
<name name="is_atom" arity="1"/>
<fsummary>Check whether a term is an atom.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is an atom,
otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_binary" arity="1"/>
<fsummary>Check whether a term is a binary.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a binary,
otherwise <c>false</c>.</p>
<p>A binary always contains a complete number of bytes.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_bitstring" arity="1"/>
<fsummary>Check whether a term is a bitstring.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a
bitstring (including a binary), otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_boolean" arity="1"/>
<fsummary>Check whether a term is a boolean.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is the
atom <c>true</c> or the atom <c>false</c> (that is, a boolean).
Otherwise returns <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_builtin" arity="3"/>
<fsummary>Check if a function is a BIF implemented in C.</fsummary>
<desc>
<p>This BIF is useful for builders of cross-reference tools.</p>
<p>Returns <c>true</c> if
<c><anno>Module</anno>:<anno>Function</anno>/<anno>Arity</anno></c>
is a BIF implemented in C, otherwise <c>false</c>.</p>
</desc>
</func>
<func>
<name name="is_float" arity="1"/>
<fsummary>Check whether a term is a float.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a floating point
number, otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_function" arity="1"/>
<fsummary>Check whether a term is a fun.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a fun, otherwise
<c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_function" arity="2"/>
<fsummary>Check whether a term is a fun with a specified given arity.
</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a fun that can be
applied with <c><anno>Arity</anno></c> number of arguments, otherwise
<c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_integer" arity="1"/>
<fsummary>Check whether a term is an integer.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is an integer,
otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_list" arity="1"/>
<fsummary>Check whether a term is a list.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a list with
zero or more elements, otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_map" arity="1"/>
<fsummary>Check whether a term is a map.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a map,
otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_number" arity="1"/>
<fsummary>Check whether a term is a number.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is an integer or a
floating point number. Otherwise returns <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_pid" arity="1"/>
<fsummary>Check whether a term is a process identifier.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a process
identifier, otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_port" arity="1"/>
<fsummary>Check whether a term is a port.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a port identifier,
otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_process_alive" arity="1"/>
<fsummary>Check whether a process is alive.</fsummary>
<desc>
<p><c><anno>Pid</anno></c> must refer to a process at the local
node.</p>
<p>Returns <c>true</c> if the process exists and is alive, that
is, is not exiting and has not exited. Otherwise returns
<c>false</c>.</p>
</desc>
</func>
<func>
<name name="is_record" arity="2"/>
<fsummary>Check whether a term appears to be a record.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a tuple and its
first element is <c><anno>RecordTag</anno></c>.
Otherwise returns <c>false</c>.</p>
<note>
<p>Normally the compiler treats calls to <c>is_record/2</c>
especially. It emits code to verify that <c><anno>Term</anno></c>
is a tuple, that its first element is
<c><anno>RecordTag</anno></c>, and that the
size is correct. However, if <c><anno>RecordTag</anno></c> is
not a literal atom, the BIF <c>is_record/2</c> is called
instead and the size of the tuple is not verified.</p>
</note>
<p>Allowed in guard tests, if <c><anno>RecordTag</anno></c> is
a literal atom.</p>
</desc>
</func>
<func>
<name name="is_record" arity="3"/>
<fsummary>Check whether a term appears to be a record.</fsummary>
<desc>
<p><c><anno>RecordTag</anno></c> must be an atom.</p>
<p>Returns <c>true</c> if
<c><anno>Term</anno></c> is a tuple,
its first element is <c><anno>RecordTag</anno></c>,
and its size is <c><anno>Size</anno></c>.
Otherwise returns <c>false</c>.</p>
<p>Allowed in guard tests if <c><anno>RecordTag</anno></c> is
a literal atom and <c>Size</c> is a literal integer.</p>
<note>
<p>This BIF is documented for completeness. Usually
<c>is_record/2</c> is to be used.</p>
</note>
</desc>
</func>
<func>
<name name="is_reference" arity="1"/>
<fsummary>Check whether a term is a reference.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a reference,
otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="is_tuple" arity="1"/>
<fsummary>Check whether a term is a tuple.</fsummary>
<desc>
<p>Returns <c>true</c> if <c><anno>Term</anno></c> is a tuple,
otherwise <c>false</c>.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="length" arity="1"/>
<fsummary>Length of a list.</fsummary>
<desc>
<p>Returns the length of <c><anno>List</anno></c>, for example:</p>
<pre>
> <input>length([1,2,3,4,5,6,7,8,9]).</input>
9</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="link" arity="1"/>
<fsummary>Create a link to another process (or port).</fsummary>
<desc>
<p>Creates a link between the calling process and another
process (or port) <c><anno>PidOrPort</anno></c>, if there is
not such a link
already. If a process attempts to create a link to itself,
nothing is done. Returns <c>true</c>.</p>
<p>If <c><anno>PidOrPort</anno></c> does not exist, the behavior
of the BIF
depends on if the calling process is trapping exits or not (see
<seealso marker="#process_flag/2">
<c>process_flag/2</c></seealso>):</p>
<list type="bulleted">
<item><p>If the calling process is not trapping exits, and
checking <c><anno>PidOrPort</anno></c> is cheap
(that is, if <c><anno>PidOrPort</anno></c>
is local), <c>link/1</c> fails with reason <c>noproc</c>.</p></item>
<item><p>Otherwise, if the calling process is trapping exits,
and/or <c><anno>PidOrPort</anno></c> is remote, <c>link/1</c>
returns <c>true</c>, but an exit signal with reason <c>noproc</c>
is sent to the calling process.</p></item>
</list>
</desc>
</func>
<func>
<name name="list_to_atom" arity="1"/>
<fsummary>Convert from text representation to an atom.</fsummary>
<desc>
<p>Returns the atom whose text representation is
<c><anno>String</anno></c>.</p>
<p>As from Erlang/OTP 20, <c><anno>String</anno></c> may contain
any Unicode character. Earlier versions allowed only ISO-latin-1
characters as the implementation did not allow Unicode characters
above 255. For more information on Unicode support in atoms, see
<seealso marker="erl_ext_dist#utf8_atoms">note on UTF-8
encoded atoms</seealso>
in section "External Term Format" in the User's Guide.</p>
<p>Example:</p>
<pre>
> <input>list_to_atom("Erlang").</input>
'Erlang'</pre>
</desc>
</func>
<func>
<name name="list_to_binary" arity="1"/>
<fsummary>Convert a list to a binary.</fsummary>
<desc>
<p>Returns a binary that is made from the integers and
binaries in <c><anno>IoList</anno></c>, for example:</p>
<pre>
> <input>Bin1 = <<1,2,3>>.</input>
<<1,2,3>>
> <input>Bin2 = <<4,5>>.</input>
<<4,5>>
> <input>Bin3 = <<6>>.</input>
<<6>>
> <input>list_to_binary([Bin1,1,[2,3,Bin2],4|Bin3]).</input>
<<1,2,3,1,2,3,4,5,4,6>></pre>
</desc>
</func>
<func>
<name name="list_to_bitstring" arity="1"/>
<fsummary>Convert a list to a bitstring.</fsummary>
<type name="bitstring_list"/>
<desc>
<p>Returns a bitstring that is made from the integers and
bitstrings in <c><anno>BitstringList</anno></c>. (The last tail in
<c><anno>BitstringList</anno></c> is allowed to be a bitstring.)
Example:</p>
<pre>
> <input>Bin1 = <<1,2,3>>.</input>
<<1,2,3>>
> <input>Bin2 = <<4,5>>.</input>
<<4,5>>
> <input>Bin3 = <<6,7:4>>.</input>
<<6,7:4>>
> <input>list_to_bitstring([Bin1,1,[2,3,Bin2],4|Bin3]).</input>
<<1,2,3,1,2,3,4,5,4,6,7:4>></pre>
</desc>
</func>
<func>
<name name="list_to_existing_atom" arity="1"/>
<fsummary>Convert from text representation to an atom.</fsummary>
<desc>
<p>Returns the atom whose text representation is
<c><anno>String</anno></c>,
but only if there already exists such atom.</p>
<p>Failure: <c>badarg</c> if there does not already exist an atom
whose text representation is <c><anno>String</anno></c>.</p>
<note>
<p>Note that the compiler may optimize away atoms. For
example, the compiler will rewrite
<c>atom_to_list(some_atom)</c> to <c>"some_atom"</c>. If
that expression is the only mention of the atom
<c>some_atom</c> in the containing module, the atom will not
be created when the module is loaded, and a subsequent call
to <c>list_to_existing_atom("some_atom")</c> will fail.</p>
</note>
</desc>
</func>
<func>
<name name="list_to_float" arity="1"/>
<fsummary>Convert from text representation to a float.</fsummary>
<desc>
<p>Returns the float whose text representation is
<c><anno>String</anno></c>, for example:</p>
<pre>
> <input>list_to_float("2.2017764e+0").</input>
2.2017764</pre>
<p>Failure: <c>badarg</c> if <c><anno>String</anno></c> contains a bad
representation of a float.</p>
</desc>
</func>
<func>
<name name="list_to_integer" arity="1"/>
<fsummary>Convert from text representation to an integer.</fsummary>
<desc>
<p>Returns an integer whose text representation is
<c><anno>String</anno></c>, for example:</p>
<pre>
> <input>list_to_integer("123").</input>
123</pre>
<p>Failure: <c>badarg</c> if <c><anno>String</anno></c> contains a bad
representation of an integer.</p>
</desc>
</func>
<func>
<name name="list_to_integer" arity="2"/>
<fsummary>Convert from text representation to an integer.</fsummary>
<desc>
<p>Returns an integer whose text representation in base
<c><anno>Base</anno></c> is <c><anno>String</anno></c>,
for example:</p>
<pre>
> <input>list_to_integer("3FF", 16).</input>
1023</pre>
<p>Failure: <c>badarg</c> if <c><anno>String</anno></c> contains a bad
representation of an integer.</p>
</desc>
</func>
<func>
<name name="list_to_pid" arity="1"/>
<fsummary>Convert from text representation to a pid.</fsummary>
<desc>
<p>Returns a process identifier whose text representation is a
<c><anno>String</anno></c>, for example:</p>
<pre>
> <input>list_to_pid("<0.4.1>").</input>
<0.4.1></pre>
<p>Failure: <c>badarg</c> if <c><anno>String</anno></c> contains a bad
representation of a process identifier.</p>
<warning>
<p>This BIF is intended for debugging and is not to be used
in application programs.</p>
</warning>
</desc>
</func>
<func>
<name name="list_to_port" arity="1"/>
<fsummary>Convert from text representation to a port.</fsummary>
<desc>
<p>Returns a port identifier whose text representation is a
<c><anno>String</anno></c>, for example:</p>
<pre>
> <input>list_to_port("#Port<0.4>").</input>
#Port<0.4></pre>
<p>Failure: <c>badarg</c> if <c><anno>String</anno></c> contains a bad
representation of a port identifier.</p>
<warning>
<p>This BIF is intended for debugging and is not to be used
in application programs.</p>
</warning>
</desc>
</func>
<func>
<name name="list_to_ref" arity="1"/>
<fsummary>Convert from text representation to a ref.</fsummary>
<desc>
<p>Returns a reference whose text representation is a
<c><anno>String</anno></c>, for example:</p>
<pre>
> <input>list_to_ref("#Ref<0.4192537678.4073193475.71181>").</input>
#Ref<0.4192537678.4073193475.71181></pre>
<p>Failure: <c>badarg</c> if <c><anno>String</anno></c> contains a bad
representation of a reference.</p>
<warning>
<p>This BIF is intended for debugging and is not to be used
in application programs.</p>
</warning>
</desc>
</func>
<func>
<name name="list_to_tuple" arity="1"/>
<fsummary>Convert a list to a tuple.</fsummary>
<desc>
<p>Returns a tuple corresponding to <c><anno>List</anno></c>,
for example</p>
<pre>
> <input>list_to_tuple([share, ['Ericsson_B', 163]]).</input>
{share, ['Ericsson_B', 163]}</pre>
<p><c><anno>List</anno></c> can contain any Erlang terms.</p>
</desc>
</func>
<func>
<name name="load_module" arity="2"/>
<fsummary>Load object code for a module.</fsummary>
<desc>
<p>If <c><anno>Binary</anno></c> contains the object code for module
<c><anno>Module</anno></c>, this BIF loads that object code. If
the code for module <c><anno>Module</anno></c> already exists, all
export references are replaced so they point to the newly
loaded code. The previously loaded code is kept in the system
as old code, as there can still be processes executing
that code.</p>
<p>Returns either <c>{module, <anno>Module</anno>}</c>, or
<c>{error, <anno>Reason</anno>}</c> if loading fails.
<c><anno>Reason</anno></c> is one of the following:</p>
<taglist>
<tag><c>badfile</c></tag>
<item>The object code in <c><anno>Binary</anno></c> has an
incorrect format <em>or</em> the object code contains code
for another module than <c><anno>Module</anno></c>.
</item>
<tag><c>not_purged</c></tag>
<item><c><anno>Binary</anno></c> contains a module that cannot be
loaded because old code for this module already exists.
</item>
</taglist>
<warning>
<p>This BIF is intended for the code server (see
<seealso marker="kernel:code"><c>code(3)</c></seealso>)
and is not to be used elsewhere.</p>
</warning>
</desc>
</func>
<func>
<name name="load_nif" arity="2"/>
<fsummary>Load NIF library.</fsummary>
<desc>
<p>Loads and links a dynamic library containing native
implemented functions (NIFs) for a module. <c><anno>Path</anno></c>
is a file path to the shareable object/dynamic library file minus
the OS-dependent file extension (<c>.so</c> for Unix and
<c>.dll</c> for Windows). Notice that on most OSs the library has
to have a different name on disc when an upgrade of the nif is
done. If the name is the same, but the contents differ, the
old library may be loaded instead. For information on how to
implement a NIF library, see
<seealso marker="erl_nif"><c>erl_nif(3)</c></seealso>.</p>
<p><c><anno>LoadInfo</anno></c> can be any term. It is passed on to
the library as part of the initialization. A good practice is
to include a module version number to support future code
upgrade scenarios.</p>
<p>The call to <c>load_nif/2</c> must be made
<em>directly</em> from the Erlang code of the module that the
NIF library belongs to. It returns either <c>ok</c>, or
<c>{error,{<anno>Reason</anno>,Text}}</c> if loading fails.
<c><anno>Reason</anno></c> is one of the following atoms
while <c><anno>Text</anno></c> is a human readable string that
can give more information about the failure:</p>
<taglist>
<tag><c>load_failed</c></tag>
<item>The OS failed to load the NIF library.
</item>
<tag><c>bad_lib</c></tag>
<item>The library did not fulfill the requirements as a NIF
library of the calling module.
</item>
<tag><c>load | upgrade</c></tag>
<item>The corresponding library callback was unsuccessful.
</item>
<tag><c>reload</c></tag>
<item>A NIF library is already loaded for this module instance.
The previously deprecated <c>reload</c> feature was removed in OTP 20.
</item>
<tag><c>old_code</c></tag>
<item>The call to <c>load_nif/2</c> was made from the old
code of a module that has been upgraded; this is not
allowed.
</item>
<tag><c>notsup</c></tag>
<item>Lack of support. Such as loading NIF library for a
HiPE compiled module.
</item>
</taglist>
</desc>
</func>
<func>
<name name="loaded" arity="0"/>
<fsummary>List all loaded modules.</fsummary>
<desc>
<p>Returns a list of all loaded Erlang modules (current and
old code), including preloaded modules.</p>
<p>See also <seealso marker="kernel:code">
<c>code(3)</c></seealso>.</p>
</desc>
</func>
<func>
<name name="localtime" arity="0"/>
<fsummary>Current local date and time.</fsummary>
<desc>
<p>Returns the current local date and time,
<c>{{Year, Month, Day}, {Hour, Minute, Second}}</c>,
for example:</p>
<pre>
> <input>erlang:localtime().</input>
{{1996,11,6},{14,45,17}}</pre>
<p>The time zone and Daylight Saving Time correction depend
on the underlying OS.</p>
</desc>
</func>
<func>
<name name="localtime_to_universaltime" arity="1"/>
<fsummary>Convert from local to Universal Time Coordinated (UTC) date
and time.</fsummary>
<desc>
<p>Converts local date and time to Universal Time Coordinated
(UTC), if supported by the underlying OS. Otherwise
no conversion is done and <c><anno>Localtime</anno></c>
is returned. Example:</p>
<pre>
> <input>erlang:localtime_to_universaltime({{1996,11,6},{14,45,17}}).</input>
{{1996,11,6},{13,45,17}}</pre>
<p>Failure: <c>badarg</c> if <c><anno>Localtime</anno></c> denotes an
invalid date and time.</p>
</desc>
</func>
<func>
<name name="localtime_to_universaltime" arity="2"/>
<fsummary>Convert from local to Universal Time Coordinated (UTC) date
and time.</fsummary>
<desc>
<p>Converts local date and time to Universal Time Coordinated
(UTC) as <c>erlang:localtime_to_universaltime/1</c>,
but the caller decides if Daylight Saving Time is active.</p>
<p>If <c><anno>IsDst</anno> == true</c>, <c><anno>Localtime</anno></c>
is during Daylight Saving Time, if <c><anno>IsDst</anno> == false</c>
it is not. If <c><anno>IsDst</anno> == undefined</c>, the underlying
OS can guess, which is the same as calling
<c>erlang:localtime_to_universaltime(<anno>Localtime</anno>)</c>.</p>
<p>Examples:</p>
<pre>
> <input>erlang:localtime_to_universaltime({{1996,11,6},{14,45,17}}, true).</input>
{{1996,11,6},{12,45,17}}
> <input>erlang:localtime_to_universaltime({{1996,11,6},{14,45,17}}, false).</input>
{{1996,11,6},{13,45,17}}
> <input>erlang:localtime_to_universaltime({{1996,11,6},{14,45,17}}, undefined).</input>
{{1996,11,6},{13,45,17}}</pre>
<p>Failure: <c>badarg</c> if <c><anno>Localtime</anno></c> denotes an
invalid date and time.</p>
</desc>
</func>
<func>
<name name="make_ref" arity="0"/>
<fsummary>Return a unique reference.</fsummary>
<desc>
<p>Returns a
<seealso marker="doc/efficiency_guide:advanced#unique_references">
unique reference</seealso>. The reference is unique among
connected nodes.</p>
<warning>
<p>Known issue: When a node is restarted multiple
times with the same node name, references created
on a newer node can be mistaken for a reference
created on an older node with the same node name.</p>
</warning>
</desc>
</func>
<func>
<name name="make_tuple" arity="2"/>
<fsummary>Create a new tuple of a specified arity.</fsummary>
<desc>
<p>Creates a new tuple of the specified <c><anno>Arity</anno></c>, where
all elements are <c><anno>InitialValue</anno></c>, for example:</p>
<pre>
> <input>erlang:make_tuple(4, []).</input>
{[],[],[],[]}</pre>
</desc>
</func>
<func>
<name name="make_tuple" arity="3"/>
<fsummary>Create a new tuple with specifed arity and contents.</fsummary>
<desc>
<p>Creates a tuple of size <c><anno>Arity</anno></c>, where each element
has value <c><anno>DefaultValue</anno></c>, and then fills in
values from <c><anno>InitList</anno></c>.
Each list element in <c><anno>InitList</anno></c>
must be a two-tuple, where the first element is a position in the
newly created tuple and the second element is any term. If a
position occurs more than once in the list, the term corresponding
to the last occurrence is used. Example:</p>
<pre>
> <input>erlang:make_tuple(5, [], [{2,ignored},{5,zz},{2,aa}]).</input>
{[],aa,[],[],zz}</pre>
</desc>
</func>
<func>
<name name="map_size" arity="1"/>
<fsummary>Return the size of a map.</fsummary>
<desc>
<p>Returns an integer, which is the number of key-value pairs
in <c><anno>Map</anno></c>, for example:</p>
<pre>
> <input>map_size(#{a=>1, b=>2, c=>3}).</input>
3</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="match_spec_test" arity="3"/>
<fsummary>Test that a match specification works.</fsummary>
<desc>
<p>Tests a match specification used in calls to
<seealso marker="stdlib:ets#select/2"><c>ets:select/2</c></seealso>
and <seealso marker="#trace_pattern/3">
<c>erlang:trace_pattern/3</c></seealso>.
The function tests both a match specification for "syntactic"
correctness and runs the match specification against the object. If
the match specification contains errors, the tuple <c>{error,
Errors}</c> is returned, where <c>Errors</c> is a list of natural
language descriptions of what was wrong with the match
specification.</p>
<p>If <c><anno>Type</anno></c> is <c>table</c>, the object to match
against is to be a tuple. The function then returns
<c>{ok,Result,[],Warnings}</c>, where <c>Result</c> is what would
have been the result in a real <c>ets:select/2</c> call, or
<c>false</c> if the match specification does not match the object
tuple.</p>
<p>If <c><anno>Type</anno></c> is <c>trace</c>, the object to match
against is to be a list. The function returns
<c>{ok, Result, Flags, Warnings}</c>, where <c>Result</c> is one of
the following:</p>
<list type="bulleted">
<item><c>true</c> if a trace message is to be emitted</item>
<item><c>false</c> if a trace message is not to be emitted</item>
<item>The message term to be appended to the trace message</item>
</list>
<p><c>Flags</c> is a list containing all the trace flags to be enabled,
currently this is only <c>return_trace</c>.</p>
<p>This is a useful debugging and test tool, especially when writing
complicated match specifications.</p>
<p>See also
<seealso marker="stdlib:ets#test_ms/2"><c>ets:test_ms/2</c></seealso>.</p>
</desc>
</func>
<func>
<name name="max" arity="2"/>
<fsummary>Return the largest of two terms.</fsummary>
<desc>
<p>Returns the largest of <c><anno>Term1</anno></c> and
<c><anno>Term2</anno></c>.
If the terms are equal, <c><anno>Term1</anno></c> is returned.</p>
</desc>
</func>
<func>
<name name="md5" arity="1"/>
<fsummary>Compute an MD5 message digest.</fsummary>
<desc>
<p>Computes an MD5 message digest from <c><anno>Data</anno></c>, where
the length of the digest is 128 bits (16 bytes).
<c><anno>Data</anno></c>
is a binary or a list of small integers and binaries.</p>
<p>For more information about MD5, see
<url href="https://www.ietf.org/rfc/rfc1321.txt">
RFC 1321 - The MD5 Message-Digest Algorithm</url>.</p>
<warning>
<p>The MD5 Message-Digest Algorithm is <em>not</em> considered
safe for code-signing or software-integrity purposes.</p>
</warning>
</desc>
</func>
<func>
<name name="md5_final" arity="1"/>
<fsummary>Finish the update of an MD5 context and return the computed
MD5 message digest.</fsummary>
<desc>
<p>Finishes the update of an MD5 <c><anno>Context</anno></c> and returns
the computed <c>MD5</c> message digest.</p>
</desc>
</func>
<func>
<name name="md5_init" arity="0"/>
<fsummary>Create an MD5 context.</fsummary>
<desc>
<p>Creates an MD5 context, to be used in the following calls to
<c>md5_update/2</c>.</p>
</desc>
</func>
<func>
<name name="md5_update" arity="2"/>
<fsummary>Update an MD5 context with data and return a new context.
</fsummary>
<desc>
<p>Update an MD5 <c><anno>Context</anno></c> with
<c><anno>Data</anno></c> and returns a
<c><anno>NewContext</anno></c>.</p>
</desc>
</func>
<func>
<name name="memory" arity="0"/>
<fsummary>Information about dynamically allocated memory.</fsummary>
<type name="memory_type"/>
<desc>
<p>Returns a list with information about memory
dynamically allocated by the Erlang emulator. Each list
element is a tuple <c>{Type, Size}</c>. The first element
<c><anno>Type</anno></c> is an atom describing memory type. The second
element <c><anno>Size</anno></c> is the memory size in bytes.</p>
<p>Memory types:</p>
<taglist>
<tag><c>total</c></tag>
<item>
<p>The total amount of memory currently allocated. This is
the same as the sum of the memory size for <c>processes</c>
and <c>system</c>.</p>
</item>
<tag><c>processes</c></tag>
<item>
<p>The total amount of memory currently allocated for
the Erlang processes.</p>
</item>
<tag><c>processes_used</c></tag>
<item>
<p>The total amount of memory currently used by the Erlang
processes. This is part of the memory presented as
<c>processes</c> memory.</p>
</item>
<tag><c>system</c></tag>
<item>
<p>The total amount of memory currently allocated for
the emulator that is not directly related to any Erlang
process. Memory presented as <c>processes</c> is not
included in this memory. <seealso marker="tools:instrument">
<c>instrument(3)</c></seealso> can be used to
get a more detailed breakdown of what memory is part
of this type.</p>
</item>
<tag><c>atom</c></tag>
<item>
<p>The total amount of memory currently allocated for atoms.
This memory is part of the memory presented as
<c>system</c> memory.</p>
</item>
<tag><c>atom_used</c></tag>
<item>
<p>The total amount of memory currently used for atoms.
This memory is part of the memory presented as
<c>atom</c> memory.</p>
</item>
<tag><c>binary</c></tag>
<item>
<p>The total amount of memory currently allocated for
binaries. This memory is part of the memory presented
as <c>system</c> memory.</p>
</item>
<tag><c>code</c></tag>
<item>
<p>The total amount of memory currently allocated for
Erlang code. This memory is part of the memory presented
as <c>system</c> memory.</p>
</item>
<tag><c>ets</c></tag>
<item>
<p>The total amount of memory currently allocated for ETS
tables. This memory is part of the memory presented as
<c>system</c> memory.</p>
</item>
<tag><c>low</c></tag>
<item>
<p>Only on 64-bit halfword emulator.
The total amount of memory allocated in low memory areas
that are restricted to < 4 GB, although
the system can have more memory.</p>
<p>Can be removed in a future release of the halfword
emulator.</p>
</item>
<tag><c>maximum</c></tag>
<item>
<p>The maximum total amount of memory allocated since
the emulator was started. This tuple is only present
when the emulator is run with instrumentation.</p>
<p>For information on how to run the emulator with
instrumentation, see
<seealso marker="tools:instrument">
<c>instrument(3)</c></seealso>
and/or <seealso marker="erl"><c>erl(1)</c></seealso>.</p>
</item>
</taglist>
<note>
<p>The <c>system</c> value is not complete. Some allocated
memory that is to be part of this value is not.</p>
<p>When the emulator is run with instrumentation,
the <c>system</c> value is more accurate, but memory
directly allocated for <c>malloc</c> (and friends) is still
not part of the <c>system</c> value. Direct calls to
<c>malloc</c> are only done from OS-specific runtime
libraries and perhaps from user-implemented Erlang drivers
that do not use the memory allocation functions in
the driver interface.</p>
<p>As the <c>total</c> value is the sum of <c>processes</c>
and <c>system</c>, the error in <c>system</c> propagates
to the <c>total</c> value.</p>
<p>The different amounts of memory that are summed are
<em>not</em> gathered atomically, which introduces
an error in the result.</p>
</note>
<p>The different values have the following relation to each
other. Values beginning with an uppercase letter is not part
of the result.</p>
<code type="none">
total = processes + system
processes = processes_used + ProcessesNotUsed
system = atom + binary + code + ets + OtherSystem
atom = atom_used + AtomNotUsed
RealTotal = processes + RealSystem
RealSystem = system + MissedSystem</code>
<p>More tuples in the returned list can be added in a
future release.</p>
<note>
<p>The <c>total</c> value is supposed to be the total amount
of memory dynamically allocated by the emulator. Shared
libraries, the code of the emulator itself, and
the emulator stacks are not supposed to be included. That
is, the <c>total</c> value is <em>not</em> supposed to be
equal to the total size of all pages mapped to the emulator.</p>
<p>Also, because of fragmentation and prereservation of
memory areas, the size of the memory segments containing
the dynamically allocated memory blocks can be much
larger than the total size of the dynamically allocated
memory blocks.</p>
</note>
<note>
<p>As from ERTS 5.6.4, <c>erlang:memory/0</c> requires that
all <seealso marker="erts:erts_alloc"><c>erts_alloc(3)</c></seealso>
allocators are enabled (default behavior).</p>
</note>
<p>Failure: <c>notsup</c> if an
<seealso marker="erts:erts_alloc"><c>erts_alloc(3)</c></seealso>
allocator has been disabled.</p>
</desc>
</func>
<func>
<name name="memory" arity="1" clause_i="1"/>
<name name="memory" arity="1" clause_i="2"/>
<fsummary>Information about dynamically allocated memory.</fsummary>
<type name="memory_type"/>
<desc>
<p>Returns the memory size in bytes allocated for memory of type
<c><anno>Type</anno></c>. The argument can also be specified as a list
of <c>memory_type()</c> atoms, in which case a corresponding list of
<c>{memory_type(), Size :: integer >= 0}</c> tuples is returned.</p>
<note>
<p>As from ERTS 5.6.4,
<c>erlang:memory/1</c> requires that
all <seealso marker="erts_alloc"><c>erts_alloc(3)</c></seealso>
allocators are enabled (default behavior).</p>
</note>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Type</anno></c> is not one of the memory types
listed in the description of
<seealso marker="#memory/0"><c>erlang:memory/0</c></seealso>.
</item>
<tag><c>badarg</c></tag>
<item>
If <c>maximum</c> is passed as <c><anno>Type</anno></c> and
the emulator is not run in instrumented mode.
</item>
<tag><c>notsup</c></tag>
<item>
If an <seealso marker="erts_alloc"><c>erts_alloc(3)</c></seealso>
allocator has been disabled.
</item>
</taglist>
<p>See also
<seealso marker="#memory/0"><c>erlang:memory/0</c></seealso>.</p>
</desc>
</func>
<func>
<name name="min" arity="2"/>
<fsummary>Return the smallest of two terms.</fsummary>
<desc>
<p>Returns the smallest of <c><anno>Term1</anno></c> and
<c><anno>Term2</anno></c>.
If the terms are equal, <c><anno>Term1</anno></c> is returned.</p>
</desc>
</func>
<func>
<name name="module_loaded" arity="1"/>
<fsummary>Check if a module is loaded.</fsummary>
<desc>
<p>Returns <c>true</c> if the module <c><anno>Module</anno></c>
is loaded, otherwise <c>false</c>. It does not attempt to load
the module.</p>
<warning>
<p>This BIF is intended for the code server (see
<seealso marker="kernel:code"><c>code(3)</c></seealso>)
and is not to be used elsewhere.</p>
</warning>
</desc>
</func>
<func>
<name name="monitor" arity="2" clause_i="1"/>
<name name="monitor" arity="2" clause_i="2"/>
<name name="monitor" arity="2" clause_i="3"/>
<fsummary>Start monitoring.</fsummary>
<type name="registered_name"/>
<type name="registered_process_identifier"/>
<type name="monitor_process_identifier"/>
<type name="monitor_port_identifier"/>
<desc>
<p>Sends a monitor request of type <c><anno>Type</anno></c> to the
entity identified by <c><anno>Item</anno></c>. If the monitored entity
does not exist or it changes monitored state, the caller of
<c>monitor/2</c> is notified by a message on the following format:</p>
<code type="none">
{Tag, <anno>MonitorRef</anno>, <anno>Type</anno>, Object, Info}</code>
<note>
<p>The monitor request is an asynchronous signal. That is, it
takes time before the signal reaches its destination.</p>
</note>
<p><c><anno>Type</anno></c> can be one of the following atoms:
<c>process</c>, <c>port</c> or <c>time_offset</c>.</p>
<p>A <c>process</c> or <c>port</c> monitor is triggered only once,
after that it is removed from both monitoring process and
the monitored entity. Monitors are fired when the monitored process
or port terminates, does not exist at the moment of creation,
or if the connection to it is lost. If the connection to it is lost,
we do not know if it still exists. The monitoring is also turned off
when <seealso marker="#demonitor/1">demonitor/1</seealso> is
called.</p>
<p>A <c>process</c> or <c>port</c> monitor by name
resolves the <c>RegisteredName</c> to <c>pid()</c> or <c>port()</c>
only once at the moment of monitor instantiation, later changes to
the name registration will not affect the existing monitor.</p>
<p>When a <c>process</c> or <c>port</c> monitor is triggered,
a <c>'DOWN'</c> message is sent that has the following pattern:</p>
<code type="none">
{'DOWN', MonitorRef, Type, Object, Info}</code>
<p>In the monitor message <c>MonitorRef</c> and <c>Type</c> are the
same as described earlier, and:</p>
<taglist>
<tag><c>Object</c></tag>
<item>
<p>The monitored entity, which triggered the event. When monitoring
a local process or port, <c>Object</c> will be equal to the
<c>pid()</c> or <c>port()</c> that was being monitored. When
monitoring process or port by name, <c>Object</c> will have format
<c>{RegisteredName, Node}</c> where <c>RegisteredName</c> is the
name which has been used with <c>monitor/2</c> call and
<c>Node</c> is local or remote node name (for ports monitored by
name, <c>Node</c> is always local node name).</p>
</item>
<tag><c>Info</c></tag>
<item>
<p>Either the exit reason of the process, <c>noproc</c>
(process or port did not exist at the time of monitor creation),
or <c>noconnection</c> (no connection to the node where the
monitored process resides). </p></item>
</taglist>
<p>If an attempt is made to monitor a process on an older node
(where remote process monitoring is not implemented or
where remote process monitoring by registered name is not
implemented), the call fails with <c>badarg</c>.</p>
<note>
<p>The format of the <c>'DOWN'</c> message changed in ERTS
5.2 (Erlang/OTP R9B) for monitoring
<em>by registered name</em>. Element <c>Object</c> of
the <c>'DOWN'</c> message could in earlier versions
sometimes be the process identifier of the monitored process and sometimes
be the registered name. Now element <c>Object</c> is
always a tuple consisting of the registered name and
the node name. Processes on new nodes (ERTS 5.2
or higher versions) always get <c>'DOWN'</c> messages on
the new format even if they are monitoring processes on old
nodes. Processes on old nodes always get <c>'DOWN'</c>
messages on the old format.</p>
</note>
<taglist>
<tag>Monitoring a <marker id="monitor_process"/><c>process</c></tag>
<item>
<p>Creates monitor between the current process and another
process identified by <c><anno>Item</anno></c>, which can be a
<c>pid()</c> (local or remote), an atom <c>RegisteredName</c> or
a tuple <c>{RegisteredName, Node}</c> for a registered process,
located elsewhere.</p>
</item>
<tag>Monitoring a <marker id="monitor_port"/><c>port</c></tag>
<item>
<p>Creates monitor between the current process and a port
identified by <c><anno>Item</anno></c>, which can be a
<c>port()</c> (only local), an atom <c>RegisteredName</c> or
a tuple <c>{RegisteredName, Node}</c> for a registered port,
located on this node. Note, that attempt to monitor a remote port
will result in <c>badarg</c>.</p>
</item>
<tag>Monitoring a
<marker id="monitor_time_offset"/><c>time_offset</c></tag>
<item>
<p>Monitors changes in
<seealso marker="#time_offset/0"><c>time offset</c></seealso>
between
<seealso marker="time_correction#Erlang_Monotonic_Time">Erlang
monotonic time</seealso> and
<seealso marker="time_correction#Erlang_System_Time">Erlang
system time</seealso>. One valid <c><anno>Item</anno></c>
exists in combination with the
<c>time_offset <anno>Type</anno></c>, namely the atom
<c>clock_service</c>. Notice that the atom <c>clock_service</c> is
<em>not</em> the registered name of a process. In this
case it serves as an identifier of the runtime system internal
clock service at current runtime system instance.</p>
<p>The monitor is triggered when the time offset is changed.
This either if the time offset value is changed, or if the
offset is changed from preliminary to final during
<seealso marker="#system_flag_time_offset">finalization
of the time offset</seealso> when the
<seealso marker="time_correction#Single_Time_Warp_Mode">single
time warp mode</seealso> is used. When a change from preliminary
to final time offset is made, the monitor is triggered once
regardless of whether the time offset value was changed
or not.</p>
<p>If the runtime system is in
<seealso marker="time_correction#Multi_Time_Warp_Mode">multi
time warp mode</seealso>, the time offset is changed when
the runtime system detects that the
<seealso marker="time_correction#OS_System_Time">OS system
time</seealso> has changed. The runtime system does, however,
not detect this immediately when it occurs. A task checking
the time offset is scheduled to execute at least once a minute,
so under normal operation this is to be detected within a
minute, but during heavy load it can take longer time.</p>
<p>The monitor is <em>not</em> automatically removed
after it has been triggered. That is, repeated changes of
the time offset trigger the monitor repeatedly.</p>
<p>When the monitor is triggered a <c>'CHANGE'</c> message is
sent to the monitoring process. A <c>'CHANGE'</c> message has
the following pattern:</p>
<code type="none">
{'CHANGE', MonitorRef, Type, Item, NewTimeOffset}</code>
<p>where <c>MonitorRef</c>, <c><anno>Type</anno></c>, and
<c><anno>Item</anno></c> are the same as described above, and
<c>NewTimeOffset</c> is the new time offset.</p>
<p>When the <c>'CHANGE'</c> message has been received you are
guaranteed not to retrieve the old time offset when calling
<seealso marker="#time_offset/0">
<c>erlang:time_offset()</c></seealso>.
Notice that you can observe the change of the time offset
when calling <c>erlang:time_offset()</c> before you
get the <c>'CHANGE'</c> message.</p>
</item>
</taglist>
<p>Making several calls to <c>monitor/2</c> for the same
<c><anno>Item</anno></c> and/or <c><anno>Type</anno></c> is not
an error; it results in as many independent monitoring instances.</p>
<p>The monitor functionality is expected to be extended. That is,
other <c><anno>Type</anno></c>s and <c><anno>Item</anno></c>s
are expected to be supported in a future release.</p>
<note>
<p>If or when <c>monitor/2</c> is extended, other
possible values for <c>Tag</c>, <c>Object</c>, and
<c>Info</c> in the monitor message will be introduced.</p>
</note>
</desc>
</func>
<func>
<name name="monitor_node" arity="2"/>
<fsummary>Monitor the status of a node.</fsummary>
<desc>
<p>Monitor the status of the node <c><anno>Node</anno></c>.
If <c><anno>Flag</anno></c>
is <c>true</c>, monitoring is turned on. If <c><anno>Flag</anno></c>
is <c>false</c>, monitoring is turned off.</p>
<p>Making several calls to <c>monitor_node(Node, true)</c> for
the same <c><anno>Node</anno></c> is not an error; it results
in as many independent monitoring instances.</p>
<p>If <c><anno>Node</anno></c> fails or does not exist, the message
<c>{nodedown, Node}</c> is delivered to the process. If a
process has made two calls to <c>monitor_node(Node, true)</c>
and <c><anno>Node</anno></c> terminates, two <c>nodedown</c> messages
are delivered to the process. If there is no connection to
<c><anno>Node</anno></c>, an attempt is made to create one.
If this fails, a <c>nodedown</c> message is delivered.</p>
<p>Nodes connected through hidden connections can be monitored
as any other nodes.</p>
<p>Failure: <c>badarg</c> if the local node is not alive.</p>
</desc>
</func>
<func>
<name name="monitor_node" arity="3"/>
<fsummary>Monitor the status of a node.</fsummary>
<desc>
<p>Behaves as
<seealso marker="#monitor_node/2"><c>monitor_node/2</c></seealso>
except that it allows an
extra option to be specified, namely <c>allow_passive_connect</c>.
This option allows the BIF to wait the normal network connection
time-out for the <em>monitored node</em> to connect itself,
even if it cannot be actively connected from this node
(that is, it is blocked). The state where this can be useful
can only be achieved by using the Kernel option
<c>dist_auto_connect once</c>. If that option is not
used, option <c>allow_passive_connect</c> has no effect.</p>
<note>
<p>Option <c>allow_passive_connect</c> is used
internally and is seldom needed in applications where the
network topology and the Kernel options in effect
are known in advance.</p>
</note>
<p>Failure: <c>badarg</c> if the local node is not alive or the
option list is malformed.</p>
</desc>
</func>
<func>
<name name="monotonic_time" arity="0"/>
<fsummary>Current Erlang monotonic time.</fsummary>
<desc>
<p>Returns the current
<seealso marker="time_correction#Erlang_Monotonic_Time">Erlang
monotonic time</seealso> in <c>native</c>
<seealso marker="#type_time_unit">time unit</seealso>. This
is a monotonically increasing time since some unspecified point in
time.</p>
<note>
<p>This is a
<seealso marker="time_correction#Monotonically_Increasing">
monotonically increasing</seealso> time, but <em>not</em> a
<seealso marker="time_correction#Strictly_Monotonically_Increasing">
strictly monotonically increasing</seealso>
time. That is, consecutive calls to
<c>erlang:monotonic_time/0</c> can produce the same result.</p>
<p>Different runtime system instances will use different unspecified
points in time as base for their Erlang monotonic clocks.
That is, it is <em>pointless</em> comparing monotonic times from
different runtime system instances. Different runtime system
instances can also place this unspecified point in time different
relative runtime system start. It can be placed in the future (time
at start is a negative value), the past (time at start is a
positive value), or the runtime system start (time at start is
zero). The monotonic time at runtime system start can be
retrieved by calling
<seealso marker="#system_info_start_time">
<c>erlang:system_info(start_time)</c></seealso>.</p>
</note>
</desc>
</func>
<func>
<name name="monotonic_time" arity="1"/>
<fsummary>Current Erlang monotonic time.</fsummary>
<desc>
<p>Returns the current
<seealso marker="time_correction#Erlang_Monotonic_Time">Erlang
monotonic time</seealso> converted
into the <c><anno>Unit</anno></c> passed as argument.</p>
<p>Same as calling
<seealso marker="#convert_time_unit/3">
<c>erlang:convert_time_unit</c></seealso><c>(</c><seealso
marker="#monotonic_time/0">
<c>erlang:monotonic_time()</c></seealso><c>,
native, <anno>Unit</anno>)</c>,
however optimized for commonly used <c><anno>Unit</anno></c>s.</p>
</desc>
</func>
<func>
<name name="nif_error" arity="1"/>
<fsummary>Stop execution with a specified reason.</fsummary>
<desc>
<p>Works exactly like
<seealso marker="#error/1"><c>error/1</c></seealso>, but
Dialyzer thinks that this BIF will return an arbitrary
term. When used in a stub function for a NIF to generate an
exception when the NIF library is not loaded, Dialyzer
does not generate false warnings.</p>
</desc>
</func>
<func>
<name name="nif_error" arity="2"/>
<fsummary>Stop execution with a specified reason.</fsummary>
<desc>
<p>Works exactly like
<seealso marker="#error/2"><c>error/2</c></seealso>, but
Dialyzer thinks that this BIF will return an arbitrary
term. When used in a stub function for a NIF to generate an
exception when the NIF library is not loaded, Dialyzer
does not generate false warnings.</p>
</desc>
</func>
<func>
<name name="node" arity="0"/>
<fsummary>Name of the local node.</fsummary>
<desc>
<p>Returns the name of the local node. If the node is not alive,
<c>nonode@nohost</c> is returned instead.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="node" arity="1"/>
<fsummary>At which node a pid, port, or reference originates.</fsummary>
<desc>
<p>Returns the node where <c><anno>Arg</anno></c> originates.
<c><anno>Arg</anno></c> can
be a process identifier, a reference, or a port.
If the local node is not
alive, <c>nonode@nohost</c> is returned.</p>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="nodes" arity="0"/>
<fsummary>All visible nodes in the system.</fsummary>
<desc>
<p>Returns a list of all visible nodes in the system, except
the local node. Same as <c>nodes(visible)</c>.</p>
</desc>
</func>
<func>
<name name="nodes" arity="1"/>
<fsummary>All nodes of a certain type in the system.</fsummary>
<desc>
<p>Returns a list of nodes according to the argument specified.
The returned result, when the argument is a list, is the list
of nodes satisfying the disjunction(s) of the list elements.</p>
<p><c><anno>NodeType</anno></c>s:</p>
<taglist>
<tag><c>visible</c></tag>
<item>
<p>Nodes connected to this node through normal connections.</p>
</item>
<tag><c>hidden</c></tag>
<item>
<p>Nodes connected to this node through hidden connections.</p>
</item>
<tag><c>connected</c></tag>
<item>
<p>All nodes connected to this node.</p>
</item>
<tag><c>this</c></tag>
<item>
<p>This node.</p>
</item>
<tag><c>known</c></tag>
<item>
<p>Nodes that are known to this node. That is, connected
nodes and nodes referred to by process identifiers, port
identifiers, and references located on this node.
The set of known nodes is garbage collected. Notice that
this garbage collection can be delayed. For more
information, see
<seealso marker="erlang#system_info_delayed_node_table_gc">
<c>erlang:system_info(delayed_node_table_gc)</c></seealso>.</p>
</item>
</taglist>
<p>Some equalities: <c>[node()] = nodes(this)</c>,
<c>nodes(connected) = nodes([visible, hidden])</c>, and
<c>nodes() = nodes(visible)</c>.</p>
</desc>
</func>
<func>
<name name="now" arity="0"/>
<fsummary>Elapsed time since 00:00 GMT.</fsummary>
<type name="timestamp"/>
<desc>
<warning>
<p><em>This function is deprecated. Do not use it.</em></p>
<p>For more information, see section
<seealso marker="time_correction">Time and Time Correction</seealso>
in the User's Guide. Specifically, section
<seealso marker="time_correction#Dos_and_Donts">
Dos and Dont's</seealso> describes what to use instead of
<c>erlang:now/0</c>.</p>
</warning>
<p>Returns the tuple <c>{MegaSecs, Secs, MicroSecs}</c>, which is
the elapsed time since 00:00 GMT, January 1, 1970 (zero hour),
if provided by the underlying OS.
Otherwise some other point in time is chosen. It is also
guaranteed that the following calls to this BIF return
continuously increasing values. Hence, the return value from
<c>erlang:now/0</c> can be used to generate unique time stamps.
If it is called in a tight loop on a fast machine,
the time of the node can become skewed.</p>
<p>Can only be used to check the local time of day if
the time-zone information of the underlying OS is
properly configured.</p>
</desc>
</func>
<func>
<name name="open_port" arity="2"/>
<fsummary>Open a port.</fsummary>
<desc>
<p>Returns a port identifier as the result of opening a
new Erlang port. A port can be seen as an external Erlang
process.</p>
<p>The name of the executable as well as the arguments
specifed in <c>cd</c>, <c>env</c>, <c>args</c>, and <c>arg0</c> are
subject to Unicode filename translation if the system is running
in Unicode filename mode. To avoid
translation or to force, for example UTF-8, supply the executable
and/or arguments as a binary in the correct
encoding. For details, see the module
<seealso marker="kernel:file"><c>file(3)</c></seealso>, the
function <seealso marker="kernel:file#native_name_encoding/0">
<c>file:native_name_encoding/0</c></seealso> in Kernel, and
the <seealso marker="stdlib:unicode_usage">
<c>Using Unicode in Erlang</c></seealso> User's Guide.</p>
<note>
<p>The characters in the name (if specified as a list) can
only be > 255 if the Erlang virtual machine is started
in Unicode filename translation mode. Otherwise the name
of the executable is limited to the ISO Latin-1
character set.</p>
</note>
<p><c><anno>PortName</anno></c>s:</p>
<taglist>
<tag><c>{spawn, <anno>Command</anno>}</c></tag>
<item>
<p>Starts an external program. <c><anno>Command</anno></c>
is the name of the external program to be run.
<c><anno>Command</anno></c>
runs outside the Erlang work space unless an Erlang
driver with the name <c><anno>Command</anno></c> is found.
If found, that driver is started. A driver runs in the Erlang
work space, which means that it is linked with the Erlang
runtime system.</p>
<p>When starting external programs on Solaris, the system
call <c>vfork</c> is used in preference to <c>fork</c>
for performance reasons, although it has a history of
being less robust. If there are problems using
<c>vfork</c>, setting environment variable
<c>ERL_NO_VFORK</c> to any value causes <c>fork</c>
to be used instead.</p>
<p>For external programs, <c>PATH</c> is searched
(or an equivalent method is used to find programs,
depending on the OS). This is done by invoking
the shell on certain platforms. The first space-separated
token of the command is considered as the
name of the executable (or driver). This (among other
things) makes this option unsuitable for running
programs with spaces in filenames or directory names.
If spaces in executable filenames are desired, use
<c>{spawn_executable, <anno>Command</anno>}</c> instead.</p>
</item>
<tag><c>{spawn_driver, <anno>Command</anno>}</c></tag>
<item>
<p>Works like <c>{spawn, <anno>Command</anno>}</c>, but demands
the first (space-separated) token of the command to be the name
of a loaded driver. If no driver with that name is loaded, a
<c>badarg</c> error is raised.</p>
</item>
<tag><c>{spawn_executable, <anno>FileName</anno>}</c></tag>
<item>
<p>Works like <c>{spawn, <anno>FileName</anno>}</c>, but only runs
external executables. <c><anno>FileName</anno></c> in its whole
is used as the name of the executable, including any spaces.
If arguments are to be passed, the
<c><anno>PortSettings</anno></c>
<c>args</c> and <c>arg0</c> can be used.</p>
<p>The shell is usually not invoked to start the
program, it is executed directly. <c>PATH</c> (or
equivalent) is not searched. To find a program
in <c>PATH</c> to execute, use
<seealso marker="kernel:os#find_executable/1">
<c>os:find_executable/1</c></seealso>.</p>
<p>Only if a shell script or <c>.bat</c> file is
executed, the appropriate command interpreter is
invoked implicitly, but there is still no
command-argument expansion or implicit <c>PATH</c> search.</p>
<p>If <c><anno>FileName</anno></c> cannot be run, an error
exception is raised, with the POSIX error code as the reason.
The error reason can differ between OSs.
Typically the error <c>enoent</c> is raised when an
attempt is made to run a program that is not found and
<c>eacces</c> is raised when the specified file is not
executable.</p>
</item>
<tag><c>{fd, <anno>In</anno>, <anno>Out</anno>}</c></tag>
<item>
<p>Allows an Erlang process to access any currently opened
file descriptors used by Erlang. The file descriptor
<c><anno>In</anno></c> can be used for standard input, and the
file descriptor <c><anno>Out</anno></c> for standard output.
It is only used for various servers in the Erlang OS (<c>shell</c>
and <c>user</c>). Hence, its use is limited.</p>
</item>
</taglist>
<p><c><anno>PortSettings</anno></c> is a list of settings for the port.
The valid settings are as follows:</p>
<taglist>
<tag><c>{packet, <anno>N</anno>}</c></tag>
<item>
<p>Messages are preceded by their length, sent in
<c><anno>N</anno></c>
bytes, with the most significant byte first. The valid values
for <c>N</c> are 1, 2, and 4.</p>
</item>
<tag><c>stream</c></tag>
<item>
<p>Output messages are sent without packet lengths. A
user-defined protocol must be used between the Erlang
process and the external object.</p>
</item>
<tag><c>{line, <anno>L</anno>}</c></tag>
<item>
<p>Messages are delivered on a per line basis. Each line
(delimited by the OS-dependent newline sequence) is
delivered in a single message. The message data format
is <c>{Flag, Line}</c>, where <c>Flag</c> is
<c>eol</c> or <c>noeol</c>, and <c>Line</c> is the
data delivered (without the newline sequence).</p>
<p><c><anno>L</anno></c> specifies the maximum line length in bytes.
Lines longer than this are delivered in more than one
message, with <c>Flag</c> set to <c>noeol</c> for all
but the last message. If end of file is encountered
anywhere else than immediately following a newline
sequence, the last line is also delivered with
<c>Flag</c> set to <c>noeol</c>. Otherwise
lines are delivered with <c>Flag</c> set to <c>eol</c>.</p>
<p>The <c>{packet, <anno>N</anno>}</c> and <c>{line,
<anno>L</anno>}</c> settings are mutually exclusive.</p>
</item>
<tag><c>{cd, <anno>Dir</anno>}</c></tag>
<item>
<p>Only valid for <c>{spawn, <anno>Command</anno>}</c> and
<c>{spawn_executable, <anno>FileName</anno>}</c>.
The external program starts using <c><anno>Dir</anno></c> as its
working directory. <c><anno>Dir</anno></c> must be a string.</p>
</item>
<tag><c>{env, <anno>Env</anno>}</c></tag>
<item>
<p>Only valid for <c>{spawn, <anno>Command</anno>}</c>, and
<c>{spawn_executable, <anno>FileName</anno>}</c>.
The environment of the started process is extended using
the environment specifications in <c><anno>Env</anno></c>.</p>
<p><c><anno>Env</anno></c> is to be a list of tuples
<c>{<anno>Name</anno>, <anno>Val</anno>}</c>,
where <c><anno>Name</anno></c> is the name of an
environment variable, and <c><anno>Val</anno></c> is the
value it is to have in the spawned
port process. Both <c><anno>Name</anno></c> and
<c><anno>Val</anno></c> must be strings. The one
exception is <c><anno>Val</anno></c> being the atom
<c>false</c> (in analogy with
<seealso marker="kernel:os#getenv/1"><c>os:getenv/1</c></seealso>,
which removes the environment variable.</p>
</item>
<tag><c>{args, [ string() | binary() ]}</c></tag>
<item>
<p>Only valid for <c>{spawn_executable, <anno>FileName</anno>}</c>
and specifies arguments to the executable. Each argument
is specified as a separate string and (on Unix) eventually
ends up as one element each in the argument vector. On
other platforms, a similar behavior is mimicked.</p>
<p>The arguments are not expanded by the shell before
they are supplied to the executable. Most notably this
means that file wildcard expansion does not occur.
To expand wildcards for the arguments, use
<seealso marker="stdlib:filelib#wildcard/1">
<c>filelib:wildcard/1</c></seealso>.
Notice that even if
the program is a Unix shell script, meaning that the
shell ultimately is invoked, wildcard expansion
does not occur, and the script is provided with the
untouched arguments. On Windows, wildcard expansion
is always up to the program itself, therefore this is
not an issue.</p>
<p>The executable name (also known as <c>argv[0]</c>)
is not to be specified in this list. The proper executable name
is automatically used as <c>argv[0]</c>, where applicable.</p>
<p>If you explicitly want to set the
program name in the argument vector, option <c>arg0</c>
can be used.</p>
</item>
<tag><c>{arg0, string() | binary()}</c></tag>
<item>
<p>Only valid for <c>{spawn_executable, <anno>FileName</anno>}</c>
and explicitly specifies the program name argument when
running an executable. This can in some circumstances,
on some OSs, be desirable. How the program
responds to this is highly system-dependent and no specific
effect is guaranteed.</p>
</item>
<tag><c>exit_status</c></tag>
<item>
<p>Only valid for <c>{spawn, <anno>Command</anno>}</c>, where
<c><anno>Command</anno></c> refers to an external program, and
for <c>{spawn_executable, <anno>FileName</anno>}</c>.</p>
<p>When the external process connected to the port exits, a
message of the form <c>{Port,{exit_status,Status}}</c> is
sent to the connected process, where <c>Status</c> is the
exit status of the external process. If the program
aborts on Unix, the same convention is used as the shells
do (that is, 128+signal).</p>
<p>If option <c>eof</c> is specified also, the messages <c>eof</c>
and <c>exit_status</c> appear in an unspecified order.</p>
<p>If the port program closes its <c>stdout</c> without exiting,
option <c>exit_status</c> does not work.</p>
</item>
<tag><c>use_stdio</c></tag>
<item>
<p>Only valid for <c>{spawn, <anno>Command</anno>}</c> and
<c>{spawn_executable, <anno>FileName</anno>}</c>. It
allows the standard input and output (file descriptors 0
and 1) of the spawned (Unix) process for communication
with Erlang.</p>
</item>
<tag><c>nouse_stdio</c></tag>
<item>
<p>The opposite of <c>use_stdio</c>. It uses file descriptors
3 and 4 for communication with Erlang.</p>
</item>
<tag><c>stderr_to_stdout</c></tag>
<item>
<p>Affects ports to external programs. The executed program
gets its standard error file redirected to its standard
output file. <c>stderr_to_stdout</c> and
<c>nouse_stdio</c> are mutually exclusive.</p>
</item>
<tag><c>overlapped_io</c></tag>
<item>
<p>Affects ports to external programs on Windows only. The
standard input and standard output handles of the port program
are, if this option is supplied, opened with flag
<c>FILE_FLAG_OVERLAPPED</c>, so that the port program can
(and must) do
overlapped I/O on its standard handles. This is not normally
the case for simple port programs, but an option of value for the
experienced Windows programmer. <em>On all other platforms, this
option is silently discarded.</em></p>
</item>
<tag><c>in</c></tag>
<item>
<p>The port can only be used for input.</p>
</item>
<tag><c>out</c></tag>
<item>
<p>The port can only be used for output.</p>
</item>
<tag><c>binary</c></tag>
<item>
<p>All I/O from the port is binary data objects as opposed
to lists of bytes.</p>
</item>
<tag><c>eof</c></tag>
<item>
<p>The port is not closed at the end of the file and does not
produce an exit signal. Instead, it remains open and
a <c>{Port, eof}</c> message is sent to the process
holding the port.</p>
</item>
<tag><c>hide</c></tag>
<item>
<p>When running on Windows, suppresses creation of a new
console window when spawning the port program.
(This option has no effect on other platforms.)</p>
</item>
<tag><c>{parallelism, Boolean}</c></tag>
<item>
<marker id="open_port_parallelism"></marker>
<p>Sets scheduler hint for port parallelism. If set to
<c>true</c>, the virtual machine schedules port tasks;
when doing so, it improves parallelism in the system. If set
to <c>false</c>, the virtual machine tries to
perform port tasks immediately, improving latency at the
expense of parallelism. The default can be set at system startup
by passing command-line argument
<seealso marker="erl#+spp"><c>+spp</c></seealso> to
<c>erl(1)</c>.</p>
</item>
</taglist>
<p>Default is <c>stream</c> for all port types and
<c>use_stdio</c> for spawned ports.</p>
<p>Failure: if the port cannot be opened, the exit reason is
<c>badarg</c>, <c>system_limit</c>, or the POSIX error code that
most closely describes the error, or <c>einval</c> if no POSIX
code is appropriate:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>Bad input arguments to <c>open_port</c>.
</item>
<tag><c>system_limit</c></tag>
<item>All available ports in the Erlang emulator are in use.
</item>
<tag><c>enomem</c></tag>
<item>Not enough memory to create the port.
</item>
<tag><c>eagain</c></tag>
<item>No more available OS processes.
</item>
<tag><c>enametoolong</c></tag>
<item>Too long external command.
</item>
<tag><c>emfile</c></tag>
<item>No more available file descriptors (for the
OS process that the Erlang emulator runs in).
</item>
<tag><c>enfile</c></tag>
<item>Full file table (for the entire OS).
</item>
<tag><c>eacces</c></tag>
<item><c>Command</c> specified in <c>{spawn_executable, Command}</c>
does not point out an executable file.
</item>
<tag><c>enoent</c></tag>
<item><c><anno>FileName</anno></c> specified in
<c>{spawn_executable, <anno>FileName</anno>}</c>
does not point out an existing file.
</item>
</taglist>
<p>During use of a port opened using <c>{spawn, Name}</c>,
<c>{spawn_driver, Name}</c>, or <c>{spawn_executable, Name}</c>,
errors arising when sending messages to it are reported to
the owning process using signals of the form
<c>{'EXIT', Port, PosixCode}</c>. For the possible values of
<c>PosixCode</c>, see
<seealso marker="kernel:file"><c>file(3)</c></seealso>.</p>
<p>The maximum number of ports that can be open at the same
time can be configured by passing command-line flag
<seealso marker="erl#max_ports"><c>+Q</c></seealso> to
<c>erl(1)</c>.</p>
</desc>
</func>
<func>
<name name="phash" arity="2"/>
<fsummary>Portable hash function.</fsummary>
<type_desc variable="Range">Range = 1..2^32, Hash = 1..Range</type_desc>
<desc>
<p>Portable hash function that gives the same hash for
the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 4.9.1.1).
The function returns a hash value for
<c><anno>Term</anno></c> within the range
<c>1..<anno>Range</anno></c>. The maximum value for
<c><anno>Range</anno></c> is 2^32.</p>
</desc>
</func>
<func>
<name name="phash2" arity="1"/>
<name name="phash2" arity="2"/>
<fsummary>Portable hash function.</fsummary>
<type_desc variable="Range">1..2^32</type_desc>
<type_desc variable="Hash">0..Range-1</type_desc>
<desc>
<p>Portable hash function that gives the same hash for
the same Erlang term regardless of machine architecture and
ERTS version (the BIF was introduced in ERTS 5.2).
The function returns a hash value for
<c><anno>Term</anno></c> within the range
<c>0..<anno>Range</anno>-1</c>. The maximum value for
<c><anno>Range</anno></c> is 2^32. When without argument
<c><anno>Range</anno></c>, a value in the range
0..2^27-1 is returned.</p>
<p>This BIF is always to be used for hashing terms. It
distributes small integers better than <c>phash/2</c>, and
it is faster for bignums and binaries.</p>
<p>Notice that the range <c>0..<anno>Range</anno>-1</c> is
different from the range of <c>phash/2</c>, which is
<c>1..<anno>Range</anno></c>.</p>
</desc>
</func>
<func>
<name name="pid_to_list" arity="1"/>
<fsummary>Text representation of a pid.</fsummary>
<desc>
<p>Returns a string corresponding to the text
representation of <c><anno>Pid</anno></c>.</p>
</desc>
</func>
<func>
<name name="port_call" arity="3"/>
<fsummary>Perform a synchronous call to a port with term data.</fsummary>
<desc>
<p>Performs a synchronous call to a port. The meaning of
<c><anno>Operation</anno></c> and <c><anno>Data</anno></c>
depends on the port, that is,
on the port driver. Not all port drivers support this feature.</p>
<p><c><anno>Port</anno></c> is a port identifier,
referring to a driver.</p>
<p><c><anno>Operation</anno></c> is an integer, which is passed on to
the driver.</p>
<p><c><anno>Data</anno></c> is any Erlang term. This data is converted
to binary term format and sent to the port.</p>
<p>Returns a term from the driver. The meaning of the returned
data also depends on the port driver.</p>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Port</anno></c> is not an identifier of an open port,
or the registered name of an open port. If the calling
process was previously linked to the closed port,
identified by <c><anno>Port</anno></c>, the exit signal
from the port is guaranteed to be delivered before this
<c>badarg</c> exception occurs.
</item>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Operation</anno></c> does not fit in a 32-bit integer.
</item>
<tag><c>badarg</c></tag>
<item>
If the port driver does not support synchronous control operations.
</item>
<tag><c>badarg</c></tag>
<item>
If the port driver so decides for any reason (probably
something wrong with <c><anno>Operation</anno></c>
or <c><anno>Data</anno></c>).
</item>
</taglist>
</desc>
</func>
<func>
<name name="port_close" arity="1"/>
<fsummary>Close an open port.</fsummary>
<desc>
<p>Closes an open port. Roughly the same as <c><anno>Port</anno> !
{self(), close}</c> except for the error behavior
(see below), being synchronous, and that the port does
<em>not</em> reply with <c>{Port, closed}</c>. Any process can
close a port with <c>port_close/1</c>, not only the port owner
(the connected process). If the calling process is linked to
the port identified by <c><anno>Port</anno></c>, the exit
signal from the port is guaranteed to be delivered before
<c>port_close/1</c> returns.</p>
<p>For comparison: <c><anno>Port</anno> ! {self(), close}</c>
only fails with <c>badarg</c> if <c><anno>Port</anno></c> does
not refer to a port or a process. If <c><anno>Port</anno></c>
is a closed port, nothing happens. If <c><anno>Port</anno></c>
is an open port and the calling process is the port owner,
the port replies with <c>{Port, closed}</c> when all buffers
have been flushed and the port really closes. If the calling
process is not the port owner, the <em>port owner</em> fails
with <c>badsig</c>.</p>
<p>Notice that any process can close a port using
<c><anno>Port</anno> ! {PortOwner, close}</c> as if it itself was
the port owner, but the reply always goes to the port owner.</p>
<p>As from Erlang/OTP R16,
<c><anno>Port</anno> ! {PortOwner, close}</c> is truly
asynchronous. Notice that this operation has always been
documented as an asynchronous operation, while the underlying
implementation has been synchronous. <c>port_close/1</c> is
however still fully synchronous because of its error behavior.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not an
identifier of an open port, or the registered name of an open port.
If the calling process was previously linked to the closed
port, identified by <c><anno>Port</anno></c>, the exit
signal from the port is guaranteed to be delivered before
this <c>badarg</c> exception occurs.</p>
</desc>
</func>
<func>
<name name="port_command" arity="2"/>
<fsummary>Send data to a port.</fsummary>
<desc>
<p>Sends data to a port. Same as
<c><anno>Port</anno> ! {PortOwner, {command, Data}}</c> except for
the error behavior and being synchronous (see below). Any process
can send data to a port with <c>port_command/2</c>, not only the
port owner (the connected process).</p>
<p>For comparison: <c><anno>Port</anno> ! {PortOwner, {command,
Data}}</c> only fails with <c>badarg</c> if <c><anno>Port</anno></c>
does not refer to a port or a process. If <c><anno>Port</anno></c> is
a closed port, the data message disappears
without a sound. If <c><anno>Port</anno></c> is open and the calling
process is not the port owner, the <em>port owner</em> fails
with <c>badsig</c>. The port owner fails with <c>badsig</c>
also if <c><anno>Data</anno></c> is an invalid I/O list.</p>
<p>Notice that any process can send to a port using
<c><anno>Port</anno> ! {PortOwner, {command, <anno>Data</anno>}}</c>
as if it itself was the port owner.</p>
<p>If the port is busy, the calling process is suspended
until the port is not busy any more.</p>
<p>As from Erlang/OTP R16,
<c><anno>Port</anno> ! {PortOwner, {command, Data}}</c>
is truly asynchronous. Notice that this operation has always been
documented as an asynchronous operation, while the underlying
implementation has been synchronous. <c>port_command/2</c> is
however still fully synchronous because of its error behavior.</p>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>
<p>If <c><anno>Port</anno></c> is not an identifier of an open
port, or the registered name of an open port. If the
calling process was previously linked to the closed port,
identified by <c><anno>Port</anno></c>, the exit signal
from the port is guaranteed to be delivered before this
<c>badarg</c> exception occurs.</p>
</item>
<tag><c>badarg</c></tag>
<item>
<p>If <c><anno>Data</anno></c> is an invalid I/O list.</p>
</item>
</taglist>
</desc>
</func>
<func>
<name name="port_command" arity="3"/>
<fsummary>Send data to a port.</fsummary>
<desc>
<p>Sends data to a port. <c>port_command(Port, Data, [])</c>
equals <c>port_command(Port, Data)</c>.</p>
<p>If the port command is aborted, <c>false</c> is returned,
otherwise <c>true</c>.</p>
<p>If the port is busy, the calling process is suspended
until the port is not busy anymore.</p>
<p><c><anno>Option</anno></c>s:</p>
<taglist>
<tag><c>force</c></tag>
<item>The calling process is not suspended if the port is
busy, instead the port command is forced through. The
call fails with a <c>notsup</c> exception if the
driver of the port does not support this. For more
information, see driver flag
<seealso marker="driver_entry#driver_flags">
<c>![CDATA[ERL_DRV_FLAG_SOFT_BUSY]]</c></seealso>.
</item>
<tag><c>nosuspend</c></tag>
<item>The calling process is not suspended if the port is
busy, instead the port command is aborted and
<c>false</c> is returned.
</item>
</taglist>
<note>
<p>More options can be added in a future release.</p>
</note>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Port</anno></c> is not an identifier of an open
port, or the registered name of an open port. If the
calling process was previously linked to the closed port,
identified by <c><anno>Port</anno></c>, the exit signal
from the port is guaranteed to be delivered before this
<c>badarg</c> exception occurs.
</item>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Data</anno></c> is an invalid I/O list.
</item>
<tag><c>badarg</c></tag>
<item>
If <c><anno>OptionList</anno></c> is an invalid option list.
</item>
<tag><c>notsup</c></tag>
<item>
If option <c>force</c> has been passed, but the
driver of the port does not allow forcing through
a busy port.
</item>
</taglist>
</desc>
</func>
<func>
<name name="port_connect" arity="2"/>
<fsummary>Set the owner of a port.</fsummary>
<desc>
<p>Sets the port owner (the connected port) to <c><anno>Pid</anno></c>.
Roughly the same as
<c><anno>Port</anno> ! {Owner, {connect, <anno>Pid</anno>}}</c>
except for the following:</p>
<list type="bulleted">
<item>
<p>The error behavior differs, see below.</p>
</item>
<item>
<p>The port does <em>not</em> reply with
<c>{Port,connected}</c>.</p>
</item>
<item>
<p><c>port_connect/1</c> is synchronous, see below.</p>
</item>
<item>
<p>The new port owner gets linked to the port.</p>
</item>
</list>
<p>The old port owner stays linked to the port and must call
<c>unlink(Port)</c> if this is not desired. Any process can
set the port owner to be any process with
<c>port_connect/2</c>.</p>
<p>For comparison:
<c><anno>Port</anno> ! {self(), {connect, <anno>Pid</anno>}}</c>
only fails with <c>badarg</c> if <c><anno>Port</anno></c>
does not refer to a port or a process. If
<c><anno>Port</anno></c> is a closed port, nothing happens.
If <c><anno>Port</anno></c>
is an open port and the calling process is the port owner,
the port replies with <c>{Port, connected}</c> to the old
port owner. Notice that the old port owner is still linked to
the port, while the new is not. If <c><anno>Port</anno></c> is an open
port and the calling process is not the port owner,
the <em>port owner</em> fails with <c>badsig</c>. The port
owner fails with <c>badsig</c> also if <c><anno>Pid</anno></c> is not
an existing local process identifier.</p>
<p>Notice that any process can set the port owner using
<c><anno>Port</anno> ! {PortOwner, {connect, <anno>Pid</anno>}}</c>
as if it itself was the port owner, but the reply always goes to
the port owner.</p>
<p>As from Erlang/OTP R16,
<c><anno>Port</anno> ! {PortOwner, {connect, <anno>Pid</anno>}}</c>
is truly asynchronous. Notice that this operation has always been
documented as an asynchronous operation, while the underlying
implementation has been synchronous. <c>port_connect/2</c> is
however still fully synchronous because of its error behavior.</p>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Port</anno></c> is not an identifier of an open port,
or the registered name of an open port. If the calling
process was previously linked to the closed port,
identified by <c><anno>Port</anno></c>, the exit signal
from the port is guaranteed to be delivered before this
<c>badarg</c> exception occurs.
</item>
<tag><c>badarg</c></tag>
<item>If the process identified by <c>Pid</c> is not an existing
local process.</item>
</taglist>
</desc>
</func>
<func>
<name name="port_control" arity="3"/>
<fsummary>Perform a synchronous control operation on a port.</fsummary>
<desc>
<p>Performs a synchronous control operation on a port.
The meaning of <c><anno>Operation</anno></c> and
<c><anno>Data</anno></c> depends on
the port, that is, on the port driver. Not all port drivers
support this control feature.</p>
<p>Returns a list of integers in the range 0..255, or a
binary, depending on the port driver. The meaning of
the returned data also depends on the port driver.</p>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Port</anno></c> is not an open port or the registered
name of an open port.
</item>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Operation</anno></c> cannot fit in a 32-bit integer.
</item>
<tag><c>badarg</c></tag>
<item>
If the port driver does not support synchronous control operations.
</item>
<tag><c>badarg</c></tag>
<item>
If the port driver so decides for any reason (probably
something wrong with <c><anno>Operation</anno></c> or
<c><anno>Data</anno></c>).
</item>
</taglist>
</desc>
</func>
<func>
<name name="port_info" arity="1"/>
<fsummary>Information about a port.</fsummary>
<desc>
<p>Returns a list containing tuples with information about
<c><anno>Port</anno></c>, or <c>undefined</c> if the port is not open.
The order of the tuples is undefined, and all the
tuples are not mandatory.
If the port is closed and the calling process
was previously linked to the port, the exit signal from the
port is guaranteed to be delivered before <c>port_info/1</c>
returns <c>undefined</c>.</p>
<p>The result contains information about the following
<c>Item</c>s:</p>
<list type="bulleted">
<item><c>registered_name</c> (if the port has a registered
name)</item>
<item><c>id</c></item>
<item><c>connected</c></item>
<item><c>links</c></item>
<item><c>name</c></item>
<item><c>input</c></item>
<item><c>output</c></item>
</list>
<p>For more information about the different <c>Item</c>s, see
<seealso marker="#port_info/2"><c>port_info/2</c></seealso>.</p>
<p>Failure: <c>badarg</c> if <c>Port</c> is not a local port
identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="1"/>
<fsummary>Information about the connected process of a port.</fsummary>
<desc>
<p><c><anno>Pid</anno></c> is the process identifier of the process
connected to the port.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="2"/>
<fsummary>Information about the internal index of a port.</fsummary>
<desc>
<p><c><anno>Index</anno></c> is the internal index of the port. This
index can be used to separate ports.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="3"/>
<fsummary>Information about the input of a port.</fsummary>
<desc>
<p><c><anno>Bytes</anno></c> is the total number of bytes
read from the port.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="4"/>
<fsummary>Information about the links of a port.</fsummary>
<desc>
<p><c><anno>Pids</anno></c> is a list of the process identifiers
of the processes that the port is linked to.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="5"/>
<fsummary>Information about the locking of a port.</fsummary>
<desc>
<p><c><anno>Locking</anno></c> is one of the following:</p>
<list type="bulleted">
<item><c>false</c> (emulator without SMP support)</item>
<item><c>port_level</c> (port-specific locking)</item>
<item><c>driver_level</c> (driver-specific locking)</item>
</list>
<p>Notice that these results are highly implementation-specific
and can change in a future release.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="6"/>
<fsummary>Information about the memory size of a port.</fsummary>
<desc>
<p><c><anno>Bytes</anno></c> is the total number of
bytes allocated for this port by the runtime system. The
port itself can have allocated memory that is not
included in <c><anno>Bytes</anno></c>.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="7"/>
<fsummary>Information about the monitors of a port.</fsummary>
<desc>
<p><c><anno>Monitors</anno></c> represent processes monitored by
this port.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="8"/>
<fsummary>Which processes are monitoring this port.</fsummary>
<desc>
<p>Returns list of pids that are monitoring given port at the
moment.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="9"/>
<fsummary>Information about the name of a port.</fsummary>
<desc>
<p><c><anno>Name</anno></c> is the command name set by
<seealso marker="#open_port/2"><c>open_port/2</c></seealso>.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="10"/>
<fsummary>Information about the OS pid of a port.</fsummary>
<desc>
<p><c><anno>OsPid</anno></c> is the process identifier (or equivalent)
of an OS process created with
<seealso marker="#open_port/2"><c>open_port({spawn | spawn_executable,
Command}, Options)</c></seealso>. If the port is not the result of
spawning an OS process, the value is <c>undefined</c>.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="11"/>
<fsummary>Information about the output of a port.</fsummary>
<desc>
<p><c><anno>Bytes</anno></c> is the total number of bytes written
to the port from Erlang processes using
<seealso marker="#port_command/2"><c>port_command/2</c></seealso>,
<seealso marker="#port_command/3"><c>port_command/3</c></seealso>,
or <c><anno>Port</anno> ! {Owner, {command, Data}</c>.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="12"/>
<fsummary>Information about the parallelism hint of a port.</fsummary>
<desc>
<p><c><anno>Boolean</anno></c> corresponds to the port parallelism
hint used by this port. For more information, see option
<seealso marker="#open_port_parallelism"><c>parallelism</c></seealso>
of <seealso marker="#open_port/2"><c>open_port/2</c></seealso>.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="13"/>
<fsummary>Information about the queue size of a port.</fsummary>
<desc>
<p><c><anno>Bytes</anno></c> is the total number
of bytes queued by the port using the ERTS driver queue
implementation.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_info" arity="2" clause_i="14"/>
<fsummary>Information about the registered name of a port.</fsummary>
<desc>
<p><c><anno>RegisteredName</anno></c> is the registered name of
the port. If the port has no registered name, <c>[]</c> is
returned.</p>
<p>If the port identified by <c><anno>Port</anno></c> is not open,
<c>undefined</c> is returned. If the port is closed and the
calling process was previously linked to the port, the exit
signal from the port is guaranteed to be delivered before
<c>port_info/2</c> returns <c>undefined</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Port</anno></c> is not a local
port identifier, or an atom.</p>
</desc>
</func>
<func>
<name name="port_to_list" arity="1"/>
<fsummary>Text representation of a port identifier.</fsummary>
<desc>
<p>Returns a string corresponding to the text
representation of the port identifier <c><anno>Port</anno></c>.</p>
</desc>
</func>
<func>
<name name="ports" arity="0"/>
<fsummary>List all existing ports.</fsummary>
<desc>
<p>Returns a list of port identifiers corresponding to all the
ports existing on the local node.</p>
<p>Notice that an exiting port exists, but is not open.</p>
</desc>
</func>
<func>
<name name="pre_loaded" arity="0"/>
<fsummary>List all preloaded modules.</fsummary>
<desc>
<p>Returns a list of Erlang modules that are preloaded in
the system. As all loading of code is done through the file
system, the file system must have been loaded previously.
Hence, at least the module <c>init</c> must be preloaded.</p>
</desc>
</func>
<func>
<name name="process_display" arity="2"/>
<fsummary>Write information about a local process on standard error.
</fsummary>
<desc>
<p>Writes information about the local process <c><anno>Pid</anno></c> on
standard error. The only allowed value for the atom
<c><anno>Type</anno></c> is <c>backtrace</c>, which shows the contents
of the call stack, including information about the call chain, with
the current function printed first. The format of the output
is not further defined.</p>
</desc>
</func>
<func>
<name name="process_flag" arity="2" clause_i="1"/>
<fsummary>Set process flag trap_exit for the calling process.</fsummary>
<desc>
<p>When <c>trap_exit</c> is set to <c>true</c>, exit signals
arriving to a process are converted to <c>{'EXIT', From, Reason}</c>
messages, which can be received as ordinary
messages. If <c>trap_exit</c> is set to <c>false</c>, the
process exits if it receives an exit signal other than
<c>normal</c> and the exit signal is propagated to its
linked processes. Application processes are normally
not to trap exits.</p>
<p>Returns the old value of the flag.</p>
<p>See also <seealso marker="#exit/2"><c>exit/2</c></seealso>.</p>
</desc>
</func>
<func>
<name name="process_flag" arity="2" clause_i="2"/>
<fsummary>Set process flag error_handler for the calling process.
</fsummary>
<desc>
<p>Used by a process to redefine the error handler
for undefined function calls and undefined registered
processes. Inexperienced users are not to use this flag,
as code auto-loading depends on the correct
operation of the error handling module.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="process_flag" arity="2" clause_i="3"/>
<fsummary>Set process flag min_heap_size for the calling process.
</fsummary>
<desc>
<marker id="process_flag_min_heap_size"/>
<p>Changes the minimum heap size for the calling process.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="process_flag" arity="2" clause_i="4"/>
<fsummary>Set process flag min_bin_vheap_size for the calling process.
</fsummary>
<desc>
<p>Changes the minimum binary virtual heap size for the calling
process.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="process_flag" arity="2" clause_i="5"/>
<fsummary>Set process flag max_heap_size for the calling process.
</fsummary>
<type name="max_heap_size"/>
<desc>
<marker id="process_flag_max_heap_size"/>
<p>This flag sets the maximum heap size for the calling process.
If <c><anno>MaxHeapSize</anno></c> is an integer, the system default
values for <c>kill</c> and <c>error_logger</c> are used.
</p>
<taglist>
<tag><c>size</c></tag>
<item>
<p>The maximum size in words of the process. If set to zero, the
heap size limit is disabled. <c>badarg</c> is be thrown if the
value is smaller than <seealso marker="#process_flag_min_heap_size">
<c>min_heap_size</c></seealso>. The size check is only done when
a garbage collection is triggered.</p>
<p><c>size</c> is the entire heap of the process when garbage collection
is triggered. This includes all generational heaps, the process stack,
any <seealso marker="#process_flag_message_queue_data">
messages that are considered to be part of the heap</seealso>, and any
extra memory that the garbage collector needs during collection.</p>
<p><c>size</c> is the same as can be retrieved using
<seealso marker="#process_info_total_heap_size">
<c>erlang:process_info(Pid, total_heap_size)</c></seealso>,
or by adding <c>heap_block_size</c>, <c>old_heap_block_size</c>
and <c>mbuf_size</c> from <seealso marker="#process_info_garbage_collection_info">
<c>erlang:process_info(Pid, garbage_collection_info)</c></seealso>.</p>
</item>
<tag><c>kill</c></tag>
<item>
<p>When set to <c>true</c>, the runtime system sends an
untrappable exit signal with reason <c>kill</c> to the process
if the maximum heap size is reached. The garbage collection
that triggered the <c>kill</c> is not completed, instead the
process exits as soon as possible. When set to <c>false</c>,
no exit signal is sent to the process, instead it continues
executing.</p>
<p>If <c>kill</c> is not defined in the map,
the system default will be used. The default system default
is <c>true</c>. It can be changed by either option
<seealso marker="erl#+hmaxk">+hmaxk</seealso> in <c>erl(1)</c>,
or <seealso marker="#system_flag_max_heap_size">
<c>erlang:system_flag(max_heap_size, MaxHeapSize)</c></seealso>.</p>
</item>
<tag><c>error_logger</c></tag>
<item>
<p>When set to <c>true</c>, the runtime system sends a
message to the current <seealso marker="kernel:error_logger">
<c>error_logger</c></seealso>
containing details about the process when the maximum
heap size is reached. One <c>error_logger</c> report is sent
each time the limit is reached.</p>
<p>If <c>error_logger</c> is not defined in the map, the system
default is used. The default system default is <c>true</c>.
It can be changed by either the option
<seealso marker="erl#+hmaxel">+hmaxel</seealso> int <c>erl(1)</c>,
or <seealso marker="#system_flag_max_heap_size">
<c>erlang:system_flag(max_heap_size, MaxHeapSize)</c></seealso>.</p>
</item>
</taglist>
<p>The heap size of a process is quite hard to predict, especially the
amount of memory that is used during the garbage collection. When
contemplating using this option, it is recommended to first run
it in production with <c>kill</c> set to <c>false</c> and inspect
the <c>error_logger</c> reports to see what the normal peak sizes
of the processes in the system is and then tune the value
accordingly.
</p>
</desc>
</func>
<func>
<name name="process_flag" arity="2" clause_i="6"/>
<fsummary>Set process flag message_queue_data for the calling process.
</fsummary>
<type name="message_queue_data"/>
<desc>
<marker id="process_flag_message_queue_data"/>
<p>This flag determines how messages in the message queue
are stored, as follows:</p>
<taglist>
<tag><c>off_heap</c></tag>
<item>
<p><em>All</em> messages in the message queue will be stored
outside of the process heap. This implies that <em>no</em>
messages in the message queue will be part of a garbage
collection of the process.</p>
</item>
<tag><c>on_heap</c></tag>
<item>
<p>All messages in the message queue will eventually be
placed on heap. They can however temporarily be stored
off heap. This is how messages always have been stored
up until ERTS 8.0.</p>
</item>
</taglist>
<p>The default <c>message_queue_data</c> process flag is determined
by command-line argument <seealso marker="erl#+hmqd">
<c>+hmqd</c></seealso> in <c>erl(1)</c>.</p>
<p>If the process potentially can get many messages in its queue,
you are advised to set the flag to <c>off_heap</c>. This
because a garbage collection with many messages placed on
the heap can become extremely expensive and the process can
consume large amounts of memory. Performance of the
actual message passing is however generally better when not
using flag <c>off_heap</c>.</p>
<p>When changing this flag messages will be moved. This work
has been initiated but not completed when this function
call returns.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="process_flag" arity="2" clause_i="7"/>
<fsummary>Set process flag priority for the calling process.</fsummary>
<type name="priority_level"/>
<desc>
<p><marker id="process_flag_priority"></marker>
Sets the process priority. <c><anno>Level</anno></c> is an atom.
Four priority levels exist: <c>low</c>,
<c>normal</c>, <c>high</c>, and <c>max</c>. Default
is <c>normal</c>.</p>
<note>
<p>Priority level <c>max</c> is reserved for internal use in
the Erlang runtime system, and is <em>not</em> to be used
by others.</p>
</note>
<p>Internally in each priority level, processes are scheduled
in a round robin fashion.</p>
<p>Execution of processes on priority <c>normal</c> and
<c>low</c> are interleaved. Processes on priority
<c>low</c> are selected for execution less
frequently than processes on priority <c>normal</c>.</p>
<p>When runnable processes on priority <c>high</c> exist,
no processes on priority <c>low</c> or <c>normal</c> are
selected for execution. Notice however that this does
<em>not</em> mean that no processes on priority <c>low</c>
or <c>normal</c> can run when processes
are running on priority <c>high</c>. On the runtime
system with SMP support, more processes can be running
in parallel than processes on priority <c>high</c>. That is,
a <c>low</c> and a <c>high</c> priority process can
execute at the same time.</p>
<p>When runnable processes on priority <c>max</c> exist,
no processes on priority <c>low</c>, <c>normal</c>, or
<c>high</c> are selected for execution. As with priority
<c>high</c>, processes on lower priorities can
execute in parallel with processes on priority <c>max</c>.</p>
<p>Scheduling is pre-emptive. Regardless of priority, a process
is pre-empted when it has consumed more than a certain number
of reductions since the last time it was selected for
execution.</p>
<note>
<p>Do not depend on the scheduling
to remain exactly as it is today. Scheduling, at least on
the runtime system with SMP support, is likely to be
changed in a future release to use available
processor cores better.</p>
</note>
<p>There is <em>no</em> automatic mechanism for
avoiding priority inversion, such as priority inheritance
or priority ceilings. When using priorities,
take this into account and handle such scenarios by
yourself.</p>
<p>Making calls from a <c>high</c> priority process into code
that you has no control over can cause the <c>high</c>
priority process to wait for a process with lower
priority. That is, effectively decreasing the priority of the
<c>high</c> priority process during the call. Even if this
is not the case with one version of the code that you have no
control over, it can be the case in a future
version of it. This can, for example, occur if a
<c>high</c> priority process triggers code loading, as
the code server runs on priority <c>normal</c>.</p>
<p>Other priorities than <c>normal</c> are normally not needed.
When other priorities are used, use them with care,
<em>especially</em> priority <c>high</c>. A
process on priority <c>high</c> is only
to perform work for short periods. Busy looping for
long periods in a <c>high</c> priority process causes
most likely problems, as important OTP servers
run on priority <c>normal</c>.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="process_flag" arity="2" clause_i="8"/>
<fsummary>Set process flag save_calls for the calling process.</fsummary>
<desc>
<p><c><anno>N</anno></c> must be an integer in the interval 0..10000.
If <c><anno>N</anno></c> > 0, call saving is made
active for the
process. This means that information about the <c><anno>N</anno></c>
most recent global function calls, BIF calls, sends, and
receives made by the process are saved in a list, which
can be retrieved with
<c>process_info(Pid, last_calls)</c>. A global function
call is one in which the module of the function is
explicitly mentioned. Only a fixed amount of information
is saved, as follows:</p>
<list type="bulleted">
<item><p>A tuple <c>{Module, Function, Arity}</c> for
function calls</p></item>
<item><p>The atoms <c>send</c>, <c>'receive'</c>, and
<c>timeout</c> for sends and receives (<c>'receive'</c>
when a message is received and <c>timeout</c> when a
receive times out)</p></item>
</list>
<p>If <c>N</c> = 0,
call saving is disabled for the process, which is the
default. Whenever the size of the call saving list is set,
its contents are reset.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="process_flag" arity="2" clause_i="9"/>
<fsummary>Set process flag sensitive for the calling process.</fsummary>
<desc>
<p>Sets or clears flag <c>sensitive</c> for the current process.
When a process has been marked as sensitive by calling
<c>process_flag(sensitive, true)</c>, features in the runtime
system that can be used for examining the data or inner working
of the process are silently disabled.</p>
<p>Features that are disabled include (but are not limited to)
the following:</p>
<list type="bulleted">
<item><p>Tracing. Trace flags can still be set for the process,
but no trace messages of any kind are generated. (If flag
<c>sensitive</c> is turned off, trace messages are again
generated if any trace flags are set.)</p></item>
<item><p>Sequential tracing. The sequential trace token is
propagated as usual, but no sequential trace messages are
generated.</p></item>
</list>
<p><c>process_info/1,2</c> cannot be used to read out the
message queue or the process dictionary (both are returned
as empty lists).</p>
<p>Stack back-traces cannot be displayed for the process.</p>
<p>In crash dumps, the stack, messages, and the process dictionary
are omitted.</p>
<p>If <c>{save_calls,N}</c> has been set for the process, no
function calls are saved to the call saving list.
(The call saving list is not cleared. Also, send, receive,
and time-out events are still added to the list.)</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="process_flag" arity="3"/>
<fsummary>Set process flags for a process.</fsummary>
<desc>
<p>Sets certain flags for the process <c><anno>Pid</anno></c>,
in the same manner as
<seealso marker="#process_flag/2"><c>process_flag/2</c></seealso>.
Returns the old value of the flag. The valid values for
<c><anno>Flag</anno></c> are only a subset of those allowed in
<c>process_flag/2</c>, namely <c>save_calls</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Pid</anno></c>
is not a local process.</p>
</desc>
</func>
<func>
<name name="process_info" arity="1"/>
<fsummary>Information about a process.</fsummary>
<type name="process_info_result_item"/>
<type name="priority_level"/>
<type name="stack_item"/>
<type name="max_heap_size"/>
<type name="message_queue_data"/>
<desc>
<p>Returns a list containing <c><anno>InfoTuple</anno></c>s with
miscellaneous information about the process identified by
<c>Pid</c>, or <c>undefined</c> if the process is not alive.</p>
<p>The order of the <c><anno>InfoTuple</anno></c>s is undefined and
all <c><anno>InfoTuple</anno></c>s are not mandatory.
The <c><anno>InfoTuple</anno></c>s
part of the result can be changed without prior notice.</p>
<p>The <c><anno>InfoTuple</anno></c>s with the following items
are part of the result:</p>
<list type="bulleted">
<item><c>current_function</c></item>
<item><c>initial_call</c></item>
<item><c>status</c></item>
<item><c>message_queue_len</c></item>
<item><c>messages</c></item>
<item><c>links</c></item>
<item><c>dictionary</c></item>
<item><c>trap_exit</c></item>
<item><c>error_handler</c></item>
<item><c>priority</c></item>
<item><c>group_leader</c></item>
<item><c>total_heap_size</c></item>
<item><c>heap_size</c></item>
<item><c>stack_size</c></item>
<item><c>reductions</c></item>
<item><c>garbage_collection</c></item>
</list>
<p>If the process identified by <c><anno>Pid</anno></c> has a
registered name,
also an <c><anno>InfoTuple</anno></c> with item <c>registered_name</c>
is included.</p>
<p>For information about specific <c><anno>InfoTuple</anno></c>s, see
<seealso marker="#process_info/2"><c>process_info/2</c></seealso>.</p>
<warning>
<p>This BIF is intended for <em>debugging only</em>. For
all other purposes, use <seealso marker="#process_info/2">
<c>process_info/2</c></seealso>.</p>
</warning>
<p>Failure: <c>badarg</c> if <c><anno>Pid</anno></c> is not a
local process.</p>
</desc>
</func>
<func>
<name name="process_info" arity="2" clause_i="1"/>
<name name="process_info" arity="2" clause_i="2"/>
<fsummary>Information about a process.</fsummary>
<type name="process_info_item"/>
<type name="process_info_result_item"/>
<type name="stack_item"/>
<type name="priority_level"/>
<type name="max_heap_size"/>
<type name="message_queue_data"/>
<desc>
<p>Returns information about the process identified by
<c><anno>Pid</anno></c>, as specified by
<c><anno>Item</anno></c> or <c><anno>ItemList</anno></c>.
Returns <c>undefined</c> if the process is not alive.</p>
<p>If the process is alive and a single <c><anno>Item</anno></c>
is specified, the returned value is the corresponding
<c><anno>InfoTuple</anno></c>, unless <c>Item =:= registered_name</c>
and the process has no registered name. In this case,
<c>[]</c> is returned. This strange behavior is because of
historical reasons, and is kept for backward compatibility.</p>
<p>If <c><anno>ItemList</anno></c> is specified, the result is
<c><anno>InfoTupleList</anno></c>.
The <c><anno>InfoTuple</anno></c>s in
<c><anno>InfoTupleList</anno></c> are included with the corresponding
<c><anno>Item</anno></c>s in the same order as the
<c><anno>Item</anno></c>s were included
in <c><anno>ItemList</anno></c>. Valid <c><anno>Item</anno></c>s can
be included multiple times in <c><anno>ItemList</anno></c>.</p>
<note>
<p>If <c>registered_name</c> is part of <c><anno>ItemList</anno></c>
and the process has no name registered, a
<c>{registered_name, []}</c>, <c><anno>InfoTuple</anno></c>
<em>will</em> be included in the resulting
<c><anno>InfoTupleList</anno></c>. This
behavior is different when a single
<c>Item =:= registered_name</c> is specified, and when
<c>process_info/1</c> is used.</p>
</note>
<p>Valid <c><anno>InfoTuple</anno></c>s with corresponding
<c><anno>Item</anno></c>s:</p>
<taglist>
<tag><c>{backtrace, <anno>Bin</anno>}</c></tag>
<item>
<p>Binary <c><anno>Bin</anno></c> contains the same information
as the output from
<c>erlang:process_display(<anno>Pid</anno>, backtrace)</c>. Use
<c>binary_to_list/1</c> to obtain the string of characters
from the binary.</p>
</item>
<tag><c>{binary, <anno>BinInfo</anno>}</c></tag>
<item>
<p><c><anno>BinInfo</anno></c> is a list containing miscellaneous
information about binaries on the heap of this
process.
This <c><anno>InfoTuple</anno></c> can be changed or
removed without prior notice. In the current implementation
<c><anno>BinInfo</anno></c> is a list of tuples. The tuples
contain; <c>BinaryId</c>, <c>BinarySize</c>, <c>BinaryRefcCount</c>.</p>
<p>The message queue is on the heap depending on the
process flag <seealso marker="#process_flag_message_queue_data">
<c>message_queue_data</c></seealso>.</p>
</item>
<tag><c>{catchlevel, <anno>CatchLevel</anno>}</c></tag>
<item>
<p><c><anno>CatchLevel</anno></c> is the number of currently active
catches in this process. This <c><anno>InfoTuple</anno></c> can be
changed or removed without prior notice.</p>
</item>
<tag><c>{current_function, {<anno>Module</anno>,
<anno>Function</anno>, Arity}}</c></tag>
<item>
<p><c><anno>Module</anno></c>, <c><anno>Function</anno></c>,
<c><anno>Arity</anno></c> is
the current function call of the process.</p>
</item>
<tag><c>{current_location, {<anno>Module</anno>,
<anno>Function</anno>, <anno>Arity</anno>,
<anno>Location</anno>}}</c></tag>
<item>
<p><c><anno>Module</anno></c>, <c><anno>Function</anno></c>,
<c><anno>Arity</anno></c> is
the current function call of the process.
<c><anno>Location</anno></c> is a list of two-tuples describing
the location in the source code.</p>
</item>
<tag><c>{current_stacktrace, <anno>Stack</anno>}</c></tag>
<item>
<p>Returns the current call stack back-trace (<em>stacktrace</em>)
of the process. The stack has the same format as returned by
<seealso marker="#get_stacktrace/0">
<c>erlang:get_stacktrace/0</c></seealso>. The depth of the
stacktrace is truncated according to the <c>backtrace_depth</c>
system flag setting.</p>
</item>
<tag><c>{dictionary, <anno>Dictionary</anno>}</c></tag>
<item>
<p><c><anno>Dictionary</anno></c> is the process dictionary.</p>
</item>
<tag><c>{error_handler, <anno>Module</anno>}</c></tag>
<item>
<p><c><anno>Module</anno></c> is the error handler module used by
the process (for undefined function calls, for example).</p>
</item>
<tag><c>{garbage_collection, <anno>GCInfo</anno>}</c></tag>
<item>
<p><c><anno>GCInfo</anno></c> is a list containing miscellaneous
information about garbage collection for this process.
The content of <c><anno>GCInfo</anno></c> can be changed without
prior notice.</p>
</item>
<tag>
<marker id="process_info_garbage_collection_info"/>
<c>{garbage_collection_info, <anno>GCInfo</anno>}</c>
</tag>
<item>
<p><c><anno>GCInfo</anno></c> is a list containing miscellaneous
detailed information about garbage collection for this process.
The content of <c><anno>GCInfo</anno></c> can be changed without
prior notice. For details about the meaning of each item, see
<seealso marker="#gc_minor_start"><c>gc_minor_start</c></seealso>
in <seealso marker="#trace/3"><c>erlang:trace/3</c></seealso>.</p>
</item>
<tag><c>{group_leader, <anno>GroupLeader</anno>}</c></tag>
<item>
<p><c><anno>GroupLeader</anno></c> is the group leader for the I/O
of the process.</p>
</item>
<tag><c>{heap_size, <anno>Size</anno>}</c></tag>
<item>
<p><c><anno>Size</anno></c> is the size in words of the youngest
heap generation of the process. This generation includes
the process stack. This information is highly
implementation-dependent, and can change if the
implementation changes.</p>
</item>
<tag><c>{initial_call, {<anno>Module</anno>, <anno>Function</anno>,
<anno>Arity</anno>}}</c></tag>
<item>
<p><c><anno>Module</anno></c>, <c><anno>Function</anno></c>,
<c><anno>Arity</anno></c> is
the initial function call with which the process was
spawned.</p>
</item>
<tag><c>{links, <anno>PidsAndPorts</anno>}</c></tag>
<item>
<p><c><anno>PidsAndPorts</anno></c> is a list of process identifiers
and port identifiers, with processes or ports to which the process
has a link.</p>
</item>
<tag><c>{last_calls, false|Calls}</c></tag>
<item>
<p>The value is <c>false</c> if call saving is not active
for the process (see <seealso marker="#process_flag/3">
<c>process_flag/3</c></seealso>).
If call saving is active, a list is returned, in which
the last element is the most recent called.</p>
</item>
<tag><c>{memory, <anno>Size</anno>}</c></tag>
<item>
<p><c><anno>Size</anno></c> is the size in bytes of the process.
This includes call stack, heap, and internal structures.</p>
</item>
<tag><c>{message_queue_len, <anno>MessageQueueLen</anno>}</c></tag>
<item>
<p><c><anno>MessageQueueLen</anno></c> is the number of messages
currently in the message queue of the process. This is the
length of the list <c><anno>MessageQueue</anno></c> returned as
the information item <c>messages</c> (see below).</p>
</item>
<tag><c>{messages, <anno>MessageQueue</anno>}</c></tag>
<item>
<p><c><anno>MessageQueue</anno></c> is a list of the messages to
the process, which have not yet been processed.</p>
</item>
<tag><c>{min_heap_size, <anno>MinHeapSize</anno>}</c></tag>
<item>
<p><c><anno>MinHeapSize</anno></c> is the minimum heap size
for the process.</p>
</item>
<tag><c>{min_bin_vheap_size, <anno>MinBinVHeapSize</anno>}</c></tag>
<item>
<p><c><anno>MinBinVHeapSize</anno></c> is the minimum binary virtual
heap size for the process.</p>
</item>
<tag><c>{monitored_by, <anno>Pids</anno>}</c></tag>
<item>
<p>A list of process identifiers monitoring the process (with
<c>monitor/2</c>).</p>
</item>
<tag><c>{monitors, <anno>Monitors</anno>}</c></tag>
<item>
<p>A list of monitors (started by <c>monitor/2</c>)
that are active for the process. For a local process
monitor or a remote process monitor by a process
identifier, the list consists of:</p>
<taglist>
<tag><c>{process, <anno>Pid</anno>}</c></tag>
<item>Process is monitored by pid.</item>
<tag><c>{process, {<anno>RegName</anno>, <anno>Node</anno>}}</c></tag>
<item>Local or remote process is monitored by name.</item>
<tag><c>{port, PortId}</c></tag>
<item>Local port is monitored by port id.</item>
<tag><c>{port, {<anno>RegName</anno>, <anno>Node</anno>}}</c></tag>
<item>Local port is monitored by name. Please note, that
remote port monitors are not supported, so <c>Node</c> will
always be the local node name.</item>
</taglist>
</item>
<tag><c>{message_queue_data, <anno>MQD</anno>}</c></tag>
<item>
<p>Returns the current state of process flag
<c>message_queue_data</c>. <c><anno>MQD</anno></c> is either
<c>off_heap</c> or <c>on_heap</c>. For more
information, see the documentation of
<seealso marker="#process_flag_message_queue_data">
<c>process_flag(message_queue_data, MQD)</c></seealso>.</p>
</item>
<tag><c>{priority, <anno>Level</anno>}</c></tag>
<item>
<p><c><anno>Level</anno></c> is the current priority level for
the process. For more information on priorities, see
<seealso marker="#process_flag_priority">
<c>process_flag(priority, Level)</c></seealso>.</p>
</item>
<tag><c>{reductions, <anno>Number</anno>}</c></tag>
<item>
<p><c><anno>Number</anno></c> is the number of reductions executed
by the process.</p>
</item>
<tag><c>{registered_name, <anno>Atom</anno>}</c></tag>
<item>
<p><c><anno>Atom</anno></c> is the registered process name.
If the process has no registered name, this tuple is not
present in the list.</p>
</item>
<tag><c>{sequential_trace_token, [] |
<anno>SequentialTraceToken</anno>}</c></tag>
<item>
<p><c><anno>SequentialTraceToken</anno></c> is the sequential trace
token for the process. This <c><anno>InfoTuple</anno></c> can be
changed or removed without prior notice.</p>
</item>
<tag><c>{stack_size, <anno>Size</anno>}</c></tag>
<item>
<p><c><anno>Size</anno></c> is the stack size, in words,
of the process.</p>
</item>
<tag><c>{status, <anno>Status</anno>}</c></tag>
<item>
<p><c><anno>Status</anno></c> is the status of the process and is
one of the following:</p>
<list type="bulleted">
<item><c>exiting</c></item>
<item><c>garbage_collecting</c></item>
<item><c>waiting</c> (for a message)</item>
<item><c>running</c></item>
<item><c>runnable</c> (ready to run, but another process is
running)</item>
<item><c>suspended</c> (suspended on a "busy" port
or by the BIF <c>erlang:suspend_process/1,2</c>)</item>
</list>
</item>
<tag><c>{suspending, <anno>SuspendeeList</anno>}</c></tag>
<item>
<p><c><anno>SuspendeeList</anno></c> is a list of
<c>{<anno>Suspendee</anno>, <anno>ActiveSuspendCount</anno>,
<anno>OutstandingSuspendCount</anno>}</c> tuples.
<c><anno>Suspendee</anno></c> is the process identifier of a
process that has been, or is to be,
suspended by the process identified by <c><anno>Pid</anno></c>
through the BIF <seealso marker="#suspend_process/2">
<c>erlang:suspend_process/2</c></seealso> or
<seealso marker="#suspend_process/1">
<c>erlang:suspend_process/1</c></seealso>.</p>
<p><c><anno>ActiveSuspendCount</anno></c> is the number of
times <c><anno>Suspendee</anno></c> has been suspended by
<c><anno>Pid</anno></c>.
<c><anno>OutstandingSuspendCount</anno></c> is the number of not
yet completed suspend requests sent by <c><anno>Pid</anno></c>,
that is:</p>
<list type="bulleted">
<item>
<p>If <c><anno>ActiveSuspendCount</anno> =/= 0</c>,
<c><anno>Suspendee</anno></c> is
currently in the suspended state.</p>
</item>
<item>
<p>If <c><anno>OutstandingSuspendCount</anno> =/= 0</c>,
option <c>asynchronous</c> of <c>erlang:suspend_process/2</c>
has been used and the suspendee has not yet been
suspended by <c><anno>Pid</anno></c>.</p>
</item>
</list>
<p>Notice that <c><anno>ActiveSuspendCount</anno></c> and
<c><anno>OutstandingSuspendCount</anno></c> are not the
total suspend count on <c><anno>Suspendee</anno></c>,
only the parts contributed by <c><anno>Pid</anno></c>.</p>
</item>
<tag>
<marker id="process_info_total_heap_size"/>
<c>{total_heap_size, <anno>Size</anno>}</c>
</tag>
<item>
<p><c><anno>Size</anno></c> is the total size, in words, of all heap
fragments of the process. This includes the process stack and
any unreceived messages that are considered to be part of the
heap.</p>
</item>
<tag><c>{trace, <anno>InternalTraceFlags</anno>}</c></tag>
<item>
<p><c><anno>InternalTraceFlags</anno></c> is an integer
representing the internal trace flag for this process.
This <c><anno>InfoTuple</anno></c>
can be changed or removed without prior notice.</p>
</item>
<tag><c>{trap_exit, <anno>Boolean</anno>}</c></tag>
<item>
<p><c><anno>Boolean</anno></c> is <c>true</c> if the process
is trapping exits, otherwise <c>false</c>.</p>
</item>
</taglist>
<p>Notice that not all implementations support all
these <c><anno>Item</anno></c>s.</p>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>If <c><anno>Pid</anno></c> is not a local process.</item>
<tag><c>badarg</c></tag>
<item>If <c><anno>Item</anno></c> is an invalid item.</item>
</taglist>
</desc>
</func>
<func>
<name name="processes" arity="0"/>
<fsummary>All processes.</fsummary>
<desc>
<p>Returns a list of process identifiers corresponding to
all the processes currently existing on the local node.</p>
<p>Notice that an exiting process exists, but is not alive.
That is, <c>is_process_alive/1</c> returns <c>false</c>
for an exiting process, but its process identifier is part
of the result returned from <c>processes/0</c>.</p>
<p>Example:</p>
<pre>
> <input>processes().</input>
[<0.0.0>,<0.2.0>,<0.4.0>,<0.5.0>,<0.7.0>,<0.8.0>]</pre>
</desc>
</func>
<func>
<name name="purge_module" arity="1"/>
<fsummary>Remove old code for a module.</fsummary>
<desc>
<p>Removes old code for <c><anno>Module</anno></c>.
Before this BIF is used,
<seealso marker="#check_process_code/2">
<c>check_process_code/2</c></seealso>is to be called to check
that no processes execute old code in the module.</p>
<warning>
<p>This BIF is intended for the code server (see
<seealso marker="kernel:code"><c>code(3)</c></seealso>)
and is not to be used elsewhere.</p>
</warning>
<note>
<p>As from ERTS 8.0 (Erlang/OTP 19), any lingering processes
that still execute the old code is killed by this function.
In earlier versions, such incorrect use could cause much
more fatal failures, like emulator crash.</p>
</note>
<p>Failure: <c>badarg</c> if there is no old code for
<c><anno>Module</anno></c>.</p>
</desc>
</func>
<func>
<name name="put" arity="2"/>
<fsummary>Add a new value to the process dictionary.</fsummary>
<desc>
<p>Adds a new <c><anno>Key</anno></c> to the process dictionary,
associated with the value <c><anno>Val</anno></c>, and returns
<c>undefined</c>. If <c><anno>Key</anno></c> exists, the old
value is deleted and replaced by <c><anno>Val</anno></c>, and
the function returns the old value. Example:</p>
<pre>
> <input>X = put(name, walrus), Y = put(name, carpenter),</input>
<input>Z = get(name),</input>
<input>{X, Y, Z}.</input>
{undefined,walrus,carpenter}</pre>
<note>
<p>The values stored when <c>put</c> is evaluated within
the scope of a <c>catch</c> are not retracted if a
<c>throw</c> is evaluated, or if an error occurs.</p>
</note>
</desc>
</func>
<func>
<name name="raise" arity="3"/>
<fsummary>Stop execution with an exception of specified class, reason,
and call stack backtrace.</fsummary>
<type name="raise_stacktrace"/>
<desc>
<p>Stops the execution of the calling process with an
exception of the specified class, reason, and call stack backtrace
(<em>stacktrace</em>).</p>
<p><c><anno>Class</anno></c> is <c>error</c>, <c>exit</c>, or
<c>throw</c>. So, if it were not for the stacktrace,
<c>erlang:raise(<anno>Class</anno>, <anno>Reason</anno>,
<anno>Stacktrace</anno>)</c> is equivalent to
<c>erlang:<anno>Class</anno>(<anno>Reason</anno>)</c>.</p>
<p><c><anno>Reason</anno></c> is any term.
<c><anno>Stacktrace</anno></c> is a list as
returned from <c>get_stacktrace()</c>, that is, a list of
four-tuples <c>{Module, Function, Arity | Args,
Location}</c>, where <c>Module</c> and <c>Function</c>
are atoms, and the third element is an integer arity or an
argument list. The stacktrace can also contain <c>{Fun,
Args, Location}</c> tuples, where <c>Fun</c> is a local
fun and <c>Args</c> is an argument list.</p>
<p>Element <c>Location</c> at the end is optional.
Omitting it is equivalent to specifying an empty list.</p>
<p>The stacktrace is used as the exception stacktrace for the
calling process; it is truncated to the current
maximum stacktrace depth.</p>
<p>As evaluating this function causes the process to
terminate, it has no return value unless the arguments are
invalid, in which case the function <em>returns the error
reason</em> <c>badarg</c>. If you want to be
sure not to return, you can call
<c>error(erlang:raise(<anno>Class</anno>, <anno>Reason</anno>,
<anno>Stacktrace</anno>))</c>
and hope to distinguish exceptions later.</p>
</desc>
</func>
<func>
<name name="read_timer" arity="1"/>
<fsummary>Read the state of a timer.</fsummary>
<desc>
<p>Reads the state of a timer. The same as calling
<seealso marker="#read_timer/2"><c>erlang:read_timer(TimerRef,
[])</c></seealso>.</p>
</desc>
</func>
<func>
<name name="read_timer" arity="2"/>
<fsummary>Read the state of a timer.</fsummary>
<desc>
<p>Reads the state of a timer that has been created by either
<seealso marker="#start_timer/4"><c>erlang:start_timer</c></seealso>
or <seealso marker="#send_after/4"><c>erlang:send_after</c></seealso>.
<c><anno>TimerRef</anno></c> identifies the timer, and
was returned by the BIF that created the timer.</p>
<p><c><anno>Option</anno>s</c>:</p>
<taglist>
<tag><c>{async, Async}</c></tag>
<item>
<p>Asynchronous request for state information. <c>Async</c>
defaults to <c>false</c>, which causes the operation
to be performed synchronously. In this case, the <c>Result</c>
is returned by <c>erlang:read_timer</c>. When
<c>Async</c> is <c>true</c>, <c>erlang:read_timer</c>
sends an asynchronous request for the state information
to the timer service that manages the timer, and then returns
<c>ok</c>. A message on the format <c>{read_timer,
<anno>TimerRef</anno>, <anno>Result</anno>}</c> is
sent to the caller of <c>erlang:read_timer</c> when the
operation has been processed.</p>
</item>
</taglist>
<p>More <c><anno>Option</anno></c>s can be added in the future.</p>
<p>If <c><anno>Result</anno></c> is an integer, it represents the
time in milliseconds left until the timer expires.</p>
<p>If <c><anno>Result</anno></c> is <c>false</c>, a
timer corresponding to <c><anno>TimerRef</anno></c> could not
be found. This because the timer had expired,
or been canceled, or because <c><anno>TimerRef</anno></c>
never has corresponded to a timer. Even if the timer has expired,
it does not tell you whether or not the time-out message has
arrived at its destination yet.</p>
<note>
<p>The timer service that manages the timer can be co-located
with another scheduler than the scheduler that the calling
process is executing on. If so, communication
with the timer service takes much longer time than if it
is located locally. If the calling process is in a critical
path, and can do other things while waiting for the result
of this operation, you want to use option <c>{async, true}</c>.
If using option <c>{async, false}</c>, the calling
process is blocked until the operation has been performed.</p>
</note>
<p>See also
<seealso marker="#send_after/4"><c>erlang:send_after/4</c></seealso>,
<seealso marker="#start_timer/4">
<c>erlang:start_timer/4</c></seealso>, and
<seealso marker="#cancel_timer/2">
<c>erlang:cancel_timer/2</c></seealso>.</p>
</desc>
</func>
<func>
<name name="ref_to_list" arity="1"/>
<fsummary>Text representation of a reference.</fsummary>
<desc>
<p>Returns a string corresponding to the text
representation of <c><anno>Ref</anno></c>.</p>
<warning>
<p>This BIF is intended for debugging and is not to be used
in application programs.</p>
</warning>
</desc>
</func>
<func>
<name name="register" arity="2"/>
<fsummary>Register a name for a pid (or port).</fsummary>
<desc>
<p>Associates the name <c><anno>RegName</anno></c> with a process
identifier (pid) or a port identifier.
<c><anno>RegName</anno></c>, which must be an atom, can be used
instead of the pid or port identifier in send operator
(<c><anno>RegName</anno> ! Message</c>). Example:</p>
<pre>
> <input>register(db, Pid).</input>
true</pre>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>If <c><anno>PidOrPort</anno></c> is not an existing local
process or port.</item>
<tag><c>badarg</c></tag>
<item>If <c><anno>RegName</anno></c> is already in use.</item>
<tag><c>badarg</c></tag>
<item>If the process or port is already registered
(already has a name).</item>
<tag><c>badarg</c></tag>
<item>If <c><anno>RegName</anno></c> is the atom
<c>undefined</c>.</item>
</taglist>
</desc>
</func>
<func>
<name name="registered" arity="0"/>
<fsummary>All registered names.</fsummary>
<desc>
<p>Returns a list of names that have been registered using
<seealso marker="#register/2"><c>register/2</c></seealso>, for
example:</p>
<pre>
> <input>registered().</input>
[code_server, file_server, init, user, my_db]</pre>
</desc>
</func>
<func>
<name name="resume_process" arity="1"/>
<fsummary>Resume a suspended process.</fsummary>
<desc>
<p>Decreases the suspend count on the process identified by
<c><anno>Suspendee</anno></c>. <c><anno>Suspendee</anno></c>
is previously to have been suspended through
<seealso marker="#suspend_process/2">
<c>erlang:suspend_process/2</c></seealso> or
<seealso marker="#suspend_process/1">
<c>erlang:suspend_process/1</c></seealso>
by the process calling
<c>erlang:resume_process(<anno>Suspendee</anno>)</c>. When the
suspend count on <c><anno>Suspendee</anno></c> reaches zero,
<c><anno>Suspendee</anno></c> is resumed, that is, its state
is changed from suspended into the state it had before it was
suspended.</p>
<warning>
<p>This BIF is intended for debugging only.</p>
</warning>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Suspendee</anno></c> is not a process identifier.
</item>
<tag><c>badarg</c></tag>
<item>
If the process calling <c>erlang:resume_process/1</c> had
not previously increased the suspend count on the process
identified by <c><anno>Suspendee</anno></c>.
</item>
<tag><c>badarg</c></tag>
<item>
If the process identified by <c><anno>Suspendee</anno></c>
is not alive.
</item>
</taglist>
</desc>
</func>
<func>
<name name="round" arity="1"/>
<fsummary>Return an integer by rounding a number.</fsummary>
<desc>
<p>Returns an integer by rounding <c><anno>Number</anno></c>,
for example:</p>
<pre>
<input>round(5.5).</input>
6</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="self" arity="0"/>
<fsummary>Return pid of the calling process.</fsummary>
<desc>
<p>Returns the process identifier of the calling process, for
example:</p>
<pre>
> <input>self().</input>
<0.26.0></pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="send" arity="2"/>
<fsummary>Send a message.</fsummary>
<type name="dst"/>
<desc>
<p>Sends a message and returns <c><anno>Msg</anno></c>. This
is the same as <c><anno>Dest</anno> ! <anno>Msg</anno></c>.</p>
<p><c><anno>Dest</anno></c> can be a remote or local process identifier,
a (local) port, a locally registered name, or a tuple
<c>{<anno>RegName</anno>, <anno>Node</anno>}</c>
for a registered name at another node.</p>
</desc>
</func>
<func>
<name name="send" arity="3"/>
<fsummary>Send a message conditionally.</fsummary>
<type name="dst"/>
<desc>
<p>Either sends a message and returns <c>ok</c>, or does not send
the message but returns something else (see below).
Otherwise the same as
<seealso marker="#send/2"><c>erlang:send/2</c></seealso>.
For more detailed explanation and warnings, see
<seealso marker="#send_nosuspend/2">
<c>erlang:send_nosuspend/2,3</c></seealso>.</p>
<p>Options:</p>
<taglist>
<tag><c>nosuspend</c></tag>
<item>If the sender would have to be suspended to do the send,
<c>nosuspend</c> is returned instead.
</item>
<tag><c>noconnect</c></tag>
<item>
If the destination node would have to be auto-connected
to do the send, <c>noconnect</c> is returned
instead.
</item>
</taglist>
<warning>
<p>As with <c>erlang:send_nosuspend/2,3</c>: use with extreme
care.</p>
</warning>
</desc>
</func>
<func>
<name name="send_after" arity="3"/>
<fsummary>Start a timer.</fsummary>
<desc>
<p>Starts a timer. The same as calling
<seealso marker="#send_after/4">
<c>erlang:send_after(<anno>Time</anno>, <anno>Dest</anno>,
<anno>Msg</anno>, [])</c></seealso>.</p>
</desc>
</func>
<func>
<name name="send_after" arity="4"/>
<fsummary>Start a timer.</fsummary>
<desc>
<p>Starts a timer. When the timer expires, the message
<c><anno>Msg</anno></c> is sent to the process
identified by <c><anno>Dest</anno></c>. Apart from
the format of the time-out message, this function works exactly as
<seealso marker="#start_timer/4">
<c>erlang:start_timer/4</c></seealso>.</p>
</desc>
</func>
<func>
<name name="send_nosuspend" arity="2"/>
<fsummary>Try to send a message without ever blocking.</fsummary>
<type name="dst"/>
<desc>
<p>The same as
<seealso marker="#send/3"><c>erlang:send(<anno>Dest</anno>,
<anno>Msg</anno>, [nosuspend])</c></seealso>,
but returns <c>true</c> if
the message was sent and <c>false</c> if the message was not
sent because the sender would have had to be suspended.</p>
<p>This function is intended for send operations to an
unreliable remote node without ever blocking the sending
(Erlang) process. If the connection to the remote node
(usually not a real Erlang node, but a node written in C or
Java) is overloaded, this function <em>does not send the message</em>
and returns <c>false</c>.</p>
<p>The same occurs if <c><anno>Dest</anno></c> refers to a local port
that is busy. For all other destinations (allowed for the ordinary
send operator <c>'!'</c>), this function sends the message and
returns <c>true</c>.</p>
<p>This function is only to be used in rare circumstances
where a process communicates with Erlang nodes that can
disappear without any trace, causing the TCP buffers and
the drivers queue to be over-full before the node is
shut down (because of tick time-outs) by <c>net_kernel</c>.
The normal reaction to take when this occurs is some kind of
premature shutdown of the other node.</p>
<p>Notice that ignoring the return value from this function would
result in an <em>unreliable</em> message passing, which is
contradictory to the Erlang programming model. The message is
<em>not</em> sent if this function returns <c>false</c>.</p>
<p>In many systems, transient states of
overloaded queues are normal. Although this function
returns <c>false</c> does not mean that the other
node is guaranteed to be non-responsive, it could be a
temporary overload. Also, a return value of <c>true</c> does
only mean that the message can be sent on the (TCP) channel
without blocking; the message is not guaranteed to
arrive at the remote node. For a disconnected
non-responsive node, the return value is <c>true</c> (mimics
the behavior of operator <c>!</c>). The expected
behavior and the actions to take when the function
returns <c>false</c> are application- and hardware-specific.</p>
<warning>
<p>Use with extreme care.</p>
</warning>
</desc>
</func>
<func>
<name name="send_nosuspend" arity="3"/>
<fsummary>Try to send a message without ever blocking.</fsummary>
<type name="dst"/>
<desc>
<p>The same as
<seealso marker="#send/3"><c>erlang:send(<anno>Dest</anno>,
<anno>Msg</anno>, [nosuspend | <anno>Options</anno>])</c></seealso>,
but with a Boolean return value.</p>
<p>This function behaves like
<seealso marker="#send_nosuspend/2">
<c>erlang:send_nosuspend/2</c></seealso>,
but takes a third parameter, a list of options.
The only option is <c>noconnect</c>, which
makes the function return <c>false</c> if
the remote node is not currently reachable by the local
node. The normal behavior is to try to connect to the node,
which can stall the process during a short period. The use of
option <c>noconnect</c> makes it possible to be
sure not to get the slightest delay when
sending to a remote process. This is especially useful when
communicating with nodes that expect to always be
the connecting part (that is, nodes written in C or Java).</p>
<p>Whenever the function returns <c>false</c> (either when a
suspend would occur or when <c>noconnect</c> was specified and
the node was not already connected), the message is guaranteed
<em>not</em> to have been sent.</p>
<warning>
<p>Use with extreme care.</p>
</warning>
</desc>
</func>
<func>
<name name="set_cookie" arity="2"/>
<fsummary>Set the magic cookie of a node.</fsummary>
<desc>
<p>Sets the magic cookie of <c><anno>Node</anno></c> to the atom
<c><anno>Cookie</anno></c>. If <c><anno>Node</anno></c> is the
local node, the function
also sets the cookie of all other unknown nodes to
<c><anno>Cookie</anno></c> (see section
<seealso marker="doc/reference_manual:distributed">
Distributed Erlang</seealso>
in the Erlang Reference Manual in System Documentation).</p>
<p>Failure: <c>function_clause</c> if the local node is not
alive.</p>
</desc>
</func>
<func>
<name name="setelement" arity="3"/>
<fsummary>Set the Nth element of a tuple.</fsummary>
<type_desc variable="Index">1..tuple_size(<anno>Tuple1</anno></type_desc>
<desc>
<p>Returns a tuple that is a copy of argument
<c><anno>Tuple1</anno></c>
with the element specified by integer argument
<c><anno>Index</anno></c>
(the first element is the element with index 1) replaced by
argument <c><anno>Value</anno></c>, for example:</p>
<pre>
> <input>setelement(2, {10, green, bottles}, red).</input>
{10,red,bottles}</pre>
</desc>
</func>
<func>
<name name="size" arity="1"/>
<fsummary>Size of a tuple or binary.</fsummary>
<desc>
<p>Returns the number of elements in a tuple or the number of
bytes in a binary or bitstring, for example:</p>
<pre>
> <input>size({morni, mulle, bwange}).</input>
3
> <input>size(<<11, 22, 33>>).</input>
3</pre>
<p>For bitstrings, the number of whole bytes is returned.
That is, if the number of bits
in the bitstring is not divisible by 8, the resulting
number of bytes is rounded <em>down</em>.</p>
<p>Allowed in guard tests.</p>
<p>See also
<seealso marker="#tuple_size/1"><c>tuple_size/1</c></seealso>,
<seealso marker="#byte_size/1"><c>byte_size/1</c></seealso>, and
<seealso marker="#bit_size/1"><c>bit_size/1</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn" arity="1"/>
<fsummary>Create a new process with a fun as entry point.</fsummary>
<desc>
<p>Returns the process identifier of a new process started by the
application of <c><anno>Fun</anno></c> to the empty list
<c>[]</c>. Otherwise
works like <seealso marker="#spawn/3"><c>spawn/3</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn" arity="2"/>
<fsummary>Create a new process with a fun as entry point on a specified
node.</fsummary>
<desc>
<p>Returns the process identifier of a new process started
by the application of <c><anno>Fun</anno></c> to the
empty list <c>[]</c> on <c><anno>Node</anno></c>. If
<c><anno>Node</anno></c> does not exist, a useless pid is
returned. Otherwise works like
<seealso marker="#spawn/3"><c>spawn/3</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn" arity="3"/>
<fsummary>Create a new process with a function as entry point.</fsummary>
<desc>
<p>Returns the process identifier of a new process started by
the application of <c><anno>Module</anno>:<anno>Function</anno></c>
to <c><anno>Args</anno></c>.</p>
<p><c>error_handler:undefined_function(<anno>Module</anno>,
<anno>Function</anno>, <anno>Args</anno>)</c>
is evaluated by the new process if
<c><anno>Module</anno>:<anno>Function</anno>/Arity</c>
does not exist (where <c>Arity</c> is the length of
<c><anno>Args</anno></c>). The error handler
can be redefined (see
<seealso marker="#process_flag/2"><c>process_flag/2</c></seealso>).
If <c>error_handler</c> is undefined, or the user has
redefined the default <c>error_handler</c> and its replacement is
undefined, a failure with reason <c>undef</c> occurs.</p>
<p>Example:</p>
<pre>
> <input>spawn(speed, regulator, [high_speed, thin_cut]).</input>
<0.13.1></pre>
</desc>
</func>
<func>
<name name="spawn" arity="4"/>
<fsummary>Create a new process with a function as entry point on a
specified node.</fsummary>
<desc>
<p>Returns the process identifier (pid) of a new process started
by the application
of <c><anno>Module</anno>:<anno>Function</anno></c>
to <c><anno>Args</anno></c> on <c><anno>Node</anno></c>. If
<c><anno>Node</anno></c> does not exist, a useless pid is returned.
Otherwise works like
<seealso marker="#spawn/3"><c>spawn/3</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn_link" arity="1"/>
<fsummary>Create and link to a new process with a fun as entry point.
</fsummary>
<desc>
<p>Returns the process identifier of a new process started by
the application of <c><anno>Fun</anno></c> to the empty list
<c>[]</c>. A link is created between
the calling process and the new process, atomically.
Otherwise works like
<seealso marker="#spawn/3"><c>spawn/3</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn_link" arity="2"/>
<fsummary>Create and link to a new process with a fun as entry point on
a specified node.</fsummary>
<desc>
<p>Returns the process identifier (pid) of a new process started
by the application of <c><anno>Fun</anno></c> to the empty
list <c>[]</c> on <c><anno>Node</anno></c>. A link is
created between the calling process and the new process,
atomically. If <c><anno>Node</anno></c> does not exist,
a useless pid is returned and an exit signal with
reason <c>noconnection</c> is sent to the calling
process. Otherwise works like <seealso marker="#spawn/3">
<c>spawn/3</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn_link" arity="3"/>
<fsummary>Create and link to a new process with a function as entry point.
</fsummary>
<desc>
<p>Returns the process identifier of a new process started by
the application of <c><anno>Module</anno>:<anno>Function</anno></c>
to <c><anno>Args</anno></c>. A link is created
between the calling process and the new process, atomically.
Otherwise works like
<seealso marker="#spawn/3"><c>spawn/3</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn_link" arity="4"/>
<fsummary>Create and link to a new process with a function as entry point
on a specified node.</fsummary>
<desc>
<p>Returns the process identifier (pid) of a new process
started by the application
of <c><anno>Module</anno>:<anno>Function</anno></c>
to <c><anno>Args</anno></c> on <c><anno>Node</anno></c>. A
link is created between the calling process and the new
process, atomically. If <c><anno>Node</anno></c> does
not exist, a useless pid is returned and an exit signal with
reason <c>noconnection</c> is sent to the calling
process. Otherwise works like <seealso marker="#spawn/3">
<c>spawn/3</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn_monitor" arity="1"/>
<fsummary>Create and monitor a new process with a fun as entry point.
</fsummary>
<desc>
<p>Returns the process identifier of a new process, started by
the application of <c><anno>Fun</anno></c> to the empty list
<c>[]</c>,
and a reference for a monitor created to the new process.
Otherwise works like
<seealso marker="#spawn/3"><c>spawn/3</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn_monitor" arity="3"/>
<fsummary>Create and monitor a new process with a function as entry point.
</fsummary>
<desc>
<p>A new process is started by the application
of <c><anno>Module</anno>:<anno>Function</anno></c>
to <c><anno>Args</anno></c>. The process is
monitored at the same time. Returns the process identifier
and a reference for the monitor. Otherwise works like
<seealso marker="#spawn/3"><c>spawn/3</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn_opt" arity="2"/>
<fsummary>Create a new process with a fun as entry point.</fsummary>
<type name="priority_level"/>
<type name="max_heap_size"/>
<type name="message_queue_data"/>
<type name="spawn_opt_option"/>
<desc>
<p>Returns the process identifier (pid) of a new process
started by the application of <c><anno>Fun</anno></c>
to the empty list <c>[]</c>. Otherwise works like
<seealso marker="#spawn_opt/4"><c>spawn_opt/4</c></seealso>.</p>
<p>If option <c>monitor</c> is specified, the newly created
process is monitored, and both the pid and reference for
the monitor are returned.</p>
</desc>
</func>
<func>
<name name="spawn_opt" arity="3"/>
<fsummary>Create a new process with a fun as entry point on a specified
node.</fsummary>
<type name="priority_level"/>
<type name="max_heap_size"/>
<type name="message_queue_data"/>
<type name="spawn_opt_option"/>
<desc>
<p>Returns the process identifier (pid) of a new process started
by the application of <c><anno>Fun</anno></c> to the
empty list <c>[]</c> on <c><anno>Node</anno></c>. If
<c><anno>Node</anno></c> does not exist, a useless pid is
returned. Otherwise works like
<seealso marker="#spawn_opt/4"><c>spawn_opt/4</c></seealso>.</p>
</desc>
</func>
<func>
<name name="spawn_opt" arity="4"/>
<fsummary>Create a new process with a function as entry point.</fsummary>
<type name="priority_level"/>
<type name="max_heap_size"/>
<type name="message_queue_data"/>
<type name="spawn_opt_option"/>
<desc>
<p>Works as
<seealso marker="#spawn/3"><c>spawn/3</c></seealso>, except that an
extra option list is specified when creating the process.</p>
<p>If option <c>monitor</c> is specified, the newly created
process is monitored, and both the pid and reference for
the monitor are returned.</p>
<p>Options:</p>
<taglist>
<tag><c>link</c></tag>
<item>
<p>Sets a link to the parent process (like
<seealso marker="#spawn_link/3"><c>spawn_link/3</c></seealso>
does).</p>
</item>
<tag><c>monitor</c></tag>
<item>
<p>Monitors the new process (like
<seealso marker="#monitor/2"><c>monitor/2</c></seealso> does).</p>
</item>
<tag><c>{priority, <anno>Level</anno></c></tag>
<item>
<p>Sets the priority of the new process. Equivalent to
executing <seealso marker="#process_flag_priority">
<c>process_flag(priority, <anno>Level</anno>)</c></seealso>
in the start function of the new process,
except that the priority is set before the process is
selected for execution for the first time. For more
information on priorities, see
<seealso marker="#process_flag_priority">
<c>process_flag(priority, <anno>Level</anno>)</c></seealso>.</p>
</item>
<tag><c>{fullsweep_after, <anno>Number</anno>}</c></tag>
<item>
<p>Useful only for performance tuning. Do not use this
option unless you
know that there is problem with execution times or
memory consumption, and ensure
that the option improves matters.</p>
<p>The Erlang runtime system uses a generational garbage
collection scheme, using an "old heap" for data that has
survived at least one garbage collection. When there is
no more room on the old heap, a fullsweep garbage
collection is done.</p>
<p>Option <c>fullsweep_after</c> makes it possible to
specify the maximum number of generational collections
before forcing a fullsweep, even if there is room on
the old heap. Setting the number to zero
disables the general collection algorithm, that is,
all live data is copied at every garbage collection.</p>
<p>A few cases when it can be useful to change
<c>fullsweep_after</c>:</p>
<list type="bulleted">
<item><p>If binaries that are no longer used are to be
thrown away as soon as possible. (Set
<c><anno>Number</anno></c> to zero.)</p>
</item>
<item><p>A process that mostly have short-lived data is
fullsweeped seldom or never, that is, the old heap
contains mostly garbage. To ensure a fullsweep
occasionally, set <c><anno>Number</anno></c> to a
suitable value, such as 10 or 20.</p>
</item>
<item>In embedded systems with a limited amount of RAM
and no virtual memory, you might want to preserve memory
by setting <c><anno>Number</anno></c> to zero.
(The value can be set globally, see
<seealso marker="#system_flag/2">
<c>erlang:system_flag/2</c></seealso>.)
</item>
</list>
</item>
<tag><c>{min_heap_size, <anno>Size</anno>}</c></tag>
<item>
<p>Useful only for performance tuning. Do not use this
option unless you know that there is problem with
execution times or memory consumption, and
ensure that the option improves matters.</p>
<p>Gives a minimum heap size, in words. Setting this value
higher than the system default can speed up some
processes because less garbage collection is done.
However, setting a too high value can waste memory and
slow down the system because of worse data locality.
Therefore, use this option only for
fine-tuning an application and to measure the execution
time with various <c><anno>Size</anno></c> values.</p>
</item>
<tag><c>{min_bin_vheap_size, <anno>VSize</anno>}</c></tag>
<item>
<p>Useful only for performance tuning. Do not use this
option unless you know that there is problem with
execution times or memory consumption, and
ensure that the option improves matters.</p>
<p>Gives a minimum binary virtual heap size, in words.
Setting this value
higher than the system default can speed up some
processes because less garbage collection is done.
However, setting a too high value can waste memory.
Therefore, use this option only for
fine-tuning an application and to measure the execution
time with various <c><anno>VSize</anno></c> values.</p>
</item>
<tag><c>{max_heap_size, <anno>Size</anno>}</c></tag>
<item>
<p>Sets the <c>max_heap_size</c> process flag. The default
<c>max_heap_size</c> is determined by command-line argument
<seealso marker="erl#+hmax"><c>+hmax</c></seealso>
in <c>erl(1)</c>. For more information, see the
documentation of <seealso marker="#process_flag_max_heap_size">
<c>process_flag(max_heap_size, <anno>Size</anno>)</c></seealso>.
</p>
</item>
<tag><c>{message_queue_data, <anno>MQD</anno>}</c></tag>
<item>
<p>Sets the state of the <c>message_queue_data</c> process
flag. <c><anno>MQD</anno></c> is to be either <c>off_heap</c>
or <c>on_heap</c>. The default
<c>message_queue_data</c> process flag is determined by
command-line argument <seealso marker="erl#+hmqd">
<c>+hmqd</c></seealso> in <c>erl(1)</c>.
For more information, see the documentation of
<seealso marker="#process_flag_message_queue_data">
<c>process_flag(message_queue_data,
<anno>MQD</anno>)</c></seealso>.</p>
</item>
</taglist>
</desc>
</func>
<func>
<name name="spawn_opt" arity="5"/>
<fsummary>Create a new process with a function as entry point on a
specified node.</fsummary>
<type name="priority_level"/>
<type name="max_heap_size"/>
<type name="message_queue_data"/>
<type name="spawn_opt_option"/>
<desc>
<p>Returns the process identifier (pid) of a new process started
by the application
of <c><anno>Module</anno>:<anno>Function</anno></c> to
<c><anno>Args</anno></c> on <c><anno>Node</anno></c>. If
<c><anno>Node</anno></c> does not exist, a useless pid is returned.
Otherwise works like
<seealso marker="#spawn_opt/4"><c>spawn_opt/4</c></seealso>.</p>
<note>
<p>Option <c>monitor</c> is not supported by
<c>spawn_opt/5</c>.</p>
</note>
</desc>
</func>
<func>
<name name="split_binary" arity="2"/>
<fsummary>Split a binary into two.</fsummary>
<type_desc variable="Pos">0..byte_size(Bin)</type_desc>
<desc>
<p>Returns a tuple containing the binaries that are the result
of splitting <c><anno>Bin</anno></c> into two parts at
position <c><anno>Pos</anno></c>.
This is not a destructive operation. After the operation,
there are three binaries altogether. Example:</p>
<pre>
> <input>B = list_to_binary("0123456789").</input>
<<"0123456789">>
> <input>byte_size(B).</input>
10
> <input>{B1, B2} = split_binary(B,3).</input>
{<<"012">>,<<"3456789">>}
> <input>byte_size(B1).</input>
3
> <input>byte_size(B2).</input>
7</pre>
</desc>
</func>
<func>
<name name="start_timer" arity="3"/>
<fsummary>Start a timer.</fsummary>
<desc>
<p>Starts a timer. The same as calling
<seealso marker="#start_timer/4">
<c>erlang:start_timer(<anno>Time</anno>,
<anno>Dest</anno>, <anno>Msg</anno>, [])</c></seealso>.</p>
</desc>
</func>
<func>
<name name="start_timer" arity="4"/>
<fsummary>Start a timer.</fsummary>
<desc>
<p>Starts a timer. When the timer expires, the message
<c>{timeout, <anno>TimerRef</anno>, <anno>Msg</anno>}</c>
is sent to the process identified by <c><anno>Dest</anno></c>.</p>
<p><c><anno>Option</anno></c>s:</p>
<taglist>
<tag><c>{abs, false}</c></tag>
<item>
<p>This is the default. It means the
<c><anno>Time</anno></c> value is interpreted
as a time in milliseconds <em>relative</em> current
<seealso marker="time_correction#Erlang_Monotonic_Time">Erlang
monotonic time</seealso>.</p>
</item>
<tag><c>{abs, true}</c></tag>
<item>
<p>Absolute <c><anno>Time</anno></c> value. The
<c><anno>Time</anno></c> value is interpreted as an
absolute Erlang monotonic time in milliseconds.</p>
</item>
</taglist>
<p>More <c><anno>Option</anno></c>s can be added in the future.</p>
<p>The absolute point in time, the timer is set to expire on,
must be in the interval
<c>[</c><seealso marker="#system_info_start_time">
<c>erlang:system_info(start_time)</c></seealso><c>,
</c><seealso marker="#system_info_end_time">
<c>erlang:system_info(end_time)</c></seealso><c>]</c>.
If a relative time is specified, the <c><anno>Time</anno></c>
value is not allowed to be negative.</p>
<p>If <c><anno>Dest</anno></c> is a <c>pid()</c>, it must
be a <c>pid()</c> of a process created on the current
runtime system instance. This process has either terminated
or not. If <c><anno>Dest</anno></c> is an
<c>atom()</c>, it is interpreted as the name of a
locally registered process. The process referred to by the
name is looked up at the time of timer expiration. No error
is returned if the name does not refer to a process.</p>
<p>If <c><anno>Dest</anno></c> is a <c>pid()</c>, the timer is
automatically canceled if the process referred to by the
<c>pid()</c> is not alive, or if the process exits. This
feature was introduced in ERTS 5.4.11. Notice that
timers are not automatically canceled when
<c><anno>Dest</anno></c> is an <c>atom()</c>.</p>
<p>See also
<seealso marker="#send_after/4"><c>erlang:send_after/4</c></seealso>,
<seealso marker="#cancel_timer/2">
<c>erlang:cancel_timer/2</c></seealso>, and
<seealso marker="#read_timer/2">
<c>erlang:read_timer/2</c></seealso>.</p>
<p>Failure: <c>badarg</c> if the arguments do not satisfy
the requirements specified here.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="1"/>
<fsummary>Information about active processes and ports.</fsummary>
<desc>
<marker id="statistics_active_tasks"></marker>
<p>Returns the same as
<seealso marker="#statistics_active_tasks_all">
<c>statistics(active_tasks_all)</c></seealso>
with the exception that no information about the dirty
IO run queue and its associated schedulers is part of
the result. That is, only tasks that are expected to be
CPU bound are part of the result.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="2"/>
<fsummary>Information about active processes and ports.</fsummary>
<desc>
<marker id="statistics_active_tasks_all"></marker>
<p>Returns a list where each element represents the amount
of active processes and ports on each run queue and its
associated schedulers. That is, the number of processes and
ports that are ready to run, or are currently running.
Values for normal run queues and their associated schedulers
are located first in the resulting list. The first element
corresponds to scheduler number 1 and so on. If support for
dirty schedulers exist, an element with the value for the
dirty CPU run queue and its associated dirty CPU schedulers
follow and then as last element the value for the the dirty
IO run queue and its associated dirty IO schedulers follow.
The information is <em>not</em> gathered atomically. That is,
the result is not necessarily a consistent snapshot of the
state, but instead quite efficiently gathered.</p>
<note><p>Each normal scheduler has one run queue that it
manages. If dirty schedulers schedulers are supported, all
dirty CPU schedulers share one run queue, and all dirty IO
schedulers share one run queue. That is, we have multiple
normal run queues, one dirty CPU run queue and one dirty
IO run queue. Work can <em>not</em> migrate between the
different types of run queues. Only work in normal run
queues can migrate to other normal run queues. This has
to be taken into account when evaluating the result.</p></note>
<p>See also
<seealso marker="#statistics_total_active_tasks">
<c>statistics(total_active_tasks)</c></seealso>,
<seealso marker="#statistics_run_queue_lengths">
<c>statistics(run_queue_lengths)</c></seealso>,
<seealso marker="#statistics_run_queue_lengths_all">
<c>statistics(run_queue_lengths_all)</c></seealso>,
<seealso marker="#statistics_total_run_queue_lengths">
<c>statistics(total_run_queue_lengths)</c></seealso>, and
<seealso marker="#statistics_total_run_queue_lengths_all">
<c>statistics(total_run_queue_lengths_all)</c></seealso>.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="3"/>
<fsummary>Information about context switches.</fsummary>
<desc>
<p>Returns the total number of context switches since the
system started.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="4"/>
<fsummary>Information about exact reductions.</fsummary>
<desc>
<marker id="statistics_exact_reductions"></marker>
<p>Returns the number of exact reductions.</p>
<note>
<p><c>statistics(exact_reductions)</c> is
a more expensive operation than
<seealso marker="#statistics_reductions">
statistics(reductions)</seealso>,
especially on an Erlang machine with SMP support.</p>
</note>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="5"/>
<fsummary>Information about garbage collection.</fsummary>
<desc>
<p>Returns information about garbage collection, for example:</p>
<pre>
> <input>statistics(garbage_collection).</input>
{85,23961,0}</pre>
<p>This information can be invalid for some implementations.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="6"/>
<fsummary>Information about I/O.</fsummary>
<desc>
<p>Returns <c><anno>Input</anno></c>,
which is the total number of bytes
received through ports, and <c><anno>Output</anno></c>,
which is the total number of bytes output to ports.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="7"/>
<fsummary>Information about microstate accounting.</fsummary>
<desc>
<marker id="statistics_microstate_accounting"></marker>
<p>Microstate accounting can be used to measure how much time the Erlang
runtime system spends doing various tasks. It is designed to be as
lightweight as possible, but some overhead exists when this
is enabled. Microstate accounting is meant to be a profiling tool
to help finding performance bottlenecks.
To <c>start</c>/<c>stop</c>/<c>reset</c> microstate accounting, use
system flag <seealso marker="#system_flag_microstate_accounting">
<c>microstate_accounting</c></seealso>.</p>
<p><c>statistics(microstate_accounting)</c> returns a list of maps
representing some of the OS threads within ERTS. Each map
contains <c>type</c> and <c>id</c> fields that can be used to
identify what
thread it is, and also a counters field that contains data about how
much time has been spent in the various states.</p>
<p>Example:</p>
<pre>
> <input>erlang:statistics(microstate_accounting).</input>
[#{counters => #{aux => 1899182914,
check_io => 2605863602,
emulator => 45731880463,
gc => 1512206910,
other => 5421338456,
port => 221631,
sleep => 5150294100},
id => 1,
type => scheduler}|...]</pre>
<p>The time unit is the same as returned by
<seealso marker="kernel:os#perf_counter/0">
<c>os:perf_counter/0</c></seealso>.
So, to convert it to milliseconds, you can do something like this:</p>
<pre>
lists:map(
fun(#{ counters := Cnt } = M) ->
MsCnt = maps:map(fun(_K, PerfCount) ->
erlang:convert_time_unit(PerfCount, perf_counter, 1000)
end, Cnt),
M#{ counters := MsCnt }
end, erlang:statistics(microstate_accounting)).</pre>
<p>Notice that these values are not guaranteed to be
the exact time spent in each state. This is because of various
optimisation done to keep the overhead as small as possible.</p>
<p><c><anno>MSAcc_Thread_Type</anno></c>s:</p>
<taglist>
<tag><c>scheduler</c></tag>
<item>The main execution threads that do most of the work.</item>
<tag><c>dirty_cpu_scheduler</c></tag>
<item>The threads for long running cpu intensive work.</item>
<tag><c>dirty_io_scheduler</c></tag>
<item>The threads for long running I/O work.</item>
<tag><c>async</c></tag>
<item>Async threads are used by various linked-in drivers (mainly the
file drivers) do offload non-CPU intensive work.</item>
<tag><c>aux</c></tag>
<item>Takes care of any work that is not
specifically assigned to a scheduler.</item>
</taglist>
<p>The following <c><anno>MSAcc_Thread_State</anno></c>s are available.
All states are exclusive, meaning that a thread cannot be in two
states at once. So, if you add the numbers of all counters in a
thread, you get the total runtime for that thread.</p>
<taglist>
<tag><c>aux</c></tag>
<item>Time spent handling auxiliary jobs.</item>
<tag><c>check_io</c></tag>
<item>Time spent checking for new I/O events.</item>
<tag><c>emulator</c></tag>
<item>Time spent executing Erlang processes.</item>
<tag><c>gc</c></tag>
<item>Time spent doing garbage collection. When extra states are
enabled this is the time spent doing non-fullsweep garbage
collections.</item>
<tag><c>other</c></tag>
<item>Time spent doing unaccounted things.</item>
<tag><c>port</c></tag>
<item>Time spent executing ports.</item>
<tag><c>sleep</c></tag>
<item>Time spent sleeping.</item>
</taglist>
<p>More fine-grained <c><anno>MSAcc_Thread_State</anno></c>s can
be added through configure (such as
<c>./configure --with-microstate-accounting=extra</c>).
Enabling these states causes performance degradation when
microstate accounting is turned off and increases the overhead when
it is turned on.</p>
<taglist>
<tag><c>alloc</c></tag>
<item>Time spent managing memory. Without extra states this time is
spread out over all other states.</item>
<tag><c>bif</c></tag>
<item>Time spent in BIFs. Without extra states this time is part of
the <c>emulator</c> state.</item>
<tag><c>busy_wait</c></tag>
<item>Time spent busy waiting. This is also the state where a
scheduler no longer reports that it is active when using
<seealso marker="#statistics_scheduler_wall_time">
<c>statistics(scheduler_wall_time)</c></seealso>. So, if you add
all other states but this and sleep, and then divide that by all
time in the thread, you should get something very similar to the
<c>scheduler_wall_time</c> fraction. Without extra states this
time is part of the <c>other</c> state.</item>
<tag><c>ets</c></tag>
<item>Time spent executing ETS BIFs. Without extra states
this time is part of the <c>emulator</c> state.</item>
<tag><c>gc_full</c></tag>
<item>Time spent doing fullsweep garbage collection. Without extra
states this time is part of the <c>gc</c> state.</item>
<tag><c>nif</c></tag>
<item>Time spent in NIFs. Without extra states this time is part of
the <c>emulator</c> state.</item>
<tag><c>send</c></tag>
<item>Time spent sending messages (processes only). Without extra
states this time is part of the <c>emulator</c> state.</item>
<tag><c>timers</c></tag>
<item>Time spent managing timers. Without extra states this time is
part of the <c>other</c> state.</item>
</taglist>
<p>The utility module
<seealso marker="runtime_tools:msacc"><c>msacc(3)</c></seealso>
can be used to more easily analyse these statistics.</p>
<p>Returns <c>undefined</c> if system flag
<seealso marker="#system_flag_microstate_accounting">
<c>microstate_accounting</c></seealso> is turned off.</p>
<p>The list of thread information is unsorted and can appear in
different order between calls.</p>
<note>
<p>The threads and states are subject to change without any
prior notice.</p>
</note>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="8"/>
<fsummary>Information about reductions.</fsummary>
<desc>
<marker id="statistics_reductions"></marker>
<p>Returns information about reductions, for example:</p>
<pre>
> <input>statistics(reductions).</input>
{2046,11}</pre>
<note><p>As from ERTS 5.5 (Erlang/OTP R11B),
this value does not include reductions performed in current
time slices of currently scheduled processes. If an
exact value is wanted, use
<seealso marker="#statistics_exact_reductions">
<c>statistics(exact_reductions)</c></seealso>.</p>
</note>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="9"/>
<fsummary>Information about the run-queues.</fsummary>
<desc><marker id="statistics_run_queue"></marker>
<p>Returns the total length of all normal run-queues. That is, the number
of processes and ports that are ready to run on all available
normal run-queues. Dirty run queues are not part of the
result. The information is gathered atomically. That
is, the result is a consistent snapshot of the state, but
this operation is much more expensive compared to
<seealso marker="#statistics_total_run_queue_lengths">
<c>statistics(total_run_queue_lengths)</c></seealso>,
especially when a large amount of schedulers is used.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="10"/>
<fsummary>Information about the run-queue lengths.</fsummary>
<desc><marker id="statistics_run_queue_lengths"></marker>
<p>Returns the same as
<seealso marker="#statistics_run_queue_lengths_all">
<c>statistics(run_queue_lengths_all)</c></seealso>
with the exception that no information about the dirty
IO run queue is part of the result. That is, only
run queues with work that is expected to be CPU bound
is part of the result.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="11"/>
<fsummary>Information about the run-queue lengths.</fsummary>
<desc><marker id="statistics_run_queue_lengths_all"></marker>
<p>Returns a list where each element represents the amount
of processes and ports ready to run for each run queue.
Values for normal run queues are located first in the
resulting list. The first element corresponds to the
normal run queue of scheduler number 1 and so on. If
support for dirty schedulers exist, values for the dirty
CPU run queue and the dirty IO run queue follow (in that
order) at the end. The information is <em>not</em>
gathered atomically. That is, the result is not
necessarily a consistent snapshot of the state, but
instead quite efficiently gathered.</p>
<note><p>Each normal scheduler has one run queue that it
manages. If dirty schedulers schedulers are supported, all
dirty CPU schedulers share one run queue, and all dirty IO
schedulers share one run queue. That is, we have multiple
normal run queues, one dirty CPU run queue and one dirty
IO run queue. Work can <em>not</em> migrate between the
different types of run queues. Only work in normal run
queues can migrate to other normal run queues. This has
to be taken into account when evaluating the result.</p></note>
<p>See also
<seealso marker="#statistics_run_queue_lengths">
<c>statistics(run_queue_lengths)</c></seealso>,
<seealso marker="#statistics_total_run_queue_lengths_all">
<c>statistics(total_run_queue_lengths_all)</c></seealso>,
<seealso marker="#statistics_total_run_queue_lengths">
<c>statistics(total_run_queue_lengths)</c></seealso>,
<seealso marker="#statistics_active_tasks">
<c>statistics(active_tasks)</c></seealso>,
<seealso marker="#statistics_active_tasks_all">
<c>statistics(active_tasks_all)</c></seealso>, and
<seealso marker="#statistics_total_active_tasks">
<c>statistics(total_active_tasks)</c></seealso>,
<seealso marker="#statistics_total_active_tasks_all">
<c>statistics(total_active_tasks_all)</c></seealso>.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="12"/>
<fsummary>Information about runtime.</fsummary>
<desc>
<p>Returns information about runtime, in milliseconds.</p>
<p>This is the sum of the runtime for all threads
in the Erlang runtime system and can therefore be greater
than the wall clock time.</p>
<warning><p>This value might wrap due to limitations in the
underlying functionality provided by the operating system
that is used.</p></warning>
<p>Example:</p>
<pre>
> <input>statistics(runtime).</input>
{1690,1620}</pre>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="13"/>
<fsummary>Information about each schedulers work time.</fsummary>
<desc>
<marker id="statistics_scheduler_wall_time"></marker>
<p>Returns a list of tuples with
<c>{<anno>SchedulerId</anno>, <anno>ActiveTime</anno>,
<anno>TotalTime</anno>}</c>, where
<c><anno>SchedulerId</anno></c> is an integer ID of the scheduler,
<c><anno>ActiveTime</anno></c> is
the duration the scheduler has been busy, and
<c><anno>TotalTime</anno></c> is the total time duration since
<seealso marker="#system_flag_scheduler_wall_time">
<c>scheduler_wall_time</c></seealso>
activation for the specific scheduler. Note that
activation time can differ significantly between
schedulers. Currently dirty schedulers are activated
at system start while normal schedulers are activated
some time after the <c>scheduler_wall_time</c>
functionality is enabled. The time unit is undefined
and can be subject to change between releases, OSs,
and system restarts. <c>scheduler_wall_time</c> is only
to be used to calculate relative values for scheduler
utilization. <c><anno>ActiveTime</anno></c> can never
exceed <c><anno>TotalTime</anno></c>.</p>
<p>The definition of a busy scheduler is when it is not idle
and is not scheduling (selecting) a process or port,
that is:</p>
<list type="bulleted">
<item>Executing process code</item>
<item>Executing linked-in driver or NIF code</item>
<item>Executing BIFs, or any other runtime handling</item>
<item>Garbage collecting</item>
<item>Handling any other memory management</item>
</list>
<p>Notice that a scheduler can also be busy even if the
OS has scheduled out the scheduler thread.</p>
<p>Returns <c>undefined</c> if system flag
<seealso marker="#system_flag_scheduler_wall_time">
<c>scheduler_wall_time</c></seealso> is turned off.</p>
<p>The list of scheduler information is unsorted and can
appear in different order between calls.</p>
<p>As of ERTS version 9.0, also dirty CPU schedulers will
be included in the result. That is, all scheduler threads
that are expected to handle CPU bound work. If you also
want information about dirty I/O schedulers, use
<seealso marker="#statistics_scheduler_wall_time_all"><c>statistics(scheduler_wall_time_all)</c></seealso>
instead.</p>
<p>Normal schedulers will have scheduler identifiers in
the range <c>1 =< <anno>SchedulerId</anno> =<
</c><seealso marker="#system_info_schedulers"><c>erlang:system_info(schedulers)</c></seealso>.
Dirty CPU schedulers will have scheduler identifiers in
the range <c>erlang:system_info(schedulers) <
<anno>SchedulerId</anno> =< erlang:system_info(schedulers)
+
</c><seealso marker="#system_info_dirty_cpu_schedulers"><c>erlang:system_info(dirty_cpu_schedulers)</c></seealso>.
</p>
<note><p>The different types of schedulers handle
specific types of jobs. Every job is assigned to a specific
scheduler type. Jobs can migrate between different schedulers
of the same type, but never between schedulers of different
types. This fact has to be taken under consideration when
evaluating the result returned.</p></note>
<p>Using <c>scheduler_wall_time</c> to calculate
scheduler utilization:</p>
<pre>
> <input>erlang:system_flag(scheduler_wall_time, true).</input>
false
> <input>Ts0 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.</input>
ok</pre>
<p>Some time later the user takes another snapshot and calculates
scheduler utilization per scheduler, for example:</p>
<pre>
> <input>Ts1 = lists:sort(erlang:statistics(scheduler_wall_time)), ok.</input>
ok
> <input>lists:map(fun({{I, A0, T0}, {I, A1, T1}}) ->
{I, (A1 - A0)/(T1 - T0)} end, lists:zip(Ts0,Ts1)).</input>
[{1,0.9743474730177548},
{2,0.9744843782751444},
{3,0.9995902361669045},
{4,0.9738012596572161},
{5,0.9717956667018103},
{6,0.9739235846420741},
{7,0.973237033077876},
{8,0.9741297293248656}]</pre>
<p>Using the same snapshots to calculate a total
scheduler utilization:</p>
<pre>
> <input>{A, T} = lists:foldl(fun({{_, A0, T0}, {_, A1, T1}}, {Ai,Ti}) ->
{Ai + (A1 - A0), Ti + (T1 - T0)} end, {0, 0}, lists:zip(Ts0,Ts1)),
TotalSchedulerUtilization = A/T.</input>
0.9769136803764825</pre>
<p>Total scheduler utilization will equal <c>1.0</c> when
all schedulers have been active all the time between the
two measurements.</p>
<p>Another (probably more) useful value is to calculate
total scheduler utilization weighted against maximum amount
of available CPU time:</p>
<pre>
> <input>WeightedSchedulerUtilization = (TotalSchedulerUtilization
* (erlang:system_info(schedulers)
+ erlang:system_info(dirty_cpu_schedulers)))
/ erlang:system_info(logical_processors_available).</input>
0.9769136803764825</pre>
<p>This weighted scheduler utilization will reach <c>1.0</c>
when schedulers are active the same amount of time as
maximum available CPU time. If more schedulers exist
than available logical processors, this value may
be greater than <c>1.0</c>.</p>
<p>As of ERTS version 9.0, the Erlang runtime system
with SMP support will as default have more schedulers
than logical processors. This due to the dirty schedulers.</p>
<note>
<p><c>scheduler_wall_time</c> is by default disabled. To
enable it, use
<c>erlang:system_flag(scheduler_wall_time, true)</c>.</p>
</note>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="14"/>
<fsummary>Information about each schedulers work time.</fsummary>
<desc>
<marker id="statistics_scheduler_wall_time_all"></marker>
<p>The same as
<seealso marker="#statistics_scheduler_wall_time"><c>statistics(scheduler_wall_time)</c></seealso>,
except that it also include information about all dirty I/O
schedulers.</p>
<p>Dirty IO schedulers will have scheduler identifiers in
the range
<seealso marker="#system_info_schedulers"><c>erlang:system_info(schedulers)</c></seealso><c>
+
</c><seealso marker="#system_info_dirty_cpu_schedulers"><c>erlang:system_info(dirty_cpu_schedulers)</c></seealso><c> <
<anno>SchedulerId</anno> =< erlang:system_info(schedulers)
+ erlang:system_info(dirty_cpu_schedulers)
+
</c><seealso marker="#system_info_dirty_io_schedulers"><c>erlang:system_info(dirty_io_schedulers)</c></seealso>.</p>
<note><p>Note that work executing on dirty I/O schedulers
are expected to mainly wait for I/O. That is, when you
get high scheduler utilization on dirty I/O schedulers,
CPU utilization is <em>not</em> expected to be high due to
this work.</p></note>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="15"/>
<fsummary>Information about active processes and ports.</fsummary>
<desc><marker id="statistics_total_active_tasks"></marker>
<p>The same as calling
<c>lists:sum(</c><seealso marker="#statistics_active_tasks"><c>statistics(active_tasks)</c></seealso><c>)</c>,
but more efficient.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="16"/>
<fsummary>Information about active processes and ports.</fsummary>
<desc><marker id="statistics_total_active_tasks_all"></marker>
<p>The same as calling
<c>lists:sum(</c><seealso marker="#statistics_active_tasks_all"><c>statistics(active_tasks_all)</c></seealso><c>)</c>,
but more efficient.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="17"/>
<fsummary>Information about the run-queue lengths.</fsummary>
<desc><marker id="statistics_total_run_queue_lengths"></marker>
<p>The same as calling
<c>lists:sum(</c><seealso marker="#statistics_run_queue_lengths"><c>statistics(run_queue_lengths)</c></seealso><c>)</c>,
but more efficient.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="18"/>
<fsummary>Information about the run-queue lengths.</fsummary>
<desc><marker id="statistics_total_run_queue_lengths_all"></marker>
<p>The same as calling
<c>lists:sum(</c><seealso marker="#statistics_run_queue_lengths_all"><c>statistics(run_queue_lengths_all)</c></seealso><c>)</c>,
but more efficient.</p>
</desc>
</func>
<func>
<name name="statistics" arity="1" clause_i="19"/>
<fsummary>Information about wall clock.</fsummary>
<desc>
<p>Returns information about wall clock. <c>wall_clock</c> can
be used in the same manner as
<c>runtime</c>, except that real time is measured as
opposed to runtime or CPU time.</p>
</desc>
</func>
<func>
<name name="suspend_process" arity="1"/>
<fsummary>Suspend a process.</fsummary>
<desc>
<p>Suspends the process identified by
<c><anno>Suspendee</anno></c>. The same as calling
<seealso marker="#suspend_process/2">
<c>erlang:suspend_process(<anno>Suspendee</anno>,
[])</c></seealso>.</p>
<warning>
<p>This BIF is intended for debugging only.</p>
</warning>
</desc>
</func>
<func>
<name name="suspend_process" arity="2"/>
<fsummary>Suspend a process.</fsummary>
<desc>
<p>Increases the suspend count on the process identified by
<c><anno>Suspendee</anno></c> and puts it in the suspended
state if it is not
already in that state. A suspended process is not
scheduled for execution until the process has been resumed.</p>
<p>A process can be suspended by multiple processes and can
be suspended multiple times by a single process. A suspended
process does not leave the suspended state until its suspend
count reaches zero. The suspend count of
<c><anno>Suspendee</anno></c> is decreased when
<seealso marker="#resume_process/1">
<c>erlang:resume_process(<anno>Suspendee</anno>)</c></seealso>
is called by the same process that called
<c>erlang:suspend_process(<anno>Suspendee</anno>)</c>.
All increased suspend
counts on other processes acquired by a process are automatically
decreased when the process terminates.</p>
<p>Options (<c><anno>Opt</anno></c>s):</p>
<taglist>
<tag><c>asynchronous</c></tag>
<item>
<p>A suspend request is sent to the process identified by
<c><anno>Suspendee</anno></c>. <c><anno>Suspendee</anno></c>
eventually suspends
unless it is resumed before it could suspend. The caller
of <c>erlang:suspend_process/2</c> returns immediately,
regardless of whether <c><anno>Suspendee</anno></c> has
suspended yet or not. The point in time when
<c><anno>Suspendee</anno></c> suspends cannot be deduced
from other events in the system. It is only guaranteed that
<c><anno>Suspendee</anno></c> <em>eventually</em> suspends
(unless it
is resumed). If option <c>asynchronous</c> has <em>not</em>
been passed, the caller of <c>erlang:suspend_process/2</c> is
blocked until <c><anno>Suspendee</anno></c> has suspended.</p>
</item>
<tag><c>unless_suspending</c></tag>
<item>
<p>The process identified by <c><anno>Suspendee</anno></c> is
suspended unless the calling process already is suspending
<c><anno>Suspendee</anno></c>.
If <c>unless_suspending</c> is combined
with option <c>asynchronous</c>, a suspend request is
sent unless the calling process already is suspending
<c><anno>Suspendee</anno></c> or if a suspend request
already has been sent and is in transit. If the calling
process already is suspending <c><anno>Suspendee</anno></c>,
or if combined with option <c>asynchronous</c>
and a send request already is in transit,
<c>false</c> is returned and the suspend count on
<c><anno>Suspendee</anno></c> remains unchanged.</p>
</item>
</taglist>
<p>If the suspend count on the process identified by
<c><anno>Suspendee</anno></c> is increased, <c>true</c>
is returned, otherwise <c>false</c>.</p>
<warning>
<p>This BIF is intended for debugging only.</p>
</warning>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>
If <c><anno>Suspendee</anno></c> is not a process identifier.
</item>
<tag><c>badarg</c></tag>
<item>
If the process identified by <c><anno>Suspendee</anno></c>
is the same process
as the process calling <c>erlang:suspend_process/2</c>.
</item>
<tag><c>badarg</c></tag>
<item>
If the process identified by <c><anno>Suspendee</anno></c>
is not alive.
</item>
<tag><c>badarg</c></tag>
<item>
If the process identified by <c><anno>Suspendee</anno></c>
resides on another node.
</item>
<tag><c>badarg</c></tag>
<item>
If <c><anno>OptList</anno></c> is not a proper list of valid
<c><anno>Opt</anno></c>s.
</item>
<tag><c>system_limit</c></tag>
<item>
If the process identified by <c><anno>Suspendee</anno></c>
has been suspended
more times by the calling process than can be represented by the
currently used internal data structures. The system limit is
> 2,000,000,000 suspends and will never be lower.
</item>
</taglist>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="1"/>
<fsummary>Set system flag <c>backtrace_depth</c>.</fsummary>
<desc>
<p>Sets the maximum depth of call stack back-traces in the
exit reason element of <c>'EXIT'</c> tuples. The flag
also limits the stacktrace depth returned by <c>process_info</c>
item <c>current_stacktrace.</c></p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="2"/>
<fsummary>Set system flag <c>cpu_topology</c>.</fsummary>
<type name="cpu_topology"/>
<type name="level_entry"/>
<type name="level_tag"/>
<type name="sub_level"/>
<type name="info_list"/>
<desc>
<warning>
<p><marker id="system_flag_cpu_topology"></marker>
<em>This argument is deprecated.</em>
Instead of using this argument, use command-line argument
<seealso marker="erts:erl#+sct"><c>+sct</c></seealso> in
<c>erl(1)</c>.</p>
<p>When this argument is removed, a final CPU topology
to use is determined at emulator boot time.</p>
</warning>
<p>Sets the user-defined <c><anno>CpuTopology</anno></c>.
The user-defined
CPU topology overrides any automatically detected
CPU topology. By passing <c>undefined</c> as
<c><anno>CpuTopology</anno></c>,
the system reverts to the CPU topology automatically
detected. The returned value equals the value returned
from <c>erlang:system_info(cpu_topology)</c> before the
change was made.</p>
<p>Returns the old value of the flag.</p>
<p>The CPU topology is used when binding schedulers to logical
processors. If schedulers are already bound when the CPU
topology is changed, the schedulers are sent a request
to rebind according to the new CPU topology.</p>
<p>The user-defined CPU topology can also be set by passing
command-line argument
<seealso marker="erts:erl#+sct"><c>+sct</c></seealso> to
<c>erl(1)</c>.</p>
<p>For information on type <c><anno>CpuTopology</anno></c>
and more, see
<seealso marker="#system_info_cpu_topology">
<c>erlang:system_info(cpu_topology)</c></seealso>
as well as command-line flags
<seealso marker="erts:erl#+sct"><c>+sct</c></seealso> and
<seealso marker="erts:erl#+sbt"><c>+sbt</c></seealso> in
<c>erl(1)</c>.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="3"/>
<fsummary>Set system_flag_dirty_cpu_schedulers_online.</fsummary>
<desc>
<p><marker id="system_flag_dirty_cpu_schedulers_online"></marker>
Sets the number of dirty CPU schedulers online. Range is
<c><![CDATA[1 <= DirtyCPUSchedulersOnline <= N]]></c>, where <c>N</c>
is the smallest of the return values of
<c>erlang:system_info(dirty_cpu_schedulers)</c> and
<c>erlang:system_info(schedulers_online)</c>.</p>
<p>Returns the old value of the flag.</p>
<p>The number of dirty CPU schedulers online can change if the
number of schedulers online changes. For example, if 12
schedulers and 6 dirty CPU schedulers are online, and
<c>system_flag/2</c> is used to set the number of
schedulers online to 6, then the number of dirty CPU
schedulers online is automatically decreased by half as well,
down to 3. Similarly, the number of dirty CPU schedulers
online increases proportionally to increases in the number of
schedulers online.</p>
<p>For more information, see
<seealso marker="#system_info_dirty_cpu_schedulers">
<c>erlang:system_info(dirty_cpu_schedulers)</c></seealso> and
<seealso marker="#system_info_dirty_cpu_schedulers_online">
<c>erlang:system_info(dirty_cpu_schedulers_online)</c></seealso>.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="4"/>
<fsummary>Set system flag fullsweep_after.</fsummary>
<desc>
<p>Sets system flag <c>fullsweep_after</c>.
<c><anno>Number</anno></c> is a non-negative integer indicating
how many times generational garbage collections can be
done without forcing a fullsweep collection. The value
applies to new processes, while processes already running are
not affected.</p>
<p>Returns the old value of the flag.</p>
<p>In low-memory systems (especially without virtual
memory), setting the value to <c>0</c> can help to conserve
memory.</p>
<p>This value can also be set through (OS)
environment variable <c>ERL_FULLSWEEP_AFTER</c>.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="5"/>
<fsummary>Set system flag microstate_accounting.</fsummary>
<desc>
<p><marker id="system_flag_microstate_accounting"></marker>
Turns on/off microstate accounting measurements. When passing reset,
all counters are reset to 0.</p>
<p>For more information see
<seealso marker="#statistics_microstate_accounting">
<c>statistics(microstate_accounting)</c></seealso>.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="6"/>
<fsummary>Set system flag min_heap_size.</fsummary>
<desc>
<p>Sets the default minimum heap size for processes. The size
is specified in words. The new <c>min_heap_size</c> effects
only processes spawned after the change of
<c>min_heap_size</c> has been made. <c>min_heap_size</c>
can be set for individual processes by using
<seealso marker="#spawn_opt/4"><c>spawn_opt/4</c></seealso> or
<seealso marker="#process_flag/2"><c>process_flag/2</c></seealso>.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="7"/>
<fsummary>Set system flag min_bin_vheap_size.</fsummary>
<desc>
<p>Sets the default minimum binary virtual heap size for
processes. The size is specified in words.
The new <c>min_bin_vhheap_size</c> effects only
processes spawned after the change of
<c>min_bin_vheap_size</c> has been made.
<c>min_bin_vheap_size</c> can be set for individual
processes by using
<seealso marker="#spawn_opt/4"><c>spawn_opt/2,3,4</c></seealso> or
<seealso marker="#process_flag/2"><c>process_flag/2</c></seealso>.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="8"/>
<fsummary>Set system flag max_heap_size.</fsummary>
<type name="max_heap_size"/>
<desc>
<marker id="system_flag_max_heap_size"></marker>
<p>
Sets the default maximum heap size settings for processes.
The size is specified in words. The new <c>max_heap_size</c>
effects only processes spawned efter the change has been made.
<c>max_heap_size</c> can be set for individual processes using
<seealso marker="#spawn_opt/4"><c>spawn_opt/2,3,4</c></seealso> or
<seealso marker="#process_flag_message_queue_data">
<c>process_flag/2</c></seealso>.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="9"/>
<fsummary>Set system flag multi_scheduling.</fsummary>
<desc>
<p><marker id="system_flag_multi_scheduling"></marker>
If multi-scheduling is enabled, more than one scheduler
thread is used by the emulator. Multi-scheduling can be
blocked in two different ways. Either all schedulers but
one is blocked, or all <em>normal</em> schedulers but
one is blocked. When only normal schedulers are blocked,
dirty schedulers are free to continue to schedule
processes.</p>
<p>If <c><anno>BlockState</anno> =:= block</c>, multi-scheduling is
blocked. That is, one and only one scheduler thread will
execute. If <c><anno>BlockState</anno> =:= unblock</c> and no one
else blocks multi-scheduling, and this process has
blocked only once, multi-scheduling is unblocked.</p>
<p>If <c><anno>BlockState</anno> =:= block_normal</c>, normal
multi-scheduling is blocked. That is, only one normal scheduler
thread will execute, but multiple dirty schedulers can execute.
If <c><anno>BlockState</anno> =:= unblock_normal</c> and no one
else blocks normal multi-scheduling, and this process has
blocked only once, normal multi-scheduling is unblocked.</p>
<p>One process can block multi-scheduling and normal
multi-scheduling multiple times. If a process has blocked
multiple times, it must unblock exactly as many times as it
has blocked before it has released its multi-scheduling
block. If a process that has blocked multi-scheduling or normal
multi-scheduling exits, it automatically releases its blocking
of multi-scheduling and normal multi-scheduling.</p>
<p>The return values are <c>disabled</c>, <c>blocked</c>,
<c>blocked_normal</c>, or <c>enabled</c>. The returned value
describes the state just after the call to
<c>erlang:system_flag(multi_scheduling, <anno>BlockState</anno>)</c>
has been made. For information about the return values, see
<seealso marker="#system_info_multi_scheduling">
<c>erlang:system_info(multi_scheduling)</c></seealso>.</p>
<note><p>Blocking of multi-scheduling and normal multi-scheduling
is normally not needed. If you feel that you need to use these
features, consider it a few more times again. Blocking
multi-scheduling is only to be used as a last resort, as it is
most likely a <em>very inefficient</em> way to solve the problem.</p>
</note>
<p>See also
<seealso marker="#system_info_multi_scheduling">
<c>erlang:system_info(multi_scheduling)</c></seealso>,
<seealso marker="#system_info_normal_multi_scheduling_blockers">
<c>erlang:system_info(normal_multi_scheduling_blockers)</c></seealso>,
<seealso marker="#system_info_multi_scheduling_blockers">
<c>erlang:system_info(multi_scheduling_blockers)</c></seealso>, and
<seealso marker="#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso>.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="10"/>
<fsummary>Set system flag scheduler_bind_type.</fsummary>
<type name="scheduler_bind_type"/>
<desc>
<warning>
<p><marker id="system_flag_scheduler_bind_type"></marker>
<em>This argument is deprecated.</em>
Instead of using this argument, use command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt</c></seealso> in
<c>erl(1)</c>. When this argument is removed, a final scheduler bind
type to use is determined at emulator boot time.</p>
</warning>
<p>Controls if and how schedulers are bound to logical
processors.</p>
<p>When <c>erlang:system_flag(scheduler_bind_type, <anno>How</anno>)</c>
is called, an asynchronous signal is sent to all schedulers
online, causing them to try to bind or unbind as requested.</p>
<note><p>If a scheduler fails to bind, this is often silently
ignored, as it is not always possible to verify valid
logical processor identifiers. If an error is reported,
it is reported to <c>error_logger</c>. To verify that the
schedulers have bound as requested, call
<seealso marker="#system_info_scheduler_bindings">
<c>erlang:system_info(scheduler_bindings)</c></seealso>.</p>
</note>
<p>Schedulers can be bound on newer Linux,
Solaris, FreeBSD, and Windows systems, but more systems will be
supported in future releases.</p>
<p>In order for the runtime system to be able to bind schedulers,
the CPU topology must be known. If the runtime system fails
to detect the CPU topology automatically, it can be defined.
For more information on how to define the CPU topology, see
command-line flag <seealso marker="erts:erl#+sct">
<c>+sct</c></seealso> in <c>erl(1)</c>.</p>
<p>The runtime system does by default <em>not</em> bind schedulers
to logical processors.</p>
<note><p>If the Erlang runtime system is the only OS
process binding threads to logical processors, this
improves the performance of the runtime system. However,
if other OS processes (for example, another Erlang
runtime system) also bind threads to logical processors,
there can be a performance penalty instead. Sometimes this
performance penalty can be severe. If so, it is recommended
to not bind the schedulers.</p>
</note>
<p>Schedulers can be bound in different ways. Argument
<c><anno>How</anno></c> determines how schedulers are
bound and can be any of the following:</p>
<taglist>
<tag><c>unbound</c></tag>
<item>Same as command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt u</c></seealso> in
<c>erl(1)</c>.
</item>
<tag><c>no_spread</c></tag>
<item>Same as command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt ns</c></seealso>
in <c>erl(1)</c>.
</item>
<tag><c>thread_spread</c></tag>
<item>Same as command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt ts</c></seealso>
in <c>erl(1)</c>.
</item>
<tag><c>processor_spread</c></tag>
<item>Same as command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt ps</c></seealso>
in <c>erl(1)</c>.
</item>
<tag><c>spread</c></tag>
<item>Same as command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt s</c></seealso>
in <c>erl(1)</c>.
</item>
<tag><c>no_node_thread_spread</c></tag>
<item>Same as command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt nnts</c></seealso>
in <c>erl(1)</c>.
</item>
<tag><c>no_node_processor_spread</c></tag>
<item>Same as command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt nnps</c></seealso>
in <c>erl(1)</c>.
</item>
<tag><c>thread_no_node_processor_spread</c></tag>
<item>Same as command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt tnnps</c></seealso>
in <c>erl(1)</c>.
</item>
<tag><c>default_bind</c></tag>
<item>Same as command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt db</c></seealso>
in <c>erl(1)</c>.
</item>
</taglist>
<p>The returned value equals <c><anno>How</anno></c> before flag
<c>scheduler_bind_type</c> was changed.</p>
<p>Failures:</p>
<taglist>
<tag><c>notsup</c></tag>
<item>If binding of schedulers is not supported.
</item>
<tag><c>badarg</c></tag>
<item>If <c><anno>How</anno></c> is not one of the documented
alternatives.
</item>
<tag><c>badarg</c></tag>
<item>If CPU topology information is unavailable.
</item>
</taglist>
<p>The scheduler bind type can also be set by passing command-line
argument <seealso marker="erts:erl#+sbt">
<c>+sbt</c></seealso> to <c>erl(1)</c>.</p>
<p>For more information, see
<seealso marker="#system_info_scheduler_bind_type">
<c>erlang:system_info(scheduler_bind_type)</c></seealso>,
<seealso marker="#system_info_scheduler_bindings">
<c>erlang:system_info(scheduler_bindings)</c></seealso>,
as well as command-line flags
<seealso marker="erts:erl#+sbt"><c>+sbt</c></seealso>
and <seealso marker="erts:erl#+sct"><c>+sct</c></seealso>
in <c>erl(1)</c>.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="11"/>
<fsummary>Set system flag scheduler_wall_time.</fsummary>
<desc>
<p><marker id="system_flag_scheduler_wall_time"></marker>
Turns on or off scheduler wall time measurements.</p>
<p>For more information, see
<seealso marker="#statistics_scheduler_wall_time">
<c>statistics(scheduler_wall_time)</c></seealso>.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="12"/>
<fsummary>Set system flag schedulers_online.</fsummary>
<desc>
<p><marker id="system_flag_schedulers_online"></marker>
Sets the number of schedulers online. Range is
<c><![CDATA[1 <= SchedulersOnline <=
erlang:system_info(schedulers)]]></c>.</p>
<p>Returns the old value of the flag.</p>
<p>If the emulator was built with support for
<seealso marker="#system_flag_dirty_cpu_schedulers_online">
dirty schedulers</seealso>,
changing the number of schedulers online can also change the
number of dirty CPU schedulers online. For example, if 12
schedulers and 6 dirty CPU schedulers are online, and
<c>system_flag/2</c> is used to set the number of schedulers
online to 6, then the number of dirty CPU schedulers online
is automatically decreased by half as well, down to 3.
Similarly, the number of dirty CPU schedulers online increases
proportionally to increases in the number of schedulers online.</p>
<p>For more information, see
<seealso marker="#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso> and
<seealso marker="#system_info_schedulers_online">
<c>erlang:system_info(schedulers_online)</c></seealso>.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="13"/>
<fsummary>Set system flag trace_control_word.</fsummary>
<desc>
<p>Sets the value of the node trace control word to
<c><anno>TCW</anno></c>, which is to be an unsigned integer.
For more information, see function
<seealso marker="erts:match_spec#set_tcw"><c>set_tcw</c></seealso>
in section "Match Specifications in Erlang" in the
User's Guide.</p>
<p>Returns the old value of the flag.</p>
</desc>
</func>
<func>
<name name="system_flag" arity="2" clause_i="14"/>
<fsummary>Finalize the time offset.</fsummary>
<desc>
<p><marker id="system_flag_time_offset"></marker>
Finalizes the <seealso marker="#time_offset/0">time offset</seealso>
when <seealso marker="time_correction#Single_Time_Warp_Mode">single
time warp mode</seealso> is used. If another time warp mode
is used, the time offset state is left unchanged.</p>
<p>Returns the old state identifier, that is:</p>
<list>
<item><p>If <c>preliminary</c> is returned, finalization was
performed and the time offset is now final.</p>
</item>
<item><p>If <c>final</c> is returned, the time offset was
already in the final state. This either because another
<c>erlang:system_flag(time_offset, finalize)</c> call or
because <seealso marker="time_correction#No_Time_Warp_Mode">no
time warp mode</seealso> is used.</p>
</item>
<item><p>If <c>volatile</c> is returned, the time offset
cannot be finalized because
<seealso marker="time_correction#Multi_Time_Warp_Mode">multi-time
warp mode</seealso> is used.</p>
</item>
</list>
</desc>
</func>
<func>
<name name="system_info" arity="1" clause_i="1"/>
<name name="system_info" arity="1" clause_i="2"/>
<name name="system_info" arity="1" clause_i="3"/>
<name name="system_info" arity="1" clause_i="4"/>
<name name="system_info" arity="1" clause_i="5"/>
<fsummary>Information about the system allocators.</fsummary>
<type variable="Allocator" name_i="2"/>
<type variable="Version" name_i="2"/>
<type variable="Features" name_i="2"/>
<type variable="Settings" name_i="2"/>
<type variable="Alloc" name_i="3"/>
<desc>
<marker id="system_info_allocator_tags"></marker>
<p>Returns various information about the allocators of the
current system (emulator) as specified by
<c><anno>Item</anno></c>:</p>
<marker id="system_info_allocated_areas"></marker>
<taglist>
<tag><c>allocated_areas</c></tag>
<item>
<p>Returns a list of tuples with information about
miscellaneous allocated memory areas.</p>
<p>Each tuple contains an atom describing the type of
memory as first element and the amount of allocated
memory in bytes as second element. When information
about allocated and used memory is present, also a
third element is present, containing the amount of
used memory in bytes.</p>
<p><c>erlang:system_info(allocated_areas)</c> is intended
for debugging, and the content is highly
implementation-dependent. The content of the results
therefore changes when needed without prior notice.</p>
<p>Notice that the sum of these values is <em>not</em>
the total amount of memory allocated by the emulator.
Some values are part of other values, and some memory
areas are not part of the result. For information about
the total amount of memory allocated by the emulator, see
<seealso marker="#memory/0">
<c>erlang:memory/0,1</c></seealso>.</p>
</item>
<tag><c>allocator</c></tag>
<item>
<marker id="system_info_allocator"></marker>
<p>Returns <c>{<anno>Allocator</anno>, <anno>Version</anno>,
<anno>Features</anno>, <anno>Settings</anno></c>, where:</p>
<list type="bulleted">
<item>
<p><c><anno>Allocator</anno></c> corresponds to the
<c>malloc()</c> implementation used. If
<c><anno>Allocator</anno></c> equals
<c>undefined</c>, the <c>malloc()</c> implementation
used cannot be identified. <c>glibc</c> can be
identified.</p>
</item>
<item>
<p><c><anno>Version</anno></c> is a list of integers
(but not a string) representing the version of
the <c>malloc()</c> implementation used.</p>
</item>
<item>
<p><c><anno>Features</anno></c> is a list of atoms
representing the allocation features used.</p>
</item>
<item>
<p><c><anno>Settings</anno></c> is a list of subsystems,
their configurable parameters, and used values. Settings
can differ between different combinations of
platforms, allocators, and allocation features.
Memory sizes are given in bytes.</p>
</item>
</list>
<p>See also "System Flags Effecting erts_alloc" in
<seealso marker="erts:erts_alloc#flags">
<c>erts_alloc(3)</c></seealso>.</p>
</item>
<tag><c>alloc_util_allocators</c></tag>
<item>
<marker id="system_info_alloc_util_allocators"></marker>
<p>Returns a list of the names of all allocators using
the ERTS internal <c>alloc_util</c> framework
as atoms. For more information, see section
<seealso marker="erts:erts_alloc#alloc_util">The
alloc_util framework</seealso>
in <c>erts_alloc(3)</c>.</p>
</item>
<tag><c>{allocator, <anno>Alloc</anno>}</c></tag>
<item>
<marker id="system_info_allocator_tuple"></marker>
<p>Returns information about the specified allocator.
As from ERTS 5.6.1, the return value is a list
of <c>{instance, InstanceNo, InstanceInfo}</c> tuples,
where <c>InstanceInfo</c> contains information about
a specific instance of the allocator.
If <c><anno>Alloc</anno></c> is not a
recognized allocator, <c>undefined</c> is returned.
If <c><anno>Alloc</anno></c> is disabled,
<c>false</c> is returned.</p>
<p>Notice that the information returned is highly
implementation-dependent and can be changed or removed
at any time without prior notice. It was initially
intended as a tool when developing new allocators, but
as it can be of interest for others it has been
briefly documented.</p>
<p>The recognized allocators are listed in
<seealso marker="erts:erts_alloc"><c>erts_alloc(3)</c></seealso>.
Information about super carriers can be obtained from
ERTS 8.0 with <c>{allocator, erts_mmap}</c> or from
ERTS 5.10.4; the returned list when calling with
<c>{allocator, mseg_alloc}</c> also includes an
<c>{erts_mmap, _}</c> tuple as one element in the list.</p>
<p>After reading the <c>erts_alloc(3)</c> documentation,
the returned information
more or less speaks for itself, but it can be worth
explaining some things. Call counts are presented by two
values, the first value is giga calls, and the second
value is calls. <c>mbcs</c> and <c>sbcs</c> denote
multi-block carriers, and single-block carriers,
respectively. Sizes are presented in bytes. When a
size is not presented, it is the amount of something.
Sizes and amounts are often presented by three values:</p>
<list type="bulleted">
<item>The first is the current value.</item>
<item>The second is the maximum value since the last call
to <c>erlang:system_info({allocator, Alloc})</c>.</item>
<item>The third is the maximum value since the emulator
was started.</item>
</list>
<p>If only one value is present, it is the current value.
<c>fix_alloc</c> memory block types are presented by two
values. The first value is the memory pool size and
the second value is the used memory size.</p>
</item>
<tag><c>{allocator_sizes, <anno>Alloc</anno>}</c></tag>
<item>
<marker id="system_info_allocator_sizes"></marker>
<p>Returns various size information for the specified
allocator. The information returned is a subset of the
information returned by
<seealso marker="#system_info_allocator_tuple">
<c>erlang:system_info({allocator,
<anno>Alloc</anno>})</c></seealso>.</p>
</item>
</taglist>
</desc>
</func>
<func>
<name name="system_info" arity="1" clause_i="12"/>
<name name="system_info" arity="1" clause_i="13"/>
<fsummary>Information about the CPU topology of the system.</fsummary>
<type name="cpu_topology"/>
<type name="level_entry"/>
<type_desc name="cpu_topology">
All <c><anno>LevelEntry</anno></c>s of a list
must contain the same <c><anno>LevelTag</anno></c>, except
on the top level where both <c>node</c> and
<c>processor</c> <c><anno>LevelTag</anno></c>s can coexist.
</type_desc>
<type_desc name="level_entry">
<c>{<anno>LevelTag</anno>,
<anno>SubLevel</anno>} == {<anno>LevelTag</anno>, [],
<anno>SubLevel</anno>}</c>
</type_desc>
<type name="level_tag"/>
<type_desc name="level_tag">
More <c><anno>LevelTag</anno></c>s can be introduced in a
future release.
</type_desc>
<type name="sub_level"/>
<type name="info_list"/>
<type_desc name="info_list">
The <c>info_list()</c> can be extended in a future release.
</type_desc>
<desc>
<marker id="system_info_cpu_topology_tags"></marker>
<marker id="system_info_cpu_topology"></marker>
<p>Returns various information about the CPU topology of
the current system (emulator) as specified by
<c><anno>Item</anno></c>:</p>
<taglist>
<tag><c>cpu_topology</c></tag>
<item>
<p>Returns the <c><anno>CpuTopology</anno></c> currently used by
the emulator. The CPU topology is used when binding schedulers
to logical processors. The CPU topology used is the
<seealso marker="erlang#system_info_cpu_topology_defined">
user-defined CPU topology</seealso>,
if such exists, otherwise the
<seealso marker="erlang#system_info_cpu_topology_detected">
automatically detected CPU topology</seealso>,
if such exists. If no CPU topology
exists, <c>undefined</c> is returned.</p>
<p><c>node</c> refers to Non-Uniform Memory Access (NUMA)
nodes. <c>thread</c> refers to hardware threads
(for example, Intel hyper-threads).</p>
<p>A level in term <c><anno>CpuTopology</anno></c> can be
omitted if only one entry exists and
<c><anno>InfoList</anno></c> is empty.</p>
<p><c>thread</c> can only be a sublevel to <c>core</c>.
<c>core</c> can be a sublevel to <c>processor</c>
or <c>node</c>. <c>processor</c> can be on the
top level or a sublevel to <c>node</c>. <c>node</c>
can be on the top level or a sublevel to
<c>processor</c>. That is, NUMA nodes can be processor
internal or processor external. A CPU topology can
consist of a mix of processor internal and external
NUMA nodes, as long as each logical CPU belongs to
<em>one</em> NUMA node. Cache hierarchy is not part of
the <c><anno>CpuTopology</anno></c> type, but will be in a
future release. Other things can also make it into the CPU
topology in a future release. So, expect the
<c><anno>CpuTopology</anno></c> type to change.</p>
</item>
<tag><c>{cpu_topology, defined}</c></tag>
<item>
<marker id="system_info_cpu_topology_defined"></marker>
<p>Returns the user-defined <c><anno>CpuTopology</anno></c>.
For more information, see command-line flag
<seealso marker="erts:erl#+sct"><c>+sct</c></seealso> in
<c>erl(1)</c> and argument
<seealso marker="#system_info_cpu_topology">
<c>cpu_topology</c></seealso>.</p>
</item>
<tag><c>{cpu_topology, detected}</c></tag>
<item>
<marker id="system_info_cpu_topology_detected"></marker>
<p>Returns the automatically detected
<c><anno>CpuTopology</anno>y</c>. The
emulator detects the CPU topology on some newer
Linux, Solaris, FreeBSD, and Windows systems.
On Windows system with more than 32 logical processors,
the CPU topology is not detected.</p>
<p>For more information, see argument
<seealso marker="#system_info_cpu_topology">
<c>cpu_topology</c></seealso>.</p>
</item>
<tag><c>{cpu_topology, used}</c></tag>
<item>
<p>Returns <c><anno>CpuTopology</anno></c> used by the emulator.
For more information, see argument
<seealso marker="#system_info_cpu_topology">
<c>cpu_topology</c></seealso>.</p>
</item>
</taglist>
</desc>
</func>
<func>
<name name="system_info" arity="1" clause_i="29"/>
<name name="system_info" arity="1" clause_i="30"/>
<name name="system_info" arity="1" clause_i="38"/>
<name name="system_info" arity="1" clause_i="39"/>
<name name="system_info" arity="1" clause_i="40"/>
<name name="system_info" arity="1" clause_i="41"/>
<fsummary>Information about the default process heap settings.</fsummary>
<type name="message_queue_data"/>
<type name="max_heap_size"/>
<desc>
<p>Returns information about the default process heap settings:</p>
<taglist>
<tag><c>fullsweep_after</c></tag>
<item>
<p>Returns <c>{fullsweep_after, integer() >= 0}</c>, which is
the <c>fullsweep_after</c> garbage collection setting used
by default. For more information, see
<c>garbage_collection</c> described below.</p>
</item>
<tag><c>garbage_collection</c></tag>
<item>
<p>Returns a list describing the default garbage collection
settings. A process spawned on the local node by a
<c>spawn</c> or <c>spawn_link</c> uses these
garbage collection settings. The default settings can be
changed by using
<seealso marker="#system_flag/2">
<c>erlang:system_flag/2</c></seealso>.
<seealso marker="#spawn_opt/4"><c>spawn_opt/2,3,4</c></seealso>
can spawn a process that does not use the default
settings.</p>
</item>
<tag><c>max_heap_size</c></tag>
<item>
<p>Returns <c>{max_heap_size, <anno>MaxHeapSize</anno>}</c>,
where <c><anno>MaxHeapSize</anno></c> is the current
system-wide maximum heap size settings for spawned processes.
This setting can be set using the command-line flags
<seealso marker="erl#+hmax"><c>+hmax</c></seealso>,
<seealso marker="erl#+hmaxk"><c>+hmaxk</c></seealso> and
<seealso marker="erl#+hmaxel"><c>+hmaxel</c></seealso> in
<c>erl(1)</c>. It can also be changed at runtime using
<seealso marker="#system_flag_max_heap_size">
<c>erlang:system_flag(max_heap_size, MaxHeapSize)</c></seealso>.
For more details about the <c>max_heap_size</c> process flag,
see <seealso marker="#process_flag_max_heap_size">
<c>process_flag(max_heap_size, MaxHeapSize)</c></seealso>.</p>
</item>
<tag><marker id="system_info_message_queue_data"/>
<c>message_queue_data</c></tag>
<item>
<p>Returns the default value of the <c>message_queue_data</c>
process flag, which is either <c>off_heap</c> or <c>on_heap</c>.
This default is set by command-line argument
<seealso marker="erl#+hmqd"><c>+hmqd</c></seealso> in
<c>erl(1)</c>. For more information on the
<c>message_queue_data</c> process flag, see documentation of
<seealso marker="#process_flag_message_queue_data">
<c>process_flag(message_queue_data, MQD)</c></seealso>.</p>
</item>
<tag><c>min_heap_size</c></tag>
<item>
<p>Returns <c>{min_heap_size, <anno>MinHeapSize</anno>}</c>,
where <c><anno>MinHeapSize</anno></c> is the current
system-wide minimum heap size for spawned processes.</p>
</item>
<tag><c>min_bin_vheap_size</c></tag>
<item>
<p>Returns <c>{min_bin_vheap_size,
<anno>MinBinVHeapSize</anno>}</c>, where
<c><anno>MinBinVHeapSize</anno></c> is the current system-wide
minimum binary virtual heap size for spawned processes.</p>
</item>
</taglist>
</desc>
</func>
<func>
<name name="system_info" arity="1" clause_i="6"/>
<name name="system_info" arity="1" clause_i="7"/>
<name name="system_info" arity="1" clause_i="8"/>
<name name="system_info" arity="1" clause_i="9"/>
<name name="system_info" arity="1" clause_i="10"/>
<name name="system_info" arity="1" clause_i="11"/>
<name name="system_info" arity="1" clause_i="14"/>
<name name="system_info" arity="1" clause_i="15"/>
<name name="system_info" arity="1" clause_i="16"/>
<name name="system_info" arity="1" clause_i="17"/>
<name name="system_info" arity="1" clause_i="18"/>
<name name="system_info" arity="1" clause_i="19"/>
<name name="system_info" arity="1" clause_i="20"/>
<name name="system_info" arity="1" clause_i="21"/>
<name name="system_info" arity="1" clause_i="22"/>
<name name="system_info" arity="1" clause_i="23"/>
<name name="system_info" arity="1" clause_i="24"/>
<name name="system_info" arity="1" clause_i="25"/>
<name name="system_info" arity="1" clause_i="26"/>
<name name="system_info" arity="1" clause_i="27"/>
<name name="system_info" arity="1" clause_i="28"/>
<name name="system_info" arity="1" clause_i="31"/>
<name name="system_info" arity="1" clause_i="32"/>
<name name="system_info" arity="1" clause_i="33"/>
<name name="system_info" arity="1" clause_i="34"/>
<name name="system_info" arity="1" clause_i="35"/>
<name name="system_info" arity="1" clause_i="36"/>
<name name="system_info" arity="1" clause_i="37"/>
<name name="system_info" arity="1" clause_i="42"/>
<name name="system_info" arity="1" clause_i="43"/>
<name name="system_info" arity="1" clause_i="44"/>
<name name="system_info" arity="1" clause_i="45"/>
<name name="system_info" arity="1" clause_i="46"/>
<name name="system_info" arity="1" clause_i="47"/>
<name name="system_info" arity="1" clause_i="48"/>
<name name="system_info" arity="1" clause_i="49"/>
<name name="system_info" arity="1" clause_i="50"/>
<name name="system_info" arity="1" clause_i="51"/>
<name name="system_info" arity="1" clause_i="52"/>
<name name="system_info" arity="1" clause_i="53"/>
<name name="system_info" arity="1" clause_i="54"/>
<name name="system_info" arity="1" clause_i="55"/>
<name name="system_info" arity="1" clause_i="56"/>
<name name="system_info" arity="1" clause_i="57"/>
<name name="system_info" arity="1" clause_i="58"/>
<name name="system_info" arity="1" clause_i="59"/>
<name name="system_info" arity="1" clause_i="60"/>
<name name="system_info" arity="1" clause_i="61"/>
<name name="system_info" arity="1" clause_i="62"/>
<name name="system_info" arity="1" clause_i="63"/>
<name name="system_info" arity="1" clause_i="64"/>
<name name="system_info" arity="1" clause_i="65"/>
<name name="system_info" arity="1" clause_i="66"/>
<name name="system_info" arity="1" clause_i="67"/>
<name name="system_info" arity="1" clause_i="68"/>
<name name="system_info" arity="1" clause_i="69"/>
<name name="system_info" arity="1" clause_i="70"/>
<name name="system_info" arity="1" clause_i="71"/>
<fsummary>Information about the system.</fsummary>
<desc>
<p>Returns various information about the current system
(emulator) as specified by <c><anno>Item</anno></c>:</p>
<taglist>
<tag><c>atom_count</c></tag>
<item>
<marker id="system_info_atom_count"></marker>
<p>Returns the number of atoms currently existing at the
local node. The value is given as an integer.</p>
</item>
<tag><c>atom_limit</c></tag>
<item>
<marker id="system_info_atom_limit"></marker>
<p>Returns the maximum number of atoms allowed.
This limit can be increased at startup by passing
command-line flag
<seealso marker="erts:erl#+t"><c>+t</c></seealso> to
<c>erl(1)</c>.
</p>
</item>
<tag><c>build_type</c></tag>
<item>
<p>Returns an atom describing the build type of the runtime
system. This is normally the atom <c>opt</c> for optimized.
Other possible return values are <c>debug</c>, <c>purify</c>,
<c>quantify</c>, <c>purecov</c>, <c>gcov</c>, <c>valgrind</c>,
<c>gprof</c>, and <c>lcnt</c>. Possible return values
can be added or removed at any time without prior notice.</p>
</item>
<tag><c>c_compiler_used</c></tag>
<item>
<p>Returns a two-tuple describing the C compiler used when
compiling the runtime system. The first element is an
atom describing the name of the compiler, or <c>undefined</c>
if unknown. The second element is a term describing the
version of the compiler, or <c>undefined</c> if unknown.</p>
</item>
<tag><c>check_io</c></tag>
<item>
<p>Returns a list containing miscellaneous information
about the emulators internal I/O checking. Notice that
the content of the returned list can vary between
platforms and over time. It is only guaranteed
that a list is returned.</p>
</item>
<tag><c>compat_rel</c></tag>
<item>
<p>Returns the compatibility mode of the local node as
an integer. The integer returned represents the
Erlang/OTP release that the current emulator has been
set to be backward compatible with. The compatibility
mode can be configured at startup by using command-line flag
<seealso marker="erts:erl#compat_rel"><c>+R</c></seealso> in
<c>erl(1)</c>.</p>
</item>
<tag><c>cpu_topology</c></tag>
<item>
<p>See <seealso
marker="#system_info_cpu_topology_tags">above</seealso>.</p>
</item>
<tag><c>creation</c></tag>
<item>
<p>Returns the creation of the local node as an integer.
The creation is changed when a node is restarted. The
creation of a node is stored in process identifiers, port
identifiers, and references. This makes it (to some
extent) possible to distinguish between identifiers from
different incarnations of a node. The valid
creations are integers in the range 1..3, but this will
probably change in a future release. If the node is not
alive, <c>0</c> is returned.</p>
</item>
<tag><c>debug_compiled</c></tag>
<item>
<p>Returns <c>true</c> if the emulator has been
debug-compiled, otherwise <c>false</c>.</p>
</item>
<tag><c>delayed_node_table_gc</c></tag>
<item>
<marker id="system_info_delayed_node_table_gc"></marker>
<p>Returns the amount of time in seconds garbage collection
of an entry in a node table is delayed. This limit can be set
on startup by passing command-line flag
<seealso marker="erts:erl#+zdntgc"><c>+zdntgc</c></seealso>
to <c>erl(1)</c>. For more information, see the documentation of
the command-line flag.</p>
</item>
<tag><c>dirty_cpu_schedulers</c></tag>
<item>
<marker id="system_info_dirty_cpu_schedulers"></marker>
<p>Returns the number of dirty CPU scheduler threads used by
the emulator. Dirty CPU schedulers execute CPU-bound
native functions, such as NIFs, linked-in driver code,
and BIFs that cannot be managed cleanly by the normal
emulator schedulers.</p>
<p>The number of dirty CPU scheduler threads is determined
at emulator boot time and cannot be changed after that.
However, the number of dirty CPU scheduler threads online
can be changed at any time. The number of dirty CPU
schedulers can be set at startup by passing
command-line flag
<seealso marker="erts:erl#+SDcpu"><c>+SDcpu</c></seealso> or
<seealso marker="erts:erl#+SDPcpu"><c>+SDPcpu</c></seealso> in
<c>erl(1)</c>.</p>
<p>See also
<seealso marker="#system_flag_dirty_cpu_schedulers_online">
<c>erlang:system_flag(dirty_cpu_schedulers_online,
DirtyCPUSchedulersOnline)</c></seealso>,
<seealso marker="#system_info_dirty_cpu_schedulers_online">
<c>erlang:system_info(dirty_cpu_schedulers_online)</c></seealso>,
<seealso marker="#system_info_dirty_io_schedulers">
<c>erlang:system_info(dirty_io_schedulers)</c></seealso>,
<seealso marker="#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso>,
<seealso marker="#system_info_schedulers_online">
<c>erlang:system_info(schedulers_online)</c></seealso>, and
<seealso marker="#system_flag_schedulers_online">
<c>erlang:system_flag(schedulers_online,
SchedulersOnline)</c></seealso>.</p>
</item>
<tag><c>dirty_cpu_schedulers_online</c></tag>
<item>
<marker id="system_info_dirty_cpu_schedulers_online"></marker>
<p>Returns the number of dirty CPU schedulers online.
The return value satisfies
<c><![CDATA[1 <= DirtyCPUSchedulersOnline <= N]]></c>,
where <c>N</c> is the smallest of the return values of
<c>erlang:system_info(dirty_cpu_schedulers)</c> and
<c>erlang:system_info(schedulers_online)</c>.</p>
<p>The number of dirty CPU schedulers online can be set at
startup by passing command-line flag
<seealso marker="erts:erl#+SDcpu"><c>+SDcpu</c></seealso> in
<c>erl(1)</c>.</p>
<p>For more information, see
<seealso marker="#system_info_dirty_cpu_schedulers">
<c>erlang:system_info(dirty_cpu_schedulers)</c></seealso>,
<seealso marker="#system_info_dirty_io_schedulers">
<c>erlang:system_info(dirty_io_schedulers)</c></seealso>,
<seealso marker="#system_info_schedulers_online">
<c>erlang:system_info(schedulers_online)</c></seealso>, and
<seealso marker="#system_flag_dirty_cpu_schedulers_online">
<c>erlang:system_flag(dirty_cpu_schedulers_online,
DirtyCPUSchedulersOnline)</c></seealso>.</p>
</item>
<tag><c>dirty_io_schedulers</c></tag>
<item>
<marker id="system_info_dirty_io_schedulers"></marker>
<p>Returns the number of dirty I/O schedulers as an integer.
Dirty I/O schedulers execute I/O-bound native functions,
such as NIFs and linked-in driver code, which cannot be
managed cleanly by the normal emulator schedulers.</p>
<p>This value can be set at startup by passing command-line
argument <seealso marker="erts:erl#+SDio"><c>+SDio</c></seealso>
in <c>erl(1)</c>.</p>
<p>For more information, see
<seealso marker="#system_info_dirty_cpu_schedulers">
<c>erlang:system_info(dirty_cpu_schedulers)</c></seealso>,
<seealso marker="#system_info_dirty_cpu_schedulers_online">
<c>erlang:system_info(dirty_cpu_schedulers_online)</c></seealso>,
and <seealso marker="#system_flag_dirty_cpu_schedulers_online">
<c>erlang:system_flag(dirty_cpu_schedulers_online,
DirtyCPUSchedulersOnline)</c></seealso>.</p>
</item>
<tag><c>dist</c></tag>
<item>
<p>Returns a binary containing a string of distribution
information formatted as in Erlang crash dumps. For more
information, see section <seealso marker="erts:crash_dump">
How to interpret the Erlang crash dumps</seealso>
in the User's Guide.</p>
</item>
<tag><c>dist_buf_busy_limit</c></tag>
<item>
<marker id="system_info_dist_buf_busy_limit"></marker>
<p>Returns the value of the distribution buffer busy limit
in bytes. This limit can be set at startup by passing
command-line flag
<seealso marker="erts:erl#+zdbbl"><c>+zdbbl</c></seealso>
to <c>erl(1)</c>.</p>
</item>
<tag><c>dist_ctrl</c></tag>
<item>
<p>Returns a list of tuples
<c>{<anno>Node</anno>, <anno>ControllingEntity</anno>}</c>,
one entry for each connected remote node.
<c><anno>Node</anno></c> is the node name
and <c><anno>ControllingEntity</anno></c> is the port or process
identifier responsible for the communication to that node.
More specifically, <c><anno>ControllingEntity</anno></c> for
nodes connected through TCP/IP (the normal case) is the socket
used in communication with the specific node.</p>
</item>
<tag><c>driver_version</c></tag>
<item>
<p>Returns a string containing the Erlang driver version
used by the runtime system. It has the form
<seealso marker="erts:erl_driver#version_management">
"<major ver>.<minor ver>"</seealso>.</p>
</item>
<tag><c>dynamic_trace</c></tag>
<item>
<p>Returns an atom describing the dynamic trace framework
compiled into the virtual machine. It can be
<c>dtrace</c>, <c>systemtap</c>, or <c>none</c>. For a
commercial or standard build, it is always <c>none</c>.
The other return values indicate a custom configuration
(for example, <c>./configure --with-dynamic-trace=dtrace</c>).
For more information about dynamic tracing, see
<seealso marker="runtime_tools:dyntrace">
<c>dyntrace(3)</c></seealso> manual page and the
<c>README.dtrace</c>/<c>README.systemtap</c> files in the
Erlang source code top directory.</p>
</item>
<tag><c>dynamic_trace_probes</c></tag>
<item>
<p>Returns a <c>boolean()</c> indicating if dynamic trace
probes (<c>dtrace</c> or <c>systemtap</c>) are built into
the emulator. This can only be <c>true</c> if the virtual
machine was built for dynamic tracing (that is,
<c>system_info(dynamic_trace)</c> returns
<c>dtrace</c> or <c>systemtap</c>).</p>
</item>
<tag><marker id="system_info_end_time"/><c>end_time</c></tag>
<item>
<p>The last <seealso marker="#monotonic_time/0">Erlang monotonic
time</seealso> in <c>native</c>
<seealso marker="#type_time_unit">time unit</seealso> that
can be represented internally in the current Erlang runtime system
instance. The time between the
<seealso marker="#system_info_start_time">start time</seealso> and
the end time is at least a quarter of a millennium.</p>
</item>
<tag><c>elib_malloc</c></tag>
<item>
<p>This option will be removed in a future release.
The return value will always be <c>false</c>, as the
<c>elib_malloc</c> allocator has been removed.</p>
</item>
<tag><marker id="system_info_eager_check_io"/>
<c>eager_check_io</c></tag>
<item>
<p>Returns the value of command-line flag
<seealso marker="erl#+secio"><c>+secio</c></seealso> in
<c>erl(1)</c>, which is either <c>true</c> or <c>false</c>.
For information about the different values, see the
documentation of the command-line flag.</p>
</item>
<tag><c>ets_limit</c></tag>
<item>
<p>Returns the maximum number of ETS tables allowed. This
limit can be increased at startup by passing
command-line flag
<seealso marker="erts:erl#+e"><c>+e</c></seealso> to
<c>erl(1)</c> or by setting environment variable
<c>ERL_MAX_ETS_TABLES</c> before starting the Erlang
runtime system.</p>
</item>
<tag><c>heap_sizes</c></tag>
<item>
<p>Returns a list of integers representing valid heap sizes
in words. All Erlang heaps are sized from sizes in this
list.</p>
</item>
<tag><c>heap_type</c></tag>
<item>
<p>Returns the heap type used by the current emulator. One
heap type exists:</p>
<taglist>
<tag><c>private</c></tag>
<item>
Each process has a heap reserved for its use and no
references between heaps of different processes are
allowed. Messages passed between processes are copied
between heaps.
</item>
</taglist>
</item>
<tag><c>info</c></tag>
<item>
<p>Returns a binary containing a string of miscellaneous
system information formatted as in Erlang crash dumps.
For more information, see section
<seealso marker="erts:crash_dump">
How to interpret the Erlang crash dumps</seealso>
in the User's Guide.</p>
</item>
<tag><c>kernel_poll</c></tag>
<item>
<p>Returns <c>true</c> if the emulator uses some kind of
kernel-poll implementation, otherwise <c>false</c>.</p>
</item>
<tag><c>loaded</c></tag>
<item>
<p>Returns a binary containing a string of loaded module
information formatted as in Erlang crash dumps. For more
information, see section
<seealso marker="erts:crash_dump">How to interpret the Erlang
crash dumps</seealso> in the User's Guide.</p>
</item>
<tag><c>logical_processors</c></tag>
<item>
<marker id="logical_processors"></marker>
<p>Returns the detected number of logical processors configured
in the system. The return value is either an integer, or
the atom <c>unknown</c> if the emulator cannot
detect the configured logical processors.</p>
</item>
<tag><c>logical_processors_available</c></tag>
<item>
<marker id="logical_processors_available"></marker>
<p>Returns the detected number of logical processors available
to the Erlang runtime system. The return value is either an
integer, or the atom <c>unknown</c> if the emulator
cannot detect the available logical processors. The number
of available logical processors is less than or equal to
the number of <seealso marker="#logical_processors_online">
logical processors online</seealso>.</p>
</item>
<tag><c>logical_processors_online</c></tag>
<item>
<marker id="logical_processors_online"></marker>
<p>Returns the detected number of logical processors online on
the system. The return value is either an integer,
or the atom <c>unknown</c> if the emulator cannot
detect logical processors online. The number of logical
processors online is less than or equal to the number of
<seealso marker="#logical_processors">logical processors
configured</seealso>.</p>
</item>
<tag><c>machine</c></tag>
<item>
<p>Returns a string containing the Erlang machine name.</p>
</item>
<tag><c>modified_timing_level</c></tag>
<item>
<p>Returns the modified timing-level (an integer) if
modified timing is enabled, otherwise <c>undefined</c>.
For more information about modified timing, see
command-line flag
<seealso marker="erts:erl#+T"><c>+T</c></seealso>
in <c>erl(1)</c></p>
</item>
<tag><c>multi_scheduling</c></tag>
<item>
<marker id="system_info_multi_scheduling"></marker>
<p>Returns one of the following:</p>
<taglist>
<tag><c>disabled</c></tag>
<item>
<p>The emulator has only one scheduler thread. The
emulator does not have SMP support, or have been
started with only one scheduler thread.</p>
</item>
<tag><c>blocked</c></tag>
<item>
<p>The emulator has more than one scheduler thread,
but all scheduler threads except one are blocked.
That is, only one scheduler thread schedules
Erlang processes and executes Erlang code.</p>
</item>
<tag><c>blocked_normal</c></tag>
<item>
<p>The emulator has more than one scheduler thread,
but all normal scheduler threads except one are
blocked. Notice that dirty schedulers are not
blocked, and can schedule Erlang processes and
execute native code.</p>
</item>
<tag><c>enabled</c></tag>
<item>
<p>The emulator has more than one scheduler thread,
and no scheduler threads are blocked. That is,
all available scheduler threads schedule
Erlang processes and execute Erlang code.</p>
</item>
</taglist>
<p>See also
<seealso marker="#system_flag_multi_scheduling">
<c>erlang:system_flag(multi_scheduling, BlockState)</c></seealso>,
<seealso marker="#system_info_multi_scheduling_blockers">
<c>erlang:system_info(multi_scheduling_blockers)</c></seealso>,
<seealso marker="#system_info_normal_multi_scheduling_blockers">
<c>erlang:system_info(normal_multi_scheduling_blockers)</c></seealso>,
and <seealso marker="#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso>.</p>
</item>
<tag><c>multi_scheduling_blockers</c></tag>
<item>
<marker id="system_info_multi_scheduling_blockers"></marker>
<p>Returns a list of <c><anno>Pid</anno></c>s when
multi-scheduling is blocked, otherwise the empty list is
returned. The <c><anno>Pid</anno></c>s in the list
represent all the processes currently
blocking multi-scheduling. A <c><anno>Pid</anno></c> occurs
only once in the list, even if the corresponding
process has blocked multiple times.</p>
<p>See also
<seealso marker="#system_flag_multi_scheduling">
<c>erlang:system_flag(multi_scheduling, BlockState)</c></seealso>,
<seealso marker="#system_info_multi_scheduling">
<c>erlang:system_info(multi_scheduling)</c></seealso>,
<seealso marker="#system_info_normal_multi_scheduling_blockers">
<c>erlang:system_info(normal_multi_scheduling_blockers)</c></seealso>,
and <seealso marker="#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso>.</p>
</item>
<tag><c>nif_version</c></tag>
<item>
<p>Returns a string containing the version of the Erlang NIF
interface used by the runtime system. It is on the form
"<major ver>.<minor ver>".</p>
</item>
<tag><c>normal_multi_scheduling_blockers</c></tag>
<item>
<marker id="system_info_normal_multi_scheduling_blockers"></marker>
<p>Returns a list of <c><anno>Pid</anno></c>s when
normal multi-scheduling is blocked (that is, all normal schedulers
but one is blocked), otherwise the empty list is returned.
The <c><anno>Pid</anno></c>s in the list represent all the
processes currently blocking normal multi-scheduling.
A <c><anno>Pid</anno></c> occurs only once in the list, even if
the corresponding process has blocked multiple times.</p>
<p>See also
<seealso marker="#system_flag_multi_scheduling">
<c>erlang:system_flag(multi_scheduling, BlockState)</c></seealso>,
<seealso marker="#system_info_multi_scheduling">
<c>erlang:system_info(multi_scheduling)</c></seealso>,
<seealso marker="#system_info_multi_scheduling_blockers">
<c>erlang:system_info(multi_scheduling_blockers)</c></seealso>,
and <seealso marker="#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso>.</p>
</item>
<tag><marker id="system_info_otp_release"/>
<c>otp_release</c></tag>
<item>
<marker id="system_info_otp_release"></marker>
<p>Returns a string containing the OTP release number of the
OTP release that the currently executing ERTS application
is part of.</p>
<p>As from Erlang/OTP 17, the OTP release number corresponds to
the major OTP version number. No
<c>erlang:system_info()</c> argument gives the exact OTP
version. This is because the exact OTP version in the general case
is difficult to determine. For more information, see the
description of versions in
<seealso marker="doc/system_principles:versions">
System principles</seealso> in System Documentation.</p>
</item>
<tag><marker id="system_info_os_monotonic_time_source"/>
<c>os_monotonic_time_source</c></tag>
<item>
<p>Returns a list containing information about the source of
<seealso marker="erts:time_correction#OS_Monotonic_Time">OS
monotonic time</seealso> that is used by the runtime system.</p>
<p>If <c>[]</c> is returned, no OS monotonic time is
available. The list contains two-tuples with <c>Key</c>s
as first element, and <c>Value</c>s as second element. The
order of these tuples is undefined. The following
tuples can be part of the list, but more tuples can be
introduced in the future:</p>
<taglist>
<tag><c>{function, Function}</c></tag>
<item><p><c>Function</c> is the name of the function
used. This tuple always exists if OS monotonic time is
available to the runtime system.</p>
</item>
<tag><c>{clock_id, ClockId}</c></tag>
<item><p>This tuple only exists if <c>Function</c>
can be used with different clocks. <c>ClockId</c>
corresponds to the clock identifier used when calling
<c>Function</c>.</p>
</item>
<tag><c>{resolution, OsMonotonicTimeResolution}</c></tag>
<item><p>Highest possible
<seealso marker="time_correction#Time_Resolution">
resolution</seealso>
of current OS monotonic time source as parts per
second. If no resolution information can be retrieved
from the OS, <c>OsMonotonicTimeResolution</c> is
set to the resolution of the time unit of
<c>Function</c>s return value. That is, the actual
resolution can be lower than
<c>OsMonotonicTimeResolution</c>. Notice that
the resolution does not say anything about the
<seealso marker="time_correction#Time_Accuracy">
accuracy</seealso> or whether the
<seealso marker="time_correction#Time_Precision">
precision</seealso> aligns with the resolution. You do,
however, know that the precision is not better than
<c>OsMonotonicTimeResolution</c>.</p>
</item>
<tag><c>{extended, Extended}</c></tag>
<item><p><c>Extended</c> equals <c>yes</c> if
the range of time values has been extended;
otherwise <c>Extended</c> equals <c>no</c>. The
range must be extended if <c>Function</c>
returns values that wrap fast. This typically
is the case when the return value is a 32-bit value.</p>
</item>
<tag><c>{parallel, Parallel}</c></tag>
<item><p><c>Parallel</c> equals <c>yes</c> if
<c>Function</c> is called in parallel from multiple
threads. If it is not called in parallel, because
calls must be serialized, <c>Parallel</c> equals
<c>no</c>.</p>
</item>
<tag><c>{time, OsMonotonicTime}</c></tag>
<item><p><c>OsMonotonicTime</c> equals current OS
monotonic time in <c>native</c>
<seealso marker="#type_time_unit">time unit</seealso>.</p>
</item>
</taglist>
</item>
<tag><marker id="system_info_os_system_time_source"/>
<c>os_system_time_source</c></tag>
<item>
<p>Returns a list containing information about the source of
<seealso marker="erts:time_correction#OS_System_Time">OS
system time</seealso> that is used by the runtime system.</p>
<p>The list contains two-tuples with <c>Key</c>s
as first element, and <c>Value</c>s as second element. The
order if these tuples is undefined. The following
tuples can be part of the list, but more tuples can be
introduced in the future:</p>
<taglist>
<tag><c>{function, Function}</c></tag>
<item><p><c>Function</c> is the name of the funcion used.</p>
</item>
<tag><c>{clock_id, ClockId}</c></tag>
<item><p>Exists only if <c>Function</c>
can be used with different clocks. <c>ClockId</c>
corresponds to the clock identifier used when calling
<c>Function</c>.</p>
</item>
<tag><c>{resolution, OsSystemTimeResolution}</c></tag>
<item><p>Highest possible
<seealso marker="time_correction#Time_Resolution">
resolution</seealso>
of current OS system time source as parts per
second. If no resolution information can be retrieved
from the OS, <c>OsSystemTimeResolution</c> is
set to the resolution of the time unit of
<c>Function</c>s return value. That is, the actual
resolution can be lower than
<c>OsSystemTimeResolution</c>. Notice that
the resolution does not say anything about the
<seealso marker="time_correction#Time_Accuracy">
accuracy</seealso> or whether the
<seealso marker="time_correction#Time_Precision">
precision</seealso> do align with the resolution. You do,
however, know that the precision is not better than
<c>OsSystemTimeResolution</c>.</p>
</item>
<tag><c>{parallel, Parallel}</c></tag>
<item><p><c>Parallel</c> equals <c>yes</c> if
<c>Function</c> is called in parallel from multiple
threads. If it is not called in parallel, because
calls needs to be serialized, <c>Parallel</c> equals
<c>no</c>.</p>
</item>
<tag><c>{time, OsSystemTime}</c></tag>
<item><p><c>OsSystemTime</c> equals current OS
system time in <c>native</c>
<seealso marker="#type_time_unit">time unit</seealso>.</p>
</item>
</taglist>
</item>
<tag><c>port_parallelism</c></tag>
<item>
<marker id="system_info_port_parallelism"></marker>
<p>Returns the default port parallelism scheduling hint used.
For more information, see command-line argument
<seealso marker="erl#+spp"><c>+spp</c></seealso>
in <c>erl(1)</c>.</p>
</item>
<tag><marker id="system_info_port_count"/><c>port_count</c></tag>
<item>
<p>Returns the number of ports currently existing at the
local node. The value is given as an integer. This is
the same value as returned by
<c>length(erlang:ports())</c>, but more efficient.</p>
</item>
<tag><c>port_limit</c></tag>
<item>
<marker id="system_info_port_limit"></marker>
<p>Returns the maximum number of simultaneously existing
ports at the local node as an integer. This limit can be
configured at startup by using command-line flag
<seealso marker="erl#+Q"><c>+Q</c></seealso> in <c>erl(1)</c>.</p>
</item>
<tag><marker id="system_info_process_count"/>
<c>process_count</c></tag>
<item>
<p>Returns the number of processes currently existing at the
local node. The value is given as an integer. This is
the same value as returned by
<c>length(processes())</c>, but more efficient.</p>
</item>
<tag><c>process_limit</c></tag>
<item>
<marker id="system_info_process_limit"></marker>
<p>Returns the maximum number of simultaneously existing
processes at the local node. The value is given as an
integer. This limit can be configured at startup by using
command-line flag <seealso marker="erl#+P"><c>+P</c></seealso>
in <c>erl(1)</c>.</p>
</item>
<tag><c>procs</c></tag>
<item>
<p>Returns a binary containing a string of process and port
information formatted as in Erlang crash dumps. For more
information, see section <seealso marker="erts:crash_dump">
How to interpret the Erlang crash dumps</seealso>
in the User's Guide.</p>
</item>
<tag><c>scheduler_bind_type</c></tag>
<item>
<marker id="system_info_scheduler_bind_type"></marker>
<p>Returns information about how the user has requested
schedulers to be bound or not bound.</p>
<p>Notice that although a user has requested
schedulers to be bound, they can silently have failed
to bind. To inspect the scheduler bindings, call
<seealso marker="#system_info_scheduler_bindings">
<c>erlang:system_info(scheduler_bindings)</c></seealso>.</p>
<p>For more information, see command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt</c></seealso>
in <c>erl(1)</c> and
<seealso marker="#system_info_scheduler_bindings">
<c>erlang:system_info(scheduler_bindings)</c></seealso>.</p>
</item>
<tag><c>scheduler_bindings</c></tag>
<item>
<marker id="system_info_scheduler_bindings"></marker>
<p>Returns information about the currently used scheduler
bindings.</p>
<p>A tuple of a size equal to
<seealso marker="#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso>
is returned. The tuple elements are integers
or the atom <c>unbound</c>. Logical processor identifiers
are represented as integers. The <c>N</c>th
element of the tuple equals the current binding for
the scheduler with the scheduler identifier equal to
<c>N</c>. For example, if the schedulers are bound,
<c>element(erlang:system_info(scheduler_id),
erlang:system_info(scheduler_bindings))</c> returns
the identifier of the logical processor that the calling
process is executing on.</p>
<p>Notice that only schedulers online can be bound to logical
processors.</p>
<p>For more information, see command-line argument
<seealso marker="erts:erl#+sbt"><c>+sbt</c></seealso>
in <c>erl(1)</c> and
<seealso marker="#system_info_schedulers_online">
<c>erlang:system_info(schedulers_online)</c></seealso>.</p>
</item>
<tag><c>scheduler_id</c></tag>
<item>
<marker id="system_info_scheduler_id"></marker>
<p>Returns the scheduler ID (<c>SchedulerId</c>) of the
scheduler thread that the calling process is executing
on. <c><anno>SchedulerId</anno></c> is a positive integer,
where <c><![CDATA[1 <= SchedulerId <=
erlang:system_info(schedulers)]]></c>.</p>
<p>See also
<seealso marker="#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso>.</p>
</item>
<tag><c>schedulers</c></tag>
<item>
<marker id="system_info_schedulers"></marker>
<p>Returns the number of scheduler threads used by
the emulator. Scheduler threads online schedules Erlang
processes and Erlang ports, and execute Erlang code
and Erlang linked-in driver code.</p>
<p>The number of scheduler threads is determined at
emulator boot time and cannot be changed later.
However, the number of schedulers online can
be changed at any time.</p>
<p>See also
<seealso marker="#system_flag_schedulers_online">
<c>erlang:system_flag(schedulers_online,
SchedulersOnline)</c></seealso>,
<seealso marker="#system_info_schedulers_online">
<c>erlang:system_info(schedulers_online)</c></seealso>,
<seealso marker="#system_info_scheduler_id">
<c>erlang:system_info(scheduler_id)</c></seealso>,
<seealso marker="#system_flag_multi_scheduling">
<c>erlang:system_flag(multi_scheduling, BlockState)</c></seealso>,
<seealso marker="#system_info_multi_scheduling">
<c>erlang:system_info(multi_scheduling)</c></seealso>,
<seealso marker="#system_info_normal_multi_scheduling_blockers">
<c>erlang:system_info(normal_multi_scheduling_blockers)</c></seealso>
and <seealso marker="#system_info_multi_scheduling_blockers">
<c>erlang:system_info(multi_scheduling_blockers)</c></seealso>.
</p>
</item>
<tag><c>schedulers_online</c></tag>
<item>
<marker id="system_info_schedulers_online"></marker>
<p>Returns the number of schedulers online. The scheduler
identifiers of schedulers online satisfy the relationship
<c><![CDATA[1 <= SchedulerId <=
erlang:system_info(schedulers_online)]]></c>.</p>
<p>For more information, see
<seealso marker="#system_info_schedulers">
<c>erlang:system_info(schedulers)</c></seealso> and
<seealso marker="#system_flag_schedulers_online">
<c>erlang:system_flag(schedulers_online,
SchedulersOnline)</c></seealso>.</p>
</item>
<tag><c>smp_support</c></tag>
<item>
<p>Returns <c>true</c> if the emulator has been compiled
with SMP support, otherwise <c>false</c> is returned.</p>
</item>
<tag><marker id="system_info_start_time"/><c>start_time</c></tag>
<item>
<p>The <seealso marker="#monotonic_time/0">Erlang monotonic
time</seealso> in <c>native</c>
<seealso marker="#type_time_unit">time unit</seealso> at the
time when current Erlang runtime system instance started.</p>
<p>See also <seealso marker="#system_info_end_time">
<c>erlang:system_info(end_time)</c></seealso>.</p>
</item>
<tag><c>system_version</c></tag>
<item>
<p>Returns a string containing version number and
some important properties, such as the number of schedulers.</p>
</item>
<tag><c>system_architecture</c></tag>
<item>
<p>Returns a string containing the processor and OS
architecture the emulator is built for.</p>
</item>
<tag><c>threads</c></tag>
<item>
<p>Returns <c>true</c> if the emulator has been compiled
with thread support, otherwise <c>false</c> is returned.</p>
</item>
<tag><c>thread_pool_size</c></tag>
<item>
<marker id="system_info_thread_pool_size"></marker>
<p>Returns the number of async threads in the async thread
pool used for asynchronous driver calls
(<seealso marker="erts:erl_driver#driver_async">
<c>erl_driver:driver_async()</c></seealso>).
The value is given as an integer.</p>
</item>
<tag><c>time_correction</c></tag>
<item>
<marker id="system_info_time_correction"></marker>
<p>Returns a boolean value indicating whether
<seealso marker="time_correction#Time_Correction">
time correction</seealso> is enabled or not.</p>
</item>
<tag><c>time_offset</c></tag>
<item>
<marker id="system_info_time_offset"></marker>
<p>Returns the state of the time offset:</p>
<taglist>
<tag><c>preliminary</c></tag>
<item>
<p>The time offset is preliminary, and will be changed
and finalized later. The preliminary time offset
is used during the preliminary phase of the
<seealso marker="time_correction#Single_Time_Warp_Mode">
single time warp mode</seealso>.</p>
</item>
<tag><c>final</c></tag>
<item>
<p>The time offset is final. This either because
<seealso marker="time_correction#No_Time_Warp_Mode">
no time warp mode</seealso> is used, or because the time
offset have been finalized when
<seealso marker="time_correction#Single_Time_Warp_Mode">
single time warp mode</seealso> is used.</p>
</item>
<tag><c>volatile</c></tag>
<item>
<p>The time offset is volatile. That is, it can
change at any time. This is because
<seealso marker="time_correction#Multi_Time_Warp_Mode">
multi-time warp mode</seealso> is used.</p>
</item>
</taglist>
</item>
<tag><marker id="system_info_time_warp_mode"/>
<c>time_warp_mode</c></tag>
<item>
<p>Returns a value identifying the
<seealso marker="time_correction#Time_Warp_Modes">
time warp mode</seealso> that is used:</p>
<taglist>
<tag><c>no_time_warp</c></tag>
<item>The <seealso marker="time_correction#No_Time_Warp_Mode">
no time warp mode</seealso> is used.
</item>
<tag><c>single_time_warp</c></tag>
<item>The <seealso marker="time_correction#Single_Time_Warp_Mode">
single time warp mode</seealso> is used.
</item>
<tag><c>multi_time_warp</c></tag>
<item>The <seealso marker="time_correction#Multi_Time_Warp_Mode">
multi-time warp mode</seealso> is used.
</item>
</taglist>
</item>
<tag><c>tolerant_timeofday</c></tag>
<item>
<marker id="system_info_tolerant_timeofday"></marker>
<p>Returns whether a pre ERTS 7.0 backwards compatible
compensation for sudden changes of system time is <c>enabled</c>
or <c>disabled</c>. Such compensation is <c>enabled</c> when the
<seealso marker="#system_info_time_offset">time offset</seealso>
is <c>final</c>, and
<seealso marker="#system_info_time_correction">
time correction</seealso> is enabled.</p>
</item>
<tag><c>trace_control_word</c></tag>
<item>
<p>Returns the value of the node trace control word. For
more information, see function <c>get_tcw</c> in section
<seealso marker="erts:match_spec#get_tcw">
Match Specifications in Erlang</seealso> in the User's Guide.</p>
</item>
<tag><c>update_cpu_info</c></tag>
<item>
<marker id="update_cpu_info"></marker>
<p>The runtime system rereads the CPU information available
and updates its internally stored information about the
<seealso marker="#system_info_cpu_topology_detected">detected
CPU topology</seealso> and the number of logical processors
<seealso marker="#logical_processors">configured</seealso>,
<seealso marker="#logical_processors_online">online</seealso>,
and <seealso marker="#logical_processors_available">
available</seealso>.</p>
<p>If the CPU information has changed since the last time
it was read, the atom <c>changed</c> is returned, otherwise
the atom <c>unchanged</c>. If the CPU information has changed,
you probably want to
<seealso marker="#system_flag_schedulers_online">adjust the
number of schedulers online</seealso>. You typically want
to have as many schedulers online as
<seealso marker="#logical_processors_available">logical
processors available</seealso>.</p>
</item>
<tag><c>version</c></tag>
<item>
<marker id="system_info_version"></marker>
<p>Returns a string containing the version number of the
emulator.</p>
</item>
<tag><c>wordsize</c></tag>
<item>
<p>Same as <c>{wordsize, internal}</c>.</p>
</item>
<tag><c>{wordsize, internal}</c></tag>
<item>
<p>Returns the size of Erlang term words in bytes as an
integer, that is, 4 is returned on a 32-bit architecture,
and 8 is returned on a pure 64-bit architecture. On a
halfword 64-bit emulator, 4 is returned, as the Erlang
terms are stored using a virtual word size of half the
system word size.</p>
</item>
<tag><c>{wordsize, external}</c></tag>
<item>
<p>Returns the true word size of the emulator, that is,
the size of a pointer. The value is given in bytes
as an integer. On a pure 32-bit architecture, 4 is
returned. On both a half word and on a pure
64-bit architecture, 8 is returned.</p>
</item>
</taglist>
<note>
<p>Argument <c>scheduler</c> has changed name to
<c>scheduler_id</c> to avoid mix up with argument
<c>schedulers</c>. Argument <c>scheduler</c> was
introduced in ERTS 5.5 and renamed in
ERTS 5.5.1.</p>
</note>
</desc>
</func>
<func>
<name name="system_monitor" arity="0"/>
<fsummary>Current system performance monitoring settings.</fsummary>
<type name="system_monitor_option"/>
<desc>
<p>Returns the current system monitoring settings set by
<seealso marker="#system_monitor/2">
<c>erlang:system_monitor/2</c></seealso>
as <c>{<anno>MonitorPid</anno>, <anno>Options</anno>}</c>,
or <c>undefined</c> if no settings exist. The order of the
options can be different from the one that was set.</p>
</desc>
</func>
<func>
<name name="system_monitor" arity="1"/>
<fsummary>Set or clear system performance monitoring options.</fsummary>
<type name="system_monitor_option"/>
<desc>
<p>When called with argument <c>undefined</c>, all
system performance monitoring settings are cleared.</p>
<p>Calling the function with <c>{<anno>MonitorPid</anno>,
<anno>Options</anno>}</c> as argument is the same as calling
<seealso marker="#system_monitor/2">
<c>erlang:system_monitor(<anno>MonitorPid</anno>,
<anno>Options</anno>)</c></seealso>.</p>
<p>Returns the previous system monitor settings just like
<seealso marker="#system_monitor/0">
<c>erlang:system_monitor/0</c></seealso>.</p>
</desc>
</func>
<func>
<name name="system_monitor" arity="2"/>
<fsummary>Set system performance monitoring options.</fsummary>
<type name="system_monitor_option"/>
<desc>
<p>Sets the system performance monitoring options.
<c><anno>MonitorPid</anno></c> is a local process identifier (pid)
receiving system monitor messages. The
second argument is a list of monitoring options:</p>
<taglist>
<tag><c>{long_gc, Time}</c></tag>
<item>
<p>If a garbage collection in the system takes at least
<c>Time</c> wall clock milliseconds, a message
<c>{monitor, GcPid, long_gc, Info}</c> is sent to
<c><anno>MonitorPid</anno></c>. <c>GcPid</c> is the pid that
was garbage collected. <c>Info</c> is a list of two-element
tuples describing the result of the garbage collection.</p>
<p>One of the tuples is <c>{timeout, GcTime}</c>, where
<c>GcTime</c> is the time for the garbage
collection in milliseconds. The other tuples are
tagged with <c>heap_size</c>, <c>heap_block_size</c>,
<c>stack_size</c>, <c>mbuf_size</c>, <c>old_heap_size</c>,
and <c>old_heap_block_size</c>. These tuples are
explained in the description of trace message
<seealso marker="#gc_minor_start"><c>gc_minor_start</c></seealso>
(see <seealso marker="#trace/3"><c>erlang:trace/3</c></seealso>).
New tuples can be added, and the order of the tuples in
the <c>Info</c> list can be changed at any time without
prior notice.</p>
</item>
<tag><c>{long_schedule, Time}</c></tag>
<item>
<p>If a process or port in the system runs uninterrupted
for at least <c>Time</c> wall clock milliseconds, a
message <c>{monitor, PidOrPort, long_schedule, Info}</c>
is sent to <c>MonitorPid</c>. <c>PidOrPort</c> is the
process or port that was running. <c>Info</c> is a
list of two-element tuples describing the event.</p>
<p>If a <c>pid()</c>, the tuples <c>{timeout, Millis}</c>,
<c>{in, Location}</c>, and <c>{out, Location}</c> are
present, where <c>Location</c> is either an MFA
(<c>{Module, Function, Arity}</c>) describing the
function where the process was scheduled in/out, or the
atom <c>undefined</c>.</p>
<p>If a <c>port()</c>, the
tuples <c>{timeout, Millis}</c> and <c>{port_op,Op}</c>
are present. <c>Op</c> is one of <c>proc_sig</c>,
<c>timeout</c>, <c>input</c>, <c>output</c>,
<c>event</c>, or <c>dist_cmd</c>, depending on which
driver callback was executing.</p>
<p><c>proc_sig</c> is an
internal operation and is never to appear, while the
others represent the corresponding driver callbacks
<c>timeout</c>, <c>ready_input</c>, <c>ready_output</c>,
<c>event</c>, and <c>outputv</c> (when the port
is used by distribution). Value <c>Millis</c> in
tuple <c>timeout</c> informs about the
uninterrupted execution time of the process or port, which
always is equal to or higher than the <c>Time</c> value
supplied when starting the trace. New tuples can be
added to the <c>Info</c> list in a future release. The
order of the tuples in the list can be changed at any
time without prior notice.</p>
<p>This can be used to detect problems with NIFs or
drivers that take too long to execute. 1 ms is
considered a good maximum time for a driver callback
or a NIF. However, a time-sharing system is usually to
consider everything < 100 ms as "possible" and
fairly "normal". However, longer schedule times can
indicate swapping or a misbehaving NIF/driver.
Misbehaving NIFs and drivers can cause bad resource
utilization and bad overall system performance.</p>
</item>
<tag><c>{large_heap, Size}</c></tag>
<item>
<p>If a garbage collection in the system results in
the allocated size of a heap being at least <c>Size</c>
words, a message <c>{monitor, GcPid, large_heap, Info}</c>
is sent to <c><anno>MonitorPid</anno></c>.
<c>GcPid</c> and <c>Info</c>
are the same as for <c>long_gc</c> earlier, except that
the tuple tagged with <c>timeout</c> is not present.</p>
<p>The monitor message is sent if the sum of the sizes of
all memory blocks allocated for all heap generations after
a garbage collection is equal to or higher than <c>Size</c>.</p>
<p>When a process is killed by
<seealso marker="#process_flag_max_heap_size">
<c>max_heap_size</c></seealso>, it is killed before the
garbage collection is complete and thus no large heap message
is sent.</p>
</item>
<tag><c>busy_port</c></tag>
<item>
<p>If a process in the system gets suspended because it
sends to a busy port, a message
<c>{monitor, SusPid, busy_port, Port}</c> is sent to
<c><anno>MonitorPid</anno></c>. <c>SusPid</c> is the pid
that got suspended when sending to <c>Port</c>.</p>
</item>
<tag><c>busy_dist_port</c></tag>
<item>
<p>If a process in the system gets suspended because it
sends to a process on a remote node whose inter-node
communication was handled by a busy port, a message
<c>{monitor, SusPid, busy_dist_port, Port}</c> is sent to
<c><anno>MonitorPid</anno></c>. <c>SusPid</c> is the pid
that got suspended when sending through the inter-node
communication port <c>Port</c>.</p>
</item>
</taglist>
<p>Returns the previous system monitor settings just like
<seealso marker="#system_monitor/0">
<c>erlang:system_monitor/0</c></seealso>.</p>
<note>
<p>If a monitoring process gets so large that it itself
starts to cause system monitor messages when garbage
collecting, the messages enlarge the process
message queue and probably make the problem worse.</p>
<p>Keep the monitoring process neat and do not set the system
monitor limits too tight.</p>
</note>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>If <c><anno>MonitorPid</anno></c> does not exist.</item>
<tag><c>badarg</c></tag>
<item>If <c><anno>MonitorPid</anno></c> is not a local process.</item>
</taglist>
</desc>
</func>
<func>
<name name="system_profile" arity="0"/>
<fsummary>Current system profiling settings.</fsummary>
<type name="system_profile_option"/>
<desc>
<p>Returns the current system profiling settings set by
<seealso marker="#system_profile/2">
<c>erlang:system_profile/2</c></seealso>
as <c>{<anno>ProfilerPid</anno>, <anno>Options</anno>}</c>,
or <c>undefined</c> if there
are no settings. The order of the options can be different
from the one that was set.</p>
</desc>
</func>
<func>
<name name="system_profile" arity="2"/>
<fsummary>Current system profiling settings.</fsummary>
<type name="system_profile_option"/>
<desc>
<p>Sets system profiler options. <c><anno>ProfilerPid</anno></c>
is a local process identifier (pid) or port receiving profiling
messages. The receiver is excluded from all profiling.
The second argument is a list of profiling options:</p>
<taglist>
<tag><c>exclusive</c></tag>
<item>
<p>If a synchronous call to a port from a process is done, the
calling process is considered not runnable during the call
runtime to the port. The calling process is notified as
<c>inactive</c>, and later <c>active</c> when the port
callback returns.</p>
</item>
<tag><c>monotonic_timestamp</c></tag>
<item>
<p>Time stamps in profile messages use
<seealso marker="time_correction#Erlang_Monotonic_Time">Erlang
monotonic time</seealso>. The time stamp (Ts) has the same
format and value as produced by
<c>erlang:monotonic_time(nanosecond)</c>.</p>
</item>
<tag><c>runnable_procs</c></tag>
<item>
<p>If a process is put into or removed from the run queue, a
message, <c>{profile, Pid, State, Mfa, Ts}</c>, is sent to
<c><anno>ProfilerPid</anno></c>. Running processes that
are reinserted into the run queue after having been
pre-empted do not trigger this message.</p>
</item>
<tag><c>runnable_ports</c></tag>
<item>
<p>If a port is put into or removed from the run queue, a
message, <c>{profile, Port, State, 0, Ts}</c>, is sent to
<c><anno>ProfilerPid</anno></c>.</p>
</item>
<tag><c>scheduler</c></tag>
<item>
<p>If a scheduler is put to sleep or awoken, a message,
<c>{profile, scheduler, Id, State, NoScheds, Ts}</c>, is
sent to <c><anno>ProfilerPid</anno></c>.</p>
</item>
<tag><c>strict_monotonic_timestamp</c></tag>
<item>
<p>Time stamps in profile messages consist of
<seealso marker="time_correction#Erlang_Monotonic_Time">Erlang
monotonic time</seealso> and a monotonically increasing
integer. The time stamp (Ts) has the same format and value
as produced by <c>{erlang:monotonic_time(nanosecond),
erlang:unique_integer([monotonic])}</c>.</p>
</item>
<tag><c>timestamp</c></tag>
<item>
<p>Time stamps in profile messages include a
time stamp (Ts) that has the same form as returned by
<c>erlang:now()</c>. This is also the default if no
time stamp flag is specified. If <c>cpu_timestamp</c> has
been enabled through
<seealso marker="erlang:trace/3"><c>erlang:trace/3</c></seealso>,
this also effects the time stamp produced in profiling messages
when flag <c>timestamp</c> is enabled.</p>
</item>
</taglist>
<note>
<p><c>erlang:system_profile</c> behavior can change
in a future release.</p>
</note>
</desc>
</func>
<func>
<name name="system_time" arity="0"/>
<fsummary>Current Erlang system time.</fsummary>
<desc>
<p>Returns current
<seealso marker="time_correction#Erlang_System_Time">
Erlang system time</seealso> in <c>native</c>
<seealso marker="#type_time_unit">time unit</seealso>.</p>
<p>Calling <c>erlang:system_time()</c> is equivalent to
<seealso marker="#monotonic_time/0">
<c>erlang:monotonic_time()</c></seealso><c> +
</c><seealso marker="#time_offset/0">
<c>erlang:time_offset()</c></seealso>.</p>
<note>
<p>This time is <em>not</em> a monotonically increasing time
in the general case. For more information, see the documentation of
<seealso marker="time_correction#Time_Warp_Modes">
time warp modes</seealso> in the User's Guide.</p>
</note>
</desc>
</func>
<func>
<name name="system_time" arity="1"/>
<fsummary>Current Erlang system time.</fsummary>
<desc>
<p>Returns current
<seealso marker="time_correction#Erlang_System_Time">
Erlang system time</seealso>
converted into the <c><anno>Unit</anno></c> passed as argument.</p>
<p>Calling <c>erlang:system_time(<anno>Unit</anno>)</c> is equivalent
to <seealso marker="#convert_time_unit/3">
<c>erlang:convert_time_unit</c></seealso><c>(</c><seealso
marker="#system_time/0"><c>erlang:system_time()</c></seealso><c>,
native, <anno>Unit</anno>)</c>.</p>
<note>
<p>This time is <em>not</em> a monotonically increasing time
in the general case. For more information, see the documentation of
<seealso marker="time_correction#Time_Warp_Modes">
time warp modes</seealso> in the User's Guide.</p>
</note>
</desc>
</func>
<func>
<name name="term_to_binary" arity="1"/>
<fsummary>Encode a term to an Erlang external term format binary.
</fsummary>
<desc>
<p>Returns a binary data object that is the result of encoding
<c><anno>Term</anno></c> according to the
<seealso marker="erts:erl_ext_dist">Erlang external
term format.</seealso></p>
<p>This can be used for various purposes, for example,
writing a term to a file in an efficient way, or sending an
Erlang term to some type of communications channel not
supported by distributed Erlang.</p>
<pre>
> <input>Bin = term_to_binary(hello).</input>
<<131,100,0,5,104,101,108,108,111>>
> <input>hello = binary_to_term(Bin).</input>
hello
</pre>
<p>See also <seealso marker="#binary_to_term/1">
<c>binary_to_term/1</c></seealso>.</p>
<note>
<p>There is no guarantee that this function will return
the same encoded representation for the same term.</p>
</note>
</desc>
</func>
<func>
<name name="term_to_binary" arity="2"/>
<fsummary>Encode a term to en Erlang external term format binary.
</fsummary>
<desc>
<p>Returns a binary data object that is the result of encoding
<c><anno>Term</anno></c> according to the Erlang external
term format.</p>
<p>If option <c>compressed</c> is provided, the external term
format is compressed. The compressed format is automatically
recognized by <c>binary_to_term/1</c> as from Erlang/OTP R7B.</p>
<p>A compression level can be specified by giving option
<c>{compressed, <anno>Level</anno>}</c>.
<c><anno>Level</anno></c> is an integer
with range 0..9, where:</p>
<list type="bulleted">
<item><p><c>0</c> - No compression is done (it is the same as
giving no <c>compressed</c> option).</p></item>
<item><p><c>1</c> - Takes least time but may not compress
as well as the higher levels.</p></item>
<item><p><c>6</c> - Default level when option <c>compressed</c>
is provided.</p></item>
<item><p><c>9</c> - Takes most time and tries to produce a smaller
result. Notice "tries" in the preceding sentence; depending
on the input term, level 9 compression either does or does
not produce a smaller result than level 1 compression.</p></item>
</list>
<p>Option <c>{minor_version, <anno>Version</anno>}</c>
can be used to control some
encoding details. This option was introduced in Erlang/OTP R11B-4.
The valid values for <c><anno>Version</anno></c> are:</p>
<taglist>
<tag><c>0</c></tag>
<item>
<p>Floats are encoded using a textual representation.
This option is useful to ensure that releases before Erlang/OTP
R11B-4 can decode resulting binary.</p>
<p>This version encode atoms that can be represented by a
latin1 string using latin1 encoding while only atoms that
cannot be represented by latin1 are encoded using utf8.</p>
</item>
<tag><c>1</c></tag>
<item>
<p>This is as of Erlang/OTP 17.0 the default. It forces any floats
in the term to be encoded in a more space-efficient and exact way
(namely in the 64-bit IEEE format, rather than converted to a
textual representation). As from Erlang/OTP R11B-4,
<c>binary_to_term/1</c> can decode this representation.</p>
<p>This version encode atoms that can be represented by a
latin1 string using latin1 encoding while only atoms that
cannot be represented by latin1 are encoded using utf8.</p>
</item>
<tag><c>2</c></tag>
<item>
<p>Drops usage of the latin1 atom encoding and unconditionally
use utf8 encoding for all atoms. This will be changed to the
default in a future major release of Erlang/OTP. Erlang/OTP
systems as of R16B can decode this representation.</p>
</item>
</taglist>
<p>See also <seealso marker="#binary_to_term/1">
<c>binary_to_term/1</c></seealso>.</p>
</desc>
</func>
<func>
<name name="throw" arity="1"/>
<fsummary>Throw an exception.</fsummary>
<desc>
<p>A non-local return from a function. If evaluated within a
<c>catch</c>, <c>catch</c> returns value <c><anno>Any</anno></c>.
Example:</p>
<pre>
> <input>catch throw({hello, there}).</input>
{hello,there}</pre>
<p>Failure: <c>nocatch</c> if not evaluated within a catch.</p>
</desc>
</func>
<func>
<name name="time" arity="0"/>
<fsummary>Current time.</fsummary>
<desc>
<p>Returns the current time as <c>{Hour, Minute, Second}</c>.</p>
<p>The time zone and Daylight Saving Time correction depend on
the underlying OS. Example:</p>
<pre>
> <input>time().</input>
{9,42,44}</pre>
</desc>
</func>
<func>
<name name="time_offset" arity="0"/>
<fsummary>Current time offset.</fsummary>
<desc>
<p>Returns the current time offset between
<seealso marker="time_correction#Erlang_Monotonic_Time">
Erlang monotonic time</seealso> and
<seealso marker="time_correction#Erlang_System_Time">
Erlang system time</seealso> in
<c>native</c> <seealso marker="#type_time_unit">time unit</seealso>.
Current time offset added to an Erlang monotonic time gives
corresponding Erlang system time.</p>
<p>The time offset may or may not change during operation depending
on the <seealso marker="time_correction#Time_Warp_Modes">time
warp mode</seealso> used.</p>
<note>
<p>A change in time offset can be observed at slightly
different points in time by different processes.</p>
<p>If the runtime system is in
<seealso marker="time_correction#Multi_Time_Warp_Mode">multi-time
warp mode</seealso>, the time offset is changed when
the runtime system detects that the
<seealso marker="time_correction#OS_System_Time">OS system
time</seealso> has changed. The runtime system will, however,
not detect this immediately when it occurs. A task checking
the time offset is scheduled to execute at least once a minute;
so, under normal operation this is to be detected within a
minute, but during heavy load it can take longer time.</p>
</note>
</desc>
</func>
<func>
<name name="time_offset" arity="1"/>
<fsummary>Current time offset.</fsummary>
<desc>
<p>Returns the current time offset between
<seealso marker="time_correction#Erlang_Monotonic_Time">
Erlang monotonic time</seealso> and
<seealso marker="time_correction#Erlang_System_Time">
Erlang system time</seealso>
converted into the <c><anno>Unit</anno></c> passed as argument.</p>
<p>Same as calling
<seealso marker="#convert_time_unit/3">
<c>erlang:convert_time_unit</c></seealso><c>(</c><seealso marker="#time_offset/0">
<c>erlang:time_offset()</c></seealso><c>, native,
<anno>Unit</anno>)</c>
however optimized for commonly used <c><anno>Unit</anno></c>s.</p>
</desc>
</func>
<func>
<name name="timestamp" arity="0"/>
<fsummary>Current Erlang System time.</fsummary>
<type name="timestamp"/>
<desc>
<p>Returns current
<seealso marker="time_correction#Erlang_System_Time">
Erlang system time</seealso>
on the format <c>{MegaSecs, Secs, MicroSecs}</c>. This format is
the same as <seealso marker="kernel:os#timestamp/0">
<c>os:timestamp/0</c></seealso>
and the deprecated <seealso marker="#now/0">
<c>erlang:now/0</c></seealso>
use. The reason for the existence of <c>erlang:timestamp()</c> is
purely to simplify use for existing code that assumes this time stamp
format. Current Erlang system time can more efficiently be retrieved
in the time unit of your choice using
<seealso marker="#system_time/1">
<c>erlang:system_time/1</c></seealso>.</p>
<p>The <c>erlang:timestamp()</c> BIF is equivalent to:</p>
<code type="none">
timestamp() ->
ErlangSystemTime = erlang:system_time(microsecond),
MegaSecs = ErlangSystemTime div 1000000000000,
Secs = ErlangSystemTime div 1000000 - MegaSecs*1000000,
MicroSecs = ErlangSystemTime rem 1000000,
{MegaSecs, Secs, MicroSecs}.</code>
<p>It, however, uses a native implementation that does
not build garbage on the heap and with slightly better
performance.</p>
<note>
<p>This time is <em>not</em> a monotonically increasing time
in the general case. For more information, see the documentation of
<seealso marker="time_correction#Time_Warp_Modes">
time warp modes</seealso> in the User's Guide.</p>
</note>
</desc>
</func>
<func>
<name name="tl" arity="1"/>
<fsummary>Tail of a list.</fsummary>
<desc>
<p>Returns the tail of <c><anno>List</anno></c>, that is,
the list minus the first element, for example:</p>
<pre>
> <input>tl([geesties, guilies, beasties]).</input>
[guilies, beasties]</pre>
<p>Allowed in guard tests.</p>
<p>Failure: <c>badarg</c> if <c><anno>List</anno></c>
is the empty list <c>[]</c>.</p>
</desc>
</func>
<func>
<name name="trace" arity="3"/>
<fsummary>Set trace flags for a process or processes.</fsummary>
<type name="trace_flag"/>
<desc>
<p>Turns on (if <c><anno>How</anno> == true</c>) or off (if
<c><anno>How</anno> == false</c>) the trace flags in
<c><anno>FlagList</anno></c> for
the process or processes represented by
<c><anno>PidPortSpec</anno></c>.</p>
<p><c><anno>PidPortSpec</anno></c> is either a process identifier
(pid) for a local process, a port identifier,
or one of the following atoms:</p>
<taglist>
<tag><c>all</c></tag>
<item>All currently existing processes and ports and all that
will be created in the future.
</item>
<tag><c>processes</c></tag>
<item>All currently existing processes and all that will be created
in the future.
</item>
<tag><c>ports</c></tag>
<item>All currently existing ports and all that will be created in
the future.
</item>
<tag><c>existing</c></tag>
<item>All currently existing processes and ports.
</item>
<tag><c>existing_processes</c></tag>
<item>All currently existing processes.
</item>
<tag><c>existing_ports</c></tag>
<item>All currently existing ports.
</item>
<tag><c>new</c></tag>
<item>All processes and ports that will be created in the future.
</item>
<tag><c>new_processes</c></tag>
<item>All processes that will be created in the future.
</item>
<tag><c>new_ports</c></tag>
<item>All ports that will be created in the future.
</item>
</taglist>
<p><c><anno>FlagList</anno></c> can contain any number of the
following flags (the "message tags" refers to the list of
<seealso marker="#trace_3_trace_messages">
<c>trace messages</c></seealso>):</p>
<taglist>
<tag><c>all</c></tag>
<item>
<p>Sets all trace flags except <c>tracer</c> and
<c>cpu_timestamp</c>, which are in their nature different
than the others.</p>
</item>
<tag><c>send</c></tag>
<item>
<p>Traces sending of messages.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_send">
<c>send</c></seealso> and
<seealso marker="#trace_3_trace_messages_send_to_non_existing_process">
<c>send_to_non_existing_process</c></seealso>.</p>
</item>
<tag><c>'receive'</c></tag>
<item>
<p>Traces receiving of messages.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_receive">
<c>'receive'</c></seealso>.</p>
</item>
<tag><c>call</c></tag>
<item>
<p>Traces certain function calls. Specify which function
calls to trace by calling <seealso marker="#trace_pattern/3">
<c>erlang:trace_pattern/3</c></seealso>.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_call">
<c>call</c></seealso> and
<seealso marker="#trace_3_trace_messages_return_from">
<c>return_from</c></seealso>.</p>
</item>
<tag><c>silent</c></tag>
<item>
<p>Used with the <c>call</c> trace flag.
The <c>call</c>, <c>return_from</c>, and <c>return_to</c>
trace messages are inhibited if this flag is set, but they
are executed as normal if there are match specifications.</p>
<p>Silent mode is inhibited by executing
<c>erlang:trace(_, false, [silent|_])</c>,
or by a match specification executing the function
<c>{silent, false}</c>.</p>
<p>The <c>silent</c> trace flag facilitates setting up
a trace on many or even all processes in the system.
The trace can then be activated and deactivated using the match
specification function <c>{silent,Bool}</c>, giving
a high degree of control of which functions with which
arguments that trigger the trace.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_call">
<c>call</c></seealso>,
<seealso marker="#trace_3_trace_messages_return_from">
<c>return_from</c></seealso>, and
<seealso marker="#trace_3_trace_messages_return_to">
<c>return_to</c></seealso>. Or rather, the absence of.</p>
</item>
<tag><c>return_to</c></tag>
<item>
<p>Used with the <c>call</c> trace flag.
Traces the return from a traced function back to
its caller. Only works for functions traced with
option <c>local</c> to <seealso marker="#trace_pattern/3">
<c>erlang:trace_pattern/3</c></seealso>.</p>
<p>The semantics is that a trace message is sent when a
call traced function returns, that is, when a
chain of tail recursive calls ends. Only one trace
message is sent per chain of tail recursive calls,
so the properties of tail recursiveness for
function calls are kept while tracing with this flag.
Using <c>call</c> and <c>return_to</c> trace together
makes it possible to know exactly in which function a
process executes at any time.</p>
<p>To get trace messages containing return values from
functions, use the <c>{return_trace}</c> match
specification action instead.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_return_to">
<c>return_to</c></seealso>.</p>
</item>
<tag><c>procs</c></tag>
<item>
<p>Traces process-related events.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_spawn">
<c>spawn</c></seealso>,
<seealso marker="#trace_3_trace_messages_spawned">
<c>spawned</c></seealso>,
<seealso marker="#trace_3_trace_messages_exit">
<c>exit</c></seealso>,
<seealso marker="#trace_3_trace_messages_register">
<c>register</c></seealso>,
<seealso marker="#trace_3_trace_messages_unregister">
<c>unregister</c></seealso>,
<seealso marker="#trace_3_trace_messages_link">
<c>link</c></seealso>,
<seealso marker="#trace_3_trace_messages_unlink">
<c>unlink</c></seealso>,
<seealso marker="#trace_3_trace_messages_getting_linked">
<c>getting_linked</c></seealso>, and
<seealso marker="#trace_3_trace_messages_getting_unlinked">
<c>getting_unlinked</c></seealso>.</p>
</item>
<tag><c>ports</c></tag>
<item>
<p>Traces port-related events.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_open">
<c>open</c></seealso>,
<seealso marker="#trace_3_trace_messages_closed">
<c>closed</c></seealso>,
<seealso marker="#trace_3_trace_messages_register">
<c>register</c></seealso>,
<seealso marker="#trace_3_trace_messages_unregister">
<c>unregister</c></seealso>,
<seealso marker="#trace_3_trace_messages_getting_linked">
<c>getting_linked</c></seealso>, and
<seealso marker="#trace_3_trace_messages_getting_unlinked">
<c>getting_unlinked</c></seealso>.</p>
</item>
<tag><c>running</c></tag>
<item>
<p>Traces scheduling of processes.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_in_proc">
<c>in</c></seealso> and
<seealso marker="#trace_3_trace_messages_out_proc">
<c>out</c></seealso>.</p>
</item>
<tag><c>exiting</c></tag>
<item>
<p>Traces scheduling of exiting processes.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_in_exiting_proc">
<c>in_exiting</c></seealso>,
<seealso marker="#trace_3_trace_messages_out_exiting_proc">
<c>out_exiting</c></seealso>, and
<seealso marker="#trace_3_trace_messages_out_exited_proc">
<c>out_exited</c></seealso>.</p>
</item>
<tag><c>running_procs</c></tag>
<item>
<p>Traces scheduling of processes just like <c>running</c>.
However, this option also includes schedule events when the
process executes within the context of a port without
being scheduled out itself.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_in_proc">
<c>in</c></seealso> and
<seealso marker="#trace_3_trace_messages_out_proc">
<c>out</c></seealso>.</p>
</item>
<tag><c>running_ports</c></tag>
<item>
<p>Traces scheduling of ports.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_in_port">
<c>in</c></seealso> and
<seealso marker="#trace_3_trace_messages_out_port">
<c>out</c></seealso>.</p>
</item>
<tag><c>garbage_collection</c></tag>
<item>
<p>Traces garbage collections of processes.</p>
<p>Message tags:
<seealso marker="#trace_3_trace_messages_gc_minor_start">
<c>gc_minor_start</c></seealso>,
<seealso marker="#trace_3_trace_messages_gc_max_heap_size">
<c>gc_max_heap_size</c></seealso>, and
<seealso marker="#trace_3_trace_messages_gc_minor_end">
<c>gc_minor_end</c></seealso>.</p>
</item>
<tag><c>timestamp</c></tag>
<item>
<p>Includes a time stamp in all trace messages. The
time stamp (Ts) has the same form as returned by
<c>erlang:now()</c>.</p>
</item>
<tag><c>cpu_timestamp</c></tag>
<item>
<p>A global trace flag for the Erlang node that makes all
trace time stamps using flag <c>timestamp</c> to be
in CPU time, not wall clock time. That is, <c>cpu_timestamp</c>
is not be used if <c>monotonic_timestamp</c> or
<c>strict_monotonic_timestamp</c> is enabled.
Only allowed with <c><anno>PidPortSpec</anno>==all</c>. If the
host machine OS does not support high-resolution
CPU time measurements, <c>trace/3</c> exits with
<c>badarg</c>. Notice that most OS do
not synchronize this value across cores, so be prepared
that time can seem to go backwards when using this option.</p>
</item>
<tag><c>monotonic_timestamp</c></tag>
<item>
<p>Includes an
<seealso marker="time_correction#Erlang_Monotonic_Time">Erlang
monotonic time</seealso> time stamp in all trace messages. The
time stamp (Ts) has the same format and value as produced by
<seealso marker="#monotonic_time-1">
<c>erlang:monotonic_time(nanosecond)</c></seealso>.
This flag overrides flag <c>cpu_timestamp</c>.</p>
</item>
<tag><c>strict_monotonic_timestamp</c></tag>
<item>
<p>Includes an time stamp consisting of
<seealso marker="time_correction#Erlang_Monotonic_Time">Erlang
monotonic time</seealso> and a monotonically increasing
integer in all trace messages. The time stamp (Ts) has the
same format and value as produced by <c>{</c>
<seealso marker="#monotonic_time-1">
<c>erlang:monotonic_time(nanosecond)</c></seealso><c>,</c>
<seealso marker="#unique_integer-1">
<c>erlang:unique_integer([monotonic])</c></seealso><c>}</c>.
This flag overrides flag <c>cpu_timestamp</c>.</p>
</item>
<tag><c>arity</c></tag>
<item>
<p>Used with the <c>call</c> trace flag.
<c>{M, F, Arity}</c> is specified instead of
<c>{M, F, Args}</c> in call trace messages.</p>
</item>
<tag><c>set_on_spawn</c></tag>
<item>
<p>Makes any process created by a traced process inherit
its trace flags, including flag <c>set_on_spawn</c>.</p>
</item>
<tag><c>set_on_first_spawn</c></tag>
<item>
<p>Makes the first process created by a traced process
inherit its trace flags, excluding flag
<c>set_on_first_spawn</c>.</p>
</item>
<tag><c>set_on_link</c></tag>
<item>
<p>Makes any process linked by a traced process inherit its
trace flags, including flag <c>set_on_link</c>.</p>
</item>
<tag><c>set_on_first_link</c></tag>
<item>
<p>Makes the first process linked to by a traced process
inherit its trace flags, excluding flag
<c>set_on_first_link</c>.</p>
</item>
<tag><c>{tracer, Tracer}</c></tag>
<item>
<p>Specifies where to send the trace messages. <c>Tracer</c>
must be the process identifier of a local process
or the port identifier of a local port.</p>
</item>
<tag><c>{tracer, TracerModule, TracerState}</c></tag>
<item>
<p>Specifies that a tracer module is to be called
instead of sending a trace message. The tracer module
can then ignore or change the trace message. For more details
on how to write a tracer module, see
<seealso marker="erts:erl_tracer"><c>erl_tracer(3)</c></seealso>.</p>
</item>
</taglist>
<p>If no <c>tracer</c> is specified, the calling process
receives all the trace messages.</p>
<p>The effect of combining <c>set_on_first_link</c> with
<c>set_on_link</c> is the same as
<c>set_on_first_link</c> alone. Likewise for
<c>set_on_spawn</c> and <c>set_on_first_spawn</c>.</p>
<p>The tracing process receives the <em>trace messages</em> described
in the following list. <c>Pid</c> is the process identifier of the
traced process in which the traced event has occurred. The
third tuple element is the message tag.</p>
<p>If flag <c>timestamp</c>, <c>strict_monotonic_timestamp</c>, or
<c>monotonic_timestamp</c> is specified, the first tuple
element is <c>trace_ts</c> instead, and the time stamp
is added as an extra element last in the message tuple. If
multiple time stamp flags are passed, <c>timestamp</c> has
precedence over <c>strict_monotonic_timestamp</c>, which
in turn has precedence over <c>monotonic_timestamp</c>. All
time stamp flags are remembered, so if two are passed
and the one with highest precedence later is disabled,
the other one becomes active.</p>
<p>Trace messages:</p>
<marker id="trace_3_trace_messages"></marker>
<taglist>
<tag>
<marker id="trace_3_trace_messages_send"></marker>
<c>{trace, PidPort, send, Msg, To}</c>
</tag>
<item>
<p>When <c>PidPort</c> sends message <c>Msg</c> to
process <c>To</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_send_to_non_existing_process"/>
<c>{trace, PidPort, send_to_non_existing_process, Msg, To}</c>
</tag>
<item>
<p>When <c>PidPort</c> sends message <c>Msg</c> to
the non-existing process <c>To</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_receive"></marker>
<c>{trace, PidPort, 'receive', Msg}</c>
</tag>
<item>
<p>When <c>PidPort</c> receives message <c>Msg</c>.
If <c>Msg</c> is set to time-out, a receive
statement can have timed out, or the process received
a message with the payload <c>timeout</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_call"></marker>
<c>{trace, Pid, call, {M, F, Args}}</c>
</tag>
<item>
<p>When <c>Pid</c> calls a traced function. The return
values of calls are never supplied, only the call and its
arguments.</p>
<p>Trace flag <c>arity</c> can be used to
change the contents of this message, so that <c>Arity</c>
is specified instead of <c>Args</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_return_to"></marker>
<c>{trace, Pid, return_to, {M, F, Arity}}</c>
</tag>
<item>
<p>When <c>Pid</c> returns <em>to</em> the specified
function. This trace message is sent if both
the flags <c>call</c> and <c>return_to</c> are set,
and the function is set to be traced on <em>local</em>
function calls. The message is only sent when returning
from a chain of tail recursive function calls, where at
least one call generated a <c>call</c> trace message
(that is, the functions match specification matched, and
<c>{message, false}</c> was not an action).</p>
</item>
<tag>
<marker id="trace_3_trace_messages_return_from"></marker>
<c>{trace, Pid, return_from, {M, F, Arity}, ReturnValue}</c>
</tag>
<item>
<p>When <c>Pid</c> returns <em>from</em> the specified
function. This trace message is sent if flag <c>call</c>
is set, and the function has a match specification
with a <c>return_trace</c> or <c>exception_trace</c> action.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_exception_from"></marker>
<c>{trace, Pid, exception_from, {M, F, Arity}, {Class, Value}}</c>
</tag>
<item>
<p>When <c>Pid</c> exits <em>from</em> the specified
function because of an exception. This trace message is
sent if flag <c>call</c> is set, and the function has
a match specification with an <c>exception_trace</c> action.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_spawn"></marker>
<c>{trace, Pid, spawn, Pid2, {M, F, Args}}</c>
</tag>
<item>
<p>When <c>Pid</c> spawns a new process <c>Pid2</c> with
the specified function call as entry point.</p>
<p><c>Args</c> is supposed to be the argument list,
but can be any term if the spawn is erroneous.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_spawned"></marker>
<c>{trace, Pid, spawned, Pid2, {M, F, Args}}</c>
</tag>
<item>
<p>When <c>Pid</c> is spawned by process <c>Pid2</c> with
the specified function call as entry point.</p>
<p><c>Args</c> is supposed to be the argument list,
but can be any term if the spawn is erroneous.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_exit"></marker>
<c>{trace, Pid, exit, Reason}</c>
</tag>
<item>
<p>When <c>Pid</c> exits with reason <c>Reason</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_register"></marker>
<c>{trace, PidPort, register, RegName}</c>
</tag>
<item>
<p>When <c>PidPort</c> gets the name <c>RegName</c> registered.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_unregister"></marker>
<c>{trace, PidPort, unregister, RegName}</c>
</tag>
<item>
<p>When <c>PidPort</c> gets the name <c>RegName</c> unregistered.
This is done automatically when a registered
process or port exits.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_link"></marker>
<c>{trace, Pid, link, Pid2}</c>
</tag>
<item>
<p>When <c>Pid</c> links to a process <c>Pid2</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_unlink"></marker>
<c>{trace, Pid, unlink, Pid2}</c>
</tag>
<item>
<p>When <c>Pid</c> removes the link from a process
<c>Pid2</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_getting_linked"></marker>
<c>{trace, PidPort, getting_linked, Pid2}</c>
</tag>
<item>
<p>When <c>PidPort</c> gets linked to a process <c>Pid2</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_getting_unlinked"></marker>
<c>{trace, PidPort, getting_unlinked, Pid2}</c>
</tag>
<item>
<p>When <c>PidPort</c> gets unlinked from a process <c>Pid2</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_exit"></marker>
<c>{trace, Pid, exit, Reason}</c>
</tag>
<item>
<p>When <c>Pid</c> exits with reason <c>Reason</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_open"></marker>
<c>{trace, Port, open, Pid, Driver}</c>
</tag>
<item>
<p>When <c>Pid</c> opens a new port <c>Port</c> with
the running <c>Driver</c>.</p>
<p><c>Driver</c> is the name of the driver as an atom.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_closed"></marker>
<c>{trace, Port, closed, Reason}</c>
</tag>
<item>
<p>When <c>Port</c> closes with <c>Reason</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_in_proc"></marker>
<marker id="trace_3_trace_messages_in_exiting_proc"></marker>
<c>{trace, Pid, in | in_exiting, {M, F, Arity} | 0}</c>
</tag>
<item>
<p>When <c>Pid</c> is scheduled to run. The process
runs in function <c>{M, F, Arity}</c>. On some rare
occasions, the current function cannot be determined,
then the last element is <c>0</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_out_proc"></marker>
<marker id="trace_3_trace_messages_out_exiting_proc"></marker>
<marker id="trace_3_trace_messages_out_exited_proc"></marker>
<c>{trace, Pid, out | out_exiting | out_exited, {M, F, Arity}
| 0}</c>
</tag>
<item>
<p>When <c>Pid</c> is scheduled out. The process was
running in function {M, F, Arity}. On some rare occasions,
the current function cannot be determined, then the last
element is <c>0</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_in_port"></marker>
<c>{trace, Port, in, Command | 0}</c>
</tag>
<item>
<p>When <c>Port</c> is scheduled to run. <c>Command</c> is the
first thing the port will execute, it can however run several
commands before being scheduled out. On some rare
occasions, the current function cannot be determined,
then the last element is <c>0</c>.</p>
<p>The possible commands are <c>call</c>, <c>close</c>,
<c>command</c>, <c>connect</c>, <c>control</c>, <c>flush</c>,
<c>info</c>, <c>link</c>, <c>open</c>, and <c>unlink</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_out_port"></marker>
<c>{trace, Port, out, Command | 0}</c>
</tag>
<item>
<p>When <c>Port</c> is scheduled out. The last command run
was <c>Command</c>. On some rare occasions,
the current function cannot be determined, then the last
element is <c>0</c>. <c>Command</c> can contain the same
commands as <c>in</c></p>
</item>
<tag>
<marker id="trace_3_trace_messages_gc_minor_start"></marker>
<c>{trace, Pid, gc_minor_start, Info}</c>
</tag>
<item>
<marker id="gc_minor_start"></marker>
<p>Sent when a young garbage collection is about to be started.
<c>Info</c> is a list of two-element tuples, where
the first element is a key, and the second is the value.
Do not depend on any order of the tuples.
The following keys are defined:</p>
<taglist>
<tag><c>heap_size</c></tag>
<item>The size of the used part of the heap.</item>
<tag><c>heap_block_size</c></tag>
<item>The size of the memory block used for storing
the heap and the stack.</item>
<tag><c>old_heap_size</c></tag>
<item>The size of the used part of the old heap.</item>
<tag><c>old_heap_block_size</c></tag>
<item>The size of the memory block used for storing
the old heap.</item>
<tag><c>stack_size</c></tag>
<item>The size of the stack.</item>
<tag><c>recent_size</c></tag>
<item>The size of the data that survived the previous garbage
collection.</item>
<tag><c>mbuf_size</c></tag>
<item>The combined size of message buffers associated with
the process.</item>
<tag><c>bin_vheap_size</c></tag>
<item>The total size of unique off-heap binaries referenced
from the process heap.</item>
<tag><c>bin_vheap_block_size</c></tag>
<item>The total size of binaries allowed in the virtual
heap in the process before doing a garbage collection.</item>
<tag><c>bin_old_vheap_size</c></tag>
<item>The total size of unique off-heap binaries referenced
from the process old heap.</item>
<tag><c>bin_old_vheap_block_size</c></tag>
<item>The total size of binaries allowed in the virtual
old heap in the process before doing a garbage
collection.</item>
</taglist>
<p>All sizes are in words.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_gc_max_heap_size"></marker>
<c>{trace, Pid, gc_max_heap_size, Info}</c>
</tag>
<item>
<p>Sent when the <seealso marker="#process_flag_max_heap_size">
<c>max_heap_size</c></seealso>
is reached during garbage collection. <c>Info</c> contains the
same kind of list as in message <c>gc_start</c>,
but the sizes reflect the sizes that triggered
<c>max_heap_size</c> to be reached.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_gc_minor_end"></marker>
<c>{trace, Pid, gc_minor_end, Info}</c>
</tag>
<item>
<p>Sent when young garbage collection is finished. <c>Info</c>
contains the same kind of list as in message
<c>gc_minor_start</c>,
but the sizes reflect the new sizes after
garbage collection.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_gc_major_start"></marker>
<c>{trace, Pid, gc_major_start, Info}</c>
</tag>
<item>
<p>Sent when fullsweep garbage collection is about to be started.
<c>Info</c> contains the same kind of list as in message
<c>gc_minor_start</c>.</p>
</item>
<tag>
<marker id="trace_3_trace_messages_gc_major_end"></marker>
<c>{trace, Pid, gc_major_end, Info}</c>
</tag>
<item>
<p>Sent when fullsweep garbage collection is finished. <c>Info</c>
contains the same kind of list as in message
<c>gc_minor_start</c>, but the sizes reflect the new sizes after
a fullsweep garbage collection.</p>
</item>
</taglist>
<p>If the tracing process/port dies or the tracer module returns
<c>remove</c>, the flags are silently removed.</p>
<p>Each process can only be traced by one tracer. Therefore,
attempts to trace an already traced process fail.</p>
<p>Returns a number indicating the number of processes that
matched <c><anno>PidPortSpec</anno></c>.
If <c><anno>PidPortSpec</anno></c> is a process
identifier, the return value is <c>1</c>.
If <c><anno>PidPortSpec</anno></c>
is <c>all</c> or <c>existing</c>, the return value is
the number of processes running.
If <c><anno>PidPortSpec</anno></c> is <c>new</c>, the return value is
<c>0</c>.</p>
<p>Failure: <c>badarg</c> if the specified arguments are
not supported. For example, <c>cpu_timestamp</c> is not
supported on all platforms.</p>
</desc>
</func>
<func>
<name name="trace_delivered" arity="1"/>
<fsummary>Notification when trace has been delivered.</fsummary>
<desc>
<p>The delivery of trace messages (generated by
<seealso marker="#trace/3"><c>erlang:trace/3</c></seealso>,
<seealso marker="kernel:seq_trace"><c>seq_trace(3)</c></seealso>,
or <seealso marker="#system_profile/2">
<c>erlang:system_profile/2</c></seealso>)
is dislocated on the time-line
compared to other events in the system. If you know that
<c><anno>Tracee</anno></c> has passed some specific point
in its execution,
and you want to know when at least all trace messages
corresponding to events up to this point have reached the
tracer, use <c>erlang:trace_delivered(<anno>Tracee</anno>)</c>.</p>
<p>When it is guaranteed that all trace messages are delivered to
the tracer up to the point that <c><anno>Tracee</anno></c> reached
at the time of the call to
<c>erlang:trace_delivered(<anno>Tracee</anno>)</c>, then a
<c>{trace_delivered, <anno>Tracee</anno>, <anno>Ref</anno>}</c>
message is sent to the caller of
<c>erlang:trace_delivered(<anno>Tracee</anno>)</c> .</p>
<p>Notice that message <c>trace_delivered</c> does <em>not</em>
imply that trace messages have been delivered.
Instead it implies that all trace messages that
<em>are to be delivered</em> have been delivered.
It is not an error if <c><anno>Tracee</anno></c> is not, and
has not been traced by someone, but if this is the case,
<em>no</em> trace messages have been delivered when the
<c>trace_delivered</c> message arrives.</p>
<p>Notice that <c><anno>Tracee</anno></c> must refer
to a process currently
or previously existing on the same node as the caller of
<c>erlang:trace_delivered(<anno>Tracee</anno>)</c> resides on.
The special <c><anno>Tracee</anno></c> atom <c>all</c>
denotes all processes that currently are traced in the node.</p>
<p>When used together with a <seealso marker="erts:erl_tracer">
Tracer Module</seealso>, any message sent in the trace callback
is guaranteed to have reached its recipient before the
<c>trace_delivered</c> message is sent.</p>
<p>Example: Process <c>A</c> is <c><anno>Tracee</anno></c>,
port <c>B</c> is tracer, and process <c>C</c> is the port
owner of <c>B</c>. <c>C</c> wants to close <c>B</c> when
<c>A</c> exits. To ensure that the trace is not truncated,
<c>C</c> can call <c>erlang:trace_delivered(A)</c> when
<c>A</c> exits, and wait for message <c>{trace_delivered, A,
<anno>Ref</anno>}</c> before closing <c>B</c>.</p>
<p>Failure: <c>badarg</c> if <c><anno>Tracee</anno></c>
does not refer to a
process (dead or alive) on the same node as the caller of
<c>erlang:trace_delivered(<anno>Tracee</anno>)</c> resides on.</p>
</desc>
</func>
<func>
<name name="trace_info" arity="2"/>
<fsummary>Trace information about a process or function.</fsummary>
<type name="trace_info_return"/>
<type name="trace_info_item_result"/>
<type name="trace_info_flag"/>
<type name="trace_match_spec"/>
<type name="match_variable"/>
<type_desc name="match_variable">
Approximation of '$1' | '$2' | '$3' | ...
</type_desc>
<desc>
<p>Returns trace information about a port, process, function, or
event.</p>
<p><em>To get information about a port or process</em>,
<c><anno>PidPortFuncEvent</anno></c> is to
be a process identifier (pid), port identifier, or one of
the atoms <c>new</c>, <c>new_processes</c>, or <c>new_ports</c>. The
atom <c>new</c> or <c>new_processes</c> means that the default trace
state for processes to be created is returned. The atom
<c>new_ports</c> means that the default trace state for ports to be
created is returned.</p>
<p>Valid <c>Item</c>s for ports and processes:</p>
<taglist>
<tag><c>flags</c></tag>
<item>
<p>Returns a list of atoms indicating what kind of traces is
enabled for the process. The list is empty if no
traces are enabled, and one or more of the followings
atoms if traces are enabled: <c>send</c>,
<c>'receive'</c>, <c>set_on_spawn</c>, <c>call</c>,
<c>return_to</c>, <c>procs</c>, <c>ports</c>,
<c>set_on_first_spawn</c>,
<c>set_on_link</c>, <c>running</c>, <c>running_procs</c>,
<c>running_ports</c>, <c>silent</c>, <c>exiting</c>,
<c>monotonic_timestamp</c>, <c>strict_monotonic_timestamp</c>,
<c>garbage_collection</c>, <c>timestamp</c>, and
<c>arity</c>. The order is arbitrary.</p>
</item>
<tag><c>tracer</c></tag>
<item>
<p>Returns the identifier for process, port, or a tuple containing
the tracer module and tracer state tracing this
process. If this process is not traced, the return
value is <c>[]</c>.</p>
</item>
</taglist>
<p><em>To get information about a function</em>,
<c><anno>PidPortFuncEvent</anno></c> is to
be the three-element tuple <c>{Module, Function, Arity}</c> or
the atom <c>on_load</c>. No wildcards are allowed. Returns
<c>undefined</c> if the function does not exist, or
<c>false</c> if the function is not traced.
If <c><anno>PidPortFuncEvent</anno></c>
is <c>on_load</c>, the information returned refers to
the default value for code that will be loaded.</p>
<p>Valid <c>Item</c>s for functions:</p>
<taglist>
<tag><c>traced</c></tag>
<item>
<p>Returns <c>global</c> if this function is traced on
global function calls, <c>local</c> if this function is
traced on local function calls (that is, local and global
function calls), and <c>false</c> if local or
global function calls are not traced.</p>
</item>
<tag><c>match_spec</c></tag>
<item>
<p>Returns the match specification for this function, if it
has one. If the function is locally or globally traced but
has no match specification defined, the returned value
is <c>[]</c>.</p>
</item>
<tag><c>meta</c></tag>
<item>
<p>Returns the meta-trace tracer process, port, or trace module
for this function, if it has one. If the function is not
meta-traced, the returned value is <c>false</c>. If
the function is meta-traced but has once detected that
the tracer process is invalid, the returned value is
<c>[]</c>.</p>
</item>
<tag><c>meta_match_spec</c></tag>
<item>
<p>Returns the meta-trace match specification for this
function, if it has one. If the function is meta-traced
but has no match specification defined, the returned
value is <c>[]</c>.</p>
</item>
<tag><c>call_count</c></tag>
<item>
<p>Returns the call count value for this function or
<c>true</c> for the pseudo function <c>on_load</c> if call
count tracing is active. Otherwise <c>false</c> is returned.</p>
<p>See also <seealso marker="#trace_pattern/3">
<c>erlang:trace_pattern/3</c></seealso>.</p>
</item>
<tag><c>call_time</c></tag>
<item>
<p>Returns the call time values for this function or
<c>true</c> for the pseudo function <c>on_load</c> if call
time tracing is active. Otherwise <c>false</c> is returned.
The call time values returned, <c>[{Pid, Count, S, Us}]</c>,
is a list of each process that executed the function
and its specific counters.</p>
<p>See also
<seealso marker="#trace_pattern/3">
<c>erlang:trace_pattern/3</c></seealso>.</p>
</item>
<tag><c>all</c></tag>
<item>
<p>Returns a list containing the
<c>{<anno>Item</anno>, Value}</c> tuples
for all other items, or returns <c>false</c> if no tracing
is active for this function.</p>
</item>
</taglist>
<p><em>To get information about an event</em>,
<c><anno>PidPortFuncEvent</anno></c> is to
be one of the atoms <c>send</c> or <c>'receive'</c>.</p>
<p>One valid <c>Item</c> for events exists:</p>
<taglist>
<tag><c>match_spec</c></tag>
<item>
<p>Returns the match specification for this event, if it
has one, or <c>true</c> if no match specification has been
set.</p>
</item>
</taglist>
<p>The return value is <c>{<anno>Item</anno>, Value}</c>, where
<c>Value</c> is the requested information as described earlier.
If a pid for a dead process was specified, or the name of a
non-existing function, <c>Value</c> is <c>undefined</c>.</p>
</desc>
</func>
<func>
<name name="trace_pattern" arity="2" clause_i="1"/>
<fsummary>Set trace patterns for call, send, or 'receive' tracing.
</fsummary>
<type name="trace_pattern_mfa"/>
<type name="trace_match_spec"/>
<type_desc name="match_variable">
Approximation of '$1' | '$2' | '$3' | ...
</type_desc>
<type name="match_variable"/>
<desc>
<p>The same as
<seealso marker="#trace_pattern/3">
<c>erlang:trace_pattern(Event, MatchSpec, [])</c></seealso>,
retained for backward compatibility.</p>
</desc>
</func>
<func>
<name name="trace_pattern" arity="3" clause_i="1"/>
<fsummary>Set trace pattern for message sending.</fsummary>
<type name="trace_match_spec"/>
<type name="match_variable"/>
<type_desc name="match_variable">
Approximation of '$1' | '$2' | '$3' | ...
</type_desc>
<desc>
<p>Sets trace pattern for <em>message sending</em>.
Must be combined with
<seealso marker="#trace/3"><c>erlang:trace/3</c></seealso>
to set the <c>send</c> trace flag for one or more processes.
By default all messages sent from <c>send</c> traced processes
are traced. To limit
traced send events based on the message content, the sender
and/or the receiver, use <c>erlang:trace_pattern/3</c>.</p>
<p>Argument <c><anno>MatchSpec</anno></c> can take the
following forms:</p>
<taglist>
<tag><c><anno>MatchSpecList</anno></c></tag>
<item>
<p>A list of match specifications. The matching is done
on the list <c>[Receiver, Msg]</c>. <c>Receiver</c>
is the process or port identity of the receiver and
<c>Msg</c> is the message term. The pid of the sending
process can be accessed with the guard function
<c>self/0</c>. An empty list is the same as <c>true</c>.
For more information, see section
<seealso marker="erts:match_spec">
Match Specifications in Erlang</seealso> in the User's Guide.</p>
</item>
<tag><c>true</c></tag>
<item>
<p>Enables tracing for all sent messages (from <c>send</c>
traced processes). Any match specification is
removed. <em>This is the default</em>.</p>
</item>
<tag><c>false</c></tag>
<item>
<p>Disables tracing for all sent messages.
Any match specification is removed.</p>
</item>
</taglist>
<p>Argument <c><anno>FlagList</anno></c> must be <c>[]</c>
for send tracing.</p>
<p>The return value is always <c>1</c>.</p>
<p>Examples:</p>
<p>Only trace messages to a specific process <c>Pid</c>:</p>
<pre>
> <input>erlang:trace_pattern(send, [{[Pid, '_'],[],[]}], []).</input>
1</pre>
<p>Only trace messages matching <c>{reply, _}</c>:</p>
<pre>
> <input>erlang:trace_pattern(send, [{['_', {reply,'_'}],[],[]}], []).</input>
1</pre>
<p>Only trace messages sent to the sender itself:</p>
<pre>
> <input>erlang:trace_pattern(send, [{['$1', '_'],[{'=:=','$1',{self}}],[]}], []).</input>
1</pre>
<p>Only trace messages sent to other nodes:</p>
<pre>
> <input>erlang:trace_pattern(send, [{['$1', '_'],[{'=/=',{node,'$1'},{node}}],[]}], []).</input>
1</pre>
<note>
<p>A match specification for <c>send</c> trace can use
all guard and body functions except <c>caller</c>.</p>
</note>
</desc>
</func>
<func>
<name name="trace_pattern" arity="3" clause_i="2"/>
<fsummary>Set trace pattern for tracing of message receiving.</fsummary>
<type name="trace_match_spec"/>
<type name="match_variable"/>
<type_desc name="match_variable">
Approximation of '$1' | '$2' | '$3' | ...
</type_desc>
<desc>
<p>Sets trace pattern for <em>message receiving</em>.
Must be combined with
<seealso marker="#trace/3"><c>erlang:trace/3</c></seealso>
to set the <c>'receive'</c> trace flag for one or more processes.
By default all messages received by <c>'receive'</c> traced
processes are traced. To limit
traced receive events based on the message content, the sender
and/or the receiver, use <c>erlang:trace_pattern/3</c>.</p>
<p>Argument <c><anno>MatchSpec</anno></c> can take the
following forms:</p>
<taglist>
<tag><c><anno>MatchSpecList</anno></c></tag>
<item>
<p>A list of match specifications. The matching is done
on the list <c>[Node, Sender, Msg]</c>. <c>Node</c>
is the node name of the sender. <c>Sender</c> is the
process or port identity of the sender, or the atom
<c>undefined</c> if the sender is not known (which can
be the case for remote senders). <c>Msg</c> is the
message term. The pid of the receiving process can be
accessed with the guard function <c>self/0</c>. An empty
list is the same as <c>true</c>. For more information, see
section <seealso marker="erts:match_spec">
Match Specifications in Erlang</seealso> in the User's Guide.</p>
</item>
<tag><c>true</c></tag>
<item>
<p>Enables tracing for all received messages (to <c>'receive'</c>
traced processes). Any match specification is
removed. <em>This is the default</em>.</p>
</item>
<tag><c>false</c></tag>
<item>
<p>Disables tracing for all received messages.
Any match specification is removed.</p>
</item>
</taglist>
<p>Argument <c><anno>FlagList</anno></c> must be <c>[]</c>
for receive tracing.</p>
<p>The return value is always <c>1</c>.</p>
<p>Examples:</p>
<p>Only trace messages from a specific process <c>Pid</c>:</p>
<pre>
> <input>erlang:trace_pattern('receive', [{['_',Pid, '_'],[],[]}], []).</input>
1</pre>
<p>Only trace messages matching <c>{reply, _}</c>:</p>
<pre>
> <input>erlang:trace_pattern('receive', [{['_','_', {reply,'_'}],[],[]}], []).</input>
1</pre>
<p>Only trace messages from other nodes:</p>
<pre>
> <input>erlang:trace_pattern('receive', [{['$1', '_', '_'],[{'=/=','$1',{node}}],[]}], []).</input>
1</pre>
<note>
<p>A match specification for <c>'receive'</c> trace can
use all guard and body functions except <c>caller</c>,
<c>is_seq_trace</c>, <c>get_seq_token</c>, <c>set_seq_token</c>,
<c>enable_trace</c>, <c>disable_trace</c>, <c>trace</c>,
<c>silent</c>, and <c>process_dump</c>.</p>
</note>
</desc>
</func>
<func>
<name name="trace_pattern" arity="3" clause_i="3"/>
<fsummary>Set trace patterns for tracing of function calls.</fsummary>
<type name="trace_pattern_mfa"/>
<type name="trace_match_spec"/>
<type name="trace_pattern_flag"/>
<type name="match_variable"/>
<type_desc name="match_variable">
Approximation of '$1' | '$2' | '$3' | ...
</type_desc>
<desc>
<p>Enables or disables <em>call tracing</em> for one or more functions.
Must be combined with
<seealso marker="#trace/3"><c>erlang:trace/3</c></seealso>
to set the <c>call</c> trace flag
for one or more processes.</p>
<p>Conceptually, call tracing works as follows. Inside
the Erlang virtual machine, a set of processes and
a set of functions are to be traced. If a traced process
calls a traced function, the trace action is taken.
Otherwise, nothing happens.</p>
<p>To add or remove one or more processes to the set of traced
processes, use
<seealso marker="#trace/3"><c>erlang:trace/3</c></seealso>.</p>
<p>To add or remove functions to the set of traced
functions, use <c>erlang:trace_pattern/3</c>.</p>
<p>The BIF <c>erlang:trace_pattern/3</c> can also add match
specifications to a function. A match specification
comprises a pattern that the function arguments must
match, a guard expression that must evaluate to <c>true</c>,
and an action to be performed. The default action is to send a
trace message. If the pattern does not match or the guard
fails, the action is not executed.</p>
<p>Argument <c><anno>MFA</anno></c> is to be a tuple, such as
<c>{Module, Function, Arity}</c>, or the atom <c>on_load</c>
(described below). It can be the module, function,
and arity for a function (or a BIF in any module).
The atom <c>'_'</c> can be used as a wildcard in any of the
following ways:</p>
<taglist>
<tag><c>{Module,Function,'_'}</c></tag>
<item>
<p>All functions of any arity named <c>Function</c>
in module <c>Module</c>.</p>
</item>
<tag><c>{Module,'_','_'}</c></tag>
<item>
<p>All functions in module <c>Module</c>.</p>
</item>
<tag><c>{'_','_','_'}</c></tag>
<item>
<p>All functions in all loaded modules.</p>
</item>
</taglist>
<p>Other combinations, such as <c>{Module,'_',Arity}</c>, are
not allowed. Local functions match wildcards only if
option <c>local</c> is in <c><anno>FlagList</anno></c>.</p>
<p>If argument <c><anno>MFA</anno></c> is the atom <c>on_load</c>,
the match specification and flag list are used on all
modules that are newly loaded.</p>
<p>Argument <c><anno>MatchSpec</anno></c> can take the
following forms:</p>
<taglist>
<tag><c>false</c></tag>
<item>
<p>Disables tracing for the matching functions.
Any match specification is removed.</p>
</item>
<tag><c>true</c></tag>
<item>
<p>Enables tracing for the matching functions.
Any match specification is removed.</p>
</item>
<tag><c><anno>MatchSpecList</anno></c></tag>
<item>
<p>A list of match specifications. An empty list is
equivalent to <c>true</c>. For a description of match
specifications, see section <seealso marker="erts:match_spec">
Match Specifications in Erlang</seealso> in the User's Guide.</p>
</item>
<tag><c>restart</c></tag>
<item>
<p>For the <c><anno>FlagList</anno></c> options <c>call_count</c>
and <c>call_time</c>: restarts
the existing counters. The behavior is undefined
for other <c><anno>FlagList</anno></c> options.</p>
</item>
<tag><c>pause</c></tag>
<item>
<p>For the <c><anno>FlagList</anno></c> options
<c>call_count</c> and <c>call_time</c>: pauses
the existing counters. The behavior is undefined for
other <c><anno>FlagList</anno></c> options.</p>
</item>
</taglist>
<p>Parameter <c><anno>FlagList</anno></c> is a list of options.
The following are the valid options:</p>
<taglist>
<tag><c>global</c></tag>
<item>
<p>Turns on or off call tracing for global function calls
(that is, calls specifying the module explicitly). Only
exported functions match and only global calls
generate trace messages. <em>This is the default</em>.</p>
</item>
<tag><c>local</c></tag>
<item>
<p>Turns on or off call tracing for all types of function
calls. Trace messages are sent whenever any of
the specified functions are called, regardless of how they
are called. If flag <c>return_to</c> is set for
the process, a <c>return_to</c> message is also sent
when this function returns to its caller.</p>
</item>
<tag><c>meta | {meta, <anno>Pid</anno>} |
{meta, <anno>TracerModule</anno>, <anno>TracerState</anno>}</c>
</tag>
<item>
<p>Turns on or off meta-tracing for all types of function
calls. Trace messages are sent to the tracer whenever any of
the specified functions are called. If no tracer is specified,
<c>self()</c> is used as a default tracer process.</p>
<p>Meta-tracing traces all processes and does not care
about the process trace flags set by <c>erlang:trace/3</c>,
the trace flags are instead fixed to
<c>[call, timestamp]</c>.</p>
<p>The match specification function <c>{return_trace}</c>
works with meta-trace and sends its trace message to the
same tracer.</p>
</item>
<tag><c>call_count</c></tag>
<item>
<p>Starts (<c><anno>MatchSpec</anno> == true</c>) or stops
(<c><anno>MatchSpec</anno> == false</c>)
call count tracing for all
types of function calls. For every function, a counter is
incremented when the function is called, in any process.
No process trace flags need to be activated.</p>
<p>If call count tracing is started while already running,
the count is restarted from zero. To pause running
counters, use <c><anno>MatchSpec</anno> == pause</c>.
Paused and running counters can be restarted from zero with
<c><anno>MatchSpec</anno> == restart</c>.</p>
<p>To read the counter value, use
<seealso marker="#trace_info/2">
<c>erlang:trace_info/2</c></seealso>.</p>
</item>
<tag><c>call_time</c></tag>
<item>
<p>Starts (<c><anno>MatchSpec</anno> == true</c>) or stops
(<c><anno>MatchSpec</anno> == false</c>) call time
tracing for all
types of function calls. For every function, a counter is
incremented when the function is called.
Time spent in the function is accumulated in
two other counters, seconds and microseconds.
The counters are stored for each call traced process.</p>
<p>If call time tracing is started while already running,
the count and time restart from zero. To pause
running counters, use <c><anno>MatchSpec</anno> == pause</c>.
Paused and running counters can be restarted from zero with
<c><anno>MatchSpec</anno> == restart</c>.</p>
<p>To read the counter value, use
<seealso marker="#trace_info/2">
<c>erlang:trace_info/2</c></seealso>.</p>
</item>
</taglist>
<p>The options <c>global</c> and <c>local</c> are mutually
exclusive, and <c>global</c> is the default (if no options are
specified). The options <c>call_count</c> and <c>meta</c>
perform a kind of local tracing, and cannot be combined
with <c>global</c>. A function can be globally or
locally traced. If global tracing is specified for a
set of functions, then local, meta, call time, and call count
tracing for the matching set of local functions is
disabled, and conversely.</p>
<p>When disabling trace, the option must match the type of trace
set on the function. That is, local tracing must be
disabled with option <c>local</c> and global tracing with
option <c>global</c> (or no option), and so on.</p>
<p>Part of a match specification list cannot be changed directly.
If a function has a match specification, it can be replaced
with a new one. To change an existing match specification,
use the BIF
<seealso marker="#trace_info/2"><c>erlang:trace_info/2</c></seealso>
to retrieve the existing match specification.</p>
<p>Returns the number of functions matching
argument <c><anno>MFA</anno></c>. This is zero if none matched.</p>
</desc>
</func>
<func>
<name name="trunc" arity="1"/>
<fsummary>Return an integer by truncating a number.</fsummary>
<desc>
<p>Returns an integer by truncating <c><anno>Number</anno></c>,
for example:</p>
<pre>
> <input>trunc(5.5).</input>
5</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="tuple_size" arity="1"/>
<fsummary>Return the size of a tuple.</fsummary>
<desc>
<p>Returns an integer that is the number of elements in
<c><anno>Tuple</anno></c>, for example:</p>
<pre>
> <input>tuple_size({morni, mulle, bwange}).</input>
3</pre>
<p>Allowed in guard tests.</p>
</desc>
</func>
<func>
<name name="tuple_to_list" arity="1"/>
<fsummary>Convert a tuple to a list.</fsummary>
<desc>
<p>Returns a list corresponding to <c><anno>Tuple</anno></c>.
<c><anno>Tuple</anno></c> can contain any Erlang terms.
Example:</p>
<pre>
> <input>tuple_to_list({share, {'Ericsson_B', 163}}).</input>
[share,{'Ericsson_B',163}]</pre>
</desc>
</func>
<func>
<name name="unique_integer" arity="0"/>
<fsummary>Get a unique integer value.</fsummary>
<desc>
<p>Generates and returns an
<seealso marker="doc/efficiency_guide:advanced#unique_integers">
integer unique on current runtime system instance</seealso>.
The same as calling
<seealso marker="#unique_integer/1">
<c>erlang:unique_integer([])</c></seealso>.</p>
</desc>
</func>
<func>
<name name="unique_integer" arity="1"/>
<fsummary>Get a unique integer value.</fsummary>
<desc>
<p>Generates and returns an
<seealso marker="doc/efficiency_guide:advanced#unique_integers">
integer unique on current runtime system
instance</seealso>. The integer is unique in the
sense that this BIF, using the same set of
modifiers, does not return the same integer more
than once on the current runtime system instance.
Each integer value can of course be constructed
by other means.</p>
<p>By default, when <c>[]</c> is passed as
<c><anno>ModifierList</anno></c>, both negative and
positive integers can be returned. This
to use the range of integers that do
not need heap memory allocation as much as possible.
By default the returned integers are also only
guaranteed to be unique, that is, any returned integer
can be smaller or larger than previously
returned integers.</p>
<p><c><anno>Modifier</anno></c>s:</p>
<taglist>
<tag>positive</tag>
<item>
<p>Returns only positive integers.</p>
<p>Notice that by passing the <c>positive</c> modifier
you will get heap allocated integers (bignums) quicker.</p>
</item>
<tag>monotonic</tag>
<item>
<p>Returns <seealso
marker="time_correction#Strictly_Monotonically_Increasing">
strictly monotonically increasing</seealso> integers
corresponding to creation time. That is, the integer
returned is always larger than previously
returned integers on the current runtime system
instance.</p>
<p>These values can be used to determine order between events
on the runtime system instance. That is, if both
<c>X = erlang:unique_integer([monotonic])</c> and
<c>Y = erlang:unique_integer([monotonic])</c> are
executed by different processes (or the same
process) on the same runtime system instance and
<c>X < Y</c>, we know that <c>X</c> was created
before <c>Y</c>.</p>
<warning>
<p>Strictly monotonically increasing values
are inherently quite expensive to generate and scales
poorly. This is because the values need to be synchronized
between CPU cores. That is, do not pass the <c>monotonic</c>
modifier unless you really need strictly monotonically
increasing values.</p>
</warning>
</item>
</taglist>
<p>All valid <c><anno>Modifier</anno></c>s
can be combined. Repeated (valid)
<c><anno>Modifier</anno></c>s in the <c>ModifierList</c>
are ignored.</p>
<note>
<p>The set of integers returned by
<c>erlang:unique_integer/1</c> using different sets of
<c><anno>Modifier</anno></c>s <em>will overlap</em>.
For example, by calling <c>unique_integer([monotonic])</c>,
and <c>unique_integer([positive, monotonic])</c>
repeatedly, you will eventually see some integers that are
returned by both calls.</p>
</note>
<p>Failures:</p>
<taglist>
<tag><c>badarg</c></tag>
<item>if <c><anno>ModifierList</anno></c> is not a
proper list.</item>
<tag><c>badarg</c></tag>
<item>if <c><anno>Modifier</anno></c> is not a
valid modifier.</item>
</taglist>
</desc>
</func>
<func>
<name name="universaltime" arity="0"/>
<fsummary>Current date and time according to Universal Time Coordinated
(UTC).</fsummary>
<desc>
<p>Returns the current date and time according to Universal
Time Coordinated (UTC) in the form
<c>{{Year, Month, Day}, {Hour, Minute, Second}}</c> if
supported by the underlying OS.
Otherwise <c>erlang:universaltime()</c> is equivalent to
<c>erlang:localtime()</c>. Example:</p>
<pre>
> <input>erlang:universaltime().</input>
{{1996,11,6},{14,18,43}}</pre>
</desc>
</func>
<func>
<name name="universaltime_to_localtime" arity="1"/>
<fsummary>Convert from Universal Time Coordinated (UTC) to local date
and time.</fsummary>
<desc>
<p>Converts Universal Time Coordinated (UTC) date and time to
local date and time in the form
<c>{{Year, Month, Day}, {Hour, Minute, Second}}</c> if
supported by the underlying OS.
Otherwise no conversion is done, and
<c><anno>Universaltime</anno></c> is returned. Example:</p>
<pre>
> <input>erlang:universaltime_to_localtime({{1996,11,6},{14,18,43}}).</input>
{{1996,11,7},{15,18,43}}</pre>
<p>Failure: <c>badarg</c> if <c>Universaltime</c> denotes
an invalid date and time.</p>
</desc>
</func>
<func>
<name name="unlink" arity="1"/>
<fsummary>Remove a link to another process or port.</fsummary>
<desc>
<p>Removes the link, if there is one, between the calling
process and the process or port referred to by
<c><anno>Id</anno></c>.</p>
<p>Returns <c>true</c> and does not fail, even if there is no
link to <c><anno>Id</anno></c>, or if <c><anno>Id</anno></c>
does not exist.</p>
<p>Once <c>unlink(<anno>Id</anno>)</c> has returned,
it is guaranteed that
the link between the caller and the entity referred to by
<c><anno>Id</anno></c> has no effect on the caller
in the future (unless
the link is setup again). If the caller is trapping exits, an
<c>{'EXIT', <anno>Id</anno>, _}</c> message from the link
can have been placed in the caller's message queue before
the call.</p>
<p>Notice that the <c>{'EXIT', <anno>Id</anno>, _}</c>
message can be the
result of the link, but can also be the result of <c>Id</c>
calling <c>exit/2</c>. Therefore, it <em>can</em> be
appropriate to clean up the message queue when trapping exits
after the call to <c>unlink(<anno>Id</anno>)</c>, as follows:</p>
<code type="none">
unlink(Id),
receive
{'EXIT', Id, _} ->
true
after 0 ->
true
end</code>
<note>
<p>Before Erlang/OTP R11B (ERTS 5.5) <c>unlink/1</c>
behaved completely asynchronously, that is, the link was active
until the "unlink signal" reached the linked entity. This
had an undesirable effect, as you could never know when
you were guaranteed <em>not</em> to be effected by the link.</p>
<p>The current behavior can be viewed as two combined operations:
asynchronously send an "unlink signal" to the linked entity
and ignore any future results of the link.</p>
</note>
</desc>
</func>
<func>
<name name="unregister" arity="1"/>
<fsummary>Remove the registered name for a process (or port).</fsummary>
<desc>
<p>Removes the registered name <c><anno>RegName</anno></c>
associated with a
process identifier or a port identifier, for example:</p>
<pre>
> <input>unregister(db).</input>
true</pre>
<p>Users are advised not to unregister system processes.</p>
<p>Failure: <c>badarg</c> if <c>RegName</c> is not a registered
name.</p>
</desc>
</func>
<func>
<name name="whereis" arity="1"/>
<fsummary>Get the pid (or port) with a specified registered name.
</fsummary>
<desc>
<p>Returns the process identifier or port identifier with
the registered name <c>RegName</c>. Returns <c>undefined</c>
if the name is not registered. Example:</p>
<pre>
> <input>whereis(db).</input>
<0.43.0></pre>
</desc>
</func>
<func>
<name name="yield" arity="0"/>
<fsummary>Let other processes get a chance to execute.</fsummary>
<desc>
<p>Voluntarily lets other processes (if any) get a chance to
execute. Using this function is similar to
<c>receive after 1 -> ok end</c>, except that <c>yield()</c>
is faster.</p>
<warning>
<p>There is seldom or never any need to use this BIF,
especially in the SMP emulator, as other processes have a
chance to run in another scheduler thread anyway.
Using this BIF without a thorough grasp of how the scheduler
works can cause performance degradation.</p>
</warning>
</desc>
</func>
</funcs>
</erlref>