aboutsummaryrefslogblamecommitdiffstats
path: root/erts/emulator/beam/binary.c
blob: 4662e60d51e3ba210e6d8372b9ff4957c803471d (plain) (tree)
1
2
3
4
5
6
7
8
9
10
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

                   


                                                        




                                                                      
  



                                                                         
  



























                                                             
                                                                        








































































































































                                                                       
                                                                               


























                                                                    
                                                                           
                        

                                                                        














































































































































































































































































































































































































































































                                                                                  






























































































































                                                                                       

                                                                                  



                                 
















                                                                           
                  





                                                                      
                                                                                            


                                 








                                                                    
                  



















































































































































                                                                                     

                                                                     































































                                                                                   


                                                           




                                                                       






                                                         















































































































































                                                                                              

                                                                             








                                
                            
                         
                     















                                         
                                 
                
                                                
         

                                            


                        

                                           







                          




                                
                    




                                                                          
                                                          




                                                   


                     
            

                       
                       
                    
 
                                                           
















                                                                      


                     

        















                                                           

 
 



                                       


                         



































                                                                             






















                                                                
                
                         
      















                                                                          
             













                                                   
 
                                                  
                
                          
      

                                                                  

                        

















                                                                          












                                                                 


                         



































                                                                             






















                                                                
                
                         
      















                                                                          
             















                                                   
 
                                                  
                
                          
      














                                                                          
             






                                                           
             
         







                                                   











































































                                                                       
/*
 * %CopyrightBegin%
 *
 * Copyright Ericsson AB 1996-2010. All Rights Reserved.
 *
 * The contents of this file are subject to the Erlang Public License,
 * Version 1.1, (the "License"); you may not use this file except in
 * compliance with the License. You should have received a copy of the
 * Erlang Public License along with this software. If not, it can be
 * retrieved online at http://www.erlang.org/.
 *
 * Software distributed under the License is distributed on an "AS IS"
 * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
 * the License for the specific language governing rights and limitations
 * under the License.
 *
 * %CopyrightEnd%
 */

#ifdef HAVE_CONFIG_H
#  include "config.h"
#endif

#include "sys.h"
#include "erl_vm.h"
#include "global.h"
#include "erl_process.h"
#include "error.h"
#include "bif.h"
#include "big.h"
#include "erl_binary.h"
#include "erl_bits.h"

#ifdef DEBUG
static int list_to_bitstr_buf(Eterm obj, char* buf, int len);
#else
static int list_to_bitstr_buf(Eterm obj, char* buf);
#endif
static Sint bitstr_list_len(Eterm obj);

void
erts_init_binary(void)
{
    /* Verify Binary alignment... */
    if ((((UWord) &((Binary *) 0)->orig_bytes[0]) % ((UWord) 8)) != 0) {
	/* I assume that any compiler should be able to optimize this
	   away. If not, this test is not very expensive... */
	erl_exit(ERTS_ABORT_EXIT,
		 "Internal error: Address of orig_bytes[0] of a Binary"
		 "is *not* 8-byte aligned\n");
    }
}

/*
 * Create a brand new binary from scratch.
 */

Eterm
new_binary(Process *p, byte *buf, int len)
{
    ProcBin* pb;
    Binary* bptr;

    if (len <= ERL_ONHEAP_BIN_LIMIT) {
	ErlHeapBin* hb = (ErlHeapBin *) HAlloc(p, heap_bin_size(len));
	hb->thing_word = header_heap_bin(len);
	hb->size = len;
	if (buf != NULL) {
	    sys_memcpy(hb->data, buf, len);
	}
	return make_binary(hb);
    }

    /*
     * Allocate the binary struct itself.
     */
    bptr = erts_bin_nrml_alloc(len);
    bptr->flags = 0;
    bptr->orig_size = len;
    erts_refc_init(&bptr->refc, 1);
    if (buf != NULL) {
	sys_memcpy(bptr->orig_bytes, buf, len);
    }

    /*
     * Now allocate the ProcBin on the heap.
     */
    pb = (ProcBin *) HAlloc(p, PROC_BIN_SIZE);
    pb->thing_word = HEADER_PROC_BIN;
    pb->size = len;
    pb->next = MSO(p).mso;
    MSO(p).mso = pb;
    pb->val = bptr;
    pb->bytes = (byte*) bptr->orig_bytes;
    pb->flags = 0;

    /*
     * Miscellanous updates. Return the tagged binary.
     */
    MSO(p).overhead += pb->size / sizeof(Eterm);
    return make_binary(pb);
}

/* 
 * When heap binary is not desired...
 */

Eterm erts_new_mso_binary(Process *p, byte *buf, int len)
{
    ProcBin* pb;
    Binary* bptr;

    /*
     * Allocate the binary struct itself.
     */
    bptr = erts_bin_nrml_alloc(len);
    bptr->flags = 0;
    bptr->orig_size = len;
    erts_refc_init(&bptr->refc, 1);
    if (buf != NULL) {
	sys_memcpy(bptr->orig_bytes, buf, len);
    }

    /*
     * Now allocate the ProcBin on the heap.
     */
    pb = (ProcBin *) HAlloc(p, PROC_BIN_SIZE);
    pb->thing_word = HEADER_PROC_BIN;
    pb->size = len;
    pb->next = MSO(p).mso;
    MSO(p).mso = pb;
    pb->val = bptr;
    pb->bytes = (byte*) bptr->orig_bytes;
    pb->flags = 0;

    /*
     * Miscellanous updates. Return the tagged binary.
     */
    MSO(p).overhead += pb->size / sizeof(Eterm);
    return make_binary(pb);
}

/*
 * Create a brand new binary from scratch on the heap.
 */

Eterm
erts_new_heap_binary(Process *p, byte *buf, int len, byte** datap)
{
    ErlHeapBin* hb = (ErlHeapBin *) HAlloc(p, heap_bin_size(len));

    hb->thing_word = header_heap_bin(len);
    hb->size = len;
    if (buf != NULL) {
	sys_memcpy(hb->data, buf, len);
    }
    *datap = (byte*) hb->data;
    return make_binary(hb);
}

Eterm
erts_realloc_binary(Eterm bin, size_t size)
{
    Eterm* bval = binary_val(bin);

    if (thing_subtag(*bval) == HEAP_BINARY_SUBTAG) {
	ASSERT(size <= binary_size(bin));
	binary_size(bin) = size;
    } else {			/* REFC */
	ProcBin* pb = (ProcBin *) bval;
	Binary* newbin = erts_bin_realloc(pb->val, size);
	newbin->orig_size = size;
	pb->val = newbin;
	pb->size = size;
	pb->bytes = (byte*) newbin->orig_bytes;
	pb->flags = 0;
	bin = make_binary(pb);
    }
    return bin;
}

byte*
erts_get_aligned_binary_bytes_extra(Eterm bin, byte** base_ptr, unsigned extra)
{
    byte* bytes;
    Eterm* real_bin;
    Uint byte_size;
    Uint offs = 0;
    Uint bit_offs = 0;
    
    if (is_not_binary(bin)) {
	return NULL;
    }
    byte_size = binary_size(bin);
    real_bin = binary_val(bin);
    if (*real_bin == HEADER_SUB_BIN) {
	ErlSubBin* sb = (ErlSubBin *) real_bin;
	if (sb->bitsize) {
	    return NULL;
	}
	offs = sb->offs;
	bit_offs = sb->bitoffs;
	real_bin = binary_val(sb->orig);
    }
    if (*real_bin == HEADER_PROC_BIN) {
	bytes = ((ProcBin *) real_bin)->bytes + offs;
    } else {
	bytes = (byte *)(&(((ErlHeapBin *) real_bin)->data)) + offs;
    }
    if (bit_offs) {
	byte* buf = (byte *) erts_alloc(ERTS_ALC_T_TMP, byte_size + extra);
	*base_ptr = buf;
	buf += extra;
	erts_copy_bits(bytes, bit_offs, 1, buf, 0, 1, byte_size*8);	
	bytes = buf;
    }
    return bytes;
}

static Eterm
bin_bytes_to_list(Eterm previous, Eterm* hp, byte* bytes, Uint size, Uint bitoffs)
{
    if (bitoffs == 0) {
	while (size) {
	    previous = CONS(hp, make_small(bytes[--size]), previous);
	    hp += 2;
	}
    } else {
	byte present;
	byte next;
	next = bytes[size];
	while (size) {
	    present = next;
	    next = bytes[--size];
	    previous = CONS(hp, make_small(((present >> (8-bitoffs)) |
					    (next << bitoffs)) & 255), previous);
	    hp += 2;
	}
    }
    return previous;
}


BIF_RETTYPE binary_to_list_1(BIF_ALIST_1)
{
    Eterm real_bin;
    Uint offset;
    Uint size;
    Uint bitsize;
    Uint bitoffs;

    if (is_not_binary(BIF_ARG_1)) {
	goto error;
    }
    size = binary_size(BIF_ARG_1);
    ERTS_GET_REAL_BIN(BIF_ARG_1, real_bin, offset, bitoffs, bitsize);
    if (bitsize != 0) {
	goto error;
    }
    if (size == 0) {
	BIF_RET(NIL);
    } else {
	Eterm* hp = HAlloc(BIF_P, 2 * size);
	byte* bytes = binary_bytes(real_bin)+offset;

	BIF_RET(bin_bytes_to_list(NIL, hp, bytes, size, bitoffs));
    }

    error:
	BIF_ERROR(BIF_P, BADARG);
}

BIF_RETTYPE binary_to_list_3(BIF_ALIST_3)
{
    byte* bytes;
    Uint size;
    Uint bitoffs;
    Uint bitsize;
    Uint i;
    Uint start;
    Uint stop;
    Eterm* hp;

    if (is_not_binary(BIF_ARG_1)) {
	goto error;
    }
    if (!term_to_Uint(BIF_ARG_2, &start) || !term_to_Uint(BIF_ARG_3, &stop)) {
	goto error;
    }
    size = binary_size(BIF_ARG_1);
    ERTS_GET_BINARY_BYTES(BIF_ARG_1, bytes, bitoffs, bitsize);
    if (start < 1 || start > size || stop < 1 ||
	stop > size || stop < start ) {
	goto error;
    }
    i = stop-start+1;
    hp = HAlloc(BIF_P, 2*i);
    BIF_RET(bin_bytes_to_list(NIL, hp, bytes+start-1, i, bitoffs));
    
    error:
	BIF_ERROR(BIF_P, BADARG);
}

BIF_RETTYPE bitstring_to_list_1(BIF_ALIST_1)
{
    Eterm real_bin;
    Uint offset;
    Uint size;
    Uint bitsize;
    Uint bitoffs;
    byte* bytes;
    Eterm previous = NIL;
    Eterm* hp;

    if (is_not_binary(BIF_ARG_1)) {
	BIF_ERROR(BIF_P, BADARG);
    }
    size = binary_size(BIF_ARG_1);
    ERTS_GET_REAL_BIN(BIF_ARG_1, real_bin, offset, bitoffs, bitsize);
    bytes = binary_bytes(real_bin)+offset;
    if (bitsize == 0) {
	hp = HAlloc(BIF_P, 2 * size);
    } else if (size == 0) {
	hp = HAlloc(BIF_P, 2);
	BIF_RET(CONS(hp,BIF_ARG_1,NIL));
    } else {
	ErlSubBin* last;

	hp = HAlloc(BIF_P, ERL_SUB_BIN_SIZE+2+2*size);
	last = (ErlSubBin *) hp;
	last->thing_word = HEADER_SUB_BIN;
	last->size = 0;
	last->bitsize = bitsize;
	last->offs = offset+size;
	last->bitoffs = bitoffs;
	last->orig = real_bin;
	last->is_writable = 0;
	hp += ERL_SUB_BIN_SIZE;
	previous = CONS(hp, make_binary(last), previous);
	hp += 2;
    }
    BIF_RET(bin_bytes_to_list(previous, hp, bytes, size, bitoffs));
}


/* Turn a possibly deep list of ints (and binaries) into */
/* One large binary object                               */

BIF_RETTYPE list_to_binary_1(BIF_ALIST_1)
{
    Eterm bin;
    int i;
    int offset;
    byte* bytes;
    if (is_nil(BIF_ARG_1)) {
	BIF_RET(new_binary(BIF_P,(byte*)"",0));
    }
    if (is_not_list(BIF_ARG_1)) {
	goto error;
    }
    if ((i = io_list_len(BIF_ARG_1)) < 0) {
	goto error;
    }
    bin = new_binary(BIF_P, (byte *)NULL, i);
    bytes = binary_bytes(bin);
    offset = io_list_to_buf(BIF_ARG_1, (char*) bytes, i);
    ASSERT(offset == 0);
    BIF_RET(bin);
    
    error:
	BIF_ERROR(BIF_P, BADARG);
}

/* Turn a possibly deep list of ints (and binaries) into */
/* One large binary object                               */

BIF_RETTYPE iolist_to_binary_1(BIF_ALIST_1)
{
    Eterm bin;
    int i;
    int offset;
    byte* bytes;

    if (is_binary(BIF_ARG_1)) {
	BIF_RET(BIF_ARG_1);
    }
    if (is_nil(BIF_ARG_1)) {
	BIF_RET(new_binary(BIF_P,(byte*)"",0));
    }
    if (is_not_list(BIF_ARG_1)) {
	goto error;
    }
    if ((i = io_list_len(BIF_ARG_1)) < 0) {
	goto error;
    }
    bin = new_binary(BIF_P, (byte *)NULL, i);
    bytes = binary_bytes(bin);
    offset = io_list_to_buf(BIF_ARG_1, (char*) bytes, i);
    ASSERT(offset == 0);
    BIF_RET(bin);
    
    error:
	BIF_ERROR(BIF_P, BADARG);
}

BIF_RETTYPE list_to_bitstring_1(BIF_ALIST_1)
{
    Eterm bin;
    int i,offset;
    byte* bytes;
    ErlSubBin* sb1; 
    Eterm* hp;
    
    if (is_nil(BIF_ARG_1)) {
	BIF_RET(new_binary(BIF_P,(byte*)"",0));
    }
    if (is_not_list(BIF_ARG_1)) {
	goto error;
    }
    if ((i = bitstr_list_len(BIF_ARG_1)) < 0) {
	goto error;
    }
    bin = new_binary(BIF_P, (byte *)NULL, i);
    bytes = binary_bytes(bin);
#ifdef DEBUG
    offset = list_to_bitstr_buf(BIF_ARG_1, (char*) bytes, i);
#else
    offset = list_to_bitstr_buf(BIF_ARG_1, (char*) bytes);
#endif
    ASSERT(offset >= 0);
    if (offset > 0) {
	hp = HAlloc(BIF_P, ERL_SUB_BIN_SIZE);
	sb1 = (ErlSubBin *) hp;
	sb1->thing_word = HEADER_SUB_BIN;
	sb1->size = i-1;
	sb1->offs = 0;
	sb1->orig = bin;
	sb1->bitoffs = 0;
	sb1->bitsize = offset;
	sb1->is_writable = 0;
	hp += ERL_SUB_BIN_SIZE;
	bin = make_binary(sb1);
    }
    
    BIF_RET(bin);
    
    error:
	BIF_ERROR(BIF_P, BADARG);
}

BIF_RETTYPE split_binary_2(BIF_ALIST_2)
{
    Uint pos;
    ErlSubBin* sb1;
    ErlSubBin* sb2;
    size_t orig_size;
    Eterm orig;
    Uint offset;
    Uint bit_offset;
    Uint bit_size;
    Eterm* hp;

    if (is_not_binary(BIF_ARG_1)) {
	goto error;
    }
    if (!term_to_Uint(BIF_ARG_2, &pos)) {
	goto error;
    }
    if ((orig_size = binary_size(BIF_ARG_1)) < pos) {
	goto error;
    }
    hp = HAlloc(BIF_P, 2*ERL_SUB_BIN_SIZE+3);
    ERTS_GET_REAL_BIN(BIF_ARG_1, orig, offset, bit_offset, bit_size);
    sb1 = (ErlSubBin *) hp;
    sb1->thing_word = HEADER_SUB_BIN;
    sb1->size = pos;
    sb1->offs = offset;
    sb1->orig = orig;
    sb1->bitoffs = bit_offset;
    sb1->bitsize = 0;
    sb1->is_writable = 0;
    hp += ERL_SUB_BIN_SIZE;

    sb2 = (ErlSubBin *) hp;
    sb2->thing_word = HEADER_SUB_BIN;
    sb2->size = orig_size - pos;
    sb2->offs = offset + pos;
    sb2->orig = orig;
    sb2->bitoffs = bit_offset;
    sb2->bitsize = bit_size;	/* The extra bits go into the second binary. */
    sb2->is_writable = 0;
    hp += ERL_SUB_BIN_SIZE;

    return TUPLE2(hp, make_binary(sb1), make_binary(sb2));
    
    error:
	BIF_ERROR(BIF_P, BADARG);
}

void
erts_cleanup_mso(ProcBin* pb)
{
    while (pb != NULL) {
	ProcBin* next = pb->next;
	if (erts_refc_dectest(&pb->val->refc, 0) == 0)
	    erts_bin_free(pb->val);
	pb = next;
    }
}

/*
 * Local functions.
 */

/*
 * The input list is assumed to be type-correct and the buffer is
 * assumed to be of sufficient size. Those assumptions are verified in
 * the DEBUG-built emulator.
 */
static int
#ifdef DEBUG
list_to_bitstr_buf(Eterm obj, char* buf, int len)
#else
list_to_bitstr_buf(Eterm obj, char* buf)
#endif
{
    Eterm* objp;
    int offset = 0;
    DECLARE_ESTACK(s);
    goto L_again;
    
    while (!ESTACK_ISEMPTY(s)) {
	obj = ESTACK_POP(s);
    L_again:
	if (is_list(obj)) {
	L_iter_list:
	    objp = list_val(obj);
	    obj = CAR(objp);
	    if (is_byte(obj)) {
		ASSERT(len > 0);
		if (offset == 0) {
		    *buf++ = unsigned_val(obj);
		} else {
		    *buf =  (char)((unsigned_val(obj) >> offset) | 
				   ((*buf >> (8-offset)) << (8-offset)));
		    buf++;
		    *buf = (unsigned_val(obj) << (8-offset));
		}   
#ifdef DEBUG
		len--;
#endif
	    } else if (is_binary(obj)) {
		byte* bptr;
		size_t size = binary_size(obj);
		Uint bitsize;
		Uint bitoffs;
		Uint num_bits;
		
		ASSERT(size <= len);
		ERTS_GET_BINARY_BYTES(obj, bptr, bitoffs, bitsize);
		num_bits = 8*size+bitsize;
		copy_binary_to_buffer(buf, offset, bptr, bitoffs, num_bits);
		offset += bitsize;
		buf += size + (offset>7);
#ifdef DEBUG
		len -= size + (offset>7);
#endif
		offset = offset & 7;
	    } else if (is_list(obj)) {
		ESTACK_PUSH(s, CDR(objp));
		goto L_iter_list; /* on head */
	    } else {
		ASSERT(is_nil(obj));
	    }

	    obj = CDR(objp);
	    if (is_list(obj)) {
		goto L_iter_list; /* on tail */
	    } else if (is_binary(obj)) {
		byte* bptr;
		size_t size = binary_size(obj);
		Uint bitsize;
		Uint bitoffs;
		Uint num_bits;

		ASSERT(size <= len);
		ERTS_GET_BINARY_BYTES(obj, bptr, bitoffs, bitsize);
		num_bits = 8*size+bitsize;
		copy_binary_to_buffer(buf, offset, bptr, bitoffs, num_bits);
		offset += bitsize;
		buf += size+(offset>7);
#ifdef DEBUG
		len -= size+(offset>7);
#endif
		offset = offset & 7;
	    } else {
		ASSERT(is_nil(obj));
	    }
	} else if (is_binary(obj)) {
	    byte* bptr;
	    size_t size = binary_size(obj);
	    Uint bitsize;
	    Uint bitoffs;
	    Uint num_bits;

	    ASSERT(size <= len);
	    ERTS_GET_BINARY_BYTES(obj, bptr, bitoffs, bitsize);
	    num_bits = 8*size+bitsize;
	    copy_binary_to_buffer(buf, offset, bptr, bitoffs, num_bits);
	    offset += bitsize;
	    buf += size + (offset>7);
#ifdef DEBUG
	    len -= size + (offset>7);
#endif
	    offset = offset & 7;
	} else {
	    ASSERT(is_nil(obj));
	}
    }
    
    DESTROY_ESTACK(s);
    return offset;
}

static Sint
bitstr_list_len(Eterm obj)
{
    Eterm* objp;
    Uint len = 0;
    Uint offs = 0;
    DECLARE_ESTACK(s);
    goto L_again;

    while (!ESTACK_ISEMPTY(s)) {
	obj = ESTACK_POP(s);
    L_again:
	if (is_list(obj)) {
	L_iter_list:
	    objp = list_val(obj);
	    /* Head */
	    obj = CAR(objp);
	    if (is_byte(obj)) {
		len++;
	    } else if (is_binary(obj)) {
		len += binary_size(obj);
		offs += binary_bitsize(obj);
	    } else if (is_list(obj)) {
		ESTACK_PUSH(s, CDR(objp));
		goto L_iter_list; /* on head */
	    } else if (is_not_nil(obj)) {
		goto L_type_error;
	    }
	    /* Tail */
	    obj = CDR(objp);
	    if (is_list(obj))
		goto L_iter_list; /* on tail */
	    else if (is_binary(obj)) {
		len += binary_size(obj);
		offs += binary_bitsize(obj);
	    } else if (is_not_nil(obj)) {
		goto L_type_error;
	    }
	} else if (is_binary(obj)) {
	    len += binary_size(obj);
	    offs += binary_bitsize(obj);
	} else if (is_not_nil(obj)) {
	    goto L_type_error;
	}
    }

    DESTROY_ESTACK(s);
    return (Sint) (len + (offs/8) + ((offs % 8) != 0));

 L_type_error:
    DESTROY_ESTACK(s);
    return (Sint) -1;
}

#define HARDDEBUG

/*
 * The native implementation functions for the module binary.
 * Searching is implemented using aither Boyer-More or Aho-Corasick
 * depending on number of searchstrings (BM if one, AC if more than one).
 * Native implementation is for efficiency, nothing really *needs* to be
 * implemented in native code.
 */

/*
 * A micro allocator used when building search structures, just a convenience
 * for building structures inside a pre alocated magic binary using conventional
 * malloc-like interface.
 */

#define MYALIGN(Size) (SIZEOF_VOID_P * (((Size) / SIZEOF_VOID_P) + \
                       !!(((Size) % SIZEOF_VOID_P))))

#ifdef DEBUG
#define CHECK_ALLOCATOR(My) ASSERT((My).current <= ((My).mem + (My).size))
#else
#define CHECK_ALLOCATOR(My) /* nothing */
#endif

typedef struct _my_allocator {
    Uint size;
    byte *current;
    byte *mem;
} MyAllocator;

static void init_my_allocator(MyAllocator *my, Uint siz, byte *array)
{
    ASSERT((siz % SIZEOF_VOID_P) == 0);
    my->size = siz;
    my->mem = array;
    my->current = my->mem;
}

static void *my_alloc(MyAllocator *my, Uint size)
{
    void *ptr = my->current;
    my->current += MYALIGN(size);
    return ptr;
}

/*
 * The search functionality.
 *
 * The search is byte oriented, which works nicely for UTF-8 as well as latin1 data
 */

#define ALPHABET_SIZE 256

typedef struct _ac_node {
#ifdef HARDDEBUG
    Uint32 id;                        /* To identify h pointer targets when dumping */
#endif
    Uint32 d;                         /* Depth in trie, also represents the length
					 (-1) of the matched string if in
					 final set */
    Sint32 final;                     /* Members in final set represent matches.
				       * The set representation is scattered
				       * among the nodes in this way:
				       * >0 -> this represents a member of
				       * the final set, <0 -> member of
				       * final set somewhere in the failure chain,
				       * 0 -> not member of the final set */
    struct _ac_node *h;                /* h(Hode) is the failure function */
    struct _ac_node *g[ALPHABET_SIZE]; /* g(Node,Character) is the
					  transition function */
} ACNode;

typedef struct _ac_trie {
#ifdef HARDDEBUG
    Uint32 idc;
#endif
    Uint32 counter;        /* Number of added patterns */
    ACNode *root;     /* pointer to the root state */
} ACTrie;

typedef struct _bm_data {
    int ret_tuple;
    byte *x;
    Sint len;
    Sint *goodshift;
    Sint badshift[ALPHABET_SIZE];
} BMData;

#ifdef HARDDEBUG
static void dump_bm_data(BMData *bm);
static void dump_ac_trie(ACTrie *act);
static void dump_ac_node(ACNode *node, int indent, int ch);
#endif

/*
 * The needed size of binary data for a search structure - given the accumulated
 * string lengths.
 */
#define BM_SIZE(StrLen) 	      /* StrLen: length of searchstring */ \
((MYALIGN(sizeof(Sint) * (StrLen))) + /* goodshift array */                \
 MYALIGN(StrLen) +                    /* searchstring saved */             \
 (MYALIGN(sizeof(BMData))))           /* Structure */

#define AC_SIZE(StrLens) 	      /* StrLens: sum of all searchstring lengths */ \
((MYALIGN(sizeof(ACNode)) *                                                          \
((StrLens)+1)) + 	              /* The actual nodes (including rootnode) */    \
 MYALIGN(sizeof(ACTrie)))             /* Structure */


#ifndef MAX
#define MAX(A,B) (((A) > (B)) ? (A) : B)
#endif

/*
 * Callback for the magic binary
 */
static void cleanup_my_data(Binary *bp)
{
    return;
}

/*
 * Initiate a (allocated) micro allocator and fill in the base
 * for an Aho-Corasick search trie, given the accumulated length of the search strings.
 */
static ACTrie *create_acdata(MyAllocator *my, Uint len,
			     ACNode ***qbuff /* out */,Binary **the_bin /* out */)
{
    Uint datasize = AC_SIZE(len);
    ACTrie *act;
    ACNode *acn;
    Binary *mb = erts_create_magic_binary(datasize,cleanup_my_data);
    byte *data = ERTS_MAGIC_BIN_DATA(mb);

    init_my_allocator(my, datasize, data);
    act = my_alloc(my, sizeof(ACTrie)); /* Important that this is the first
					   allocation */
    act->counter = 0;
    act->root = acn = my_alloc(my, sizeof(ACNode));
    acn->d = 0;
    acn->final = 0;
    acn->h = NULL;
    memset(acn->g, 0, sizeof(ACNode *) * ALPHABET_SIZE);
#ifdef HARDDEBUG
    act->idc = 0;
    acn->id = 0;
#endif
    *qbuff = erts_alloc(ERTS_ALC_T_TMP, sizeof(ACNode *) * len);
    *the_bin = mb;
    return act;
}

/*
 * The same initialization of allocator and basic data for Boyer-More.
 */
static BMData *create_bmdata(MyAllocator *my, byte *x, Uint len, Binary **the_bin /* out */)
{
    Uint datasize = BM_SIZE(len);
    BMData *bmd;
    Binary *mb = erts_create_magic_binary(datasize,cleanup_my_data);
    byte *data = ERTS_MAGIC_BIN_DATA(mb);
    init_my_allocator(my, datasize, data);
    bmd = my_alloc(my, sizeof(BMData));
    bmd->x = my_alloc(my,len);
    memcpy(bmd->x,x,len);
    bmd->len = len;
    bmd->goodshift = my_alloc(my,sizeof(Uint) * len);
    bmd->ret_tuple = 0;
    *the_bin = mb;
    return bmd;
}

/*
 * Compilation of search structures
 */

/*
 * Aho Corasick - Build a Trie and fill in the failure functions
 * when all strings are added.
 * The algorithm is nicely described by Dieter Bühler of University of Tübingen:
 * http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html
 */

/*
 * Helper called ance for each search pattern
 */
static void ac_add_one_pattern(MyAllocator *my, ACTrie *act, byte *x, Uint len)
{
    ACNode *acn = act->root;
    Uint32 n = ++act->counter; /* Always increase conter, even if it's a duplicate
				  as this shall identify the pattern in the
			          final set and eventually be returned to
			          the caller (in Erlang) */
    Uint i = 0;

    while(i < len) {
	if (acn->g[x[i]] != NULL) {
	    /* node exists, continue */
	    acn = acn->g[x[i]];
	    ++i;
	} else {
	    /* allocate a new node */
	    ACNode *nn = my_alloc(my,sizeof(ACNode));
#ifdef HARDDEBUG
	    nn->id = ++(act->idc);
#endif
	    nn->d = i+1;
	    nn->h = act->root;
	    nn->final = 0;
	    memset(nn->g, 0, sizeof(ACNode *) * ALPHABET_SIZE);
	    acn->g[x[i]] = nn;
	    ++i;
	    acn = nn;
	}
    }
    if (acn->final == 0) { /* New pattern, add to final set */
	acn->final = n;
    }
}

/*
 * Called when all search patterns are added.
 */
static void ac_compute_failure_functions(ACTrie *act, ACNode **qbuff)
{
    ACNode *root = act->root;
    ACNode *parent;
    int i;
    int qh = 0,qt = 0;
    ACNode *child, *r;

    /* Set all children of the root to have the root as failure function */
    for (i = 0; i < ALPHABET_SIZE; ++i) {
	if (root->g[i] != NULL) {
	    root->g[i]->h = root;
	    /* Add to que for later traversal */
	    qbuff[qt++] = root->g[i];
	}
    }

    /* So, now we've handled children of the root state, traverse the
       rest of the trie BF... */
    while (qh < qt) {
	parent = qbuff[qh++];
	for (i = 0; i < ALPHABET_SIZE; ++ i) {
	    if ((child = parent->g[i]) != NULL) {
		/* Visit this node to */
		qbuff[qt++] = child;
		/* Search for correct failure function, follow the parents failure
		   function until you find a similar transition funtion to this
		   childs */
		r =  parent->h;
		while (r != NULL && r->g[i] == NULL) {
		    r = r->h;
		}
		if (r == NULL) {
		    /* Replace NULL failures with the root as we go */
		    child->h = (root->g[i] == NULL) ? root : root->g[i];
		} else {
		    child->h = r->g[i];
		    /*
		     * The "final" set is scattered among the nodes. When
		     * the failure function points to a member of the final set,
		     * we have a match, but we might not see it in the current node
		     * if we dont mark it as a special type of final, i.e. foolow
		     * the failure function and you will find a real member of final
		     * set. This is marked with a negative string id and only done if
		     * this node does not represent a member in the final set.
		     */
		    if (!(child->final) && (child->h->final)) {
			child->final = -1;
		    }
		}
	    }
	}
    }
    /* Finally the failure function of the root should point to itself */
    root->h = root;
}

/*
 * The actual searching for needles in the haystack...
 * Find first match using Aho-Coracick Trie
 * return pattern number and fill in mpos + mlen if found, otherwise return 0
 * Return the matching pattern that *starts* first, not ends
 * first (difference when overlapping), hence the candidate thing.
 * Basic AC finds the first end before the first start...
 *
 */
static Uint ac_find_first_match(ACTrie *act, byte *haystack, Uint len,
				Uint *mpos, Uint *mlen)
{
    ACNode *q = act->root;
    Uint i = 0;
    ACNode *candidate = NULL, *r;
    Uint candidate_start = 0 /* Init not needed, just quiet the compiler */;
    Uint rstart;

    while (i < len) {
	while (q->g[haystack[i]] == NULL && q->h != q) {
	    q = q->h;
	}
	if (q->g[haystack[i]] != NULL) {
	    q = q->g[haystack[i]];
	}
#ifdef HARDDEBUG
	erts_printf("ch = %c, Current: %u\n", (int) haystack[i], (unsigned) q->id);
#endif
	++i;
	if (candidate != NULL && (i - q->d) > candidate_start) {
	    break;
	}
	if (q->final) {
	    r = q;
	    while (r->final < 0)
		r = r->h;
	    rstart = i - r->d;
	    if (candidate == NULL || rstart < candidate_start ||
		(rstart == candidate_start && candidate->d < q->d)) {
		candidate_start = rstart;
		candidate = r;
	    }
	}
    }
    if (!candidate) {
	return 0;
    }
#ifdef HARDDEBUG
    dump_ac_node(candidate,0,'?');
#endif
    *mpos = candidate_start;
    *mlen = candidate->d;
    return candidate->final;
}

typedef struct _findall_data {
    Uint pos;
    Uint len;
#ifdef HARDDEBUG
    Uint id;
#endif
    Eterm epos;
    Eterm elen;
#if 0
    Eterm eid;
#endif
} FindallData;
/*
 * Returns number of non overlapping matches
 */
static Uint ac_find_all_non_overlapping(ACTrie *act, byte *haystack, Uint len,
					FindallData **data)
{
    ACNode *q = act->root;
    Uint i = 0;
    Uint rstart;
    ACNode *r;
    Uint m = 0, save_m;
    Uint allocated = 0;
    FindallData *out = NULL;


    while (i < len) {
	while (q->g[haystack[i]] == NULL && q->h != q) {
	    q = q->h;
	}
	if (q->g[haystack[i]] != NULL) {
	    q = q->g[haystack[i]];
	}
#ifdef HARDDEBUG
	erts_printf("ch = %c, Current: %u\n", (int) haystack[i], (unsigned) q->id);
#endif
	++i;
	if (q->final) {
	    r = q;
	    while (r->final) {
		while (r->final < 0)
		    r = r->h;
#ifdef HARDDEBUG
		erts_printf("Trying to add %u\n",(unsigned) r->final);
#endif
		rstart = i - r->d;
		save_m = m;
		while (m > 0 && (out[m-1].pos > rstart ||
				 (out[m-1].pos == rstart &&
				  out[m-1].len < r->d))) {
#ifdef HARDDEBUG
		    erts_printf("Popping %u\n",(unsigned) out[m-1].id);
#endif
		    --m;
		}
#ifdef HARDDEBUG
		if (m > 0) {
		    erts_printf("Pos %u\n",out[m-1].pos);
		    erts_printf("Len %u\n",out[m-1].len);
		}
		erts_printf("Rstart %u\n",rstart);
#endif
		if (m == 0 ||  out[m-1].pos + out[m-1].len <= rstart) {
		    if (m >= allocated) {
			if (!allocated) {
			    allocated = 10;
			    out = erts_alloc(ERTS_ALC_T_TMP, sizeof(FindallData) * allocated);
			} else {
			    allocated *= 2;
			    out = erts_realloc(ERTS_ALC_T_TMP, out,
					       sizeof(FindallData) * allocated);
			}
		    }
		    out[m].pos = rstart;
		    out[m].len = r->d;
#ifdef HARDDEBUG
		    out[m].id = r->final;
#endif
		    ++m;
#ifdef HARDDEBUG
		    erts_printf("Pushing %u\n",(unsigned) out[m-1].id);
#endif
		} else {
#ifdef HARDDEBUG
		    erts_printf("Backtracking %d steps\n",save_m - m);
#endif
		    m = save_m;
		}
		r = r->h;
	    }
	}
    }
    *data = out;
    return m;
}

/*
 * Boyer More - most obviously implemented more or less exactly as Christian Charras
 * and Thierry Lecroq describes it in "Handbook of Exact String-Matching Algorithms"
 * http://www-igm.univ-mlv.fr/~lecroq/string/
 */

/*
 * Call this to compute badshifts array
 */
static void compute_badshifts(BMData *bmd)
{
    Sint i;
    Sint m = bmd->len;

    for (i = 0; i < ALPHABET_SIZE; ++i) {
	bmd->badshift[i] = m;
    }
    for (i = 0; i < m - 1; ++i) {
	bmd->badshift[bmd->x[i]] = m - i - 1;
    }
}

/* Helper for "compute_goodshifts" */
static void compute_suffixes(byte *x, Sint m, Sint *suffixes)
{
    int f,g,i;

    suffixes[m - 1] = m;

    f = 0; /* To avoid use before set warning */

    g = m - 1;

    for (i = m - 2; i >= 0; --i) {
	if (i > g && suffixes[i + m - f] < i - g) {
	    suffixes[i] = suffixes[i + m - 1 - f];
	} else {
	    if (i < g) {
		g = i;
	    }
	    f = i;
	    while ( g >= 0 && x[g] == x[g + m - 1 - f] ) {
		--g;
	    }
	    suffixes[i] = f - g;
	}
    }
}

/*
 * Call this to compute goodshift array
 */
static void compute_goodshifts(BMData *bmd)
{
    Sint m = bmd->len;
    byte *x = bmd->x;
    Sint i, j;
    Sint *suffixes = erts_alloc(ERTS_ALC_T_TMP, m * sizeof(Uint));

    compute_suffixes(x, m, suffixes);

    for (i = 0; i < m; ++i) {
	bmd->goodshift[i] = m;
    }

    j = 0;

    for (i = m - 1; i >= -1; --i) {
	if (i == -1 || suffixes[i] == i + 1) {
	    while (j < m - 1 - i) {
		if (bmd->goodshift[j] == m) {
		    bmd->goodshift[j] = m - 1 - i;
		}
		++j;
	    }
	}
    }
    for (i = 0; i <= m - 2; ++i) {
	bmd->goodshift[m - 1 - suffixes[i]] = m - 1 - i;
    }
    erts_free(ERTS_ALC_T_TMP, suffixes);
}

static Sint bm_find_first_match(BMData *bmd, byte *haystack, Uint len)
{
    Sint blen = bmd->len;
    Sint *gs = bmd->goodshift;
    Sint *bs = bmd->badshift;
    byte *needle = bmd->x;
    Sint i;
    Sint j = 0;

    while (j <= len - blen) {
	for (i = blen - 1; i >= 0 && needle[i] == haystack[i + j]; --i)
	    ;
	if (i < 0) { /* found */
	    return j;
	}
	j += MAX(gs[i],bs[haystack[i+j]] - blen + 1 + i);
    }
    return -1;
}

/*
 * Interface functions (i.e. "bif's")
 */

/*
 * Search functionality interfaces
 */

static int do_binary_match_compile(Eterm argument, Eterm *tag, Binary **binp)
{
    Eterm t, b, comp_term = NIL;
    Uint characters;
    Uint words;
    int return_tuple = 0;

    characters = 0;
    words = 0;

    if (is_list(argument)) {
	return_tuple = 1;
	t = argument;
	while (is_list(t)) {
	    b = CAR(list_val(t));
	    t = CDR(list_val(t));
	    if (!is_binary(b)) {
		goto badarg;
	    }
	    if (binary_bitsize(b) != 0) {
		goto badarg;
	    }
	    ++words;
	    characters += binary_size(b);
	}
	if (is_not_nil(t)) {
	    goto badarg;
	}
	if (words > 1) {
	    comp_term = argument;
	} else {
	    comp_term = CAR(list_val(argument));
	}
    } else if (is_binary(argument)) {
	if (binary_bitsize(argument) != 0) {
	    goto badarg;
	}
	words = 1;
	comp_term = argument;
	characters = binary_size(argument);
    }

    if (characters == 0) {
	goto badarg;
    }
    ASSERT(words > 0);

    if (words == 1) {
	byte *bytes;
	Uint bitoffs, bitsize;
	byte *temp_alloc = NULL;
	MyAllocator my;
	BMData *bmd;
	Binary *bin;

	ERTS_GET_BINARY_BYTES(comp_term, bytes, bitoffs, bitsize);
	if (bitoffs != 0) {
	    bytes = erts_get_aligned_binary_bytes(comp_term, &temp_alloc);
	}
	bmd = create_bmdata(&my, bytes, characters, &bin);
	bmd->ret_tuple = return_tuple;
	compute_badshifts(bmd);
	compute_goodshifts(bmd);
	erts_free_aligned_binary_bytes(temp_alloc);
	CHECK_ALLOCATOR(my);
	*tag = am_bm;
	*binp = bin;
	return 0;
    } else {
	ACTrie *act;
	MyAllocator my;
	ACNode **qbuff;
	Binary *bin;

	act = create_acdata(&my, characters, &qbuff, &bin);
	t = comp_term;
	while (is_list(t)) {
	    byte *bytes;
	    Uint bitoffs, bitsize;
	    byte *temp_alloc = NULL;
	    b = CAR(list_val(t));
	    t = CDR(list_val(t));
	    ERTS_GET_BINARY_BYTES(b, bytes, bitoffs, bitsize);
	    if (bitoffs != 0) {
		bytes = erts_get_aligned_binary_bytes(b, &temp_alloc);
	    }
	    ac_add_one_pattern(&my,act,bytes,binary_size(b));
	    erts_free_aligned_binary_bytes(temp_alloc);
	}
	ac_compute_failure_functions(act,qbuff);
	CHECK_ALLOCATOR(my);
	erts_free(ERTS_ALC_T_TMP,qbuff);
	*tag = am_ac;
	*binp = bin;
	return 0;
    }
 badarg:
    return -1;
}

BIF_RETTYPE binary_compile_pattern_1(BIF_ALIST_1)
{
    Binary *bin;
    Eterm tag, ret;
    Eterm *hp;

    if (do_binary_match_compile(BIF_ARG_1,&tag,&bin)) {
	BIF_ERROR(BIF_P,BADARG);
    }
    hp = HAlloc(BIF_P, PROC_BIN_SIZE+3);
    ret = erts_mk_magic_binary_term(&hp, &MSO(BIF_P), bin);
    ret = TUPLE2(hp, tag, ret);
    BIF_RET(ret);
}


BIF_RETTYPE binary_match_3(BIF_ALIST_3)
{
    Uint hsstart, hslen;
    Eterm *tp;
    Eterm type;
    Binary *bin;
    Eterm bin_term = NIL;
    if (is_not_binary(BIF_ARG_1)) {
	goto badarg;
    }
    if (BIF_ARG_3 == ((Eterm) 0)) {
	/* Invalid term, we're called from binary_match_2... */
	hsstart = 0;
	hslen = binary_size(BIF_ARG_1);
    } else if (is_tuple(BIF_ARG_3)) {
	tp = tuple_val(BIF_ARG_3);
	if (arityval(*tp) != 2) {
	    goto badarg;
	}
	if (!term_to_Uint(tp[1], &hsstart) || ((hsstart >> 16) >> 16) != 0) {
	    goto badarg;
	}
	if (!term_to_Uint(tp[2], &hslen) || ((hslen >> 16) >> 16) != 0) {
	    goto badarg;
	}
	if (hslen < hsstart) {
	    goto badarg;
	}
	if (hslen > binary_size(BIF_ARG_1)-1) {
	    goto badarg; /* XXX:PaN or should we take as much as we have ? */
	}
	hslen = hslen + 1 - hsstart;
    } else {
	goto badarg;
    }
    if (hslen == 0) {
	BIF_RET(am_nomatch);
    }
    if (is_tuple(BIF_ARG_2)) {
	tp = tuple_val(BIF_ARG_2);
	if (arityval(*tp) != 2 || is_not_atom(tp[1])) {
	    goto badarg;
	}
	if (((tp[1] != am_bm) && (tp[1] != am_ac)) ||
	    !ERTS_TERM_IS_MAGIC_BINARY(tp[2])) {
	    goto badarg;
	}
	type = tp[1];
	bin = ((ProcBin *) binary_val(tp[2]))->val;
	if (ERTS_MAGIC_BIN_DESTRUCTOR(bin) != cleanup_my_data) {
	    goto badarg;
	}
	bin_term = tp[2];
    } else if (do_binary_match_compile(BIF_ARG_2,&type,&bin)) {
	goto badarg;
    }

    if (type == am_bm) {
	BMData *bm;
	Sint pos;
	byte *bytes;
	Uint bitoffs, bitsize;
	byte *temp_alloc = NULL;
	Eterm ret;
	Eterm *hp;
	bm = (BMData *) ERTS_MAGIC_BIN_DATA(bin);
#ifdef HARDDEBUG
	dump_bm_data(bm);
#endif
	ERTS_GET_BINARY_BYTES(BIF_ARG_1, bytes, bitoffs, bitsize);
	if (bitsize != 0) {
	    goto badarg;
	}
	if (bitoffs != 0) {
	    bytes = erts_get_aligned_binary_bytes(BIF_ARG_1, &temp_alloc);
	}
	pos = bm_find_first_match(bm, bytes + hsstart, hslen);
	if (pos < 0) {
	    ret = am_nomatch;
	} else {
	    Eterm erlen = erts_make_integer((Uint) bm->len, BIF_P);
	    ret = erts_make_integer(pos+hsstart,BIF_P);
	    if (bm->ret_tuple) {
		hp = HAlloc(BIF_P,3);
		ret = TUPLE2(hp, ret, erlen);
	    }
	}
	erts_free_aligned_binary_bytes(temp_alloc);
	if (bin_term == NIL) {
	    erts_bin_free(bin);
	}
	BIF_RET(ret);
    } else if (type == am_ac) {
	ACTrie *act;
	Uint pos, msn,rlen;
	byte *bytes;
	Uint bitoffs, bitsize;
	byte *temp_alloc = NULL;
	Eterm ret;
	Eterm *hp;

	act = (ACTrie *) ERTS_MAGIC_BIN_DATA(bin);
#ifdef HARDDEBUG
	dump_ac_trie(act);
#endif
	ERTS_GET_BINARY_BYTES(BIF_ARG_1, bytes, bitoffs, bitsize);
	if (bitsize != 0) {
	    goto badarg;
	}
	if (bitoffs != 0) {
	    bytes = erts_get_aligned_binary_bytes(BIF_ARG_1, &temp_alloc);
	}
	msn = ac_find_first_match(act, bytes + hsstart,
				  hslen, &pos, &rlen);
	if (msn == 0) {
	    ret = am_nomatch;
	} else {
	    Eterm epos = erts_make_integer(pos+hsstart,BIF_P);
	    Eterm erlen = erts_make_integer(rlen,BIF_P);
	    hp = HAlloc(BIF_P,3);
	    ret = TUPLE2(hp, epos, erlen);
	}
	erts_free_aligned_binary_bytes(temp_alloc);
	if (bin_term == NIL) {
	    erts_bin_free(bin);
	}
	BIF_RET(ret);
    }
 badarg:
    BIF_ERROR(BIF_P,BADARG);
}
BIF_RETTYPE binary_match_2(BIF_ALIST_2)
{
    return binary_match_3(BIF_P,BIF_ARG_1,BIF_ARG_2,((Eterm) 0));
}

BIF_RETTYPE binary_matches_3(BIF_ALIST_3)
{
    Uint hsstart, hslen;
    Eterm *tp;
    Eterm type;
    Binary *bin;
    Eterm bin_term = NIL;
    if (is_not_binary(BIF_ARG_1)) {
	goto badarg;
    }
    if (BIF_ARG_3 == ((Eterm) 0)) {
	/* Invalid term, we're called from binary_match_2... */
	hsstart = 0;
	hslen = binary_size(BIF_ARG_1);
    } else if (is_tuple(BIF_ARG_3)) {
	tp = tuple_val(BIF_ARG_3);
	if (arityval(*tp) != 2) {
	    goto badarg;
	}
	if (!term_to_Uint(tp[1], &hsstart) || ((hsstart >> 16) >> 16) != 0) {
	    goto badarg;
	}
	if (!term_to_Uint(tp[2], &hslen) || ((hslen >> 16) >> 16) != 0) {
	    goto badarg;
	}
	if (hslen < hsstart) {
	    goto badarg;
	}
	if (hslen > binary_size(BIF_ARG_1)-1) {
	    goto badarg; /* XXX:PaN or should we take as much as we have ? */
	}
	hslen = hslen + 1 - hsstart;
    } else {
	goto badarg;
    }
    if (hslen == 0) {
	BIF_RET(am_nomatch);
    }
    if (is_tuple(BIF_ARG_2)) {
	tp = tuple_val(BIF_ARG_2);
	if (arityval(*tp) != 2 || is_not_atom(tp[1])) {
	    goto badarg;
	}
	if (((tp[1] != am_bm) && (tp[1] != am_ac)) ||
	    !ERTS_TERM_IS_MAGIC_BINARY(tp[2])) {
	    goto badarg;
	}
	type = tp[1];
	bin = ((ProcBin *) binary_val(tp[2]))->val;
	if (ERTS_MAGIC_BIN_DESTRUCTOR(bin) != cleanup_my_data) {
	    goto badarg;
	}
	bin_term = tp[2];
    } else if (do_binary_match_compile(BIF_ARG_2,&type,&bin)) {
	goto badarg;
    }

    if (type == am_bm) {
	BMData *bm;
	Sint pos;
	byte *bytes;
	Uint bitoffs, bitsize;
	byte *temp_alloc = NULL;
	Eterm ret;
	Eterm *hp;
	bm = (BMData *) ERTS_MAGIC_BIN_DATA(bin);
#ifdef HARDDEBUG
	dump_bm_data(bm);
#endif
	ERTS_GET_BINARY_BYTES(BIF_ARG_1, bytes, bitoffs, bitsize);
	if (bitsize != 0) {
	    goto badarg;
	}
	if (bitoffs != 0) {
	    bytes = erts_get_aligned_binary_bytes(BIF_ARG_1, &temp_alloc);
	}
	pos = bm_find_first_match(bm, bytes + hsstart, hslen);
	if (pos < 0) {
	    ret = am_nomatch;
	} else {
	    Eterm erlen = erts_make_integer((Uint) bm->len, BIF_P);
	    ret = erts_make_integer(pos,BIF_P);
	    if (bm->ret_tuple) {
		hp = HAlloc(BIF_P,3);
		ret = TUPLE2(hp, ret, erlen);
	    }
	}
	erts_free_aligned_binary_bytes(temp_alloc);
	if (bin_term == NIL) {
	    erts_bin_free(bin);
	}
	BIF_RET(ret);
    } else if (type == am_ac) {
	ACTrie *act;
	Uint rlen;
	Sint i;
	FindallData *fad;
	byte *bytes;
	Uint bitoffs, bitsize;
	byte *temp_alloc = NULL;
	Eterm ret,tpl;
	Eterm *hp;

	act = (ACTrie *) ERTS_MAGIC_BIN_DATA(bin);
#ifdef HARDDEBUG
	dump_ac_trie(act);
#endif
	ERTS_GET_BINARY_BYTES(BIF_ARG_1, bytes, bitoffs, bitsize);
	if (bitsize != 0) {
	    goto badarg;
	}
	if (bitoffs != 0) {
	    bytes = erts_get_aligned_binary_bytes(BIF_ARG_1, &temp_alloc);
	}
	rlen = ac_find_all_non_overlapping(act, bytes + hsstart,
					   hslen, &fad);
	if (rlen == 0) {
	    ret = am_nomatch;
	} else {
	    for (i = 0; i < rlen; ++i) {
		fad[i].epos = erts_make_integer(fad[i].pos,BIF_P);
		fad[i].elen = erts_make_integer(fad[i].len,BIF_P);
	    }
	    hp = HAlloc(BIF_P,rlen * (3 + 2));
	    ret = NIL;
	    for (i = rlen - 1; i >= 0; --i) {
		tpl = TUPLE2(hp, fad[i].epos, fad[i].elen);
		hp +=3;
		ret = CONS(hp,tpl,ret);
		hp += 2;
	    }
	}
	erts_free_aligned_binary_bytes(temp_alloc);
	if (fad != NULL) {
	    erts_free(ERTS_ALC_T_TMP,fad);
	}
	if (bin_term == NIL) {
	    erts_bin_free(bin);
	}
	BIF_RET(ret);
    }
 badarg:
    BIF_ERROR(BIF_P,BADARG);
}
BIF_RETTYPE binary_matches_2(BIF_ALIST_2)
{
    return binary_matches_3(BIF_P,BIF_ARG_1,BIF_ARG_2,((Eterm) 0));
}

/*
 * Hard debug functions (dump) for the search structures
 */

#ifdef HARDDEBUG
static void dump_bm_data(BMData *bm)
{
    int i,j;
    erts_printf("Dumping Boyer-More structure.\n");
    erts_printf("=============================\n");
    erts_printf("Return tuple: %d\n",bm->ret_tuple);
    erts_printf("Searchstring [%ld]:\n", bm->len);
    erts_printf("<<");
    for (i = 0; i < bm->len; ++i) {
	if (i > 0) {
	    erts_printf(", ");
	}
	erts_printf("%d", (int) bm->x[i]);
	if (bm->x[i] >= 'A') {
	    erts_printf(" ($%c)",(char) bm->x[i]);
	}
    }
    erts_printf(">>\n");
    erts_printf("GoodShift array:\n");
    for (i = 0; i < bm->len; ++i) {
	erts_printf("GoodShift[%d]: %ld\n", i, bm->goodshift[i]);
    }
    erts_printf("BadShift array:\n");
    j = 0;
    for (i = 0; i < ALPHABET_SIZE; i += j) {
	for (j = 0; i + j < ALPHABET_SIZE && j < 6; ++j) {
	    erts_printf("BS[%03d]:%02ld, ", i+j, bm->badshift[i+j]);
	}
	erts_printf("\n");
    }
}

static void dump_ac_node(ACNode *node, int indent, int ch) {
    int i;
    char *spaces = erts_alloc(ERTS_ALC_T_TMP, 10 * indent + 1);
    memset(spaces,' ',10*indent);
    spaces[10*indent] = '\0';
    erts_printf("%s-> %c\n",spaces,ch);
    erts_printf("%sId: %u\n",spaces,(unsigned) node->id);
    erts_printf("%sD: %u\n",spaces,(unsigned)node->d);
    erts_printf("%sFinal: %d\n",spaces,(int)node->final);
    erts_printf("%sFail: %u\n",spaces,(unsigned)node->h->id);
    erts_free(ERTS_ALC_T_TMP,spaces);
    for(i=0;i<ALPHABET_SIZE;++i) {
	if (node->g[i] != NULL && node->g[i] != node) {
	    dump_ac_node(node->g[i],indent+1,i);
	}
    }
}


static void dump_ac_trie(ACTrie *act)
{
    erts_printf("Aho Corasick Trie dump.\n");
    erts_printf("=======================\n");
    erts_printf("Node counter: %u\n", (unsigned) act->idc);
    erts_printf("Searchstring counter: %u\n", (unsigned) act->counter);
    erts_printf("Trie:\n");
    dump_ac_node(act->root, 0, '0');
    return;
}
#endif