/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 2002-2013. All Rights Reserved.
*
* The contents of this file are subject to the Erlang Public License,
* Version 1.1, (the "License"); you may not use this file except in
* compliance with the License. You should have received a copy of the
* Erlang Public License along with this software. If not, it can be
* retrieved online at http://www.erlang.org/.
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* %CopyrightEnd%
*/
/*
* Description: A memory allocator utility. This utility provides
* management of (multiple) memory segments, coalescing
* of free blocks, etc. Allocators are implemented by
* implementing a callback-interface which is called by
* this utility. The only task the callback-module has to
* perform is to supervise the free blocks.
*
* Author: Rickard Green
*/
/*
* Alloc util will enforce 8 byte alignment if sys_alloc and mseg_alloc at
* least enforces 8 byte alignment. If sys_alloc only enforces 4 byte
* alignment then alloc util will do so too.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "global.h"
#include "big.h"
#include "erl_mtrace.h"
#define GET_ERL_ALLOC_UTIL_IMPL
#include "erl_alloc_util.h"
#include "erl_mseg.h"
#include "erl_threads.h"
#include "erl_thr_progress.h"
#ifdef ERTS_ENABLE_LOCK_COUNT
#include "erl_lock_count.h"
#endif
#if defined(ERTS_ALLOC_UTIL_HARD_DEBUG) && defined(__GNUC__)
#warning "* * * * * * * * * *"
#warning "* * * * * * * * * *"
#warning "* * NOTE: * *"
#warning "* * Hard debug * *"
#warning "* * is enabled! * *"
#warning "* * * * * * * * * *"
#warning "* * * * * * * * * *"
#endif
#define ERTS_ALCU_DD_OPS_LIM_HIGH 20
#define ERTS_ALCU_DD_OPS_LIM_LOW 2
/* Fix alloc limit */
#define ERTS_ALCU_FIX_MAX_LIST_SZ 1000
#define ERTS_ALC_FIX_MAX_SHRINK_OPS 30
#define ALLOC_ZERO_EQ_NULL 0
#ifndef ERTS_MSEG_FLG_2POW
# define ERTS_MSEG_FLG_2POW 0
#endif
#ifndef ERTS_MSEG_FLG_NONE
# define ERTS_MSEG_FLG_NONE 0
#endif
static int atoms_initialized = 0;
static int initialized = 0;
#define INV_SYS_ALLOC_CARRIER_MASK ((UWord) (sys_alloc_carrier_size - 1))
#define SYS_ALLOC_CARRIER_MASK (~INV_SYS_ALLOC_CARRIER_MASK)
#define SYS_ALLOC_CARRIER_FLOOR(X) ((X) & SYS_ALLOC_CARRIER_MASK)
#define SYS_ALLOC_CARRIER_CEILING(X) \
SYS_ALLOC_CARRIER_FLOOR((X) + INV_SYS_ALLOC_CARRIER_MASK)
#if 0
/* Can be useful for debugging */
#define MBC_REALLOC_ALWAYS_MOVES
#endif
/* alloc_util global parameters */
static Uint sys_alloc_carrier_size;
#if HAVE_ERTS_MSEG
static Uint max_mseg_carriers;
#endif
static int allow_sys_alloc_carriers;
#define ONE_GIGA (1000000000)
#define ERTS_ALC_CC_GIGA_VAL(CC) ((CC) / ONE_GIGA)
#define ERTS_ALC_CC_VAL(CC) ((CC) % ONE_GIGA)
#define INC_CC(CC) ((CC)++)
#define DEC_CC(CC) ((CC)--)
/* Multi block carrier (MBC) memory layout in R16:
Empty MBC:
[Carrier_t|pad|Block_t L0T|fhdr| free... ]
MBC after allocating first block:
[Carrier_t|pad|Block_t 000| udata |pad|Block_t L0T|fhdr| free... ]
MBC after allocating second block:
[Carrier_t|pad|Block_t 000| udata |pad|Block_t 000| udata |pad|Block_t L0T|fhdr| free... ]
MBC after deallocating first block:
[Carrier_t|pad|Block_t 00T|fhdr| free |FreeBlkFtr_t|Block_t 0P0| udata |pad|Block_t L0T|fhdr| free... ]
udata = Allocated user data
pad = Padding to ensure correct alignment for user data
fhdr = Allocator specific header to keep track of free block
free = Unused free memory
T = This block is free (THIS_FREE_BLK_HDR_FLG)
P = Previous block is free (PREV_FREE_BLK_HDR_FLG)
L = Last block in carrier (LAST_BLK_HDR_FLG)
*/
/* Single block carrier (SBC):
[Carrier_t|pad|Block_t 111| udata... ]
*/
/* Blocks ... */
#define UNUSED0_BLK_FTR_FLG (((UWord) 1) << 0)
#define UNUSED1_BLK_FTR_FLG (((UWord) 1) << 1)
#define UNUSED2_BLK_FTR_FLG (((UWord) 1) << 2)
#if MBC_ABLK_OFFSET_BITS
# define ABLK_HDR_SZ (offsetof(Block_t,u))
#else
# define ABLK_HDR_SZ (sizeof(Block_t))
#endif
#define FBLK_FTR_SZ (sizeof(FreeBlkFtr_t))
#define UMEMSZ2BLKSZ(AP, SZ) \
(ABLK_HDR_SZ + (SZ) <= (AP)->min_block_size \
? (AP)->min_block_size \
: UNIT_CEILING(ABLK_HDR_SZ + (SZ)))
#define UMEM2BLK(P) ((Block_t *) (((char *) (P)) - ABLK_HDR_SZ))
#define BLK2UMEM(P) ((void *) (((char *) (P)) + ABLK_HDR_SZ))
#define PREV_BLK_SZ(B) ((UWord) (((FreeBlkFtr_t *)(B))[-1]))
#define SET_BLK_SZ_FTR(B, SZ) \
(((FreeBlkFtr_t *) (((char *) (B)) + (SZ)))[-1] = (SZ))
#define SET_MBC_ABLK_SZ(B, SZ) \
(ASSERT(((SZ) & FLG_MASK) == 0), \
(B)->bhdr = (((B)->bhdr) & ~MBC_ABLK_SZ_MASK) | (SZ))
#define SET_MBC_FBLK_SZ(B, SZ) \
(ASSERT(((SZ) & FLG_MASK) == 0), \
(B)->bhdr = (((B)->bhdr) & ~MBC_FBLK_SZ_MASK) | (SZ))
#define SET_SBC_BLK_SZ(B, SZ) \
(ASSERT(((SZ) & FLG_MASK) == 0), \
(B)->bhdr = (((B)->bhdr) & ~SBC_BLK_SZ_MASK) | (SZ))
#define SET_PREV_BLK_FREE(AP,B) \
(ASSERT(!IS_MBC_FIRST_BLK(AP,B)), \
ASSERT(!IS_FREE_BLK(B)), \
(B)->bhdr |= PREV_FREE_BLK_HDR_FLG)
#define SET_PREV_BLK_ALLOCED(B) \
((B)->bhdr &= ~PREV_FREE_BLK_HDR_FLG)
#define SET_LAST_BLK(B) \
((B)->bhdr |= LAST_BLK_HDR_FLG)
#define SET_NOT_LAST_BLK(B) \
((B)->bhdr &= ~LAST_BLK_HDR_FLG)
#define SBH_THIS_FREE THIS_FREE_BLK_HDR_FLG
#define SBH_PREV_FREE PREV_FREE_BLK_HDR_FLG
#define SBH_LAST_BLK LAST_BLK_HDR_FLG
#if MBC_ABLK_OFFSET_BITS
# define MBC_SZ_MAX_LIMIT ((((UWord)1 << MBC_ABLK_OFFSET_BITS) - 1) << ERTS_SUPER_ALIGN_BITS)
# define BLK_CARRIER_OFFSET(B, C) (((char*)(B) - (char*)(C)) >> ERTS_SACRR_UNIT_SHIFT)
# define SET_MBC_ABLK_HDR(B, Sz, F, C) \
(ASSERT(((Sz) & ~MBC_ABLK_SZ_MASK) == 0), \
ASSERT(!((UWord)(F) & (~FLG_MASK|THIS_FREE_BLK_HDR_FLG))), \
(B)->bhdr = ((Sz) | (F) | (BLK_CARRIER_OFFSET(B,C) << MBC_ABLK_OFFSET_SHIFT)))
# define SET_MBC_FBLK_HDR(B, Sz, F, C) \
(ASSERT(((Sz) & ~MBC_FBLK_SZ_MASK) == 0), \
ASSERT(((UWord)(F) & (~FLG_MASK|THIS_FREE_BLK_HDR_FLG|PREV_FREE_BLK_HDR_FLG)) == THIS_FREE_BLK_HDR_FLG), \
(B)->bhdr = ((Sz) | (F)), \
(B)->u.carrier = (C))
# define IS_MBC_FIRST_ABLK(AP,B) \
((((UWord)(B) & ~ERTS_SACRR_UNIT_MASK) == MBC_HEADER_SIZE(AP)) \
&& ((B)->bhdr & MBC_ABLK_OFFSET_MASK) == 0)
# define IS_MBC_FIRST_FBLK(AP,B) \
((char*)(B) == (char*)((B)->u.carrier) + MBC_HEADER_SIZE(AP))
# define IS_MBC_FIRST_BLK(AP,B) \
(IS_FREE_BLK(B) ? IS_MBC_FIRST_FBLK(AP,B) : IS_MBC_FIRST_ABLK(AP,B))
# define SET_BLK_FREE(B) \
(ASSERT(!IS_PREV_BLK_FREE(B)), \
(B)->u.carrier = ABLK_TO_MBC(B), \
(B)->bhdr |= THIS_FREE_BLK_HDR_FLG, \
(B)->bhdr &= (MBC_ABLK_SZ_MASK|FLG_MASK))
# define SET_BLK_ALLOCED(B) \
(ASSERT(((B)->bhdr & (MBC_ABLK_OFFSET_MASK|THIS_FREE_BLK_HDR_FLG)) == THIS_FREE_BLK_HDR_FLG), \
(B)->bhdr &= ~THIS_FREE_BLK_HDR_FLG, \
(B)->bhdr |= (BLK_CARRIER_OFFSET(B,(B)->u.carrier) << MBC_ABLK_OFFSET_SHIFT))
#else /* !MBC_ABLK_OFFSET_BITS */
# define MBC_SZ_MAX_LIMIT ((UWord)~0)
# define SET_MBC_ABLK_HDR(B, Sz, F, C) \
(ASSERT(((Sz) & FLG_MASK) == 0), \
ASSERT(!((UWord)(F) & (~FLG_MASK|THIS_FREE_BLK_HDR_FLG))), \
ASSERT((UWord)(F) < SBC_BLK_HDR_FLG), \
(B)->bhdr = ((Sz) | (F)), \
(B)->carrier = (C))
# define SET_MBC_FBLK_HDR(B, Sz, F, C) \
(ASSERT(((Sz) & FLG_MASK) == 0), \
ASSERT(((UWord)(F) & (~FLG_MASK|THIS_FREE_BLK_HDR_FLG|PREV_FREE_BLK_HDR_FLG)) == THIS_FREE_BLK_HDR_FLG), \
(B)->bhdr = ((Sz) | (F)), \
(B)->carrier = (C))
# define IS_MBC_FIRST_BLK(AP,B) \
((char*)(B) == (char*)((B)->carrier) + MBC_HEADER_SIZE(AP))
# define IS_MBC_FIRST_ABLK(AP,B) IS_MBC_FIRST_BLK(AP,B)
# define IS_MBC_FIRST_FBLK(AP,B) IS_MBC_FIRST_BLK(AP,B)
# define SET_BLK_FREE(B) \
(ASSERT(!IS_PREV_BLK_FREE(B)), \
(B)->bhdr |= THIS_FREE_BLK_HDR_FLG)
# define SET_BLK_ALLOCED(B) \
((B)->bhdr &= ~THIS_FREE_BLK_HDR_FLG)
#endif /* !MBC_ABLK_OFFSET_BITS */
#define SET_SBC_BLK_HDR(B, Sz) \
(ASSERT(((Sz) & FLG_MASK) == 0), (B)->bhdr = ((Sz) | (SBC_BLK_HDR_FLG)))
#define BLK_UMEM_SZ(B) \
(BLK_SZ(B) - (ABLK_HDR_SZ))
#define IS_PREV_BLK_FREE(B) \
((B)->bhdr & PREV_FREE_BLK_HDR_FLG)
#define IS_PREV_BLK_ALLOCED(B) \
(!IS_PREV_BLK_FREE((B)))
#define IS_ALLOCED_BLK(B) \
(!IS_FREE_BLK((B)))
#define IS_LAST_BLK(B) \
((B)->bhdr & LAST_BLK_HDR_FLG)
#define IS_NOT_LAST_BLK(B) \
(!IS_LAST_BLK((B)))
#define GET_LAST_BLK_HDR_FLG(B) \
((B)->bhdr & LAST_BLK_HDR_FLG)
#define GET_THIS_FREE_BLK_HDR_FLG(B) \
((B)->bhdr & THIS_FREE_BLK_HDR_FLG)
#define GET_PREV_FREE_BLK_HDR_FLG(B) \
((B)->bhdr & PREV_FREE_BLK_HDR_FLG)
#define GET_BLK_HDR_FLGS(B) \
((B)->bhdr & FLG_MASK)
#define NXT_BLK(B) \
(ASSERT(IS_MBC_BLK(B)), \
(Block_t *) (((char *) (B)) + MBC_BLK_SZ((B))))
#define PREV_BLK(B) \
((Block_t *) (((char *) (B)) - PREV_BLK_SZ((B))))
#define BLK_AFTER(B,Sz) \
((Block_t *) (((char *) (B)) + (Sz)))
#define BLK_SZ(B) ((B)->bhdr & (((B)->bhdr & THIS_FREE_BLK_HDR_FLG) ? MBC_FBLK_SZ_MASK : MBC_ABLK_SZ_MASK))
/* Carriers ... */
/* #define ERTS_ALC_CPOOL_DEBUG */
#if defined(DEBUG) && !defined(ERTS_ALC_CPOOL_DEBUG)
# define ERTS_ALC_CPOOL_DEBUG
#endif
#ifndef ERTS_SMP
# undef ERTS_ALC_CPOOL_DEBUG
#endif
#ifdef ERTS_ALC_CPOOL_DEBUG
# define ERTS_ALC_CPOOL_ASSERT(A) \
((void) ((A) \
? 1 \
: (erts_alcu_assert_failed(#A, \
(char *) __FILE__, \
__LINE__, \
(char *) __func__), \
0)))
#else
# define ERTS_ALC_CPOOL_ASSERT(A) ((void) 1)
#endif
#ifdef ERTS_SMP
#define ERTS_ALC_IS_CPOOL_ENABLED(A) ((A)->cpool.util_limit)
#else
#define ERTS_ALC_IS_CPOOL_ENABLED(A) (0)
#endif
#ifdef ERTS_SMP
#define ERTS_ALC_CPOOL_MAX_DISABLE_ABANDON 1000
#define ERTS_ALC_CPOOL_ALLOC_OP_INC 8
#define ERTS_ALC_CPOOL_FREE_OP_DEC 10
#define ERTS_ALC_CPOOL_ALLOC_OP(A) \
do { \
if ((A)->cpool.disable_abandon < ERTS_ALC_CPOOL_MAX_DISABLE_ABANDON) { \
(A)->cpool.disable_abandon += ERTS_ALC_CPOOL_ALLOC_OP_INC; \
if ((A)->cpool.disable_abandon > ERTS_ALC_CPOOL_MAX_DISABLE_ABANDON) \
(A)->cpool.disable_abandon = ERTS_ALC_CPOOL_MAX_DISABLE_ABANDON; \
} \
} while (0)
#if ERTS_ALC_CPOOL_ALLOC_OP_INC >= ERTS_ALC_CPOOL_FREE_OP_DEC
# error "Implementation assume ERTS_ALC_CPOOL_ALLOC_OP_INC < ERTS_ALC_CPOOL_FREE_OP_DEC"
#endif
#define ERTS_ALC_CPOOL_REALLOC_OP(A) \
do { \
if ((A)->cpool.disable_abandon) { \
(A)->cpool.disable_abandon -= (ERTS_ALC_CPOOL_FREE_OP_DEC \
- ERTS_ALC_CPOOL_ALLOC_OP_INC); \
if ((A)->cpool.disable_abandon < 0) \
(A)->cpool.disable_abandon = 0; \
} \
} while (0)
#define ERTS_ALC_CPOOL_FREE_OP(A) \
do { \
if ((A)->cpool.disable_abandon) { \
(A)->cpool.disable_abandon -= ERTS_ALC_CPOOL_FREE_OP_DEC; \
if ((A)->cpool.disable_abandon < 0) \
(A)->cpool.disable_abandon = 0; \
} \
} while (0)
#else
#define ERTS_ALC_CPOOL_ALLOC_OP(A)
#define ERTS_ALC_CPOOL_REALLOC_OP(A)
#define ERTS_ALC_CPOOL_FREE_OP(A)
#endif
#define ERTS_CRR_ALCTR_FLG_IN_POOL (((erts_aint_t) 1) << 0)
#define ERTS_CRR_ALCTR_FLG_BUSY (((erts_aint_t) 1) << 1)
#define ERTS_CRR_ALCTR_FLG_MASK (ERTS_CRR_ALCTR_FLG_IN_POOL | \
ERTS_CRR_ALCTR_FLG_BUSY)
#ifdef ERTS_SMP
#define SBC_HEADER_SIZE \
(UNIT_CEILING(sizeof(Carrier_t) \
- sizeof(ErtsAlcCPoolData_t) \
+ ABLK_HDR_SZ) \
- ABLK_HDR_SZ)
#else
#define SBC_HEADER_SIZE \
(UNIT_CEILING(sizeof(Carrier_t) \
+ ABLK_HDR_SZ) \
- ABLK_HDR_SZ)
#endif
#define MBC_HEADER_SIZE(AP) ((AP)->mbc_header_size)
#define MSEG_CARRIER_HDR_FLAG (((UWord) 1) << 0)
#define SBC_CARRIER_HDR_FLAG (((UWord) 1) << 1)
#define SCH_SYS_ALLOC 0
#define SCH_MSEG MSEG_CARRIER_HDR_FLAG
#define SCH_MBC 0
#define SCH_SBC SBC_CARRIER_HDR_FLAG
#define SET_CARRIER_HDR(C, Sz, F, AP) \
(ASSERT(((Sz) & FLG_MASK) == 0), (C)->chdr = ((Sz) | (F)), \
erts_smp_atomic_init_nob(&(C)->allctr, (erts_aint_t) (AP)))
#define BLK_TO_SBC(B) \
((Carrier_t *) (((char *) (B)) - SBC_HEADER_SIZE))
#define FIRST_BLK_TO_MBC(AP, B) \
((Carrier_t *) (((char *) (B)) - MBC_HEADER_SIZE(AP)))
#define MBC_TO_FIRST_BLK(AP, P) \
((Block_t *) (((char *) (P)) + MBC_HEADER_SIZE(AP)))
#define SBC2BLK(AP, P) \
((Block_t *) (((char *) (P)) + SBC_HEADER_SIZE))
#define SBC2UMEM(AP, P) \
((void *) (((char *) (P)) + (SBC_HEADER_SIZE + ABLK_HDR_SZ)))
#define IS_MSEG_CARRIER(C) \
((C)->chdr & MSEG_CARRIER_HDR_FLAG)
#define IS_SYS_ALLOC_CARRIER(C) \
(!IS_MSEG_CARRIER((C)))
#define IS_SB_CARRIER(C) \
((C)->chdr & SBC_CARRIER_HDR_FLAG)
#define IS_MB_CARRIER(C) \
(!IS_SB_CARRIER((C)))
#define SET_CARRIER_SZ(C, SZ) \
(ASSERT(((SZ) & FLG_MASK) == 0), \
((C)->chdr = ((C)->chdr & FLG_MASK) | (SZ)))
#define CFLG_SBC (1 << 0)
#define CFLG_MBC (1 << 1)
#define CFLG_FORCE_MSEG (1 << 2)
#define CFLG_FORCE_SYS_ALLOC (1 << 3)
#define CFLG_FORCE_SIZE (1 << 4)
#define CFLG_MAIN_CARRIER (1 << 5)
#define CFLG_NO_CPOOL (1 << 6)
#ifdef ERTS_ALLOC_UTIL_HARD_DEBUG
static void check_blk_carrier(Allctr_t *, Block_t *);
#define HARD_CHECK_BLK_CARRIER(A, B) check_blk_carrier((A), (B))
#else
#define HARD_CHECK_BLK_CARRIER(A, B)
#endif
/* Statistics updating ... */
#ifdef DEBUG
#define DEBUG_CHECK_CARRIER_NO_SZ(AP) \
ASSERT(((AP)->sbcs.curr.norm.mseg.no \
&& (AP)->sbcs.curr.norm.mseg.size) \
|| (!(AP)->sbcs.curr.norm.mseg.no \
&& !(AP)->sbcs.curr.norm.mseg.size)); \
ASSERT(((AP)->sbcs.curr.norm.sys_alloc.no \
&& (AP)->sbcs.curr.norm.sys_alloc.size) \
|| (!(AP)->sbcs.curr.norm.sys_alloc.no \
&& !(AP)->sbcs.curr.norm.sys_alloc.size)); \
ASSERT(((AP)->mbcs.curr.norm.mseg.no \
&& (AP)->mbcs.curr.norm.mseg.size) \
|| (!(AP)->mbcs.curr.norm.mseg.no \
&& !(AP)->mbcs.curr.norm.mseg.size)); \
ASSERT(((AP)->mbcs.curr.norm.sys_alloc.no \
&& (AP)->mbcs.curr.norm.sys_alloc.size) \
|| (!(AP)->mbcs.curr.norm.sys_alloc.no \
&& !(AP)->mbcs.curr.norm.sys_alloc.size));
#else
#define DEBUG_CHECK_CARRIER_NO_SZ(AP)
#endif
#define STAT_SBC_ALLOC(AP, BSZ) \
(AP)->sbcs.blocks.curr.size += (BSZ); \
if ((AP)->sbcs.blocks.max.size < (AP)->sbcs.blocks.curr.size) \
(AP)->sbcs.blocks.max.size = (AP)->sbcs.blocks.curr.size; \
if ((AP)->sbcs.max.no < ((AP)->sbcs.curr.norm.mseg.no \
+ (AP)->sbcs.curr.norm.sys_alloc.no)) \
(AP)->sbcs.max.no = ((AP)->sbcs.curr.norm.mseg.no \
+ (AP)->sbcs.curr.norm.sys_alloc.no); \
if ((AP)->sbcs.max.size < ((AP)->sbcs.curr.norm.mseg.size \
+ (AP)->sbcs.curr.norm.sys_alloc.size)) \
(AP)->sbcs.max.size = ((AP)->sbcs.curr.norm.mseg.size \
+ (AP)->sbcs.curr.norm.sys_alloc.size)
#define STAT_MSEG_SBC_ALLOC(AP, CSZ, BSZ) \
do { \
(AP)->sbcs.curr.norm.mseg.no++; \
(AP)->sbcs.curr.norm.mseg.size += (CSZ); \
STAT_SBC_ALLOC((AP), (BSZ)); \
DEBUG_CHECK_CARRIER_NO_SZ((AP)); \
} while (0)
#define STAT_SYS_ALLOC_SBC_ALLOC(AP, CSZ, BSZ) \
do { \
(AP)->sbcs.curr.norm.sys_alloc.no++; \
(AP)->sbcs.curr.norm.sys_alloc.size += (CSZ); \
STAT_SBC_ALLOC((AP), (BSZ)); \
DEBUG_CHECK_CARRIER_NO_SZ((AP)); \
} while (0)
#define STAT_SBC_FREE(AP, BSZ) \
ASSERT((AP)->sbcs.blocks.curr.size >= (BSZ)); \
(AP)->sbcs.blocks.curr.size -= (BSZ)
#define STAT_MSEG_SBC_FREE(AP, CSZ, BSZ) \
do { \
ASSERT((AP)->sbcs.curr.norm.mseg.no > 0); \
(AP)->sbcs.curr.norm.mseg.no--; \
ASSERT((AP)->sbcs.curr.norm.mseg.size >= (CSZ)); \
(AP)->sbcs.curr.norm.mseg.size -= (CSZ); \
STAT_SBC_FREE((AP), (BSZ)); \
DEBUG_CHECK_CARRIER_NO_SZ((AP)); \
} while (0)
#define STAT_SYS_ALLOC_SBC_FREE(AP, CSZ, BSZ) \
do { \
ASSERT((AP)->sbcs.curr.norm.sys_alloc.no > 0); \
(AP)->sbcs.curr.norm.sys_alloc.no--; \
ASSERT((AP)->sbcs.curr.norm.sys_alloc.size >= (CSZ)); \
(AP)->sbcs.curr.norm.sys_alloc.size -= (CSZ); \
STAT_SBC_FREE((AP), (BSZ)); \
DEBUG_CHECK_CARRIER_NO_SZ((AP)); \
} while (0)
#define STAT_MBC_ALLOC(AP) \
if ((AP)->mbcs.max.no < ((AP)->mbcs.curr.norm.mseg.no \
+ (AP)->mbcs.curr.norm.sys_alloc.no)) \
(AP)->mbcs.max.no = ((AP)->mbcs.curr.norm.mseg.no \
+ (AP)->mbcs.curr.norm.sys_alloc.no); \
if ((AP)->mbcs.max.size < ((AP)->mbcs.curr.norm.mseg.size \
+ (AP)->mbcs.curr.norm.sys_alloc.size)) \
(AP)->mbcs.max.size = ((AP)->mbcs.curr.norm.mseg.size \
+ (AP)->mbcs.curr.norm.sys_alloc.size)
#define STAT_MSEG_MBC_ALLOC(AP, CSZ) \
do { \
(AP)->mbcs.curr.norm.mseg.no++; \
(AP)->mbcs.curr.norm.mseg.size += (CSZ); \
STAT_MBC_ALLOC((AP)); \
DEBUG_CHECK_CARRIER_NO_SZ((AP)); \
} while (0)
#define STAT_SYS_ALLOC_MBC_ALLOC(AP, CSZ) \
do { \
(AP)->mbcs.curr.norm.sys_alloc.no++; \
(AP)->mbcs.curr.norm.sys_alloc.size += (CSZ); \
STAT_MBC_ALLOC((AP)); \
DEBUG_CHECK_CARRIER_NO_SZ((AP)); \
} while (0)
#define STAT_MBC_CPOOL_FETCH(AP, CRR) \
do { \
UWord csz__ = CARRIER_SZ((CRR)); \
if (IS_MSEG_CARRIER((CRR))) \
STAT_MSEG_MBC_ALLOC((AP), csz__); \
else \
STAT_SYS_ALLOC_MBC_ALLOC((AP), csz__); \
(AP)->mbcs.blocks.curr.no += (CRR)->cpool.blocks; \
if ((AP)->mbcs.blocks.max.no < (AP)->mbcs.blocks.curr.no) \
(AP)->mbcs.blocks.max.no = (AP)->mbcs.blocks.curr.no; \
(AP)->mbcs.blocks.curr.size += (CRR)->cpool.blocks_size; \
if ((AP)->mbcs.blocks.max.size < (AP)->mbcs.blocks.curr.size) \
(AP)->mbcs.blocks.max.size = (AP)->mbcs.blocks.curr.size; \
} while (0)
#define STAT_MSEG_MBC_FREE(AP, CSZ) \
do { \
ASSERT((AP)->mbcs.curr.norm.mseg.no > 0); \
(AP)->mbcs.curr.norm.mseg.no--; \
ASSERT((AP)->mbcs.curr.norm.mseg.size >= (CSZ)); \
(AP)->mbcs.curr.norm.mseg.size -= (CSZ); \
DEBUG_CHECK_CARRIER_NO_SZ((AP)); \
} while (0)
#define STAT_SYS_ALLOC_MBC_FREE(AP, CSZ) \
do { \
ASSERT((AP)->mbcs.curr.norm.sys_alloc.no > 0); \
(AP)->mbcs.curr.norm.sys_alloc.no--; \
ASSERT((AP)->mbcs.curr.norm.sys_alloc.size >= (CSZ)); \
(AP)->mbcs.curr.norm.sys_alloc.size -= (CSZ); \
DEBUG_CHECK_CARRIER_NO_SZ((AP)); \
} while (0)
#define STAT_MBC_CPOOL_INSERT(AP, CRR) \
do { \
UWord csz__ = CARRIER_SZ((CRR)); \
if (IS_MSEG_CARRIER((CRR))) \
STAT_MSEG_MBC_FREE((AP), csz__); \
else \
STAT_SYS_ALLOC_MBC_FREE((AP), csz__); \
ERTS_ALC_CPOOL_ASSERT((AP)->mbcs.blocks.curr.no \
>= (CRR)->cpool.blocks); \
(AP)->mbcs.blocks.curr.no -= (CRR)->cpool.blocks; \
ERTS_ALC_CPOOL_ASSERT((AP)->mbcs.blocks.curr.size \
>= (CRR)->cpool.blocks_size); \
(AP)->mbcs.blocks.curr.size -= (CRR)->cpool.blocks_size; \
} while (0)
#ifdef ERTS_SMP
#define STAT_MBC_BLK_ALLOC_CRR(CRR, BSZ) \
do { \
(CRR)->cpool.blocks++; \
(CRR)->cpool.blocks_size += (BSZ); \
} while (0)
#else
#define STAT_MBC_BLK_ALLOC_CRR(CRR, BSZ) ((void) (CRR)) /* Get rid of warning */
#endif
#define STAT_MBC_BLK_ALLOC(AP, CRR, BSZ, FLGS) \
do { \
CarriersStats_t *cstats__ = &(AP)->mbcs; \
cstats__->blocks.curr.no++; \
if (cstats__->blocks.max.no < cstats__->blocks.curr.no) \
cstats__->blocks.max.no = cstats__->blocks.curr.no; \
cstats__->blocks.curr.size += (BSZ); \
if (cstats__->blocks.max.size < cstats__->blocks.curr.size) \
cstats__->blocks.max.size = cstats__->blocks.curr.size; \
STAT_MBC_BLK_ALLOC_CRR((CRR), (BSZ)); \
} while (0)
static ERTS_INLINE int
stat_cpool_mbc_blk_free(Allctr_t *allctr,
Carrier_t *crr,
Carrier_t **busy_pcrr_pp,
UWord blksz)
{
#ifdef ERTS_SMP
ERTS_ALC_CPOOL_ASSERT(crr->cpool.blocks > 0);
crr->cpool.blocks--;
ERTS_ALC_CPOOL_ASSERT(crr->cpool.blocks_size >= blksz);
crr->cpool.blocks_size -= blksz;
if (!busy_pcrr_pp || !*busy_pcrr_pp)
return 0;
ERTS_ALC_CPOOL_ASSERT(crr == *busy_pcrr_pp);
#ifdef ERTS_ALC_CPOOL_DEBUG
ERTS_ALC_CPOOL_ASSERT(
erts_atomic_dec_read_nob(&allctr->cpool.stat.no_blocks) >= 0);
ERTS_ALC_CPOOL_ASSERT(
erts_atomic_add_read_nob(&allctr->cpool.stat.blocks_size,
-((erts_aint_t) blksz)) >= 0);
#else
erts_atomic_dec_nob(&allctr->cpool.stat.no_blocks);
erts_atomic_add_nob(&allctr->cpool.stat.blocks_size,
-((erts_aint_t) blksz));
#endif
return 1;
#else
return 0;
#endif
}
#define STAT_MBC_BLK_FREE(AP, CRR, BPCRRPP, BSZ, FLGS) \
do { \
if (!stat_cpool_mbc_blk_free((AP), (CRR), (BPCRRPP), (BSZ))) { \
CarriersStats_t *cstats__ = &(AP)->mbcs; \
ASSERT(cstats__->blocks.curr.no > 0); \
cstats__->blocks.curr.no--; \
ASSERT(cstats__->blocks.curr.size >= (BSZ)); \
cstats__->blocks.curr.size -= (BSZ); \
} \
} while (0)
/* Debug stuff... */
#ifdef DEBUG
static UWord carrier_alignment;
#define DEBUG_SAVE_ALIGNMENT(C) \
do { \
UWord algnmnt__ = sizeof(Unit_t) - (((UWord) (C)) % sizeof(Unit_t));\
carrier_alignment = MIN(carrier_alignment, algnmnt__); \
ASSERT(((UWord) (C)) % sizeof(UWord) == 0); \
} while (0)
#define DEBUG_CHECK_ALIGNMENT(P) \
do { \
ASSERT(sizeof(Unit_t) - (((UWord) (P)) % sizeof(Unit_t)) \
>= carrier_alignment); \
ASSERT(((UWord) (P)) % sizeof(UWord) == 0); \
} while (0)
#else
#define DEBUG_SAVE_ALIGNMENT(C)
#define DEBUG_CHECK_ALIGNMENT(P)
#endif
#ifdef DEBUG
#ifdef USE_THREADS
# ifdef ERTS_SMP
# define IS_ACTUALLY_BLOCKING (erts_thr_progress_is_blocking())
# else
# define IS_ACTUALLY_BLOCKING 0
# endif
#define ERTS_ALCU_DBG_CHK_THR_ACCESS(A) \
do { \
if (!(A)->thread_safe && !IS_ACTUALLY_BLOCKING) { \
if (!(A)->debug.saved_tid) { \
(A)->debug.tid = erts_thr_self(); \
(A)->debug.saved_tid = 1; \
} \
else { \
ERTS_SMP_LC_ASSERT( \
ethr_equal_tids((A)->debug.tid, erts_thr_self())); \
} \
} \
} while (0)
#else
#define ERTS_ALCU_DBG_CHK_THR_ACCESS(A)
#endif
#else
#define ERTS_ALCU_DBG_CHK_THR_ACCESS(A)
#endif
static void make_name_atoms(Allctr_t *allctr);
static Block_t *create_carrier(Allctr_t *, Uint, UWord);
static void destroy_carrier(Allctr_t *, Block_t *, Carrier_t **);
static void mbc_free(Allctr_t *allctr, void *p, Carrier_t **busy_pcrr_pp);
static void dealloc_block(Allctr_t *, void *, int);
/* internal data... */
#if 0
static ERTS_INLINE void *
internal_alloc(UWord size)
{
void *res = erts_sys_alloc(0, NULL, size);
if (!res)
erts_alloc_enomem(ERTS_ALC_T_UNDEF, size);
return res;
}
static ERTS_INLINE void *
internal_realloc(void *ptr, UWord size)
{
void *res = erts_sys_realloc(0, NULL, ptr, size);
if (!res)
erts_alloc_enomem(ERTS_ALC_T_UNDEF, size);
return res;
}
static ERTS_INLINE void
internal_free(void *ptr)
{
erts_sys_free(0, NULL, ptr);
}
#endif
/* mseg ... */
#if HAVE_ERTS_MSEG
static ERTS_INLINE void *
alcu_mseg_alloc(Allctr_t *allctr, Uint *size_p, Uint flags)
{
void *res;
UWord size = (UWord) *size_p;
res = erts_mseg_alloc_opt(allctr->alloc_no, &size, flags, &allctr->mseg_opt);
*size_p = (Uint) size;
INC_CC(allctr->calls.mseg_alloc);
return res;
}
static ERTS_INLINE void *
alcu_mseg_realloc(Allctr_t *allctr, void *seg, Uint old_size, Uint *new_size_p)
{
void *res;
UWord new_size = (UWord) *new_size_p;
res = erts_mseg_realloc_opt(allctr->alloc_no, seg, (UWord) old_size, &new_size,
ERTS_MSEG_FLG_NONE, &allctr->mseg_opt);
*new_size_p = (Uint) new_size;
INC_CC(allctr->calls.mseg_realloc);
return res;
}
static ERTS_INLINE void
alcu_mseg_dealloc(Allctr_t *allctr, void *seg, Uint size, Uint flags)
{
erts_mseg_dealloc_opt(allctr->alloc_no, seg, (UWord) size, flags, &allctr->mseg_opt);
INC_CC(allctr->calls.mseg_dealloc);
}
#endif
static ERTS_INLINE void *
alcu_sys_alloc(Allctr_t *allctr, Uint size, int superalign)
{
void *res;
#if ERTS_SA_MB_CARRIERS && ERTS_HAVE_ERTS_SYS_ALIGNED_ALLOC
if (superalign)
res = erts_sys_aligned_alloc(ERTS_SACRR_UNIT_SZ, size);
else
#endif
res = erts_sys_alloc(0, NULL, size);
INC_CC(allctr->calls.sys_alloc);
if (erts_mtrace_enabled)
erts_mtrace_crr_alloc(res, allctr->alloc_no, ERTS_ALC_A_SYSTEM, size);
return res;
}
static ERTS_INLINE void *
alcu_sys_realloc(Allctr_t *allctr, void *ptr, Uint size, Uint old_size, int superalign)
{
void *res;
#if ERTS_SA_MB_CARRIERS && ERTS_HAVE_ERTS_SYS_ALIGNED_ALLOC
if (superalign)
res = erts_sys_aligned_realloc(ERTS_SACRR_UNIT_SZ, ptr, size, old_size);
else
#endif
res = erts_sys_realloc(0, NULL, ptr, size);
INC_CC(allctr->calls.sys_realloc);
if (erts_mtrace_enabled)
erts_mtrace_crr_realloc(res,
allctr->alloc_no,
ERTS_ALC_A_SYSTEM,
ptr,
size);
return res;
}
static ERTS_INLINE void
alcu_sys_free(Allctr_t *allctr, void *ptr, int superalign)
{
#if ERTS_SA_MB_CARRIERS && ERTS_HAVE_ERTS_SYS_ALIGNED_ALLOC
if (superalign)
erts_sys_aligned_free(ERTS_SACRR_UNIT_SZ, ptr);
else
#endif
erts_sys_free(0, NULL, ptr);
INC_CC(allctr->calls.sys_free);
if (erts_mtrace_enabled)
erts_mtrace_crr_free(allctr->alloc_no, ERTS_ALC_A_SYSTEM, ptr);
}
static Uint
get_next_mbc_size(Allctr_t *allctr)
{
Uint size;
int cs = (allctr->mbcs.curr.norm.mseg.no
+ allctr->mbcs.curr.norm.sys_alloc.no
- (allctr->main_carrier ? 1 : 0));
ASSERT(cs >= 0);
ASSERT(allctr->largest_mbc_size >= allctr->smallest_mbc_size);
if (cs >= allctr->mbc_growth_stages)
size = allctr->largest_mbc_size;
else
size = ((cs*(allctr->largest_mbc_size - allctr->smallest_mbc_size)
/ allctr->mbc_growth_stages)
+ allctr->smallest_mbc_size);
if (size < allctr->min_mbc_size)
size = allctr->min_mbc_size;
return size;
}
static ERTS_INLINE void
link_carrier(CarrierList_t *cl, Carrier_t *crr)
{
crr->next = NULL;
if (!cl->last) {
ASSERT(!cl->first);
cl->first = cl->last = crr;
crr->prev = NULL;
}
else {
ASSERT(cl->first);
ASSERT(!cl->first->prev);
ASSERT(cl->last);
ASSERT(!cl->last->next);
crr->prev = cl->last;
cl->last->next = crr;
cl->last = crr;
}
ASSERT(crr->next != crr);
ASSERT(crr->prev != crr);
}
static ERTS_INLINE void
relink_carrier(CarrierList_t *cl, Carrier_t *crr)
{
if (crr->next) {
if (crr->next->prev != crr)
crr->next->prev = crr;
}
else if (cl->last != crr)
cl->last = crr;
if (crr->prev) {
if (crr->prev->next != crr)
crr->prev->next = crr;
}
else if (cl->first != crr)
cl->first = crr;
}
static ERTS_INLINE void
unlink_carrier(CarrierList_t *cl, Carrier_t *crr)
{
ASSERT(crr->next != crr);
ASSERT(crr->prev != crr);
if (cl->first == crr) {
ASSERT(!crr->prev);
cl->first = crr->next;
}
else {
ASSERT(crr->prev);
crr->prev->next = crr->next;
}
if (cl->last == crr) {
ASSERT(!crr->next);
cl->last = crr->prev;
}
else {
ASSERT(crr->next);
crr->next->prev = crr->prev;
}
}
#ifdef ERTS_SMP
static ERTS_INLINE void
clear_busy_pool_carrier(Allctr_t *allctr, Carrier_t *crr)
{
if (crr) {
erts_aint_t max_size;
erts_aint_t new_val;
max_size = (erts_aint_t) allctr->largest_fblk_in_mbc(allctr, crr);
erts_atomic_set_nob(&crr->cpool.max_size, max_size);
new_val = (((erts_aint_t) allctr)|ERTS_CRR_ALCTR_FLG_IN_POOL);
#ifdef ERTS_ALC_CPOOL_DEBUG
{
erts_aint_t old_val = new_val|ERTS_CRR_ALCTR_FLG_BUSY;
ERTS_ALC_CPOOL_ASSERT(old_val
== erts_smp_atomic_xchg_relb(&crr->allctr,
new_val));
}
#else
erts_smp_atomic_set_relb(&crr->allctr, new_val);
#endif
}
}
#endif
#if 0
#define ERTS_DBG_CHK_FIX_LIST(A, FIX, IX, B) \
do { if ((FIX)) chk_fix_list((A), (FIX), (IX), (B)); } while (0)
static void
chk_fix_list(Allctr_t *allctr, ErtsAlcFixList_t *fix, int ix, int before)
{
void *p;
int n;
for (n = 0, p = fix[ix].list; p; p = *((void **) p))
n++;
if (n != fix[ix].list_size) {
erts_fprintf(stderr, "FOUND IT ts=%d, sched=%d, ix=%d, n=%d, ls=%d %s!\n",
allctr->thread_safe, allctr->ix, ix, n, fix[ix].list_size, before ? "before" : "after");
abort();
}
}
#else
#define ERTS_DBG_CHK_FIX_LIST(A, FIX, IX, B)
#endif
static void *mbc_alloc(Allctr_t *allctr, Uint size);
#ifdef ERTS_SMP
typedef struct {
ErtsAllctrDDBlock_t ddblock__; /* must be first */
ErtsAlcType_t fix_type;
} ErtsAllctrFixDDBlock_t;
#endif
static ERTS_INLINE void
dealloc_fix_block(Allctr_t *allctr,
ErtsAlcType_t type,
void *ptr,
int dec_cc_on_redirect)
{
#ifdef ERTS_SMP
/* May be redirected... */
((ErtsAllctrFixDDBlock_t *) ptr)->fix_type = type;
#endif
dealloc_block(allctr, ptr, dec_cc_on_redirect);
}
static ERTS_INLINE void
sched_fix_shrink(Allctr_t *allctr, int on)
{
if (on && !allctr->fix_shrink_scheduled) {
allctr->fix_shrink_scheduled = 1;
erts_set_aux_work_timeout(allctr->ix,
(ERTS_SSI_AUX_WORK_FIX_ALLOC_LOWER_LIM
| ERTS_SSI_AUX_WORK_FIX_ALLOC_DEALLOC),
1);
}
else if (!on && allctr->fix_shrink_scheduled) {
allctr->fix_shrink_scheduled = 0;
erts_set_aux_work_timeout(allctr->ix,
(ERTS_SSI_AUX_WORK_FIX_ALLOC_LOWER_LIM
| ERTS_SSI_AUX_WORK_FIX_ALLOC_DEALLOC),
0);
}
}
static ERTS_INLINE void
fix_cpool_check_shrink(Allctr_t *allctr,
ErtsAlcType_t type,
ErtsAlcFixList_t *fix,
Carrier_t **busy_pcrr_pp)
{
if (fix->u.cpool.shrink_list > 0) {
if (fix->list_size == 0)
fix->u.cpool.shrink_list = 0;
else {
void *p;
#ifdef ERTS_SMP
if (busy_pcrr_pp) {
clear_busy_pool_carrier(allctr, *busy_pcrr_pp);
*busy_pcrr_pp = NULL;
}
#endif
fix->u.cpool.shrink_list--;
p = fix->list;
fix->list = *((void **) p);
fix->list_size--;
if (fix->u.cpool.min_list_size > fix->list_size)
fix->u.cpool.min_list_size = fix->list_size;
fix->u.cpool.allocated--;
dealloc_fix_block(allctr, type, p, 0);
}
}
}
static ERTS_INLINE void *
fix_cpool_alloc(Allctr_t *allctr, ErtsAlcType_t type, Uint size)
{
void *res;
ErtsAlcFixList_t *fix;
ASSERT(ERTS_ALC_N_MIN_A_FIXED_SIZE <= type
&& type <= ERTS_ALC_N_MAX_A_FIXED_SIZE);
fix = &allctr->fix[type - ERTS_ALC_N_MIN_A_FIXED_SIZE];
res = fix->list;
if (res) {
fix->list = *((void **) res);
fix->list_size--;
if (fix->u.cpool.min_list_size > fix->list_size)
fix->u.cpool.min_list_size = fix->list_size;
fix->u.cpool.used++;
fix_cpool_check_shrink(allctr, type, fix, NULL);
return res;
}
if (size < 2*sizeof(UWord))
size += sizeof(UWord);
if (size >= allctr->sbc_threshold) {
Block_t *blk;
blk = create_carrier(allctr, size, CFLG_SBC);
res = blk ? BLK2UMEM(blk) : NULL;
}
else
res = mbc_alloc(allctr, size);
if (res) {
fix->u.cpool.used++;
fix->u.cpool.allocated++;
}
return res;
}
static ERTS_INLINE void
fix_cpool_free(Allctr_t *allctr,
ErtsAlcType_t type,
void *p,
Carrier_t **busy_pcrr_pp)
{
ErtsAlcFixList_t *fix;
ASSERT(ERTS_ALC_N_MIN_A_FIXED_SIZE <= type
&& type <= ERTS_ALC_N_MAX_A_FIXED_SIZE);
fix = &allctr->fix[type - ERTS_ALC_N_MIN_A_FIXED_SIZE];
fix->u.cpool.used--;
if ((!busy_pcrr_pp || !*busy_pcrr_pp)
&& !fix->u.cpool.shrink_list
&& fix->list_size < ERTS_ALCU_FIX_MAX_LIST_SZ) {
*((void **) p) = fix->list;
fix->list = p;
fix->list_size++;
sched_fix_shrink(allctr, 1);
}
else {
Block_t *blk = UMEM2BLK(p);
if (IS_SBC_BLK(blk))
destroy_carrier(allctr, blk, NULL);
else
mbc_free(allctr, p, busy_pcrr_pp);
fix->u.cpool.allocated--;
fix_cpool_check_shrink(allctr, type, fix, busy_pcrr_pp);
}
}
static ERTS_INLINE erts_aint32_t
fix_cpool_alloc_shrink(Allctr_t *allctr, erts_aint32_t flgs)
{
int all_empty = 1;
erts_aint32_t res = 0;
int ix, o;
int flush = flgs == 0;
#ifdef USE_THREADS
if (allctr->thread_safe)
erts_mtx_lock(&allctr->mutex);
#endif
for (ix = 0; ix < ERTS_ALC_NO_FIXED_SIZES; ix++) {
ErtsAlcFixList_t *fix = &allctr->fix[ix];
ErtsAlcType_t type;
ERTS_DBG_CHK_FIX_LIST(allctr, fix, ix, 1);
if (flush)
fix->u.cpool.shrink_list = fix->list_size;
else if (flgs & ERTS_SSI_AUX_WORK_FIX_ALLOC_LOWER_LIM) {
fix->u.cpool.shrink_list = fix->u.cpool.min_list_size;
fix->u.cpool.min_list_size = fix->list_size;
}
type = (ErtsAlcType_t) (ix + ERTS_ALC_N_MIN_A_FIXED_SIZE);
for (o = 0; o < ERTS_ALC_FIX_MAX_SHRINK_OPS || flush; o++) {
void *ptr;
if (fix->u.cpool.shrink_list == 0)
break;
if (fix->list_size == 0) {
fix->u.cpool.shrink_list = 0;
break;
}
ptr = fix->list;
fix->list = *((void **) ptr);
fix->list_size--;
fix->u.cpool.shrink_list--;
fix->u.cpool.allocated--;
dealloc_fix_block(allctr, type, ptr, 0);
}
if (fix->u.cpool.min_list_size > fix->list_size)
fix->u.cpool.min_list_size = fix->list_size;
if (fix->list_size != 0) {
if (fix->u.cpool.shrink_list > 0)
res |= ERTS_SSI_AUX_WORK_FIX_ALLOC_DEALLOC;
all_empty = 0;
}
}
if (all_empty)
sched_fix_shrink(allctr, 0);
#ifdef USE_THREADS
if (allctr->thread_safe)
erts_mtx_unlock(&allctr->mutex);
#endif
return res;
}
static ERTS_INLINE void *
fix_nocpool_alloc(Allctr_t *allctr, ErtsAlcType_t type, Uint size)
{
ErtsAlcFixList_t *fix;
void *res;
ASSERT(ERTS_ALC_N_MIN_A_FIXED_SIZE <= type
&& type <= ERTS_ALC_N_MAX_A_FIXED_SIZE);
fix = &allctr->fix[type - ERTS_ALC_N_MIN_A_FIXED_SIZE];
ERTS_DBG_CHK_FIX_LIST(allctr, fix, ix, 1);
fix->u.nocpool.used++;
res = fix->list;
if (res) {
fix->list_size--;
fix->list = *((void **) res);
if (fix->list && fix->u.nocpool.allocated > fix->u.nocpool.limit) {
Block_t *blk;
void *p = fix->list;
fix->list = *((void **) p);
fix->list_size--;
blk = UMEM2BLK(p);
if (IS_SBC_BLK(blk))
destroy_carrier(allctr, blk, NULL);
else
mbc_free(allctr, p, NULL);
fix->u.nocpool.allocated--;
}
ERTS_DBG_CHK_FIX_LIST(allctr, fix, ix, 0);
return res;
}
if (size < 2*sizeof(UWord))
size += sizeof(UWord);
if (fix->u.nocpool.limit < fix->u.nocpool.used)
fix->u.nocpool.limit = fix->u.nocpool.used;
if (fix->u.nocpool.max_used < fix->u.nocpool.used)
fix->u.nocpool.max_used = fix->u.nocpool.used;
fix->u.nocpool.allocated++;
if (size >= allctr->sbc_threshold) {
Block_t *blk;
blk = create_carrier(allctr, size, CFLG_SBC);
res = blk ? BLK2UMEM(blk) : NULL;
}
else
res = mbc_alloc(allctr, size);
if (!res) {
fix->u.nocpool.allocated--;
fix->u.nocpool.used--;
}
return res;
}
static ERTS_INLINE void
fix_nocpool_free(Allctr_t *allctr,
ErtsAlcType_t type,
void *p)
{
Block_t *blk;
ErtsAlcFixList_t *fix;
ASSERT(ERTS_ALC_N_MIN_A_FIXED_SIZE <= type
&& type <= ERTS_ALC_N_MAX_A_FIXED_SIZE);
fix = &allctr->fix[type - ERTS_ALC_N_MIN_A_FIXED_SIZE];
ERTS_DBG_CHK_FIX_LIST(allctr, fix, ix, 1);
fix->u.nocpool.used--;
if (fix->u.nocpool.allocated < fix->u.nocpool.limit
&& fix->list_size < ERTS_ALCU_FIX_MAX_LIST_SZ) {
*((void **) p) = fix->list;
fix->list = p;
fix->list_size++;
sched_fix_shrink(allctr, 1);
ERTS_DBG_CHK_FIX_LIST(allctr, fix, ix, 0);
return;
}
fix->u.nocpool.allocated--;
if (fix->list && fix->u.nocpool.allocated > fix->u.nocpool.limit) {
blk = UMEM2BLK(p);
if (IS_SBC_BLK(blk))
destroy_carrier(allctr, blk, NULL);
else
mbc_free(allctr, p, NULL);
p = fix->list;
fix->list = *((void **) p);
fix->list_size--;
fix->u.nocpool.allocated--;
}
blk = UMEM2BLK(p);
if (IS_SBC_BLK(blk))
destroy_carrier(allctr, blk, NULL);
else
mbc_free(allctr, p, NULL);
ERTS_DBG_CHK_FIX_LIST(allctr, fix, ix, 0);
}
static ERTS_INLINE erts_aint32_t
fix_nocpool_alloc_shrink(Allctr_t *allctr, erts_aint32_t flgs)
{
int all_empty = 1;
erts_aint32_t res = 0;
int ix, o;
int flush = flgs == 0;
#ifdef USE_THREADS
if (allctr->thread_safe)
erts_mtx_lock(&allctr->mutex);
#endif
for (ix = 0; ix < ERTS_ALC_NO_FIXED_SIZES; ix++) {
ErtsAlcFixList_t *fix = &allctr->fix[ix];
ERTS_DBG_CHK_FIX_LIST(allctr, fix, ix, 1);
if (flgs & ERTS_SSI_AUX_WORK_FIX_ALLOC_LOWER_LIM) {
fix->u.nocpool.limit = fix->u.nocpool.max_used;
if (fix->u.nocpool.limit < fix->u.nocpool.used)
fix->u.nocpool.limit = fix->u.nocpool.used;
fix->u.nocpool.max_used = fix->u.nocpool.used;
ASSERT(fix->u.nocpool.limit >= 0);
}
if (flush) {
fix->u.nocpool.limit = 0;
fix->u.nocpool.max_used = fix->u.nocpool.used;
ASSERT(fix->u.nocpool.limit >= 0);
}
for (o = 0; o < ERTS_ALC_FIX_MAX_SHRINK_OPS || flush; o++) {
void *ptr;
if (!flush && fix->u.nocpool.limit >= fix->u.nocpool.allocated)
break;
if (fix->list_size == 0)
break;
ptr = fix->list;
fix->list = *((void **) ptr);
fix->list_size--;
dealloc_block(allctr, ptr, 0);
fix->u.nocpool.allocated--;
}
if (fix->list_size != 0) {
if (fix->u.nocpool.limit < fix->u.nocpool.allocated)
res |= ERTS_SSI_AUX_WORK_FIX_ALLOC_DEALLOC;
all_empty = 0;
}
ERTS_DBG_CHK_FIX_LIST(allctr, fix, ix, 0);
}
if (all_empty)
sched_fix_shrink(allctr, 0);
#ifdef USE_THREADS
if (allctr->thread_safe)
erts_mtx_unlock(&allctr->mutex);
#endif
return res;
}
erts_aint32_t
erts_alcu_fix_alloc_shrink(Allctr_t *allctr, erts_aint32_t flgs)
{
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr))
return fix_cpool_alloc_shrink(allctr, flgs);
else
return fix_nocpool_alloc_shrink(allctr, flgs);
}
static void dealloc_carrier(Allctr_t *allctr, Carrier_t *crr, int superaligned);
#ifdef ERTS_SMP
static ERTS_INLINE Allctr_t*
get_pref_allctr(void *extra)
{
ErtsAllocatorThrSpec_t *tspec = (ErtsAllocatorThrSpec_t *) extra;
int pref_ix;
pref_ix = ERTS_ALC_GET_THR_IX();
ASSERT(sizeof(UWord) == sizeof(Allctr_t *));
ASSERT(0 <= pref_ix && pref_ix < tspec->size);
return tspec->allctr[pref_ix];
}
#define ERTS_ALC_TS_PREF_LOCK_IF_USED (1)
#define ERTS_ALC_TS_PREF_LOCK_NO (0)
/* SMP note:
* get_used_allctr() must be safe WITHOUT locking the allocator while
* concurrent threads may be updating adjacent blocks.
* We rely on getting a consistent result (without atomic op) when reading
* the block header word even if a concurrent thread is updating
* the "PREV_FREE" flag bit.
*/
static ERTS_INLINE Allctr_t*
get_used_allctr(Allctr_t *pref_allctr, int pref_lock, void *p, UWord *sizep,
Carrier_t **busy_pcrr_pp)
{
Block_t* blk = UMEM2BLK(p);
Carrier_t *crr;
erts_aint_t iallctr;
Allctr_t *used_allctr;
*busy_pcrr_pp = NULL;
if (IS_SBC_BLK(blk)) {
crr = BLK_TO_SBC(blk);
if (sizep)
*sizep = SBC_BLK_SZ(blk) - ABLK_HDR_SZ;
iallctr = erts_smp_atomic_read_dirty(&crr->allctr);
}
else {
crr = ABLK_TO_MBC(blk);
if (sizep)
*sizep = MBC_ABLK_SZ(blk) - ABLK_HDR_SZ;
if (!ERTS_ALC_IS_CPOOL_ENABLED(pref_allctr))
iallctr = erts_smp_atomic_read_dirty(&crr->allctr);
else {
int locked_pref_allctr = 0;
iallctr = erts_smp_atomic_read_ddrb(&crr->allctr);
if (ERTS_ALC_TS_PREF_LOCK_IF_USED == pref_lock
&& pref_allctr->thread_safe) {
used_allctr = (Allctr_t *) (iallctr & ~ERTS_CRR_ALCTR_FLG_MASK);
if (pref_allctr == used_allctr) {
erts_mtx_lock(&pref_allctr->mutex);
locked_pref_allctr = 1;
}
}
while ((iallctr & ((~ERTS_CRR_ALCTR_FLG_MASK)|ERTS_CRR_ALCTR_FLG_IN_POOL))
== (((erts_aint_t) pref_allctr)|ERTS_CRR_ALCTR_FLG_IN_POOL)) {
erts_aint_t act;
ERTS_ALC_CPOOL_ASSERT(!(iallctr & ERTS_CRR_ALCTR_FLG_BUSY));
act = erts_smp_atomic_cmpxchg_ddrb(&crr->allctr,
iallctr|ERTS_CRR_ALCTR_FLG_BUSY,
iallctr);
if (act == iallctr) {
*busy_pcrr_pp = crr;
break;
}
iallctr = act;
}
used_allctr = (Allctr_t *) (iallctr & ~ERTS_CRR_ALCTR_FLG_MASK);
if (ERTS_ALC_TS_PREF_LOCK_IF_USED == pref_lock) {
if (locked_pref_allctr && used_allctr != pref_allctr) {
/* Was taken out of pool; now owned by someone else */
erts_mtx_unlock(&pref_allctr->mutex);
}
}
ERTS_ALC_CPOOL_ASSERT(
(((iallctr & ~ERTS_CRR_ALCTR_FLG_MASK) == (erts_aint_t) pref_allctr)
? (((iallctr & ERTS_CRR_ALCTR_FLG_MASK) == ERTS_CRR_ALCTR_FLG_IN_POOL)
|| ((iallctr & ERTS_CRR_ALCTR_FLG_MASK) == 0))
: 1));
return used_allctr;
}
}
used_allctr = (Allctr_t *) (iallctr & ~ERTS_CRR_ALCTR_FLG_MASK);
if (ERTS_ALC_TS_PREF_LOCK_IF_USED == pref_lock
&& used_allctr == pref_allctr
&& pref_allctr->thread_safe) {
erts_mtx_lock(&pref_allctr->mutex);
}
return used_allctr;
}
static void
init_dd_queue(ErtsAllctrDDQueue_t *ddq)
{
erts_atomic_init_nob(&ddq->tail.data.marker.atmc_next, ERTS_AINT_NULL);
erts_atomic_init_nob(&ddq->tail.data.last,
(erts_aint_t) &ddq->tail.data.marker);
erts_atomic_init_nob(&ddq->tail.data.um_refc[0], 0);
erts_atomic_init_nob(&ddq->tail.data.um_refc[1], 0);
erts_atomic32_init_nob(&ddq->tail.data.um_refc_ix, 0);
ddq->head.first = &ddq->tail.data.marker;
ddq->head.unref_end = &ddq->tail.data.marker;
ddq->head.next.thr_progress = erts_thr_progress_current();
ddq->head.next.thr_progress_reached = 1;
ddq->head.next.um_refc_ix = 1;
ddq->head.next.unref_end = &ddq->tail.data.marker;
ddq->head.used_marker = 1;
}
static ERTS_INLINE int
ddq_managed_thread_enqueue(ErtsAllctrDDQueue_t *ddq, void *ptr, int cinit)
{
erts_aint_t itmp;
ErtsAllctrDDBlock_t *enq, *this = ptr;
erts_atomic_init_nob(&this->atmc_next, ERTS_AINT_NULL);
/* Enqueue at end of list... */
enq = (ErtsAllctrDDBlock_t *) erts_atomic_read_nob(&ddq->tail.data.last);
itmp = erts_atomic_cmpxchg_relb(&enq->atmc_next,
(erts_aint_t) this,
ERTS_AINT_NULL);
if (itmp == ERTS_AINT_NULL) {
/* We are required to move last pointer */
#ifdef DEBUG
ASSERT(ERTS_AINT_NULL == erts_atomic_read_nob(&this->atmc_next));
ASSERT(((erts_aint_t) enq)
== erts_atomic_xchg_relb(&ddq->tail.data.last,
(erts_aint_t) this));
#else
erts_atomic_set_relb(&ddq->tail.data.last, (erts_aint_t) this);
#endif
return 1;
}
else {
/*
* We *need* to insert element somewhere in between the
* last element we read earlier and the actual last element.
*/
int i = cinit;
while (1) {
erts_aint_t itmp2;
erts_atomic_set_nob(&this->atmc_next, itmp);
itmp2 = erts_atomic_cmpxchg_relb(&enq->atmc_next,
(erts_aint_t) this,
itmp);
if (itmp == itmp2)
return 0; /* inserted this */
if ((i & 1) == 0)
itmp = itmp2;
else {
enq = (ErtsAllctrDDBlock_t *) itmp2;
itmp = erts_atomic_read_acqb(&enq->atmc_next);
ASSERT(itmp != ERTS_AINT_NULL);
}
i++;
}
}
}
static ERTS_INLINE erts_aint_t
check_insert_marker(ErtsAllctrDDQueue_t *ddq, erts_aint_t ilast)
{
if (!ddq->head.used_marker
&& ddq->head.unref_end == (ErtsAllctrDDBlock_t *) ilast) {
erts_aint_t itmp;
ErtsAllctrDDBlock_t *last = (ErtsAllctrDDBlock_t *) ilast;
erts_atomic_init_nob(&ddq->tail.data.marker.atmc_next, ERTS_AINT_NULL);
itmp = erts_atomic_cmpxchg_relb(&last->atmc_next,
(erts_aint_t) &ddq->tail.data.marker,
ERTS_AINT_NULL);
if (itmp == ERTS_AINT_NULL) {
ilast = (erts_aint_t) &ddq->tail.data.marker;
ddq->head.used_marker = !0;
erts_atomic_set_relb(&ddq->tail.data.last, ilast);
}
}
return ilast;
}
static ERTS_INLINE int
ddq_enqueue(ErtsAllctrDDQueue_t *ddq, void *ptr, int cinit)
{
int last_elem;
int um_refc_ix = 0;
int managed_thread = erts_thr_progress_is_managed_thread();
if (!managed_thread) {
um_refc_ix = erts_atomic32_read_acqb(&ddq->tail.data.um_refc_ix);
while (1) {
int tmp_um_refc_ix;
erts_atomic_inc_acqb(&ddq->tail.data.um_refc[um_refc_ix]);
tmp_um_refc_ix = erts_atomic32_read_acqb(&ddq->tail.data.um_refc_ix);
if (tmp_um_refc_ix == um_refc_ix)
break;
erts_atomic_dec_relb(&ddq->tail.data.um_refc[um_refc_ix]);
um_refc_ix = tmp_um_refc_ix;
}
}
last_elem = ddq_managed_thread_enqueue(ddq, ptr, cinit);
if (!managed_thread)
erts_atomic_dec_relb(&ddq->tail.data.um_refc[um_refc_ix]);
return last_elem;
}
static ERTS_INLINE void *
ddq_dequeue(ErtsAllctrDDQueue_t *ddq)
{
ErtsAllctrDDBlock_t *blk;
if (ddq->head.first == ddq->head.unref_end)
return NULL;
blk = ddq->head.first;
if (blk == &ddq->tail.data.marker) {
ASSERT(ddq->head.used_marker);
ddq->head.used_marker = 0;
blk = ((ErtsAllctrDDBlock_t *)
erts_atomic_read_nob(&blk->atmc_next));
if (blk == ddq->head.unref_end) {
ddq->head.first = blk;
return NULL;
}
}
ddq->head.first = ((ErtsAllctrDDBlock_t *)
erts_atomic_read_nob(&blk->atmc_next));
ASSERT(ddq->head.first);
return (void *) blk;
}
static int
ddq_check_incoming(ErtsAllctrDDQueue_t *ddq)
{
erts_aint_t ilast = erts_atomic_read_nob(&ddq->tail.data.last);
if (((ErtsAllctrDDBlock_t *) ilast) == &ddq->tail.data.marker
&& ddq->head.first == &ddq->tail.data.marker) {
/* Nothing more to do... */
return 0;
}
if (ddq->head.next.thr_progress_reached
|| erts_thr_progress_has_reached(ddq->head.next.thr_progress)) {
int um_refc_ix;
ddq->head.next.thr_progress_reached = 1;
um_refc_ix = ddq->head.next.um_refc_ix;
if (erts_atomic_read_nob(&ddq->tail.data.um_refc[um_refc_ix]) == 0) {
/* Move unreferenced end pointer forward... */
ETHR_MEMBAR(ETHR_LoadLoad|ETHR_LoadStore);
ddq->head.unref_end = ddq->head.next.unref_end;
ilast = check_insert_marker(ddq, ilast);
if (ddq->head.unref_end != (ErtsAllctrDDBlock_t *) ilast) {
ddq->head.next.unref_end = (ErtsAllctrDDBlock_t *) ilast;
ddq->head.next.thr_progress = erts_thr_progress_later(NULL);
erts_atomic32_set_relb(&ddq->tail.data.um_refc_ix,
um_refc_ix);
ddq->head.next.um_refc_ix = um_refc_ix == 0 ? 1 : 0;
ddq->head.next.thr_progress_reached = 0;
}
}
}
return 1;
}
static ERTS_INLINE void
store_earliest_thr_prgr(ErtsThrPrgrVal *prev_val, ErtsAllctrDDQueue_t *ddq)
{
if (!ddq->head.next.thr_progress_reached
&& (*prev_val == ERTS_THR_PRGR_INVALID
|| erts_thr_progress_cmp(ddq->head.next.thr_progress,
*prev_val) < 0)) {
*prev_val = ddq->head.next.thr_progress;
}
}
static void
check_pending_dealloc_carrier(Allctr_t *allctr,
int *need_thr_progress,
ErtsThrPrgrVal *thr_prgr_p,
int *need_more_work);
static void
handle_delayed_fix_dealloc(Allctr_t *allctr, void *ptr)
{
ErtsAlcType_t type;
type = ((ErtsAllctrFixDDBlock_t *) ptr)->fix_type;
ASSERT(ERTS_ALC_N_MIN_A_FIXED_SIZE <= type
&& type <= ERTS_ALC_N_MAX_A_FIXED_SIZE);
if (!ERTS_ALC_IS_CPOOL_ENABLED(allctr))
fix_nocpool_free(allctr, type, ptr);
else {
Block_t *blk = UMEM2BLK(ptr);
Carrier_t *busy_pcrr_p;
Allctr_t *used_allctr;
if (IS_SBC_BLK(blk)) {
busy_pcrr_p = NULL;
goto doit;
}
used_allctr = get_used_allctr(allctr, ERTS_ALC_TS_PREF_LOCK_NO, ptr,
NULL, &busy_pcrr_p);
if (used_allctr == allctr) {
doit:
fix_cpool_free(allctr, type, ptr, &busy_pcrr_p);
clear_busy_pool_carrier(allctr, busy_pcrr_p);
}
else {
/* Carrier migrated; need to redirect block to new owner... */
int cinit = used_allctr->dd.ix - allctr->dd.ix;
ERTS_ALC_CPOOL_ASSERT(!busy_pcrr_p);
DEC_CC(allctr->calls.this_free);
((ErtsAllctrFixDDBlock_t *) ptr)->fix_type = type;
if (ddq_enqueue(&used_allctr->dd.q, ptr, cinit))
erts_alloc_notify_delayed_dealloc(used_allctr->ix);
}
}
}
static void
schedule_dealloc_carrier(Allctr_t *allctr, Carrier_t *crr);
static ERTS_INLINE int
handle_delayed_dealloc(Allctr_t *allctr,
int allctr_locked,
int use_limit,
int ops_limit,
int *need_thr_progress,
ErtsThrPrgrVal *thr_prgr_p,
int *need_more_work)
{
int need_thr_prgr = 0;
int need_mr_wrk = 0;
int have_checked_incoming = 0;
int ops = 0;
ErtsAlcFixList_t *fix;
int res;
ErtsAllctrDDQueue_t *ddq;
if (allctr->thread_safe && !allctr_locked)
erts_mtx_lock(&allctr->mutex);
ERTS_ALCU_DBG_CHK_THR_ACCESS(allctr);
fix = allctr->fix;
ddq = &allctr->dd.q;
res = 0;
while (1) {
Block_t *blk;
void *ptr;
if (use_limit && ++ops > ops_limit) {
if (ddq->head.first != ddq->head.unref_end) {
need_mr_wrk = 1;
if (need_more_work)
*need_more_work |= 1;
}
break;
}
dequeue:
ptr = ddq_dequeue(ddq);
if (!ptr) {
if (have_checked_incoming)
break;
need_thr_prgr = ddq_check_incoming(ddq);
if (need_thr_progress) {
*need_thr_progress |= need_thr_prgr;
if (need_thr_prgr)
store_earliest_thr_prgr(thr_prgr_p, ddq);
}
have_checked_incoming = 1;
goto dequeue;
}
res = 1;
blk = UMEM2BLK(ptr);
if (IS_FREE_LAST_MBC_BLK(blk)) {
/*
* A multiblock carrier that previously has been migrated away
* from us and now is back to be deallocated. For more info
* see schedule_dealloc_carrier().
*
* Note that we cannot use FBLK_TO_MBC(blk) since it
* data has been overwritten by the queue.
*/
Carrier_t *crr = FIRST_BLK_TO_MBC(allctr, blk);
/* Restore word overwritten by the dd-queue as it will be read
* if this carrier is pulled from dc_list by cpool_fetch()
*/
ERTS_ALC_CPOOL_ASSERT(FBLK_TO_MBC(blk) != crr);
ERTS_ALC_CPOOL_ASSERT(sizeof(ErtsAllctrDDBlock_t) == sizeof(void*));
#ifdef MBC_ABLK_OFFSET_BITS
blk->u.carrier = crr;
#else
blk->carrier = crr;
#endif
ERTS_ALC_CPOOL_ASSERT(ERTS_ALC_IS_CPOOL_ENABLED(allctr));
ERTS_ALC_CPOOL_ASSERT(allctr == crr->cpool.orig_allctr);
ERTS_ALC_CPOOL_ASSERT(((erts_aint_t) allctr)
!= (erts_smp_atomic_read_nob(&crr->allctr)
& ~ERTS_CRR_ALCTR_FLG_MASK));
erts_smp_atomic_set_nob(&crr->allctr, ((erts_aint_t) allctr));
schedule_dealloc_carrier(allctr, crr);
}
else {
INC_CC(allctr->calls.this_free);
if (fix)
handle_delayed_fix_dealloc(allctr, ptr);
else
dealloc_block(allctr, ptr, 1);
}
}
if (need_thr_progress && !(need_thr_prgr | need_mr_wrk)) {
need_thr_prgr = ddq_check_incoming(ddq);
*need_thr_progress |= need_thr_prgr;
if (need_thr_prgr)
store_earliest_thr_prgr(thr_prgr_p, ddq);
}
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr))
check_pending_dealloc_carrier(allctr,
need_thr_progress,
thr_prgr_p,
need_more_work);
if (allctr->thread_safe && !allctr_locked)
erts_mtx_unlock(&allctr->mutex);
return res;
}
static ERTS_INLINE void
enqueue_dealloc_other_instance(ErtsAlcType_t type,
Allctr_t *allctr,
void *ptr,
int cinit)
{
if (allctr->fix)
((ErtsAllctrFixDDBlock_t*) ptr)->fix_type = type;
if (ddq_enqueue(&allctr->dd.q, ptr, cinit))
erts_alloc_notify_delayed_dealloc(allctr->ix);
}
#endif
#ifdef ERTS_SMP
static void
set_new_allctr_abandon_limit(Allctr_t *allctr);
static void
abandon_carrier(Allctr_t *allctr, Carrier_t *crr);
static ERTS_INLINE void
check_abandon_carrier(Allctr_t *allctr, Block_t *fblk, Carrier_t **busy_pcrr_pp)
{
Carrier_t *crr;
if (busy_pcrr_pp && *busy_pcrr_pp)
return;
if (!ERTS_ALC_IS_CPOOL_ENABLED(allctr))
return;
allctr->cpool.check_limit_count--;
if (--allctr->cpool.check_limit_count <= 0)
set_new_allctr_abandon_limit(allctr);
if (!erts_thr_progress_is_managed_thread())
return;
if (allctr->cpool.disable_abandon)
return;
if (allctr->mbcs.blocks.curr.size > allctr->cpool.abandon_limit)
return;
crr = FBLK_TO_MBC(fblk);
if (allctr->main_carrier == crr)
return;
if (crr->cpool.blocks_size > crr->cpool.abandon_limit)
return;
if (crr->cpool.thr_prgr != ERTS_THR_PRGR_INVALID
&& !erts_thr_progress_has_reached(crr->cpool.thr_prgr))
return;
abandon_carrier(allctr, crr);
}
void
erts_alcu_check_delayed_dealloc(Allctr_t *allctr,
int limit,
int *need_thr_progress,
ErtsThrPrgrVal *thr_prgr_p,
int *more_work)
{
handle_delayed_dealloc(allctr,
0,
limit,
ERTS_ALCU_DD_OPS_LIM_HIGH,
need_thr_progress,
thr_prgr_p,
more_work);
}
#endif
#define ERTS_ALCU_HANDLE_DD_IN_OP(Allctr, Locked) \
handle_delayed_dealloc((Allctr), (Locked), 1, \
ERTS_ALCU_DD_OPS_LIM_LOW, NULL, NULL, NULL)
static void
dealloc_block(Allctr_t *allctr, void *ptr, int dec_cc_on_redirect)
{
Block_t *blk = UMEM2BLK(ptr);
ERTS_SMP_LC_ASSERT(!allctr->thread_safe
|| erts_lc_mtx_is_locked(&allctr->mutex));
if (IS_SBC_BLK(blk))
destroy_carrier(allctr, blk, NULL);
#ifndef ERTS_SMP
else
mbc_free(allctr, ptr, NULL);
#else
else if (!ERTS_ALC_IS_CPOOL_ENABLED(allctr))
mbc_free(allctr, ptr, NULL);
else {
Carrier_t *busy_pcrr_p;
Allctr_t *used_allctr;
used_allctr = get_used_allctr(allctr, ERTS_ALC_TS_PREF_LOCK_NO, ptr,
NULL, &busy_pcrr_p);
if (used_allctr == allctr) {
mbc_free(allctr, ptr, &busy_pcrr_p);
clear_busy_pool_carrier(allctr, busy_pcrr_p);
}
else {
/* Carrier migrated; need to redirect block to new owner... */
int cinit = used_allctr->dd.ix - allctr->dd.ix;
ERTS_ALC_CPOOL_ASSERT(!busy_pcrr_p);
if (dec_cc_on_redirect)
DEC_CC(allctr->calls.this_free);
if (ddq_enqueue(&used_allctr->dd.q, ptr, cinit))
erts_alloc_notify_delayed_dealloc(used_allctr->ix);
}
}
#endif
}
/* Multi block carrier alloc/realloc/free ... */
/* NOTE! mbc_alloc() may in case of memory shortage place the requested
* block in a sbc.
*/
static ERTS_INLINE void *
mbc_alloc_block(Allctr_t *allctr, Uint size, Uint *blk_szp)
{
Block_t *blk;
Uint get_blk_sz;
ASSERT(size);
ASSERT(size < allctr->sbc_threshold);
*blk_szp = get_blk_sz = UMEMSZ2BLKSZ(allctr, size);
blk = (*allctr->get_free_block)(allctr, get_blk_sz, NULL, 0);
if (!blk) {
blk = create_carrier(allctr, get_blk_sz, CFLG_MBC);
#if !HALFWORD_HEAP && !ERTS_SUPER_ALIGNED_MSEG_ONLY
if (!blk) {
/* Emergency! We couldn't create the carrier as we wanted.
Try to place it in a sys_alloced sbc. */
blk = create_carrier(allctr,
size,
(CFLG_SBC
| CFLG_FORCE_SIZE
| CFLG_FORCE_SYS_ALLOC));
}
#endif
}
#ifdef ERTS_ALLOC_UTIL_HARD_DEBUG
if (IS_MBC_BLK(blk)) {
(*allctr->link_free_block)(allctr, blk);
HARD_CHECK_BLK_CARRIER(allctr, blk);
(*allctr->unlink_free_block)(allctr, blk);
}
#endif
return blk;
}
static ERTS_INLINE void
mbc_alloc_finalize(Allctr_t *allctr,
Block_t *blk,
Uint org_blk_sz,
UWord flags,
Carrier_t *crr,
Uint want_blk_sz,
int valid_blk_info)
{
Uint blk_sz;
Uint nxt_blk_sz;
Block_t *nxt_blk;
UWord prev_free_flg = flags & PREV_FREE_BLK_HDR_FLG;
ASSERT(org_blk_sz >= want_blk_sz);
ASSERT(blk);
#ifdef DEBUG
nxt_blk = NULL;
#endif
if (org_blk_sz - allctr->min_block_size >= want_blk_sz) {
/* Shrink block... */
blk_sz = want_blk_sz;
nxt_blk_sz = org_blk_sz - blk_sz;
SET_MBC_ABLK_HDR(blk, blk_sz, prev_free_flg, crr);
nxt_blk = BLK_AFTER(blk, blk_sz);
SET_MBC_FBLK_HDR(nxt_blk, nxt_blk_sz,
SBH_THIS_FREE|(flags & LAST_BLK_HDR_FLG),
crr);
if (!(flags & LAST_BLK_HDR_FLG)) {
SET_BLK_SZ_FTR(nxt_blk, nxt_blk_sz);
if (!valid_blk_info) {
Block_t *nxt_nxt_blk = BLK_AFTER(nxt_blk, nxt_blk_sz);
SET_PREV_BLK_FREE(allctr, nxt_nxt_blk);
}
}
(*allctr->link_free_block)(allctr, nxt_blk);
ASSERT(IS_NOT_LAST_BLK(blk));
ASSERT(IS_FREE_BLK(nxt_blk));
ASSERT((flags & LAST_BLK_HDR_FLG)
? IS_LAST_BLK(nxt_blk)
: IS_NOT_LAST_BLK(nxt_blk));
ASSERT((flags & LAST_BLK_HDR_FLG)
|| nxt_blk == PREV_BLK(NXT_BLK(nxt_blk)));
ASSERT((flags & LAST_BLK_HDR_FLG)
|| IS_PREV_BLK_FREE(NXT_BLK(nxt_blk)));
ASSERT(nxt_blk_sz == MBC_BLK_SZ(nxt_blk));
ASSERT(nxt_blk_sz % sizeof(Unit_t) == 0);
ASSERT(nxt_blk_sz >= allctr->min_block_size);
ASSERT(ABLK_TO_MBC(blk) == crr);
ASSERT(FBLK_TO_MBC(nxt_blk) == crr);
}
else {
ASSERT(org_blk_sz <= MBC_ABLK_SZ_MASK);
blk_sz = org_blk_sz;
if (flags & LAST_BLK_HDR_FLG) {
if (valid_blk_info)
SET_BLK_ALLOCED(blk);
else
SET_MBC_ABLK_HDR(blk, blk_sz, SBH_LAST_BLK|prev_free_flg, crr);
}
else {
if (valid_blk_info)
SET_BLK_ALLOCED(blk);
else
SET_MBC_ABLK_HDR(blk, blk_sz, prev_free_flg, crr);
nxt_blk = BLK_AFTER(blk, blk_sz);
SET_PREV_BLK_ALLOCED(nxt_blk);
}
ASSERT((flags & LAST_BLK_HDR_FLG)
? IS_LAST_BLK(blk)
: IS_NOT_LAST_BLK(blk));
ASSERT(ABLK_TO_MBC(blk) == crr);
}
ERTS_ALC_CPOOL_ALLOC_OP(allctr);
STAT_MBC_BLK_ALLOC(allctr, crr, blk_sz, alcu_flgs);
ASSERT(IS_ALLOCED_BLK(blk));
ASSERT(blk_sz == MBC_BLK_SZ(blk));
ASSERT(blk_sz % sizeof(Unit_t) == 0);
ASSERT(blk_sz >= allctr->min_block_size);
ASSERT(blk_sz >= want_blk_sz);
ASSERT(IS_MBC_BLK(blk));
ASSERT(!nxt_blk || IS_PREV_BLK_ALLOCED(nxt_blk));
ASSERT(!nxt_blk || IS_MBC_BLK(nxt_blk));
HARD_CHECK_BLK_CARRIER(allctr, blk);
}
static void *
mbc_alloc(Allctr_t *allctr, Uint size)
{
Block_t *blk;
Uint blk_sz;
blk = mbc_alloc_block(allctr, size, &blk_sz);
if (!blk)
return NULL;
if (IS_MBC_BLK(blk))
mbc_alloc_finalize(allctr,
blk,
MBC_FBLK_SZ(blk),
GET_BLK_HDR_FLGS(blk),
FBLK_TO_MBC(blk),
blk_sz,
1);
return BLK2UMEM(blk);
}
static void
mbc_free(Allctr_t *allctr, void *p, Carrier_t **busy_pcrr_pp)
{
Uint is_first_blk;
Uint is_last_blk;
Uint blk_sz;
Block_t *blk;
Block_t *nxt_blk;
Carrier_t *crr;
ASSERT(p);
blk = UMEM2BLK(p);
blk_sz = MBC_ABLK_SZ(blk);
ASSERT(IS_MBC_BLK(blk));
ASSERT(blk_sz >= allctr->min_block_size);
HARD_CHECK_BLK_CARRIER(allctr, blk);
crr = ABLK_TO_MBC(blk);
ERTS_ALC_CPOOL_FREE_OP(allctr);
STAT_MBC_BLK_FREE(allctr, crr, busy_pcrr_pp, blk_sz, alcu_flgs);
is_first_blk = IS_MBC_FIRST_ABLK(allctr, blk);
is_last_blk = IS_LAST_BLK(blk);
if (IS_PREV_BLK_FREE(blk)) {
ASSERT(!is_first_blk);
/* Coalesce with previous block... */
blk = PREV_BLK(blk);
(*allctr->unlink_free_block)(allctr, blk);
blk_sz += MBC_FBLK_SZ(blk);
is_first_blk = IS_MBC_FIRST_FBLK(allctr, blk);
SET_MBC_FBLK_SZ(blk, blk_sz);
}
else {
SET_BLK_FREE(blk);
}
if (is_last_blk)
SET_LAST_BLK(blk);
else {
nxt_blk = BLK_AFTER(blk, blk_sz);
if (IS_FREE_BLK(nxt_blk)) {
/* Coalesce with next block... */
(*allctr->unlink_free_block)(allctr, nxt_blk);
blk_sz += MBC_FBLK_SZ(nxt_blk);
SET_MBC_FBLK_SZ(blk, blk_sz);
is_last_blk = IS_LAST_BLK(nxt_blk);
if (is_last_blk)
SET_LAST_BLK(blk);
else {
SET_NOT_LAST_BLK(blk);
SET_BLK_SZ_FTR(blk, blk_sz);
}
}
else {
SET_PREV_BLK_FREE(allctr, nxt_blk);
SET_NOT_LAST_BLK(blk);
SET_BLK_SZ_FTR(blk, blk_sz);
}
}
ASSERT(IS_FREE_BLK(blk));
ASSERT(!is_last_blk == !IS_LAST_BLK(blk));
ASSERT(!is_first_blk == !IS_MBC_FIRST_FBLK(allctr, blk));
ASSERT(is_first_blk || IS_PREV_BLK_ALLOCED(blk));
ASSERT(is_last_blk || IS_PREV_BLK_FREE(NXT_BLK(blk)));
ASSERT(blk_sz == MBC_BLK_SZ(blk));
ASSERT(is_last_blk || blk == PREV_BLK(NXT_BLK(blk)));
ASSERT(blk_sz % sizeof(Unit_t) == 0);
ASSERT(IS_MBC_BLK(blk));
if (is_first_blk
&& is_last_blk
&& allctr->main_carrier != FIRST_BLK_TO_MBC(allctr, blk)) {
destroy_carrier(allctr, blk, busy_pcrr_pp);
}
else {
(*allctr->link_free_block)(allctr, blk);
HARD_CHECK_BLK_CARRIER(allctr, blk);
#ifdef ERTS_SMP
check_abandon_carrier(allctr, blk, busy_pcrr_pp);
#endif
}
}
static void *
mbc_realloc(Allctr_t *allctr, void *p, Uint size, Uint32 alcu_flgs,
Carrier_t **busy_pcrr_pp)
{
void *new_p;
Uint old_blk_sz;
Block_t *blk;
#ifndef MBC_REALLOC_ALWAYS_MOVES
Block_t *new_blk, *cand_blk;
Uint cand_blk_sz;
Uint blk_sz, get_blk_sz;
Block_t *nxt_blk;
Uint nxt_blk_sz;
Uint is_last_blk;
#endif /* #ifndef MBC_REALLOC_ALWAYS_MOVES */
ASSERT(p);
ASSERT(size);
ASSERT(size < allctr->sbc_threshold);
blk = (Block_t *) UMEM2BLK(p);
old_blk_sz = MBC_ABLK_SZ(blk);
ASSERT(old_blk_sz >= allctr->min_block_size);
#ifdef MBC_REALLOC_ALWAYS_MOVES
if (alcu_flgs & ERTS_ALCU_FLG_FAIL_REALLOC_MOVE)
return NULL;
#else /* !MBC_REALLOC_ALWAYS_MOVES */
#ifdef ERTS_SMP
if (busy_pcrr_pp && *busy_pcrr_pp)
goto realloc_move; /* Don't want to use carrier in pool */
#endif
get_blk_sz = blk_sz = UMEMSZ2BLKSZ(allctr, size);
ASSERT(IS_ALLOCED_BLK(blk));
ASSERT(IS_MBC_BLK(blk));
is_last_blk = IS_LAST_BLK(blk);
if (old_blk_sz == blk_sz)
return p;
else if (blk_sz < old_blk_sz) {
/* Shrink block... */
Carrier_t* crr;
Block_t *nxt_nxt_blk;
Uint diff_sz_val = old_blk_sz - blk_sz;
Uint old_blk_sz_val = old_blk_sz;
if (get_blk_sz >= old_blk_sz)
return p;
if (diff_sz_val >= (~((Uint) 0) / 100)) {
/* div both by 128 */
old_blk_sz_val >>= 7;
diff_sz_val >>= 7;
}
/* Avoid fragmentation by moving the block if it is shrunk much */
if (100*diff_sz_val > allctr->mbc_move_threshold*old_blk_sz_val) {
if (alcu_flgs & ERTS_ALCU_FLG_FAIL_REALLOC_MOVE)
return NULL;
cand_blk_sz = old_blk_sz;
if (!IS_PREV_BLK_FREE(blk)) {
cand_blk = blk;
}
else {
ASSERT(!IS_MBC_FIRST_ABLK(allctr, blk));
cand_blk = PREV_BLK(blk);
cand_blk_sz += PREV_BLK_SZ(blk);
}
if (!is_last_blk) {
nxt_blk = BLK_AFTER(blk, old_blk_sz);
if (IS_FREE_BLK(nxt_blk))
cand_blk_sz += MBC_FBLK_SZ(nxt_blk);
}
new_blk = (*allctr->get_free_block)(allctr,
get_blk_sz,
cand_blk,
cand_blk_sz);
if (new_blk || cand_blk != blk)
goto move_into_new_blk;
}
/* Shrink at current location */
nxt_blk_sz = old_blk_sz - blk_sz;
if ((is_last_blk || IS_ALLOCED_BLK(BLK_AFTER(blk,old_blk_sz)))
&& (nxt_blk_sz < allctr->min_block_size))
return p;
HARD_CHECK_BLK_CARRIER(allctr, blk);
nxt_nxt_blk = BLK_AFTER(blk, old_blk_sz);
SET_MBC_ABLK_SZ(blk, blk_sz);
SET_NOT_LAST_BLK(blk);
nxt_blk = BLK_AFTER(blk, blk_sz);
crr = ABLK_TO_MBC(blk);
ERTS_ALC_CPOOL_REALLOC_OP(allctr);
STAT_MBC_BLK_FREE(allctr, crr, NULL, old_blk_sz, alcu_flgs);
STAT_MBC_BLK_ALLOC(allctr, crr, blk_sz, alcu_flgs);
ASSERT(MBC_BLK_SZ(blk) >= allctr->min_block_size);
if (!is_last_blk) {
if (IS_FREE_BLK(nxt_nxt_blk)) {
/* Coalesce with next free block... */
nxt_blk_sz += MBC_FBLK_SZ(nxt_nxt_blk);
(*allctr->unlink_free_block)(allctr, nxt_nxt_blk);
is_last_blk = GET_LAST_BLK_HDR_FLG(nxt_nxt_blk);
}
else {
SET_PREV_BLK_FREE(allctr, nxt_nxt_blk);
}
SET_BLK_SZ_FTR(nxt_blk, nxt_blk_sz);
}
SET_MBC_FBLK_HDR(nxt_blk, nxt_blk_sz,
SBH_THIS_FREE | (is_last_blk ? SBH_LAST_BLK : 0),
crr);
(*allctr->link_free_block)(allctr, nxt_blk);
ASSERT(IS_ALLOCED_BLK(blk));
ASSERT(blk_sz == MBC_BLK_SZ(blk));
ASSERT(blk_sz % sizeof(Unit_t) == 0);
ASSERT(blk_sz >= allctr->min_block_size);
ASSERT(blk_sz >= size + ABLK_HDR_SZ);
ASSERT(IS_MBC_BLK(blk));
ASSERT(IS_FREE_BLK(nxt_blk));
ASSERT(IS_PREV_BLK_ALLOCED(nxt_blk));
ASSERT(nxt_blk_sz == MBC_BLK_SZ(nxt_blk));
ASSERT(nxt_blk_sz % sizeof(Unit_t) == 0);
ASSERT(nxt_blk_sz >= allctr->min_block_size);
ASSERT(IS_MBC_BLK(nxt_blk));
ASSERT(is_last_blk ? IS_LAST_BLK(nxt_blk) : IS_NOT_LAST_BLK(nxt_blk));
ASSERT(is_last_blk || nxt_blk == PREV_BLK(NXT_BLK(nxt_blk)));
ASSERT(is_last_blk || IS_PREV_BLK_FREE(NXT_BLK(nxt_blk)));
ASSERT(FBLK_TO_MBC(nxt_blk) == crr);
HARD_CHECK_BLK_CARRIER(allctr, blk);
#ifdef ERTS_SMP
check_abandon_carrier(allctr, nxt_blk, NULL);
#endif
return p;
}
/* Need larger block... */
if (!is_last_blk) {
nxt_blk = BLK_AFTER(blk, old_blk_sz);
nxt_blk_sz = MBC_BLK_SZ(nxt_blk);
if (IS_FREE_BLK(nxt_blk) && get_blk_sz <= old_blk_sz + nxt_blk_sz) {
Carrier_t* crr = ABLK_TO_MBC(blk);
/* Grow into next block... */
HARD_CHECK_BLK_CARRIER(allctr, blk);
(*allctr->unlink_free_block)(allctr, nxt_blk);
nxt_blk_sz -= blk_sz - old_blk_sz;
is_last_blk = IS_LAST_BLK(nxt_blk);
if (nxt_blk_sz < allctr->min_block_size) {
blk_sz += nxt_blk_sz;
SET_MBC_ABLK_SZ(blk, blk_sz);
if (is_last_blk) {
SET_LAST_BLK(blk);
#ifdef DEBUG
nxt_blk = NULL;
#endif
}
else {
nxt_blk = BLK_AFTER(blk, blk_sz);
SET_PREV_BLK_ALLOCED(nxt_blk);
#ifdef DEBUG
is_last_blk = IS_LAST_BLK(nxt_blk);
nxt_blk_sz = MBC_BLK_SZ(nxt_blk);
#endif
}
}
else {
SET_MBC_ABLK_SZ(blk, blk_sz);
nxt_blk = BLK_AFTER(blk, blk_sz);
SET_MBC_FBLK_HDR(nxt_blk, nxt_blk_sz, SBH_THIS_FREE, crr);
if (is_last_blk)
SET_LAST_BLK(nxt_blk);
else
SET_BLK_SZ_FTR(nxt_blk, nxt_blk_sz);
(*allctr->link_free_block)(allctr, nxt_blk);
ASSERT(IS_FREE_BLK(nxt_blk));
ASSERT(FBLK_TO_MBC(nxt_blk) == crr);
}
ERTS_ALC_CPOOL_REALLOC_OP(allctr);
STAT_MBC_BLK_FREE(allctr, crr, NULL, old_blk_sz, alcu_flgs);
STAT_MBC_BLK_ALLOC(allctr, crr, blk_sz, alcu_flgs);
ASSERT(IS_ALLOCED_BLK(blk));
ASSERT(blk_sz == MBC_BLK_SZ(blk));
ASSERT(blk_sz % sizeof(Unit_t) == 0);
ASSERT(blk_sz >= allctr->min_block_size);
ASSERT(blk_sz >= size + ABLK_HDR_SZ);
ASSERT(IS_MBC_BLK(blk));
ASSERT(!nxt_blk || IS_PREV_BLK_ALLOCED(nxt_blk));
ASSERT(!nxt_blk || nxt_blk_sz == MBC_BLK_SZ(nxt_blk));
ASSERT(!nxt_blk || nxt_blk_sz % sizeof(Unit_t) == 0);
ASSERT(!nxt_blk || nxt_blk_sz >= allctr->min_block_size);
ASSERT(!nxt_blk || IS_MBC_BLK(nxt_blk));
ASSERT(!nxt_blk || (is_last_blk
? IS_LAST_BLK(nxt_blk)
: IS_NOT_LAST_BLK(nxt_blk)));
ASSERT(!nxt_blk || is_last_blk
|| IS_ALLOCED_BLK(nxt_blk)
|| nxt_blk == PREV_BLK(NXT_BLK(nxt_blk)));
ASSERT(!nxt_blk || is_last_blk
|| IS_ALLOCED_BLK(nxt_blk)
|| IS_PREV_BLK_FREE(NXT_BLK(nxt_blk)));
HARD_CHECK_BLK_CARRIER(allctr, blk);
return p;
}
}
if (alcu_flgs & ERTS_ALCU_FLG_FAIL_REALLOC_MOVE)
return NULL;
/* Need to grow in another block */
if (!IS_PREV_BLK_FREE(blk)) {
cand_blk = NULL;
cand_blk_sz = 0;
}
else {
ASSERT(!IS_MBC_FIRST_ABLK(allctr, blk));
cand_blk = PREV_BLK(blk);
cand_blk_sz = old_blk_sz + PREV_BLK_SZ(blk);
if (!is_last_blk) {
nxt_blk = BLK_AFTER(blk, old_blk_sz);
if (IS_FREE_BLK(nxt_blk))
cand_blk_sz += MBC_FBLK_SZ(nxt_blk);
}
}
if (cand_blk_sz < get_blk_sz) {
/* We wont fit in cand_blk get a new one */
#ifdef ERTS_SMP
realloc_move:
#endif
#endif /* !MBC_REALLOC_ALWAYS_MOVES */
new_p = mbc_alloc(allctr, size);
if (!new_p)
return NULL;
sys_memcpy(new_p, p, MIN(size, old_blk_sz - ABLK_HDR_SZ));
mbc_free(allctr, p, busy_pcrr_pp);
return new_p;
#ifndef MBC_REALLOC_ALWAYS_MOVES
}
else {
/* We will at least fit in cand_blk */
new_blk = (*allctr->get_free_block)(allctr,
get_blk_sz,
cand_blk,
cand_blk_sz);
move_into_new_blk:
/*
* new_blk, and cand_blk have to be correctly set
* when jumping to this label.
*/
if (new_blk) {
mbc_alloc_finalize(allctr,
new_blk,
MBC_FBLK_SZ(new_blk),
GET_BLK_HDR_FLGS(new_blk),
FBLK_TO_MBC(new_blk),
blk_sz,
1);
new_p = BLK2UMEM(new_blk);
sys_memcpy(new_p, p, MIN(size, old_blk_sz - ABLK_HDR_SZ));
mbc_free(allctr, p, NULL);
return new_p;
}
else {
Carrier_t* crr;
Uint new_blk_sz;
UWord new_blk_flgs;
Uint prev_blk_sz;
Uint blk_cpy_sz;
ASSERT(IS_PREV_BLK_FREE(blk));
ASSERT(cand_blk == PREV_BLK(blk));
prev_blk_sz = PREV_BLK_SZ(blk);
new_blk = cand_blk;
new_blk_sz = prev_blk_sz + old_blk_sz;
new_blk_flgs = GET_BLK_HDR_FLGS(new_blk);
HARD_CHECK_BLK_CARRIER(allctr, blk);
(*allctr->unlink_free_block)(allctr, new_blk); /* prev */
if (is_last_blk)
new_blk_flgs |= LAST_BLK_HDR_FLG;
else {
nxt_blk = BLK_AFTER(blk, old_blk_sz);
if (IS_FREE_BLK(nxt_blk)) {
new_blk_flgs |= GET_LAST_BLK_HDR_FLG(nxt_blk);
new_blk_sz += MBC_FBLK_SZ(nxt_blk);
(*allctr->unlink_free_block)(allctr, nxt_blk);
}
}
/*
* Copy user-data then update new blocks in mbc_alloc_finalize().
* mbc_alloc_finalize() may write headers at old location of
* user data; therfore, order is important.
*/
new_p = BLK2UMEM(new_blk);
blk_cpy_sz = MIN(blk_sz, old_blk_sz);
crr = FBLK_TO_MBC(new_blk);
if (prev_blk_sz >= blk_cpy_sz)
sys_memcpy(new_p, p, blk_cpy_sz - ABLK_HDR_SZ);
else
sys_memmove(new_p, p, blk_cpy_sz - ABLK_HDR_SZ);
mbc_alloc_finalize(allctr,
new_blk,
new_blk_sz,
new_blk_flgs,
crr,
blk_sz,
0);
ERTS_ALC_CPOOL_FREE_OP(allctr);
STAT_MBC_BLK_FREE(allctr, crr, NULL, old_blk_sz, alcu_flgs);
return new_p;
}
}
#endif /* !MBC_REALLOC_ALWAYS_MOVES */
}
#ifdef ERTS_SMP
#define ERTS_ALC_MAX_DEALLOC_CARRIER 10
#define ERTS_ALC_CPOOL_MAX_FETCH_INSPECT 10
#define ERTS_ALC_CPOOL_CHECK_LIMIT_COUNT 100
#define ERTS_ALC_CPOOL_MAX_NO_CARRIERS 5
#define ERTS_ALC_CPOOL_INSERT_ALLOWED_OFFSET 100
#define ERTS_ALC_CPOOL_MAX_FAILED_STAT_READS 3
#define ERTS_ALC_CPOOL_PTR_MOD_MRK (((erts_aint_t) 1) << 0)
#define ERTS_ALC_CPOOL_PTR_DEL_MRK (((erts_aint_t) 1) << 1)
#define ERTS_ALC_CPOOL_PTR_MRKS \
(ERTS_ALC_CPOOL_PTR_MOD_MRK | ERTS_ALC_CPOOL_PTR_DEL_MRK)
/*
* When setting multiple mod markers we always
* set mod markers in pointer order and always
* on next pointers before prev pointers.
*/
typedef union {
ErtsAlcCPoolData_t sentinel;
char align__[ERTS_ALC_CACHE_LINE_ALIGN_SIZE(sizeof(ErtsAlcCPoolData_t))];
} ErtsAlcCrrPool_t;
#if ERTS_ALC_A_INVALID != 0
# error "Carrier pool implementation assumes ERTS_ALC_A_INVALID == 0"
#endif
#if ERTS_ALC_A_MIN <= ERTS_ALC_A_INVALID
# error "Carrier pool implementation assumes ERTS_ALC_A_MIN > ERTS_ALC_A_INVALID"
#endif
/*
* The pool is only allowed to be manipulated by managed
* threads except in the alloc_SUITE:cpool case. In this
* test case carrier_pool[ERTS_ALC_A_INVALID] will be
* used.
*/
static ErtsAlcCrrPool_t carrier_pool[ERTS_ALC_A_MAX+1] erts_align_attribute(ERTS_CACHE_LINE_SIZE);
#define ERTS_ALC_CPOOL_MAX_BACKOFF (1 << 8)
static int
backoff(int n)
{
int i;
for (i = 0; i < n; i++)
ERTS_SPIN_BODY;
if (n >= ERTS_ALC_CPOOL_MAX_BACKOFF)
return ERTS_ALC_CPOOL_MAX_BACKOFF;
else
return n << 1;
}
static int
cpool_dbg_is_in_pool(Allctr_t *allctr, Carrier_t *crr)
{
ErtsAlcCPoolData_t *sentinel = &carrier_pool[allctr->alloc_no].sentinel;
ErtsAlcCPoolData_t *cpdp = sentinel;
Carrier_t *tmp_crr;
while (1) {
cpdp = (ErtsAlcCPoolData_t *) (erts_atomic_read_ddrb(&cpdp->next) & ~FLG_MASK);
if (cpdp == sentinel)
return 0;
tmp_crr = (Carrier_t *) (((char *) cpdp) - offsetof(Carrier_t, cpool));
if (tmp_crr == crr)
return 1;
}
}
static int
cpool_is_empty(Allctr_t *allctr)
{
ErtsAlcCPoolData_t *sentinel = &carrier_pool[allctr->alloc_no].sentinel;
return ((erts_atomic_read_rb(&sentinel->next) == (erts_aint_t) sentinel)
&& (erts_atomic_read_rb(&sentinel->prev) == (erts_aint_t) sentinel));
}
static ERTS_INLINE ErtsAlcCPoolData_t *
cpool_aint2cpd(erts_aint_t aint)
{
return (ErtsAlcCPoolData_t *) (aint & ~ERTS_ALC_CPOOL_PTR_MRKS);
}
static ERTS_INLINE erts_aint_t
cpool_read(erts_atomic_t *aptr)
{
return erts_atomic_read_acqb(aptr);
}
static ERTS_INLINE void
cpool_init(erts_atomic_t *aptr, erts_aint_t val)
{
erts_atomic_set_nob(aptr, val);
}
static ERTS_INLINE void
cpool_set_mod_marked(erts_atomic_t *aptr, erts_aint_t new, erts_aint_t old)
{
#ifdef ERTS_ALC_CPOOL_DEBUG
erts_aint_t act = erts_atomic_xchg_relb(aptr, new);
ERTS_ALC_CPOOL_ASSERT(act == (old | ERTS_ALC_CPOOL_PTR_MOD_MRK));
#else
erts_atomic_set_relb(aptr, new);
#endif
}
static ERTS_INLINE erts_aint_t
cpool_try_mod_mark_exp(erts_atomic_t *aptr, erts_aint_t exp)
{
ERTS_ALC_CPOOL_ASSERT((exp & ERTS_ALC_CPOOL_PTR_MOD_MRK) == 0);
return erts_atomic_cmpxchg_nob(aptr, exp | ERTS_ALC_CPOOL_PTR_MOD_MRK, exp);
}
static ERTS_INLINE erts_aint_t
cpool_mod_mark_exp(erts_atomic_t *aptr, erts_aint_t exp)
{
int b;
erts_aint_t act;
ERTS_ALC_CPOOL_ASSERT((exp & ERTS_ALC_CPOOL_PTR_MOD_MRK) == 0);
while (1) {
act = erts_atomic_cmpxchg_nob(aptr,
exp | ERTS_ALC_CPOOL_PTR_MOD_MRK,
exp);
if (act == exp)
return exp;
b = 1;
do {
if ((act & ~ERTS_ALC_CPOOL_PTR_MOD_MRK) != exp)
return act;
b = backoff(b);
act = erts_atomic_read_nob(aptr);
} while (act != exp);
}
}
static ERTS_INLINE erts_aint_t
cpool_mod_mark(erts_atomic_t *aptr)
{
int b;
erts_aint_t act, exp;
act = cpool_read(aptr);
while (1) {
b = 1;
while (act & ERTS_ALC_CPOOL_PTR_MOD_MRK) {
b = backoff(b);
act = erts_atomic_read_nob(aptr);
}
exp = act;
act = erts_atomic_cmpxchg_acqb(aptr,
exp | ERTS_ALC_CPOOL_PTR_MOD_MRK,
exp);
if (act == exp)
return exp;
}
}
static void
cpool_insert(Allctr_t *allctr, Carrier_t *crr)
{
ErtsAlcCPoolData_t *cpd1p, *cpd2p;
erts_aint_t val;
ErtsAlcCPoolData_t *sentinel = &carrier_pool[allctr->alloc_no].sentinel;
ERTS_ALC_CPOOL_ASSERT(allctr->alloc_no == ERTS_ALC_A_INVALID /* testcase */
|| erts_thr_progress_is_managed_thread());
ERTS_ALC_CPOOL_ASSERT(erts_smp_atomic_read_nob(&crr->allctr)
== (erts_aint_t) allctr);
erts_atomic_add_nob(&allctr->cpool.stat.blocks_size,
(erts_aint_t) crr->cpool.blocks_size);
erts_atomic_add_nob(&allctr->cpool.stat.no_blocks,
(erts_aint_t) crr->cpool.blocks);
erts_atomic_add_nob(&allctr->cpool.stat.carriers_size,
(erts_aint_t) CARRIER_SZ(crr));
erts_atomic_inc_nob(&allctr->cpool.stat.no_carriers);
erts_smp_atomic_set_nob(&crr->allctr,
((erts_aint_t) allctr)|ERTS_CRR_ALCTR_FLG_IN_POOL);
/*
* We search in 'next' direction and begin by passing
* one element before trying to insert. This in order to
* avoid contention with threads fetching elements.
*/
val = cpool_read(&sentinel->next);
/* Find a predecessor to be, and set mod marker on its next ptr */
while (1) {
cpd1p = cpool_aint2cpd(val);
if (cpd1p == sentinel) {
val = cpool_mod_mark(&cpd1p->next);
break;
}
val = cpool_read(&cpd1p->next);
if (!(val & ERTS_ALC_CPOOL_PTR_MRKS)) {
erts_aint_t tmp = cpool_try_mod_mark_exp(&cpd1p->next, val);
if (tmp == val) {
val = tmp;
break;
}
val = tmp;
}
}
/* Set mod marker on prev ptr of the to be successor */
cpd2p = cpool_aint2cpd(val);
cpool_init(&crr->cpool.next, (erts_aint_t) cpd2p);
cpool_init(&crr->cpool.prev, (erts_aint_t) cpd1p);
val = (erts_aint_t) cpd1p;
while (1) {
int b;
erts_aint_t tmp;
tmp = cpool_mod_mark_exp(&cpd2p->prev, val);
if (tmp == val)
break;
b = 1;
do {
b = backoff(b);
tmp = cpool_read(&cpd2p->prev);
} while (tmp != val);
}
/* Write pointers to this element in successor and predecessor */
cpool_set_mod_marked(&cpd1p->next,
(erts_aint_t) &crr->cpool,
(erts_aint_t) cpd2p);
cpool_set_mod_marked(&cpd2p->prev,
(erts_aint_t) &crr->cpool,
(erts_aint_t) cpd1p);
}
static void
cpool_delete(Allctr_t *allctr, Allctr_t *prev_allctr, Carrier_t *crr)
{
ErtsAlcCPoolData_t *cpd1p, *cpd2p;
erts_aint_t val;
#ifdef ERTS_ALC_CPOOL_DEBUG
ErtsAlcCPoolData_t *sentinel = &carrier_pool[allctr->alloc_no].sentinel;
#endif
ERTS_ALC_CPOOL_ASSERT(allctr->alloc_no == ERTS_ALC_A_INVALID /* testcase */
|| erts_thr_progress_is_managed_thread());
ERTS_ALC_CPOOL_ASSERT(sentinel != &crr->cpool);
/* Set mod marker on next ptr of our predecessor */
val = (erts_aint_t) &crr->cpool;
while (1) {
erts_aint_t tmp;
cpd1p = cpool_aint2cpd(cpool_read(&crr->cpool.prev));
tmp = cpool_mod_mark_exp(&cpd1p->next, val);
if (tmp == val)
break;
}
/* Set mod marker on our next ptr */
val = cpool_mod_mark(&crr->cpool.next);
/* Set mod marker on the prev ptr of our successor */
cpd2p = cpool_aint2cpd(val);
val = (erts_aint_t) &crr->cpool;
while (1) {
int b;
erts_aint_t tmp;
tmp = cpool_mod_mark_exp(&cpd2p->prev, val);
if (tmp == val)
break;
b = 1;
do {
b = backoff(b);
tmp = cpool_read(&cpd2p->prev);
} while (tmp != val);
}
/* Set mod marker on our prev ptr */
val = (erts_aint_t) cpd1p;
while (1) {
int b;
erts_aint_t tmp;
tmp = cpool_mod_mark_exp(&crr->cpool.prev, val);
if (tmp == val)
break;
b = 1;
do {
b = backoff(b);
tmp = cpool_read(&cpd2p->prev);
} while (tmp != val);
}
/* Write pointers past this element in predecessor and successor */
cpool_set_mod_marked(&cpd1p->next,
(erts_aint_t) cpd2p,
(erts_aint_t) &crr->cpool);
cpool_set_mod_marked(&cpd2p->prev,
(erts_aint_t) cpd1p,
(erts_aint_t) &crr->cpool);
/* Repleace mod markers with delete markers on this element */
cpool_set_mod_marked(&crr->cpool.next,
((erts_aint_t) cpd2p) | ERTS_ALC_CPOOL_PTR_DEL_MRK,
((erts_aint_t) cpd2p) | ERTS_ALC_CPOOL_PTR_MOD_MRK);
cpool_set_mod_marked(&crr->cpool.prev,
((erts_aint_t) cpd1p) | ERTS_ALC_CPOOL_PTR_DEL_MRK,
((erts_aint_t) cpd1p) | ERTS_ALC_CPOOL_PTR_MOD_MRK);
crr->cpool.thr_prgr = erts_thr_progress_later(NULL);
erts_atomic_add_nob(&prev_allctr->cpool.stat.blocks_size,
-((erts_aint_t) crr->cpool.blocks_size));
erts_atomic_add_nob(&prev_allctr->cpool.stat.no_blocks,
-((erts_aint_t) crr->cpool.blocks));
erts_atomic_add_nob(&prev_allctr->cpool.stat.carriers_size,
-((erts_aint_t) CARRIER_SZ(crr)));
erts_atomic_dec_wb(&prev_allctr->cpool.stat.no_carriers);
}
static Carrier_t *
cpool_fetch(Allctr_t *allctr, UWord size)
{
int i;
Carrier_t *crr;
ErtsAlcCPoolData_t *cpdp;
ErtsAlcCPoolData_t *sentinel = &carrier_pool[allctr->alloc_no].sentinel;
ERTS_ALC_CPOOL_ASSERT(allctr->alloc_no == ERTS_ALC_A_INVALID /* testcase */
|| erts_thr_progress_is_managed_thread());
i = 0;
/* First; check our own pending dealloc carrier list... */
crr = allctr->cpool.dc_list.last;
while (crr && i < ERTS_ALC_CPOOL_MAX_FETCH_INSPECT) {
if (erts_atomic_read_nob(&crr->cpool.max_size) >= size) {
unlink_carrier(&allctr->cpool.dc_list, crr);
#ifdef ERTS_ALC_CPOOL_DEBUG
ERTS_ALC_CPOOL_ASSERT(erts_smp_atomic_xchg_nob(&crr->allctr,
((erts_aint_t) allctr))
== (((erts_aint_t) allctr) & ~ERTS_CRR_ALCTR_FLG_MASK));
#else
erts_smp_atomic_set_nob(&crr->allctr, ((erts_aint_t) allctr));
#endif
return crr;
}
crr = crr->prev;
i++;
}
/* ... then the pool ... */
/*
* We search in 'prev' direction and begin by passing
* one element before trying to fetch. This in order to
* avoid contention with threads inserting elements.
*/
cpdp = cpool_aint2cpd(cpool_read(&sentinel->prev));
if (cpdp == sentinel)
return NULL;
while (i < ERTS_ALC_CPOOL_MAX_FETCH_INSPECT) {
erts_aint_t exp;
cpdp = cpool_aint2cpd(cpool_read(&cpdp->prev));
if (cpdp == sentinel) {
cpdp = cpool_aint2cpd(cpool_read(&cpdp->prev));
if (cpdp == sentinel)
return NULL;
i = ERTS_ALC_CPOOL_MAX_FETCH_INSPECT; /* Last one to inspect */
}
crr = (Carrier_t *) (((char *) cpdp) - offsetof(Carrier_t, cpool));
exp = erts_smp_atomic_read_rb(&crr->allctr);
if (((exp & (ERTS_CRR_ALCTR_FLG_IN_POOL|ERTS_CRR_ALCTR_FLG_BUSY))
== ERTS_CRR_ALCTR_FLG_IN_POOL)
&& (erts_atomic_read_nob(&cpdp->max_size) >= size)) {
erts_aint_t act;
/* Try to fetch it... */
act = erts_smp_atomic_cmpxchg_mb(&crr->allctr,
(erts_aint_t) allctr,
exp);
if (act == exp) {
cpool_delete(allctr, ((Allctr_t *) (act & ~ERTS_CRR_ALCTR_FLG_MASK)), crr);
return crr;
}
}
i++;
}
return NULL;
}
static void
check_pending_dealloc_carrier(Allctr_t *allctr,
int *need_thr_progress,
ErtsThrPrgrVal *thr_prgr_p,
int *need_more_work)
{
Carrier_t *crr = allctr->cpool.dc_list.first;
if (crr) {
ErtsThrPrgrVal current = erts_thr_progress_current();
int i = 0;
do {
Carrier_t *dcrr;
if (!erts_thr_progress_has_reached_this(current, crr->cpool.thr_prgr))
break;
dcrr = crr;
crr = crr->next;
dealloc_carrier(allctr, dcrr, 1);
i++;
} while (crr && i < ERTS_ALC_MAX_DEALLOC_CARRIER);
allctr->cpool.dc_list.first = crr;
if (!crr)
allctr->cpool.dc_list.last = NULL;
else {
crr->prev = NULL;
if (need_more_work) {
ERTS_ALC_CPOOL_ASSERT(need_thr_progress && thr_prgr_p);
if (erts_thr_progress_has_reached_this(current, crr->cpool.thr_prgr))
*need_more_work = 1;
else {
*need_thr_progress = 1;
if (*thr_prgr_p == ERTS_THR_PRGR_INVALID
|| erts_thr_progress_cmp(crr->cpool.thr_prgr,
*thr_prgr_p) < 0) {
*thr_prgr_p = crr->cpool.thr_prgr;
}
}
}
}
}
}
static void
schedule_dealloc_carrier(Allctr_t *allctr, Carrier_t *crr)
{
Allctr_t *orig_allctr;
int check_pending_dealloc;
erts_aint_t max_size;
if (!ERTS_ALC_IS_CPOOL_ENABLED(allctr)) {
dealloc_carrier(allctr, crr, 1);
return;
}
orig_allctr = crr->cpool.orig_allctr;
if (allctr != orig_allctr) {
Block_t *blk = MBC_TO_FIRST_BLK(allctr, crr);
int cinit = orig_allctr->dd.ix - allctr->dd.ix;
/*
* We send the carrier to its origin for deallocation.
* This in order:
* - not to complicate things for the thread specific
* instances of mseg_alloc, and
* - to ensure that we always only reuse empty carriers
* originating from our own thread specific mseg_alloc
* instance which is beneficial on NUMA systems.
*
* The receiver will recognize that this is a carrier to
* deallocate (and not a block which is the common case)
* since the block is an mbc block that is free and last
* in the carrier.
*/
ERTS_ALC_CPOOL_ASSERT(IS_FREE_LAST_MBC_BLK(blk));
ERTS_ALC_CPOOL_ASSERT(IS_MBC_FIRST_ABLK(allctr, blk));
ERTS_ALC_CPOOL_ASSERT(crr == FBLK_TO_MBC(blk));
ERTS_ALC_CPOOL_ASSERT(crr == FIRST_BLK_TO_MBC(allctr, blk));
ERTS_ALC_CPOOL_ASSERT(((erts_aint_t) allctr)
== (erts_smp_atomic_read_nob(&crr->allctr)
& ~ERTS_CRR_ALCTR_FLG_MASK));
if (ddq_enqueue(&orig_allctr->dd.q, BLK2UMEM(blk), cinit))
erts_alloc_notify_delayed_dealloc(orig_allctr->ix);
return;
}
if (crr->cpool.thr_prgr == ERTS_THR_PRGR_INVALID
|| erts_thr_progress_has_reached(crr->cpool.thr_prgr)) {
dealloc_carrier(allctr, crr, 1);
return;
}
max_size = (erts_aint_t) allctr->largest_fblk_in_mbc(allctr, crr);
erts_atomic_set_nob(&crr->cpool.max_size, max_size);
crr->next = NULL;
crr->prev = allctr->cpool.dc_list.last;
if (allctr->cpool.dc_list.last) {
check_pending_dealloc = 1;
allctr->cpool.dc_list.last->next = crr;
}
else {
check_pending_dealloc = 0;
allctr->cpool.dc_list.first = crr;
}
allctr->cpool.dc_list.last = crr;
if (check_pending_dealloc)
check_pending_dealloc_carrier(allctr, NULL, NULL, NULL);
erts_alloc_ensure_handle_delayed_dealloc_call(allctr->ix);
}
static ERTS_INLINE void
cpool_init_carrier_data(Allctr_t *allctr, Carrier_t *crr)
{
erts_atomic_init_nob(&crr->cpool.next, ERTS_AINT_NULL);
erts_atomic_init_nob(&crr->cpool.prev, ERTS_AINT_NULL);
crr->cpool.orig_allctr = allctr;
crr->cpool.thr_prgr = ERTS_THR_PRGR_INVALID;
erts_atomic_init_nob(&crr->cpool.max_size, 0);
crr->cpool.blocks = 0;
crr->cpool.blocks_size = 0;
if (!ERTS_ALC_IS_CPOOL_ENABLED(allctr))
crr->cpool.abandon_limit = 0;
else {
UWord csz = CARRIER_SZ(crr);
UWord limit = csz*allctr->cpool.util_limit;
if (limit > csz)
limit /= 100;
else
limit = (csz/100)*allctr->cpool.util_limit;
crr->cpool.abandon_limit = limit;
}
}
static void
set_new_allctr_abandon_limit(Allctr_t *allctr)
{
UWord limit;
UWord csz;
allctr->cpool.check_limit_count = ERTS_ALC_CPOOL_CHECK_LIMIT_COUNT;
csz = allctr->mbcs.curr.norm.mseg.size;
csz += allctr->mbcs.curr.norm.sys_alloc.size;
limit = csz*allctr->cpool.util_limit;
if (limit > csz)
limit /= 100;
else
limit = (csz/100)*allctr->cpool.util_limit;
allctr->cpool.abandon_limit = limit;
}
static void
abandon_carrier(Allctr_t *allctr, Carrier_t *crr)
{
erts_aint_t max_size;
STAT_MBC_CPOOL_INSERT(allctr, crr);
unlink_carrier(&allctr->mbc_list, crr);
allctr->remove_mbc(allctr, crr);
max_size = (erts_aint_t) allctr->largest_fblk_in_mbc(allctr, crr);
erts_atomic_set_nob(&crr->cpool.max_size, max_size);
cpool_insert(allctr, crr);
set_new_allctr_abandon_limit(allctr);
}
static void
cpool_read_stat(Allctr_t *allctr, UWord *nocp, UWord *cszp, UWord *nobp, UWord *bszp)
{
int i;
UWord noc = 0, csz = 0, nob = 0, bsz = 0;
/*
* We try to get consistent values, but after
* ERTS_ALC_CPOOL_MAX_FAILED_STAT_READS failed
* tries we give up and present what we got...
*/
for (i = 0; i <= ERTS_ALC_CPOOL_MAX_FAILED_STAT_READS; i++) {
UWord tnoc, tcsz, tnob, tbsz;
tnoc = (UWord) (nocp
? erts_atomic_read_nob(&allctr->cpool.stat.no_carriers)
: 0);
tcsz = (UWord) (cszp
? erts_atomic_read_nob(&allctr->cpool.stat.carriers_size)
: 0);
tnob = (UWord) (nobp
? erts_atomic_read_nob(&allctr->cpool.stat.no_blocks)
: 0);
tbsz = (UWord) (bszp
? erts_atomic_read_nob(&allctr->cpool.stat.blocks_size)
: 0);
if (tnoc == noc && tcsz == csz && tnob == nob && tbsz == bsz)
break;
noc = tnoc;
csz = tcsz;
nob = tnob;
bsz = tbsz;
ERTS_THR_READ_MEMORY_BARRIER;
}
if (nocp)
*nocp = noc;
if (cszp)
*cszp = csz;
if (nobp)
*nobp = nob;
if (bszp)
*bszp = bsz;
}
#endif /* ERTS_SMP */
#ifdef DEBUG
#if ERTS_SA_MB_CARRIERS
#define ASSERT_ERTS_SACRR_UNIT_SIZE_MULTIPLE(CSZ) ASSERT((CSZ) % ERTS_SACRR_UNIT_SZ == 0)
#else
#define ASSERT_ERTS_SACRR_UNIT_SIZE_MULTIPLE(CSZ)
#endif
static void CHECK_1BLK_CARRIER(Allctr_t* A, int SBC, int MSEGED, Carrier_t* C,
UWord CSZ, Block_t* B, UWord BSZ)
{
ASSERT(IS_LAST_BLK((B)));
ASSERT((CSZ) == CARRIER_SZ((C)));
ASSERT((BSZ) % sizeof(Unit_t) == 0);
if ((SBC)) {
ASSERT((BSZ) == SBC_BLK_SZ((B)));
ASSERT((char*)B == (char*)C + SBC_HEADER_SIZE);
ASSERT(IS_SBC_BLK((B)));
ASSERT(IS_SB_CARRIER((C)));
}
else {
ASSERT(IS_FREE_BLK(B));
ASSERT((BSZ) == MBC_FBLK_SZ((B)));
ASSERT(IS_MBC_FIRST_FBLK(A, (B)));
ASSERT(IS_MBC_BLK((B)));
ASSERT(IS_MB_CARRIER((C)));
ASSERT(FBLK_TO_MBC(B) == (C));
if ((MSEGED)) {
ASSERT_ERTS_SACRR_UNIT_SIZE_MULTIPLE((CSZ));
}
}
if ((MSEGED)) {
ASSERT(IS_MSEG_CARRIER((C)));
}
else {
ASSERT(IS_SYS_ALLOC_CARRIER((C)));
ASSERT((CSZ) % sizeof(Unit_t) == 0);
}
}
#else
#define CHECK_1BLK_CARRIER(A, SBC, MSEGED, C, CSZ, B, BSZ)
#endif
static Block_t *
create_carrier(Allctr_t *allctr, Uint umem_sz, UWord flags)
{
Block_t *blk;
Carrier_t *crr;
Uint blk_sz, bcrr_sz, crr_sz;
#if HAVE_ERTS_MSEG
int have_tried_sys_alloc = 0, have_tried_mseg = 0;
Uint mseg_flags;
#endif
#ifdef DEBUG
int is_mseg = 0;
#endif
if (HALFWORD_HEAP
|| (ERTS_SUPER_ALIGNED_MSEG_ONLY && (flags & CFLG_MBC))
|| !allow_sys_alloc_carriers) {
flags |= CFLG_FORCE_MSEG;
flags &= ~CFLG_FORCE_SYS_ALLOC;
#if !HAVE_ERTS_MSEG
return NULL;
#endif
}
ASSERT((flags & CFLG_SBC && !(flags & CFLG_MBC))
|| (flags & CFLG_MBC && !(flags & CFLG_SBC)));
ASSERT(!(flags & CFLG_FORCE_MSEG && flags & CFLG_FORCE_SYS_ALLOC));
if (umem_sz > (ERTS_UINT_MAX - ERTS_UINT_MAX/100)) {
/* Do an overly conservative _overflow_ check here so we don't
* have to deal with it from here on. I guess we could be more accurate
* but I don't think the need to allocate over 99% of the address space
* will ever arise on any machine, neither 32 nor 64 bit.
*/
return NULL;
}
blk_sz = UMEMSZ2BLKSZ(allctr, umem_sz);
#ifdef ERTS_SMP
allctr->cpool.disable_abandon = ERTS_ALC_CPOOL_MAX_DISABLE_ABANDON;
if ((flags & (CFLG_MBC|CFLG_NO_CPOOL)) == CFLG_MBC
&& ERTS_ALC_IS_CPOOL_ENABLED(allctr)
&& erts_thr_progress_is_managed_thread()) {
crr = cpool_fetch(allctr, blk_sz);
if (crr) {
STAT_MBC_CPOOL_FETCH(allctr, crr);
link_carrier(&allctr->mbc_list, crr);
(*allctr->add_mbc)(allctr, crr);
blk = (*allctr->get_free_block)(allctr, blk_sz, NULL, 0);
ASSERT(blk);
return blk;
}
}
#endif
#if HAVE_ERTS_MSEG
if (flags & CFLG_FORCE_SYS_ALLOC)
goto try_sys_alloc;
if (flags & CFLG_FORCE_MSEG)
goto try_mseg;
if (erts_mseg_no(&allctr->mseg_opt) >= max_mseg_carriers)
goto try_sys_alloc;
if (flags & CFLG_SBC) {
if (allctr->sbcs.curr.norm.mseg.no >= allctr->max_mseg_sbcs)
goto try_sys_alloc;
}
#if !ERTS_SUPER_ALIGNED_MSEG_ONLY
else {
if (allctr->mbcs.curr.norm.mseg.no >= allctr->max_mseg_mbcs)
goto try_sys_alloc;
}
#endif
try_mseg:
if (flags & CFLG_SBC) {
crr_sz = blk_sz + SBC_HEADER_SIZE;
mseg_flags = ERTS_MSEG_FLG_NONE;
}
else {
crr_sz = (*allctr->get_next_mbc_size)(allctr);
if (crr_sz < MBC_HEADER_SIZE(allctr) + blk_sz)
crr_sz = MBC_HEADER_SIZE(allctr) + blk_sz;
mseg_flags = ERTS_MSEG_FLG_2POW;
}
crr = (Carrier_t *) alcu_mseg_alloc(allctr, &crr_sz, mseg_flags);
if (!crr) {
have_tried_mseg = 1;
if (!(have_tried_sys_alloc || flags & CFLG_FORCE_MSEG))
goto try_sys_alloc;
return NULL;
}
#ifdef DEBUG
is_mseg = 1;
#endif
if (flags & CFLG_SBC) {
SET_CARRIER_HDR(crr, crr_sz, SCH_MSEG|SCH_SBC, allctr);
STAT_MSEG_SBC_ALLOC(allctr, crr_sz, blk_sz);
goto sbc_final_touch;
}
else {
#ifndef ARCH_64
ASSERT(crr_sz <= MBC_SZ_MAX_LIMIT);
#endif
SET_CARRIER_HDR(crr, crr_sz, SCH_MSEG|SCH_MBC, allctr);
STAT_MSEG_MBC_ALLOC(allctr, crr_sz);
goto mbc_final_touch;
}
try_sys_alloc:
#endif /* #if HAVE_ERTS_MSEG */
if (flags & CFLG_SBC) {
bcrr_sz = blk_sz + SBC_HEADER_SIZE;
}
else {
bcrr_sz = MBC_HEADER_SIZE(allctr) + blk_sz;
if (!(flags & CFLG_MAIN_CARRIER)
&& bcrr_sz < allctr->smallest_mbc_size)
bcrr_sz = allctr->smallest_mbc_size;
}
crr_sz = (flags & CFLG_FORCE_SIZE
? UNIT_CEILING(bcrr_sz)
: SYS_ALLOC_CARRIER_CEILING(bcrr_sz));
crr = (Carrier_t *) alcu_sys_alloc(allctr, crr_sz, flags & CFLG_MBC);
if (!crr) {
if (crr_sz > UNIT_CEILING(bcrr_sz)) {
crr_sz = UNIT_CEILING(bcrr_sz);
crr = (Carrier_t *) alcu_sys_alloc(allctr, crr_sz, flags & CFLG_MBC);
}
if (!crr) {
#if HAVE_ERTS_MSEG
have_tried_sys_alloc = 1;
if (!(have_tried_mseg || flags & CFLG_FORCE_SYS_ALLOC))
goto try_mseg;
#endif
return NULL;
}
}
if (flags & CFLG_SBC) {
SET_CARRIER_HDR(crr, crr_sz, SCH_SYS_ALLOC|SCH_SBC, allctr);
STAT_SYS_ALLOC_SBC_ALLOC(allctr, crr_sz, blk_sz);
#if HAVE_ERTS_MSEG
sbc_final_touch:
#endif
blk = SBC2BLK(allctr, crr);
SET_SBC_BLK_HDR(blk, blk_sz);
link_carrier(&allctr->sbc_list, crr);
CHECK_1BLK_CARRIER(allctr, 1, is_mseg, crr, crr_sz, blk, blk_sz);
}
else {
SET_CARRIER_HDR(crr, crr_sz, SCH_SYS_ALLOC|SCH_MBC, allctr);
STAT_SYS_ALLOC_MBC_ALLOC(allctr, crr_sz);
#if HAVE_ERTS_MSEG
mbc_final_touch:
#endif
blk = MBC_TO_FIRST_BLK(allctr, crr);
blk_sz = UNIT_FLOOR(crr_sz - MBC_HEADER_SIZE(allctr));
SET_MBC_FBLK_HDR(blk, blk_sz, SBH_THIS_FREE|SBH_LAST_BLK, crr);
if (flags & CFLG_MAIN_CARRIER) {
ASSERT(!allctr->main_carrier);
allctr->main_carrier = crr;
}
#ifdef ERTS_SMP
cpool_init_carrier_data(allctr, crr);
#endif
link_carrier(&allctr->mbc_list, crr);
CHECK_1BLK_CARRIER(allctr, 0, is_mseg, crr, crr_sz, blk, blk_sz);
if (allctr->creating_mbc)
(*allctr->creating_mbc)(allctr, crr);
}
DEBUG_SAVE_ALIGNMENT(crr);
return blk;
}
static Block_t *
resize_carrier(Allctr_t *allctr, Block_t *old_blk, Uint umem_sz, UWord flags)
{
Block_t *new_blk;
Carrier_t *new_crr, *old_crr;
UWord create_flags;
Uint old_crr_sz, old_blk_sz, new_blk_sz, new_crr_sz;
Uint new_bcrr_sz;
if (flags & CFLG_MBC) {
ASSERT(0);
return NULL;
}
ASSERT(flags & CFLG_SBC);
create_flags = flags|CFLG_SBC;
HARD_CHECK_BLK_CARRIER(allctr, old_blk);
old_blk_sz = SBC_BLK_SZ(old_blk);
old_crr = BLK_TO_SBC(old_blk);
old_crr_sz = CARRIER_SZ(old_crr);
ASSERT(IS_SB_CARRIER(old_crr));
ASSERT(IS_SBC_BLK(old_blk));
new_blk_sz = UMEMSZ2BLKSZ(allctr, umem_sz);
#if HAVE_ERTS_MSEG
if (IS_MSEG_CARRIER(old_crr)) {
STAT_MSEG_SBC_FREE(allctr, old_crr_sz, old_blk_sz);
if (!(flags & CFLG_FORCE_SYS_ALLOC)) {
new_crr_sz = new_blk_sz + SBC_HEADER_SIZE;
new_crr_sz = ERTS_SACRR_UNIT_CEILING(new_crr_sz);
new_crr = (Carrier_t *) alcu_mseg_realloc(allctr,
old_crr,
old_crr_sz,
&new_crr_sz);
if (new_crr) {
SET_CARRIER_SZ(new_crr, new_crr_sz);
new_blk = SBC2BLK(allctr, new_crr);
SET_SBC_BLK_SZ(new_blk, new_blk_sz);
STAT_MSEG_SBC_ALLOC(allctr, new_crr_sz, new_blk_sz);
relink_carrier(&allctr->sbc_list, new_crr);
CHECK_1BLK_CARRIER(allctr, 1, 1, new_crr, new_crr_sz,
new_blk, new_blk_sz);
DEBUG_SAVE_ALIGNMENT(new_crr);
return new_blk;
}
#if HALFWORD_HEAP
/* Old carrier unchanged; restore stat */
STAT_MSEG_SBC_ALLOC(allctr, old_crr_sz, old_blk_sz);
return NULL;
#endif
create_flags |= CFLG_FORCE_SYS_ALLOC; /* since mseg_realloc()
failed */
}
new_blk = create_carrier(allctr, umem_sz, create_flags);
if (new_blk) {
sys_memcpy((void *) BLK2UMEM(new_blk),
(void *) BLK2UMEM(old_blk),
MIN(new_blk_sz, old_blk_sz) - ABLK_HDR_SZ);
unlink_carrier(&allctr->sbc_list, old_crr);
alcu_mseg_dealloc(allctr, old_crr, old_crr_sz, ERTS_MSEG_FLG_NONE);
}
else {
/* Old carrier unchanged; restore stat */
STAT_MSEG_SBC_ALLOC(allctr, old_crr_sz, old_blk_sz);
}
return new_blk;
}
else {
if (!(flags & CFLG_FORCE_MSEG)) {
#endif /* #if HAVE_ERTS_MSEG */
new_bcrr_sz = new_blk_sz + SBC_HEADER_SIZE;
new_crr_sz = (flags & CFLG_FORCE_SIZE
? UNIT_CEILING(new_bcrr_sz)
: SYS_ALLOC_CARRIER_CEILING(new_bcrr_sz));
new_crr = (Carrier_t *) alcu_sys_realloc(allctr,
(void *) old_crr,
new_crr_sz,
old_crr_sz,
0);
if (new_crr) {
sys_realloc_success:
SET_CARRIER_SZ(new_crr, new_crr_sz);
new_blk = SBC2BLK(allctr, new_crr);
SET_SBC_BLK_SZ(new_blk, new_blk_sz);
STAT_SYS_ALLOC_SBC_FREE(allctr, old_crr_sz, old_blk_sz);
STAT_SYS_ALLOC_SBC_ALLOC(allctr, new_crr_sz, new_blk_sz);
relink_carrier(&allctr->sbc_list, new_crr);
CHECK_1BLK_CARRIER(allctr, 1, 0, new_crr, new_crr_sz,
new_blk, new_blk_sz);
DEBUG_SAVE_ALIGNMENT(new_crr);
return new_blk;
}
else if (new_crr_sz > UNIT_CEILING(new_bcrr_sz)) {
new_crr_sz = new_blk_sz + SBC_HEADER_SIZE;
new_crr_sz = UNIT_CEILING(new_crr_sz);
new_crr = (Carrier_t *) alcu_sys_realloc(allctr,
(void *) old_crr,
new_crr_sz,
old_crr_sz,
0);
if (new_crr)
goto sys_realloc_success;
}
#if !HAVE_ERTS_MSEG
return NULL;
#else
create_flags |= CFLG_FORCE_MSEG; /* Since sys_realloc() failed */
}
STAT_SYS_ALLOC_SBC_FREE(allctr, old_crr_sz, old_blk_sz);
new_blk = create_carrier(allctr, umem_sz, create_flags);
if (new_blk) {
sys_memcpy((void *) BLK2UMEM(new_blk),
(void *) BLK2UMEM(old_blk),
MIN(new_blk_sz, old_blk_sz) - ABLK_HDR_SZ);
unlink_carrier(&allctr->sbc_list, old_crr);
alcu_sys_free(allctr, old_crr, 0);
}
else {
/* Old carrier unchanged; restore... */
STAT_SYS_ALLOC_SBC_ALLOC(allctr, old_crr_sz, old_blk_sz);
}
return new_blk;
}
#endif
}
static void
dealloc_carrier(Allctr_t *allctr, Carrier_t *crr, int superaligned)
{
#if HAVE_ERTS_MSEG
if (IS_MSEG_CARRIER(crr))
alcu_mseg_dealloc(allctr, crr, CARRIER_SZ(crr),
(superaligned
? ERTS_MSEG_FLG_2POW
: ERTS_MSEG_FLG_NONE));
else
#endif
alcu_sys_free(allctr, crr, superaligned);
}
static void
destroy_carrier(Allctr_t *allctr, Block_t *blk, Carrier_t **busy_pcrr_pp)
{
Uint crr_sz;
Carrier_t *crr;
if (IS_SBC_BLK(blk)) {
Uint blk_sz = SBC_BLK_SZ(blk);
crr = BLK_TO_SBC(blk);
crr_sz = CARRIER_SZ(crr);
ASSERT(IS_LAST_BLK(blk));
HARD_CHECK_BLK_CARRIER(allctr, blk);
#if HAVE_ERTS_MSEG
if (IS_MSEG_CARRIER(crr)) {
STAT_MSEG_SBC_FREE(allctr, crr_sz, blk_sz);
}
else
#endif
STAT_SYS_ALLOC_SBC_FREE(allctr, crr_sz, blk_sz);
unlink_carrier(&allctr->sbc_list, crr);
dealloc_carrier(allctr, crr, 0);
}
else {
ASSERT(IS_MBC_FIRST_FBLK(allctr, blk));
crr = FIRST_BLK_TO_MBC(allctr, blk);
crr_sz = CARRIER_SZ(crr);
#ifdef DEBUG
if (!allctr->stopped) {
ASSERT(IS_LAST_BLK(blk));
#ifdef ERTS_ALLOC_UTIL_HARD_DEBUG
(*allctr->link_free_block)(allctr, blk, 0);
HARD_CHECK_BLK_CARRIER(allctr, blk);
(*allctr->unlink_free_block)(allctr, blk, 0);
#endif
}
#endif
if (allctr->destroying_mbc)
(*allctr->destroying_mbc)(allctr, crr);
#ifdef ERTS_SMP
if (busy_pcrr_pp && *busy_pcrr_pp) {
ERTS_ALC_CPOOL_ASSERT(*busy_pcrr_pp == crr);
*busy_pcrr_pp = NULL;
cpool_delete(allctr, allctr, crr);
}
else
#endif
{
unlink_carrier(&allctr->mbc_list, crr);
#if HAVE_ERTS_MSEG
if (IS_MSEG_CARRIER(crr)) {
ASSERT(crr_sz % ERTS_SACRR_UNIT_SZ == 0);
STAT_MSEG_MBC_FREE(allctr, crr_sz);
}
else
#endif
STAT_SYS_ALLOC_MBC_FREE(allctr, crr_sz);
}
#ifdef ERTS_SMP
schedule_dealloc_carrier(allctr, crr);
#else
dealloc_carrier(allctr, crr, 1);
#endif
}
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* Info stuff *
\* */
static struct {
Eterm versions;
Eterm options;
Eterm e;
Eterm t;
Eterm ramv;
#if HALFWORD_HEAP
Eterm low;
#endif
Eterm sbct;
#if HAVE_ERTS_MSEG
Eterm asbcst;
Eterm rsbcst;
#endif
Eterm rsbcmt;
Eterm rmbcmt;
Eterm mmbcs;
Eterm msbclt;
#if HAVE_ERTS_MSEG
Eterm mmsbc;
Eterm mmmbc;
#endif
Eterm lmbcs;
Eterm smbcs;
Eterm mbcgs;
Eterm acul;
#if HAVE_ERTS_MSEG
Eterm mmc;
#endif
Eterm ycs;
Eterm sac;
Eterm fix_types;
Eterm mbcs;
#ifdef ERTS_SMP
Eterm mbcs_pool;
#endif
Eterm sbcs;
Eterm sys_alloc_carriers_size;
#if HAVE_ERTS_MSEG
Eterm mseg_alloc_carriers_size;
#endif
Eterm carriers_size;
Eterm sys_alloc_carriers;
#if HAVE_ERTS_MSEG
Eterm mseg_alloc_carriers;
#endif
Eterm carriers;
Eterm blocks_size;
Eterm blocks;
Eterm calls;
Eterm sys_alloc;
Eterm sys_free;
Eterm sys_realloc;
#if HAVE_ERTS_MSEG
Eterm mseg_alloc;
Eterm mseg_dealloc;
Eterm mseg_realloc;
#endif
#ifdef DEBUG
Eterm end_of_atoms;
#endif
} am;
static Eterm fix_type_atoms[ERTS_ALC_NO_FIXED_SIZES];
static ERTS_INLINE void atom_init(Eterm *atom, char *name)
{
*atom = am_atom_put(name, strlen(name));
}
#define AM_INIT(AM) atom_init(&am.AM, #AM)
static erts_mtx_t init_atoms_mtx;
static void
init_atoms(Allctr_t *allctr)
{
erts_mtx_lock(&init_atoms_mtx);
if (!atoms_initialized) {
int ix;
#ifdef DEBUG
Eterm *atom;
for (atom = (Eterm *) &am; atom <= &am.end_of_atoms; atom++) {
*atom = THE_NON_VALUE;
}
#endif
AM_INIT(versions);
AM_INIT(options);
AM_INIT(e);
AM_INIT(t);
AM_INIT(ramv);
#if HALFWORD_HEAP
AM_INIT(low);
#endif
AM_INIT(sbct);
#if HAVE_ERTS_MSEG
AM_INIT(asbcst);
AM_INIT(rsbcst);
#endif
AM_INIT(rsbcmt);
AM_INIT(rmbcmt);
AM_INIT(mmbcs);
AM_INIT(msbclt);
#if HAVE_ERTS_MSEG
AM_INIT(mmsbc);
AM_INIT(mmmbc);
#endif
AM_INIT(lmbcs);
AM_INIT(smbcs);
AM_INIT(mbcgs);
AM_INIT(acul);
#if HAVE_ERTS_MSEG
AM_INIT(mmc);
#endif
AM_INIT(ycs);
AM_INIT(sac);
AM_INIT(fix_types);
AM_INIT(mbcs);
#ifdef ERTS_SMP
AM_INIT(mbcs_pool);
#endif
AM_INIT(sbcs);
AM_INIT(sys_alloc_carriers_size);
#if HAVE_ERTS_MSEG
AM_INIT(mseg_alloc_carriers_size);
#endif
AM_INIT(carriers_size);
AM_INIT(sys_alloc_carriers);
#if HAVE_ERTS_MSEG
AM_INIT(mseg_alloc_carriers);
#endif
AM_INIT(carriers);
AM_INIT(blocks_size);
AM_INIT(blocks);
AM_INIT(calls);
AM_INIT(sys_alloc);
AM_INIT(sys_free);
AM_INIT(sys_realloc);
#if HAVE_ERTS_MSEG
AM_INIT(mseg_alloc);
AM_INIT(mseg_dealloc);
AM_INIT(mseg_realloc);
#endif
#ifdef DEBUG
for (atom = (Eterm *) &am; atom < &am.end_of_atoms; atom++) {
ASSERT(*atom != THE_NON_VALUE);
}
#endif
for (ix = 0; ix < ERTS_ALC_NO_FIXED_SIZES; ix++) {
ErtsAlcType_t n = ERTS_ALC_N_MIN_A_FIXED_SIZE + ix;
char *name = (char *) ERTS_ALC_N2TD(n);
size_t len = strlen(name);
fix_type_atoms[ix] = am_atom_put(name, len);
}
}
if (allctr && !allctr->atoms_initialized) {
make_name_atoms(allctr);
(*allctr->init_atoms)();
allctr->atoms_initialized = 1;
}
atoms_initialized = 1;
erts_mtx_unlock(&init_atoms_mtx);
}
static ERTS_INLINE void
ensure_atoms_initialized(Allctr_t *allctr)
{
if (!allctr || !allctr->atoms_initialized)
init_atoms(allctr);
}
#define bld_uint erts_bld_uint
#define bld_cons erts_bld_cons
#define bld_tuple erts_bld_tuple
#define bld_string erts_bld_string
/*
* bld_unstable_uint() (instead bld_uint()) is used when values may
* change between size check and actual build. This because a value
* that would fit a small when size check is done may need to be built
* as a big when the actual build is performed. Caller is required to
* HRelease after build.
*
* Note, bld_unstable_uint() should have been called bld_unstable_uword()
* but we do not want to rename it...
*/
static ERTS_INLINE Eterm
bld_unstable_uint(Uint **hpp, Uint *szp, UWord ui)
{
Eterm res = THE_NON_VALUE;
if (szp)
*szp += BIG_UWORD_HEAP_SIZE(~((UWord) 0));
if (hpp) {
if (IS_USMALL(0, ui))
res = make_small(ui);
else {
res = uword_to_big(ui, *hpp);
*hpp += BIG_UWORD_HEAP_SIZE(ui);
}
}
return res;
}
static ERTS_INLINE void
add_2tup(Uint **hpp, Uint *szp, Eterm *lp, Eterm el1, Eterm el2)
{
*lp = bld_cons(hpp, szp, bld_tuple(hpp, szp, 2, el1, el2), *lp);
}
static ERTS_INLINE void
add_3tup(Uint **hpp, Uint *szp, Eterm *lp, Eterm el1, Eterm el2, Eterm el3)
{
*lp = bld_cons(hpp, szp, bld_tuple(hpp, szp, 3, el1, el2, el3), *lp);
}
static ERTS_INLINE void
add_4tup(Uint **hpp, Uint *szp, Eterm *lp,
Eterm el1, Eterm el2, Eterm el3, Eterm el4)
{
*lp =
bld_cons(hpp, szp, bld_tuple(hpp, szp, 4, el1, el2, el3, el4), *lp);
}
static ERTS_INLINE void
add_fix_types(Allctr_t *allctr, int internal, Uint **hpp, Uint *szp,
Eterm *lp, Eterm fix)
{
if (allctr->fix) {
if (!ERTS_ALC_IS_CPOOL_ENABLED(allctr))
add_2tup(hpp, szp, lp, am.fix_types, fix);
else if (internal)
add_3tup(hpp, szp, lp,
am.fix_types,
erts_bld_uword(hpp, szp, ~((UWord) 0)),
fix);
}
}
static Eterm
sz_info_fix(Allctr_t *allctr,
int internal,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res;
int ix;
ASSERT(allctr->fix);
res = NIL;
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr)) {
if (internal) {
for (ix = ERTS_ALC_NO_FIXED_SIZES-1; ix >= 0; ix--) {
ErtsAlcFixList_t *fix = &allctr->fix[ix];
UWord alloced = fix->type_size * fix->u.cpool.allocated;
UWord used = fix->type_size * fix->u.cpool.used;
if (print_to_p) {
int to = *print_to_p;
void *arg = print_to_arg;
erts_print(to,
arg,
"fix type internal: %s %bpu %bpu\n",
(char *) ERTS_ALC_N2TD(ERTS_ALC_N_MIN_A_FIXED_SIZE
+ ix),
alloced,
used);
}
if (hpp || szp) {
add_3tup(hpp, szp, &res,
fix_type_atoms[ix],
bld_unstable_uint(hpp, szp, alloced),
bld_unstable_uint(hpp, szp, used));
}
}
}
}
else {
for (ix = ERTS_ALC_NO_FIXED_SIZES-1; ix >= 0; ix--) {
ErtsAlcFixList_t *fix = &allctr->fix[ix];
UWord alloced = fix->type_size * fix->u.nocpool.allocated;
UWord used = fix->type_size*fix->u.nocpool.used;
if (print_to_p) {
int to = *print_to_p;
void *arg = print_to_arg;
erts_print(to,
arg,
"fix type: %s %bpu %bpu\n",
(char *) ERTS_ALC_N2TD(ERTS_ALC_N_MIN_A_FIXED_SIZE
+ ix),
alloced,
used);
}
if (hpp || szp) {
add_3tup(hpp, szp, &res,
fix_type_atoms[ix],
bld_unstable_uint(hpp, szp, alloced),
bld_unstable_uint(hpp, szp, used));
}
}
}
return res;
}
static Eterm
sz_info_carriers(Allctr_t *allctr,
CarriersStats_t *cs,
char *prefix,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res = THE_NON_VALUE;
UWord curr_size = cs->curr.norm.mseg.size + cs->curr.norm.sys_alloc.size;
if (print_to_p) {
int to = *print_to_p;
void *arg = print_to_arg;
erts_print(to,
arg,
"%sblocks size: %bpu %bpu %bpu\n",
prefix,
cs->blocks.curr.size,
cs->blocks.max.size,
cs->blocks.max_ever.size);
erts_print(to,
arg,
"%scarriers size: %bpu %bpu %bpu\n",
prefix,
curr_size,
cs->max.size,
cs->max_ever.size);
}
if (hpp || szp) {
res = NIL;
add_4tup(hpp, szp, &res,
am.carriers_size,
bld_unstable_uint(hpp, szp, curr_size),
bld_unstable_uint(hpp, szp, cs->max.size),
bld_unstable_uint(hpp, szp, cs->max_ever.size));
add_4tup(hpp, szp, &res,
am.blocks_size,
bld_unstable_uint(hpp, szp, cs->blocks.curr.size),
bld_unstable_uint(hpp, szp, cs->blocks.max.size),
bld_unstable_uint(hpp, szp, cs->blocks.max_ever.size));
}
return res;
}
#ifdef ERTS_SMP
static Eterm
info_cpool(Allctr_t *allctr,
int sz_only,
char *prefix,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res = THE_NON_VALUE;
UWord noc, csz, nob, bsz;
noc = csz = nob = bsz = ~0;
if (print_to_p || hpp) {
if (sz_only)
cpool_read_stat(allctr, NULL, &csz, NULL, &bsz);
else
cpool_read_stat(allctr, &noc, &csz, &nob, &bsz);
}
if (print_to_p) {
int to = *print_to_p;
void *arg = print_to_arg;
if (!sz_only)
erts_print(to, arg, "%sblocks: %bpu\n", prefix, nob);
erts_print(to, arg, "%sblocks size: %bpu\n", prefix, bsz);
if (!sz_only)
erts_print(to, arg, "%scarriers: %bpu\n", prefix, noc);
erts_print(to, arg, "%scarriers size: %bpu\n", prefix, csz);
}
if (hpp || szp) {
res = NIL;
add_2tup(hpp, szp, &res,
am.carriers_size,
bld_unstable_uint(hpp, szp, csz));
if (!sz_only)
add_2tup(hpp, szp, &res,
am.carriers,
bld_unstable_uint(hpp, szp, noc));
add_2tup(hpp, szp, &res,
am.blocks_size,
bld_unstable_uint(hpp, szp, bsz));
if (!sz_only)
add_2tup(hpp, szp, &res,
am.blocks,
bld_unstable_uint(hpp, szp, nob));
}
return res;
}
#endif /* ERTS_SMP */
static Eterm
info_carriers(Allctr_t *allctr,
CarriersStats_t *cs,
char *prefix,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res = THE_NON_VALUE;
UWord curr_no, curr_size;
curr_no = cs->curr.norm.mseg.no + cs->curr.norm.sys_alloc.no;
curr_size = cs->curr.norm.mseg.size + cs->curr.norm.sys_alloc.size;
if (print_to_p) {
int to = *print_to_p;
void *arg = print_to_arg;
erts_print(to,
arg,
"%sblocks: %bpu %bpu %bpu\n",
prefix,
cs->blocks.curr.no,
cs->blocks.max.no,
cs->blocks.max_ever.no);
erts_print(to,
arg,
"%sblocks size: %bpu %bpu %bpu\n",
prefix,
cs->blocks.curr.size,
cs->blocks.max.size,
cs->blocks.max_ever.size);
erts_print(to,
arg,
"%scarriers: %bpu %bpu %bpu\n",
prefix,
curr_no,
cs->max.no,
cs->max_ever.no);
#if HAVE_ERTS_MSEG
erts_print(to,
arg,
"%smseg carriers: %bpu\n",
prefix,
cs->curr.norm.mseg.no);
#endif
erts_print(to,
arg,
"%ssys_alloc carriers: %bpu\n",
prefix,
cs->curr.norm.sys_alloc.no);
erts_print(to,
arg,
"%scarriers size: %bpu %bpu %bpu\n",
prefix,
curr_size,
cs->max.size,
cs->max_ever.size);
#if HAVE_ERTS_MSEG
erts_print(to,
arg,
"%smseg carriers size: %bpu\n",
prefix,
cs->curr.norm.mseg.size);
#endif
erts_print(to,
arg,
"%ssys_alloc carriers size: %bpu\n",
prefix,
cs->curr.norm.sys_alloc.size);
}
if (hpp || szp) {
res = NIL;
add_2tup(hpp, szp, &res,
am.sys_alloc_carriers_size,
bld_unstable_uint(hpp, szp, cs->curr.norm.sys_alloc.size));
#if HAVE_ERTS_MSEG
add_2tup(hpp, szp, &res,
am.mseg_alloc_carriers_size,
bld_unstable_uint(hpp, szp, cs->curr.norm.mseg.size));
#endif
add_4tup(hpp, szp, &res,
am.carriers_size,
bld_unstable_uint(hpp, szp, curr_size),
bld_unstable_uint(hpp, szp, cs->max.size),
bld_unstable_uint(hpp, szp, cs->max_ever.size));
add_2tup(hpp, szp, &res,
am.sys_alloc_carriers,
bld_unstable_uint(hpp, szp, cs->curr.norm.sys_alloc.no));
#if HAVE_ERTS_MSEG
add_2tup(hpp, szp, &res,
am.mseg_alloc_carriers,
bld_unstable_uint(hpp, szp, cs->curr.norm.mseg.no));
#endif
add_4tup(hpp, szp, &res,
am.carriers,
bld_unstable_uint(hpp, szp, curr_no),
bld_unstable_uint(hpp, szp, cs->max.no),
bld_unstable_uint(hpp, szp, cs->max_ever.no));
add_4tup(hpp, szp, &res,
am.blocks_size,
bld_unstable_uint(hpp, szp, cs->blocks.curr.size),
bld_unstable_uint(hpp, szp, cs->blocks.max.size),
bld_unstable_uint(hpp, szp, cs->blocks.max_ever.size));
add_4tup(hpp, szp, &res,
am.blocks,
bld_unstable_uint(hpp, szp, cs->blocks.curr.no),
bld_unstable_uint(hpp, szp, cs->blocks.max.no),
bld_unstable_uint(hpp, szp, cs->blocks.max_ever.no));
}
return res;
}
static void
make_name_atoms(Allctr_t *allctr)
{
char alloc[] = "alloc";
char realloc[] = "realloc";
char free[] = "free";
char buf[MAX_ATOM_CHARACTERS];
size_t prefix_len = strlen(allctr->name_prefix);
if (prefix_len > MAX_ATOM_CHARACTERS + sizeof(realloc) - 1)
erl_exit(1,"Too long allocator name: %salloc\n",allctr->name_prefix);
memcpy((void *) buf, (void *) allctr->name_prefix, prefix_len);
memcpy((void *) &buf[prefix_len], (void *) alloc, sizeof(alloc) - 1);
allctr->name.alloc = am_atom_put(buf, prefix_len + sizeof(alloc) - 1);
memcpy((void *) &buf[prefix_len], (void *) realloc, sizeof(realloc) - 1);
allctr->name.realloc = am_atom_put(buf, prefix_len + sizeof(realloc) - 1);
memcpy((void *) &buf[prefix_len], (void *) free, sizeof(free) - 1);
allctr->name.free = am_atom_put(buf, prefix_len + sizeof(free) - 1);
}
static Eterm
info_calls(Allctr_t *allctr,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res = THE_NON_VALUE;
if (print_to_p) {
#define PRINT_CC_4(TO, TOA, NAME, CC) \
erts_print(TO, TOA, "%s calls: %b64u\n", NAME, CC)
#define PRINT_CC_5(TO, TOA, PRFX, NAME, CC) \
erts_print(TO, TOA, "%s%s calls: %b64u\n",PRFX,NAME,CC)
char *prefix = allctr->name_prefix;
int to = *print_to_p;
void *arg = print_to_arg;
PRINT_CC_5(to, arg, prefix, "alloc", allctr->calls.this_alloc);
PRINT_CC_5(to, arg, prefix, "free", allctr->calls.this_free);
PRINT_CC_5(to, arg, prefix, "realloc", allctr->calls.this_realloc);
#if HAVE_ERTS_MSEG
PRINT_CC_4(to, arg, "mseg_alloc", allctr->calls.mseg_alloc);
PRINT_CC_4(to, arg, "mseg_dealloc", allctr->calls.mseg_dealloc);
PRINT_CC_4(to, arg, "mseg_realloc", allctr->calls.mseg_realloc);
#endif
PRINT_CC_4(to, arg, "sys_alloc", allctr->calls.sys_alloc);
PRINT_CC_4(to, arg, "sys_free", allctr->calls.sys_free);
PRINT_CC_4(to, arg, "sys_realloc", allctr->calls.sys_realloc);
#undef PRINT_CC_4
#undef PRINT_CC_5
}
if (hpp || szp) {
ASSERT(allctr->name.alloc != THE_NON_VALUE);
ASSERT(allctr->name.realloc != THE_NON_VALUE);
ASSERT(allctr->name.free != THE_NON_VALUE);
res = NIL;
add_3tup(hpp, szp, &res,
am.sys_realloc,
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_GIGA_VAL(allctr->calls.sys_realloc)),
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_VAL(allctr->calls.sys_realloc)));
add_3tup(hpp, szp, &res,
am.sys_free,
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_GIGA_VAL(allctr->calls.sys_free)),
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_VAL(allctr->calls.sys_free)));
add_3tup(hpp, szp, &res,
am.sys_alloc,
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_GIGA_VAL(allctr->calls.sys_alloc)),
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_VAL(allctr->calls.sys_alloc)));
#if HAVE_ERTS_MSEG
add_3tup(hpp, szp, &res,
am.mseg_realloc,
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_GIGA_VAL(allctr->calls.mseg_realloc)),
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_VAL(allctr->calls.mseg_realloc)));
add_3tup(hpp, szp, &res,
am.mseg_dealloc,
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_GIGA_VAL(allctr->calls.mseg_dealloc)),
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_VAL(allctr->calls.mseg_dealloc)));
add_3tup(hpp, szp, &res,
am.mseg_alloc,
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_GIGA_VAL(allctr->calls.mseg_alloc)),
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_VAL(allctr->calls.mseg_alloc)));
#endif
add_3tup(hpp, szp, &res,
allctr->name.realloc,
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_GIGA_VAL(allctr->calls.this_realloc)),
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_VAL(allctr->calls.this_realloc)));
add_3tup(hpp, szp, &res,
allctr->name.free,
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_GIGA_VAL(allctr->calls.this_free)),
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_VAL(allctr->calls.this_free)));
add_3tup(hpp, szp, &res,
allctr->name.alloc,
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_GIGA_VAL(allctr->calls.this_alloc)),
bld_unstable_uint(hpp, szp, ERTS_ALC_CC_VAL(allctr->calls.this_alloc)));
}
return res;
}
static Eterm
info_options(Allctr_t *allctr,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res = THE_NON_VALUE;
int acul;
if (!allctr) {
if (print_to_p)
erts_print(*print_to_p, print_to_arg, "option e: false\n");
if (hpp || szp) {
res = NIL;
add_2tup(hpp, szp, &res, am.e, am_false);
}
return res;
}
#ifdef ERTS_SMP
acul = allctr->cpool.util_limit;
#else
acul = 0;
#endif
if (print_to_p) {
char topt[21]; /* Enough for any 64-bit integer */
if (allctr->t)
erts_snprintf(&topt[0], sizeof(topt), "%d", allctr->t);
else
erts_snprintf(&topt[0], sizeof(topt), "false");
erts_print(*print_to_p,
print_to_arg,
"option e: true\n"
"option t: %s\n"
"option ramv: %s\n"
#if HALFWORD_HEAP
"option low: %s\n"
#endif
"option sbct: %beu\n"
#if HAVE_ERTS_MSEG
"option asbcst: %bpu\n"
"option rsbcst: %bpu\n"
#endif
"option rsbcmt: %beu\n"
"option rmbcmt: %beu\n"
"option mmbcs: %beu\n"
#if HAVE_ERTS_MSEG
"option mmsbc: %beu\n"
"option mmmbc: %beu\n"
#endif
"option lmbcs: %beu\n"
"option smbcs: %beu\n"
"option mbcgs: %beu\n"
"option acul: %d\n",
topt,
allctr->ramv ? "true" : "false",
#if HALFWORD_HEAP
allctr->mseg_opt.low_mem ? "true" : "false",
#endif
allctr->sbc_threshold,
#if HAVE_ERTS_MSEG
allctr->mseg_opt.abs_shrink_th,
allctr->mseg_opt.rel_shrink_th,
#endif
allctr->sbc_move_threshold,
allctr->mbc_move_threshold,
allctr->main_carrier_size,
#if HAVE_ERTS_MSEG
allctr->max_mseg_sbcs,
allctr->max_mseg_mbcs,
#endif
allctr->largest_mbc_size,
allctr->smallest_mbc_size,
allctr->mbc_growth_stages,
acul);
}
res = (*allctr->info_options)(allctr, "option ", print_to_p, print_to_arg,
hpp, szp);
if (hpp || szp) {
add_2tup(hpp, szp, &res,
am.acul,
bld_uint(hpp, szp, (UWord) acul));
add_2tup(hpp, szp, &res,
am.mbcgs,
bld_uint(hpp, szp, allctr->mbc_growth_stages));
add_2tup(hpp, szp, &res,
am.smbcs,
bld_uint(hpp, szp, allctr->smallest_mbc_size));
add_2tup(hpp, szp, &res,
am.lmbcs,
bld_uint(hpp, szp, allctr->largest_mbc_size));
#if HAVE_ERTS_MSEG
add_2tup(hpp, szp, &res,
am.mmsbc,
bld_uint(hpp, szp, allctr->max_mseg_sbcs));
add_2tup(hpp, szp, &res,
am.mmmbc,
bld_uint(hpp, szp, allctr->max_mseg_mbcs));
#endif
add_2tup(hpp, szp, &res,
am.mmbcs,
bld_uint(hpp, szp, allctr->main_carrier_size));
add_2tup(hpp, szp, &res,
am.rmbcmt,
bld_uint(hpp, szp, allctr->mbc_move_threshold));
add_2tup(hpp, szp, &res,
am.rsbcmt,
bld_uint(hpp, szp, allctr->sbc_move_threshold));
#if HAVE_ERTS_MSEG
add_2tup(hpp, szp, &res,
am.rsbcst,
bld_uint(hpp, szp, allctr->mseg_opt.rel_shrink_th));
add_2tup(hpp, szp, &res,
am.asbcst,
bld_uint(hpp, szp, allctr->mseg_opt.abs_shrink_th));
#endif
add_2tup(hpp, szp, &res,
am.sbct,
bld_uint(hpp, szp, allctr->sbc_threshold));
#if HALFWORD_HEAP
add_2tup(hpp, szp, &res, am.low, allctr->mseg_opt.low_mem ? am_true : am_false);
#endif
add_2tup(hpp, szp, &res, am.ramv, allctr->ramv ? am_true : am_false);
add_2tup(hpp, szp, &res, am.t, (allctr->t ? am_true : am_false));
add_2tup(hpp, szp, &res, am.e, am_true);
}
return res;
}
static ERTS_INLINE void
update_max_ever_values(CarriersStats_t *cs)
{
if (cs->max_ever.no < cs->max.no)
cs->max_ever.no = cs->max.no;
if (cs->max_ever.size < cs->max.size)
cs->max_ever.size = cs->max.size;
if (cs->blocks.max_ever.no < cs->blocks.max.no)
cs->blocks.max_ever.no = cs->blocks.max.no;
if (cs->blocks.max_ever.size < cs->blocks.max.size)
cs->blocks.max_ever.size = cs->blocks.max.size;
}
static ERTS_INLINE void
reset_max_values(CarriersStats_t *cs)
{
cs->max.no = cs->curr.norm.mseg.no + cs->curr.norm.sys_alloc.no;
cs->max.size = cs->curr.norm.mseg.size + cs->curr.norm.sys_alloc.size;
cs->blocks.max.no = cs->blocks.curr.no;
cs->blocks.max.size = cs->blocks.curr.size;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* Exported functions *
\* */
Eterm
erts_alcu_au_info_options(int *print_to_p, void *print_to_arg,
Uint **hpp, Uint *szp)
{
Eterm res = THE_NON_VALUE;
if (print_to_p) {
erts_print(*print_to_p,
print_to_arg,
#if HAVE_ERTS_MSEG
"option mmc: %beu\n"
#endif
"option ycs: %beu\n"
"option sac: %s\n",
#if HAVE_ERTS_MSEG
max_mseg_carriers,
#endif
sys_alloc_carrier_size,
allow_sys_alloc_carriers ? "true" : "false");
}
if (hpp || szp) {
res = NIL;
ensure_atoms_initialized(NULL);
add_2tup(hpp, szp, &res,
am.sac,
allow_sys_alloc_carriers ? am_true : am_false);
add_2tup(hpp, szp, &res,
am.ycs,
bld_uint(hpp, szp, sys_alloc_carrier_size));
#if HAVE_ERTS_MSEG
add_2tup(hpp, szp, &res,
am.mmc,
bld_uint(hpp, szp, max_mseg_carriers));
#endif
}
return res;
}
Eterm
erts_alcu_info_options(Allctr_t *allctr,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res;
if (hpp || szp)
ensure_atoms_initialized(allctr);
#ifdef USE_THREADS
if (allctr->thread_safe) {
erts_allctr_wrapper_pre_lock();
erts_mtx_lock(&allctr->mutex);
}
#endif
res = info_options(allctr, print_to_p, print_to_arg, hpp, szp);
#ifdef USE_THREADS
if (allctr->thread_safe) {
erts_mtx_unlock(&allctr->mutex);
erts_allctr_wrapper_pre_unlock();
}
#endif
return res;
}
/* ----------------------------------------------------------------------- */
Eterm
erts_alcu_sz_info(Allctr_t *allctr,
int internal,
int begin_max_period,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res, mbcs, sbcs, fix = THE_NON_VALUE;
#ifdef ERTS_SMP
Eterm mbcs_pool;
#endif
res = THE_NON_VALUE;
if (!allctr) {
if (print_to_p)
erts_print(*print_to_p, print_to_arg, "false\n");
if (szp)
*szp = 0;
return am_false;
}
if (hpp || szp)
ensure_atoms_initialized(allctr);
#ifdef USE_THREADS
if (allctr->thread_safe) {
erts_allctr_wrapper_pre_lock();
erts_mtx_lock(&allctr->mutex);
}
#endif
ERTS_ALCU_DBG_CHK_THR_ACCESS(allctr);
/* Update sbc values not continously updated */
allctr->sbcs.blocks.curr.no
= allctr->sbcs.curr.norm.mseg.no + allctr->sbcs.curr.norm.sys_alloc.no;
allctr->sbcs.blocks.max.no = allctr->sbcs.max.no;
update_max_ever_values(&allctr->mbcs);
update_max_ever_values(&allctr->sbcs);
if (allctr->fix)
fix = sz_info_fix(allctr, internal, print_to_p, print_to_arg, hpp, szp);
mbcs = sz_info_carriers(allctr, &allctr->mbcs, "mbcs ", print_to_p,
print_to_arg, hpp, szp);
#ifdef ERTS_SMP
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr))
mbcs_pool = info_cpool(allctr, 1, "mbcs_pool ", print_to_p,
print_to_arg, hpp, szp);
else
mbcs_pool = THE_NON_VALUE; /* shut up annoying warning... */
#endif
sbcs = sz_info_carriers(allctr, &allctr->sbcs, "sbcs ", print_to_p,
print_to_arg, hpp, szp);
if (hpp || szp) {
res = NIL;
add_2tup(hpp, szp, &res, am.sbcs, sbcs);
#ifdef ERTS_SMP
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr))
add_2tup(hpp, szp, &res, am.mbcs_pool, mbcs_pool);
#endif
add_2tup(hpp, szp, &res, am.mbcs, mbcs);
add_fix_types(allctr, internal, hpp, szp, &res, fix);
}
if (begin_max_period) {
reset_max_values(&allctr->mbcs);
reset_max_values(&allctr->sbcs);
}
#ifdef USE_THREADS
if (allctr->thread_safe) {
erts_mtx_unlock(&allctr->mutex);
erts_allctr_wrapper_pre_unlock();
}
#endif
return res;
}
Eterm
erts_alcu_info(Allctr_t *allctr,
int internal,
int begin_max_period,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res, sett, mbcs, sbcs, calls, fix = THE_NON_VALUE;
#ifdef ERTS_SMP
Eterm mbcs_pool;
#endif
res = THE_NON_VALUE;
if (!allctr) {
if (print_to_p)
erts_print(*print_to_p, print_to_arg, "false\n");
if (szp)
*szp = 0;
return am_false;
}
if (hpp || szp)
ensure_atoms_initialized(allctr);
#ifdef USE_THREADS
if (allctr->thread_safe) {
erts_allctr_wrapper_pre_lock();
erts_mtx_lock(&allctr->mutex);
}
#endif
ERTS_ALCU_DBG_CHK_THR_ACCESS(allctr);
/* Update sbc values not continously updated */
allctr->sbcs.blocks.curr.no
= allctr->sbcs.curr.norm.mseg.no + allctr->sbcs.curr.norm.sys_alloc.no;
allctr->sbcs.blocks.max.no = allctr->sbcs.max.no;
update_max_ever_values(&allctr->mbcs);
update_max_ever_values(&allctr->sbcs);
if (print_to_p) {
erts_print(*print_to_p,
print_to_arg,
"versions: %s %s\n",
allctr->vsn_str,
ERTS_ALCU_VSN_STR);
}
sett = info_options(allctr, print_to_p, print_to_arg, hpp, szp);
if (allctr->fix)
fix = sz_info_fix(allctr, internal, print_to_p, print_to_arg, hpp, szp);
mbcs = info_carriers(allctr, &allctr->mbcs, "mbcs ", print_to_p,
print_to_arg, hpp, szp);
#ifdef ERTS_SMP
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr))
mbcs_pool = info_cpool(allctr, 0, "mbcs_pool ", print_to_p,
print_to_arg, hpp, szp);
else
mbcs_pool = THE_NON_VALUE; /* shut up annoying warning... */
#endif
sbcs = info_carriers(allctr, &allctr->sbcs, "sbcs ", print_to_p,
print_to_arg, hpp, szp);
calls = info_calls(allctr, print_to_p, print_to_arg, hpp, szp);
if (hpp || szp) {
res = NIL;
add_2tup(hpp, szp, &res, am.calls, calls);
add_2tup(hpp, szp, &res, am.sbcs, sbcs);
#ifdef ERTS_SMP
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr))
add_2tup(hpp, szp, &res, am.mbcs_pool, mbcs_pool);
#endif
add_2tup(hpp, szp, &res, am.mbcs, mbcs);
add_fix_types(allctr, internal, hpp, szp, &res, fix);
add_2tup(hpp, szp, &res, am.options, sett);
add_3tup(hpp, szp, &res,
am.versions,
bld_string(hpp, szp, allctr->vsn_str),
bld_string(hpp, szp, ERTS_ALCU_VSN_STR));;
}
if (begin_max_period) {
reset_max_values(&allctr->mbcs);
reset_max_values(&allctr->sbcs);
}
#ifdef USE_THREADS
if (allctr->thread_safe) {
erts_mtx_unlock(&allctr->mutex);
erts_allctr_wrapper_pre_unlock();
}
#endif
return res;
}
void
erts_alcu_current_size(Allctr_t *allctr, AllctrSize_t *size, ErtsAlcUFixInfo_t *fi, int fisz)
{
#ifdef USE_THREADS
if (allctr->thread_safe)
erts_mtx_lock(&allctr->mutex);
#endif
size->carriers = allctr->mbcs.curr.norm.mseg.size;
size->carriers += allctr->mbcs.curr.norm.sys_alloc.size;
size->carriers += allctr->sbcs.curr.norm.mseg.size;
size->carriers += allctr->sbcs.curr.norm.sys_alloc.size;
size->blocks = allctr->mbcs.blocks.curr.size;
size->blocks += allctr->sbcs.blocks.curr.size;
#ifdef ERTS_SMP
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr)) {
UWord csz, bsz;
cpool_read_stat(allctr, NULL, &csz, NULL, &bsz);
size->blocks += bsz;
size->carriers += csz;
}
#endif
if (fi) {
int ix;
for (ix = 0; ix < fisz; ix++) {
if (allctr->fix) {
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr)) {
fi[ix].allocated += (allctr->fix[ix].type_size
* allctr->fix[ix].u.cpool.allocated);
fi[ix].used += (allctr->fix[ix].type_size
* allctr->fix[ix].u.cpool.used);
}
else {
fi[ix].allocated += (allctr->fix[ix].type_size
* allctr->fix[ix].u.nocpool.allocated);
fi[ix].used += (allctr->fix[ix].type_size
* allctr->fix[ix].u.nocpool.used);
}
}
}
}
#ifdef USE_THREADS
if (allctr->thread_safe)
erts_mtx_unlock(&allctr->mutex);
#endif
}
/* ----------------------------------------------------------------------- */
static ERTS_INLINE void *
do_erts_alcu_alloc(ErtsAlcType_t type, void *extra, Uint size)
{
Allctr_t *allctr = (Allctr_t *) extra;
void *res;
ASSERT(initialized);
ASSERT(allctr);
ERTS_SMP_LC_ASSERT(!allctr->thread_safe
|| erts_lc_mtx_is_locked(&allctr->mutex));
ERTS_ALCU_DBG_CHK_THR_ACCESS(allctr);
#if ALLOC_ZERO_EQ_NULL
if (!size)
return NULL;
#endif
INC_CC(allctr->calls.this_alloc);
if (allctr->fix) {
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr))
return fix_cpool_alloc(allctr, type, size);
else
return fix_nocpool_alloc(allctr, type, size);
}
if (size >= allctr->sbc_threshold) {
Block_t *blk;
blk = create_carrier(allctr, size, CFLG_SBC);
res = blk ? BLK2UMEM(blk) : NULL;
}
else
res = mbc_alloc(allctr, size);
return res;
}
void *erts_alcu_alloc(ErtsAlcType_t type, void *extra, Uint size)
{
void *res;
res = do_erts_alcu_alloc(type, extra, size);
DEBUG_CHECK_ALIGNMENT(res);
return res;
}
#ifdef USE_THREADS
void *
erts_alcu_alloc_ts(ErtsAlcType_t type, void *extra, Uint size)
{
Allctr_t *allctr = (Allctr_t *) extra;
void *res;
erts_mtx_lock(&allctr->mutex);
res = do_erts_alcu_alloc(type, extra, size);
DEBUG_CHECK_ALIGNMENT(res);
erts_mtx_unlock(&allctr->mutex);
return res;
}
#ifdef ERTS_SMP
void *
erts_alcu_alloc_thr_spec(ErtsAlcType_t type, void *extra, Uint size)
{
ErtsAllocatorThrSpec_t *tspec = (ErtsAllocatorThrSpec_t *) extra;
int ix;
Allctr_t *allctr;
void *res;
ix = ERTS_ALC_GET_THR_IX();
ASSERT(0 <= ix && ix < tspec->size);
allctr = tspec->allctr[ix];
if (allctr->thread_safe)
erts_mtx_lock(&allctr->mutex);
res = do_erts_alcu_alloc(type, allctr, size);
if (allctr->thread_safe)
erts_mtx_unlock(&allctr->mutex);
DEBUG_CHECK_ALIGNMENT(res);
return res;
}
void *
erts_alcu_alloc_thr_pref(ErtsAlcType_t type, void *extra, Uint size)
{
Allctr_t *pref_allctr;
void *res;
pref_allctr = get_pref_allctr(extra);
if (pref_allctr->thread_safe)
erts_mtx_lock(&pref_allctr->mutex);
#ifdef ERTS_SMP
ASSERT(pref_allctr->dd.use);
ERTS_ALCU_HANDLE_DD_IN_OP(pref_allctr, 1);
#endif
ERTS_ALCU_DBG_CHK_THR_ACCESS(pref_allctr);
res = do_erts_alcu_alloc(type, pref_allctr, size);
#ifdef ERTS_SMP
if (!res && ERTS_ALCU_HANDLE_DD_IN_OP(pref_allctr, 1)) {
/* Cleaned up a bit more; try one more time... */
res = do_erts_alcu_alloc(type, pref_allctr, size);
}
#endif
if (pref_allctr->thread_safe)
erts_mtx_unlock(&pref_allctr->mutex);
DEBUG_CHECK_ALIGNMENT(res);
return res;
}
#endif
#endif
/* ------------------------------------------------------------------------- */
static ERTS_INLINE void
do_erts_alcu_free(ErtsAlcType_t type, void *extra, void *p,
Carrier_t **busy_pcrr_pp)
{
Allctr_t *allctr = (Allctr_t *) extra;
ASSERT(initialized);
ASSERT(allctr);
ERTS_SMP_LC_ASSERT(!allctr->thread_safe
|| erts_lc_mtx_is_locked(&allctr->mutex));
ERTS_ALCU_DBG_CHK_THR_ACCESS(allctr);
if (p) {
INC_CC(allctr->calls.this_free);
if (allctr->fix) {
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr))
fix_cpool_free(allctr, type, p, busy_pcrr_pp);
else
fix_nocpool_free(allctr, type, p);
}
else {
Block_t *blk = UMEM2BLK(p);
if (IS_SBC_BLK(blk))
destroy_carrier(allctr, blk, NULL);
else
mbc_free(allctr, p, busy_pcrr_pp);
}
}
}
void erts_alcu_free(ErtsAlcType_t type, void *extra, void *p)
{
do_erts_alcu_free(type, extra, p, NULL);
}
#ifdef USE_THREADS
void
erts_alcu_free_ts(ErtsAlcType_t type, void *extra, void *p)
{
Allctr_t *allctr = (Allctr_t *) extra;
erts_mtx_lock(&allctr->mutex);
do_erts_alcu_free(type, extra, p, NULL);
erts_mtx_unlock(&allctr->mutex);
}
#ifdef ERTS_SMP
void
erts_alcu_free_thr_spec(ErtsAlcType_t type, void *extra, void *p)
{
ErtsAllocatorThrSpec_t *tspec = (ErtsAllocatorThrSpec_t *) extra;
int ix;
Allctr_t *allctr;
ix = ERTS_ALC_GET_THR_IX();
ASSERT(0 <= ix && ix < tspec->size);
allctr = tspec->allctr[ix];
if (allctr->thread_safe)
erts_mtx_lock(&allctr->mutex);
do_erts_alcu_free(type, allctr, p, NULL);
if (allctr->thread_safe)
erts_mtx_unlock(&allctr->mutex);
}
void
erts_alcu_free_thr_pref(ErtsAlcType_t type, void *extra, void *p)
{
if (p) {
Carrier_t *busy_pcrr_p;
Allctr_t *pref_allctr, *used_allctr;
pref_allctr = get_pref_allctr(extra);
used_allctr = get_used_allctr(pref_allctr, ERTS_ALC_TS_PREF_LOCK_IF_USED,
p, NULL, &busy_pcrr_p);
if (pref_allctr != used_allctr)
enqueue_dealloc_other_instance(type,
used_allctr,
p,
(used_allctr->dd.ix
- pref_allctr->dd.ix));
else {
ERTS_ALCU_DBG_CHK_THR_ACCESS(used_allctr);
do_erts_alcu_free(type, used_allctr, p, &busy_pcrr_p);
clear_busy_pool_carrier(used_allctr, busy_pcrr_p);
if (pref_allctr->thread_safe)
erts_mtx_unlock(&pref_allctr->mutex);
}
}
}
#endif
#endif
/* ------------------------------------------------------------------------- */
static ERTS_INLINE void *
do_erts_alcu_realloc(ErtsAlcType_t type,
void *extra,
void *p,
Uint size,
Uint32 alcu_flgs,
Carrier_t **busy_pcrr_pp)
{
Allctr_t *allctr = (Allctr_t *) extra;
Block_t *blk;
void *res;
ASSERT(initialized);
ASSERT(allctr);
ERTS_SMP_LC_ASSERT(!allctr->thread_safe
|| erts_lc_mtx_is_locked(&allctr->mutex));
ERTS_ALCU_DBG_CHK_THR_ACCESS(allctr);
if (!p) {
res = do_erts_alcu_alloc(type, extra, size);
INC_CC(allctr->calls.this_realloc);
DEC_CC(allctr->calls.this_alloc);
return res;
}
#if ALLOC_ZERO_EQ_NULL
if (!size) {
ASSERT(p);
do_erts_alcu_free(type, extra, p, busy_pcrr_pp);
INC_CC(allctr->calls.this_realloc);
DEC_CC(allctr->calls.this_free);
return NULL;
}
#endif
INC_CC(allctr->calls.this_realloc);
blk = UMEM2BLK(p);
if (size < allctr->sbc_threshold) {
if (IS_MBC_BLK(blk))
res = mbc_realloc(allctr, p, size, alcu_flgs, busy_pcrr_pp);
else {
Uint used_sz = SBC_HEADER_SIZE + ABLK_HDR_SZ + size;
Uint crr_sz;
Uint diff_sz_val;
Uint crr_sz_val;
#if HAVE_ERTS_MSEG
if (IS_SYS_ALLOC_CARRIER(BLK_TO_SBC(blk)))
#endif
crr_sz = SYS_ALLOC_CARRIER_CEILING(used_sz);
#if HAVE_ERTS_MSEG
else
crr_sz = ERTS_SACRR_UNIT_CEILING(used_sz);
#endif
diff_sz_val = crr_sz - used_sz;
if (diff_sz_val < (~((Uint) 0) / 100))
crr_sz_val = crr_sz;
else {
/* div both by 128 */
crr_sz_val = crr_sz >> 7;
/* A sys_alloc carrier could potentially be
smaller than 128 bytes (but not likely) */
if (crr_sz_val == 0)
goto do_carrier_resize;
diff_sz_val >>= 7;
}
if (100*diff_sz_val < allctr->sbc_move_threshold*crr_sz_val)
/* Data won't be copied into a new carrier... */
goto do_carrier_resize;
else if (alcu_flgs & ERTS_ALCU_FLG_FAIL_REALLOC_MOVE)
return NULL;
res = mbc_alloc(allctr, size);
if (res) {
sys_memcpy((void*) res,
(void*) p,
MIN(SBC_BLK_SZ(blk) - ABLK_HDR_SZ, size));
destroy_carrier(allctr, blk, NULL);
}
}
}
else {
Block_t *new_blk;
if(IS_SBC_BLK(blk)) {
do_carrier_resize:
#if HALFWORD_HEAP
new_blk = resize_carrier(allctr, blk, size, CFLG_SBC | CFLG_FORCE_MSEG);
#else
new_blk = resize_carrier(allctr, blk, size, CFLG_SBC);
#endif
res = new_blk ? BLK2UMEM(new_blk) : NULL;
}
else if (alcu_flgs & ERTS_ALCU_FLG_FAIL_REALLOC_MOVE)
return NULL;
else {
new_blk = create_carrier(allctr, size, CFLG_SBC);
if (new_blk) {
res = BLK2UMEM(new_blk);
sys_memcpy((void *) res,
(void *) p,
MIN(MBC_ABLK_SZ(blk) - ABLK_HDR_SZ, size));
mbc_free(allctr, p, busy_pcrr_pp);
}
else
res = NULL;
}
}
return res;
}
void *
erts_alcu_realloc(ErtsAlcType_t type, void *extra, void *p, Uint size)
{
void *res;
res = do_erts_alcu_realloc(type, extra, p, size, 0, NULL);
DEBUG_CHECK_ALIGNMENT(res);
return res;
}
void *
erts_alcu_realloc_mv(ErtsAlcType_t type, void *extra, void *p, Uint size)
{
void *res;
res = do_erts_alcu_alloc(type, extra, size);
if (!res)
res = erts_alcu_realloc(type, extra, p, size);
else {
Block_t *blk;
size_t cpy_size;
blk = UMEM2BLK(p);
cpy_size = BLK_SZ(blk) - ABLK_HDR_SZ;
if (cpy_size > size)
cpy_size = size;
sys_memcpy(res, p, cpy_size);
do_erts_alcu_free(type, extra, p, NULL);
}
DEBUG_CHECK_ALIGNMENT(res);
return res;
}
#ifdef USE_THREADS
void *
erts_alcu_realloc_ts(ErtsAlcType_t type, void *extra, void *ptr, Uint size)
{
Allctr_t *allctr = (Allctr_t *) extra;
void *res;
erts_mtx_lock(&allctr->mutex);
res = do_erts_alcu_realloc(type, extra, ptr, size, 0, NULL);
erts_mtx_unlock(&allctr->mutex);
DEBUG_CHECK_ALIGNMENT(res);
return res;
}
void *
erts_alcu_realloc_mv_ts(ErtsAlcType_t type, void *extra, void *p, Uint size)
{
Allctr_t *allctr = (Allctr_t *) extra;
void *res;
erts_mtx_lock(&allctr->mutex);
res = do_erts_alcu_alloc(type, extra, size);
if (!res)
res = erts_alcu_realloc_ts(type, extra, p, size);
else {
Block_t *blk;
size_t cpy_size;
blk = UMEM2BLK(p);
cpy_size = BLK_SZ(blk) - ABLK_HDR_SZ;
if (cpy_size > size)
cpy_size = size;
sys_memcpy(res, p, cpy_size);
do_erts_alcu_free(type, extra, p, NULL);
}
erts_mtx_unlock(&allctr->mutex);
DEBUG_CHECK_ALIGNMENT(res);
return res;
}
#ifdef ERTS_SMP
void *
erts_alcu_realloc_thr_spec(ErtsAlcType_t type, void *extra,
void *ptr, Uint size)
{
ErtsAllocatorThrSpec_t *tspec = (ErtsAllocatorThrSpec_t *) extra;
int ix;
Allctr_t *allctr;
void *res;
ix = ERTS_ALC_GET_THR_IX();
ASSERT(0 <= ix && ix < tspec->size);
allctr = tspec->allctr[ix];
if (allctr->thread_safe)
erts_mtx_lock(&allctr->mutex);
res = do_erts_alcu_realloc(type, allctr, ptr, size, 0, NULL);
if (allctr->thread_safe)
erts_mtx_unlock(&allctr->mutex);
DEBUG_CHECK_ALIGNMENT(res);
return res;
}
void *
erts_alcu_realloc_mv_thr_spec(ErtsAlcType_t type, void *extra,
void *ptr, Uint size)
{
ErtsAllocatorThrSpec_t *tspec = (ErtsAllocatorThrSpec_t *) extra;
int ix;
Allctr_t *allctr;
void *res;
ix = ERTS_ALC_GET_THR_IX();
ASSERT(0 <= ix && ix < tspec->size);
allctr = tspec->allctr[ix];
if (allctr->thread_safe)
erts_mtx_lock(&allctr->mutex);
res = do_erts_alcu_alloc(type, allctr, size);
if (!res) {
if (allctr->thread_safe)
erts_mtx_unlock(&allctr->mutex);
res = erts_alcu_realloc_thr_spec(type, allctr, ptr, size);
}
else {
Block_t *blk;
size_t cpy_size;
blk = UMEM2BLK(ptr);
cpy_size = BLK_SZ(blk) - ABLK_HDR_SZ;
if (cpy_size > size)
cpy_size = size;
sys_memcpy(res, ptr, cpy_size);
do_erts_alcu_free(type, allctr, ptr, NULL);
if (allctr->thread_safe)
erts_mtx_unlock(&allctr->mutex);
}
DEBUG_CHECK_ALIGNMENT(res);
return res;
}
static ERTS_INLINE void *
realloc_thr_pref(ErtsAlcType_t type, void *extra, void *p, Uint size,
int force_move)
{
void *res;
Allctr_t *pref_allctr, *used_allctr;
UWord old_user_size;
Carrier_t *busy_pcrr_p;
#ifdef ERTS_SMP
int retried;
#endif
if (!p)
return erts_alcu_alloc_thr_pref(type, extra, size);
pref_allctr = get_pref_allctr(extra);
if (pref_allctr->thread_safe)
erts_mtx_lock(&pref_allctr->mutex);
#ifdef ERTS_SMP
ASSERT(pref_allctr->dd.use);
ERTS_ALCU_HANDLE_DD_IN_OP(pref_allctr, 1);
retried = 0;
restart:
#endif
used_allctr = get_used_allctr(pref_allctr, ERTS_ALC_TS_PREF_LOCK_NO,
p, &old_user_size, &busy_pcrr_p);
ASSERT(used_allctr && pref_allctr);
if (!force_move && used_allctr == pref_allctr) {
ERTS_ALCU_DBG_CHK_THR_ACCESS(used_allctr);
res = do_erts_alcu_realloc(type,
used_allctr,
p,
size,
0,
&busy_pcrr_p);
clear_busy_pool_carrier(used_allctr, busy_pcrr_p);
#ifdef ERTS_SMP
if (!res && !retried && ERTS_ALCU_HANDLE_DD_IN_OP(pref_allctr, 1)) {
/* Cleaned up a bit more; try one more time... */
retried = 1;
goto restart;
}
#endif
if (pref_allctr->thread_safe)
erts_mtx_unlock(&pref_allctr->mutex);
}
else {
res = do_erts_alcu_alloc(type, pref_allctr, size);
if (!res)
goto unlock_ts_return;
else {
DEBUG_CHECK_ALIGNMENT(res);
if (used_allctr != pref_allctr) {
if (pref_allctr->thread_safe)
erts_mtx_unlock(&pref_allctr->mutex);
sys_memcpy(res, p, MIN(size, old_user_size));
enqueue_dealloc_other_instance(type,
used_allctr,
p,
(used_allctr->dd.ix
- pref_allctr->dd.ix));
}
else {
sys_memcpy(res, p, MIN(size, old_user_size));
do_erts_alcu_free(type, used_allctr, p, &busy_pcrr_p);
ASSERT(pref_allctr == used_allctr);
clear_busy_pool_carrier(used_allctr, busy_pcrr_p);
unlock_ts_return:
if (pref_allctr->thread_safe)
erts_mtx_unlock(&pref_allctr->mutex);
}
}
}
return res;
}
void *
erts_alcu_realloc_thr_pref(ErtsAlcType_t type, void *extra, void *p, Uint size)
{
return realloc_thr_pref(type, extra, p, size, 0);
}
void *
erts_alcu_realloc_mv_thr_pref(ErtsAlcType_t type, void *extra,
void *p, Uint size)
{
return realloc_thr_pref(type, extra, p, size, 1);
}
#endif
#endif
/* ------------------------------------------------------------------------- */
int
erts_alcu_start(Allctr_t *allctr, AllctrInit_t *init)
{
/* erts_alcu_start assumes that allctr has been zeroed */
if (((UWord)allctr & ERTS_CRR_ALCTR_FLG_MASK) != 0) {
erl_exit(ERTS_ABORT_EXIT, "%s:%d:erts_alcu_start: Alignment error\n",
__FILE__, __LINE__);
}
if (!initialized)
goto error;
#if HAVE_ERTS_MSEG
sys_memcpy((void *) &allctr->mseg_opt,
(void *) &erts_mseg_default_opt,
sizeof(ErtsMsegOpt_t));
#ifdef ERTS_SMP
if (init->tspec || init->tpref)
allctr->mseg_opt.sched_spec = 1;
#endif
# if HALFWORD_HEAP
allctr->mseg_opt.low_mem = init->low_mem;
# endif
#endif
allctr->name_prefix = init->name_prefix;
if (!allctr->name_prefix)
goto error;
allctr->ix = init->ix;
allctr->alloc_no = init->alloc_no;
if (allctr->alloc_no < ERTS_ALC_A_MIN
|| ERTS_ALC_A_MAX < allctr->alloc_no)
allctr->alloc_no = ERTS_ALC_A_INVALID;
if (!allctr->vsn_str)
goto error;
allctr->name.alloc = THE_NON_VALUE;
allctr->name.realloc = THE_NON_VALUE;
allctr->name.free = THE_NON_VALUE;
if (init->tspec)
allctr->t = init->tspec;
else if (init->tpref)
allctr->t = init->tpref;
else
allctr->t = 0;
allctr->ramv = init->ramv;
allctr->main_carrier_size = init->mmbcs;
#if HAVE_ERTS_MSEG
allctr->mseg_opt.abs_shrink_th = init->asbcst;
allctr->mseg_opt.rel_shrink_th = init->rsbcst;
#endif
allctr->sbc_move_threshold = init->rsbcmt;
allctr->mbc_move_threshold = init->rmbcmt;
#if HAVE_ERTS_MSEG
allctr->max_mseg_sbcs = init->mmsbc;
# if ERTS_SUPER_ALIGNED_MSEG_ONLY
allctr->max_mseg_mbcs = ~(Uint)0;
# else
allctr->max_mseg_mbcs = init->mmmbc;
# endif
#endif
allctr->largest_mbc_size = MAX(init->lmbcs, init->smbcs);
#ifndef ARCH_64
if (allctr->largest_mbc_size > MBC_SZ_MAX_LIMIT) {
allctr->largest_mbc_size = MBC_SZ_MAX_LIMIT;
}
#endif
allctr->smallest_mbc_size = init->smbcs;
allctr->mbc_growth_stages = MAX(1, init->mbcgs);
if (allctr->min_block_size < ABLK_HDR_SZ)
goto error;
allctr->min_block_size = UNIT_CEILING(allctr->min_block_size
+ sizeof(FreeBlkFtr_t));
#if ERTS_SMP
if (init->tpref) {
Uint sz = ABLK_HDR_SZ;
sz += (init->fix ?
sizeof(ErtsAllctrFixDDBlock_t) : sizeof(ErtsAllctrDDBlock_t));
sz = UNIT_CEILING(sz);
if (sz > allctr->min_block_size)
allctr->min_block_size = sz;
}
allctr->cpool.dc_list.first = NULL;
allctr->cpool.dc_list.last = NULL;
allctr->cpool.abandon_limit = 0;
allctr->cpool.disable_abandon = 0;
erts_atomic_init_nob(&allctr->cpool.stat.blocks_size, 0);
erts_atomic_init_nob(&allctr->cpool.stat.no_blocks, 0);
erts_atomic_init_nob(&allctr->cpool.stat.carriers_size, 0);
erts_atomic_init_nob(&allctr->cpool.stat.no_carriers, 0);
allctr->cpool.check_limit_count = ERTS_ALC_CPOOL_CHECK_LIMIT_COUNT;
allctr->cpool.util_limit = init->ts ? 0 : init->acul;
#endif
allctr->sbc_threshold = init->sbct;
#ifndef ARCH_64
if (allctr->sbc_threshold > 0) {
Uint max_mbc_block_sz = UNIT_CEILING(allctr->sbc_threshold - 1 + ABLK_HDR_SZ);
if (max_mbc_block_sz + UNIT_FLOOR(allctr->min_block_size - 1) > MBC_ABLK_SZ_MASK
|| max_mbc_block_sz < allctr->sbc_threshold) { /* wrap around */
/*
* By limiting sbc_threshold to (hard limit - min_block_size)
* we avoid having to split off free "residue blocks"
* smaller than min_block_size.
*/
max_mbc_block_sz = MBC_ABLK_SZ_MASK - UNIT_FLOOR(allctr->min_block_size - 1);
allctr->sbc_threshold = max_mbc_block_sz - ABLK_HDR_SZ + 1;
}
}
#endif
#if HAVE_ERTS_MSEG
if (allctr->mseg_opt.abs_shrink_th > ~((UWord) 0) / 100)
allctr->mseg_opt.abs_shrink_th = ~((UWord) 0) / 100;
#endif
#ifdef USE_THREADS
if (init->ts) {
allctr->thread_safe = 1;
#ifdef ERTS_ENABLE_LOCK_COUNT
erts_mtx_init_x_opt(&allctr->mutex,
"alcu_allocator",
make_small(allctr->alloc_no),
ERTS_LCNT_LT_ALLOC,1);
#else
erts_mtx_init_x(&allctr->mutex,
"alcu_allocator",
make_small(allctr->alloc_no),1);
#endif /*ERTS_ENABLE_LOCK_COUNT*/
#ifdef DEBUG
allctr->debug.saved_tid = 0;
#endif
}
#endif
if(!allctr->get_free_block
|| !allctr->link_free_block
|| !allctr->unlink_free_block
|| !allctr->info_options)
goto error;
if (!allctr->get_next_mbc_size)
allctr->get_next_mbc_size = get_next_mbc_size;
if (allctr->mbc_header_size < sizeof(Carrier_t))
goto error;
#ifdef ERTS_SMP
allctr->dd.use = 0;
if (init->tpref) {
allctr->dd.use = 1;
init_dd_queue(&allctr->dd.q);
allctr->dd.ix = init->ix;
}
#endif
allctr->mbc_header_size = (UNIT_CEILING(allctr->mbc_header_size
+ ABLK_HDR_SZ)
- ABLK_HDR_SZ);
if (allctr->main_carrier_size) {
Block_t *blk;
blk = create_carrier(allctr,
allctr->main_carrier_size,
CFLG_MBC
| CFLG_FORCE_SIZE
| CFLG_NO_CPOOL
#if !HALFWORD_HEAP && !ERTS_SUPER_ALIGNED_MSEG_ONLY
| CFLG_FORCE_SYS_ALLOC
#endif
| CFLG_MAIN_CARRIER);
if (!blk) {
#ifdef USE_THREADS
if (allctr->thread_safe)
erts_mtx_destroy(&allctr->mutex);
#endif
erl_exit(ERTS_ABORT_EXIT,
"Failed to create main carrier for %salloc\n",
init->name_prefix);
}
(*allctr->link_free_block)(allctr, blk);
HARD_CHECK_BLK_CARRIER(allctr, blk);
}
if (init->fix) {
int i;
allctr->fix = init->fix;
allctr->fix_shrink_scheduled = 0;
for (i = 0; i < ERTS_ALC_NO_FIXED_SIZES; i++) {
allctr->fix[i].type_size = init->fix_type_size[i];
allctr->fix[i].list_size = 0;
allctr->fix[i].list = NULL;
#ifdef ERTS_SMP
ASSERT(allctr->fix[i].type_size >= sizeof(ErtsAllctrFixDDBlock_t));
#endif
if (ERTS_ALC_IS_CPOOL_ENABLED(allctr)) {
allctr->fix[i].u.cpool.min_list_size = 0;
allctr->fix[i].u.cpool.shrink_list = 0;
allctr->fix[i].u.cpool.allocated = 0;
allctr->fix[i].u.cpool.used = 0;
}
else {
allctr->fix[i].u.nocpool.max_used = 0;
allctr->fix[i].u.nocpool.limit = 0;
allctr->fix[i].u.nocpool.allocated = 0;
allctr->fix[i].u.nocpool.used = 0;
}
}
}
return 1;
error:
#ifdef USE_THREADS
if (allctr->thread_safe)
erts_mtx_destroy(&allctr->mutex);
#endif
return 0;
}
/* ------------------------------------------------------------------------- */
void
erts_alcu_stop(Allctr_t *allctr)
{
allctr->stopped = 1;
while (allctr->sbc_list.first)
destroy_carrier(allctr, SBC2BLK(allctr, allctr->sbc_list.first), NULL);
while (allctr->mbc_list.first)
destroy_carrier(allctr, MBC_TO_FIRST_BLK(allctr, allctr->mbc_list.first), NULL);
#ifdef USE_THREADS
if (allctr->thread_safe)
erts_mtx_destroy(&allctr->mutex);
#endif
}
/* ------------------------------------------------------------------------- */
void
erts_alcu_init(AlcUInit_t *init)
{
#ifdef ERTS_SMP
int i;
for (i = 0; i <= ERTS_ALC_A_MAX; i++) {
ErtsAlcCPoolData_t *sentinel = &carrier_pool[i].sentinel;
erts_atomic_init_nob(&sentinel->next, (erts_aint_t) sentinel);
erts_atomic_init_nob(&sentinel->prev, (erts_aint_t) sentinel);
}
#endif
ASSERT(SBC_BLK_SZ_MASK == MBC_FBLK_SZ_MASK); /* see BLK_SZ */
#if HAVE_ERTS_MSEG
ASSERT(erts_mseg_unit_size() == ERTS_SACRR_UNIT_SZ);
max_mseg_carriers = init->mmc;
sys_alloc_carrier_size = ERTS_SACRR_UNIT_CEILING(init->ycs);
#else /* #if HAVE_ERTS_MSEG */
sys_alloc_carrier_size = ((init->ycs + 4095) / 4096) * 4096;
#endif
allow_sys_alloc_carriers = init->sac;
#ifdef DEBUG
carrier_alignment = sizeof(Unit_t);
#endif
erts_mtx_init(&init_atoms_mtx, "alcu_init_atoms");
atoms_initialized = 0;
initialized = 1;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* NOTE: erts_alcu_test() is only supposed to be used for testing. *
* *
* Keep alloc_SUITE_data/allocator_test.h updated if changes are made *
* to erts_alcu_test() *
\* */
UWord
erts_alcu_test(UWord op, UWord a1, UWord a2)
{
switch (op) {
case 0x000: return (UWord) BLK_SZ((Block_t *) a1);
case 0x001: return (UWord) BLK_UMEM_SZ((Block_t *) a1);
case 0x002: return (UWord) IS_PREV_BLK_FREE((Block_t *) a1);
case 0x003: return (UWord) IS_FREE_BLK((Block_t *) a1);
case 0x004: return (UWord) IS_LAST_BLK((Block_t *) a1);
case 0x005: return (UWord) UMEM2BLK((void *) a1);
case 0x006: return (UWord) BLK2UMEM((Block_t *) a1);
case 0x007: return (UWord) IS_SB_CARRIER((Carrier_t *) a1);
case 0x008: return (UWord) IS_SBC_BLK((Block_t *) a1);
case 0x009: return (UWord) IS_MB_CARRIER((Carrier_t *) a1);
case 0x00a: return (UWord) IS_MSEG_CARRIER((Carrier_t *) a1);
case 0x00b: return (UWord) CARRIER_SZ((Carrier_t *) a1);
case 0x00c: return (UWord) SBC2BLK((Allctr_t *) a1,
(Carrier_t *) a2);
case 0x00d: return (UWord) BLK_TO_SBC((Block_t *) a2);
case 0x00e: return (UWord) MBC_TO_FIRST_BLK((Allctr_t *) a1,
(Carrier_t *) a2);
case 0x00f: return (UWord) FIRST_BLK_TO_MBC((Allctr_t *) a1,
(Block_t *) a2);
case 0x010: return (UWord) ((Allctr_t *) a1)->mbc_list.first;
case 0x011: return (UWord) ((Allctr_t *) a1)->mbc_list.last;
case 0x012: return (UWord) ((Allctr_t *) a1)->sbc_list.first;
case 0x013: return (UWord) ((Allctr_t *) a1)->sbc_list.last;
case 0x014: return (UWord) ((Carrier_t *) a1)->next;
case 0x015: return (UWord) ((Carrier_t *) a1)->prev;
case 0x016: return (UWord) ABLK_HDR_SZ;
case 0x017: return (UWord) ((Allctr_t *) a1)->min_block_size;
case 0x018: return (UWord) NXT_BLK((Block_t *) a1);
case 0x019: return (UWord) PREV_BLK((Block_t *) a1);
case 0x01a: return (UWord) IS_MBC_FIRST_BLK((Allctr_t*)a1, (Block_t *) a2);
case 0x01b: return (UWord) sizeof(Unit_t);
case 0x01c: return (unsigned long) BLK_TO_MBC((Block_t*) a1);
case 0x01d: ((Allctr_t*) a1)->add_mbc((Allctr_t*)a1, (Carrier_t*)a2); break;
case 0x01e: ((Allctr_t*) a1)->remove_mbc((Allctr_t*)a1, (Carrier_t*)a2); break;
#ifdef ERTS_SMP
case 0x01f: return (UWord) sizeof(ErtsAlcCrrPool_t);
case 0x020:
SET_CARRIER_HDR((Carrier_t *) a2, 0, SCH_SYS_ALLOC|SCH_MBC, (Allctr_t *) a1);
cpool_init_carrier_data((Allctr_t *) a1, (Carrier_t *) a2);
return (UWord) a2;
case 0x021:
cpool_insert((Allctr_t *) a1, (Carrier_t *) a2);
return (UWord) a2;
case 0x022:
cpool_delete((Allctr_t *) a1, (Allctr_t *) a1, (Carrier_t *) a2);
return (UWord) a2;
case 0x023: return (UWord) cpool_is_empty((Allctr_t *) a1);
case 0x024: return (UWord) cpool_dbg_is_in_pool((Allctr_t *) a1, (Carrier_t *) a2);
#else
case 0x01f: return (UWord) 0;
case 0x020: return (UWord) 0;
case 0x021: return (UWord) 0;
case 0x022: return (UWord) 0;
case 0x023: return (UWord) 0;
case 0x024: return (UWord) 0;
#endif
default: ASSERT(0); return ~((UWord) 0);
}
return 0;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* Debug functions *
\* */
void
erts_alcu_assert_failed(char* expr, char* file, int line, char *func)
{
fflush(stdout);
fprintf(stderr, "%s:%d:%s(): Assertion failed: %s\n",
file, line, func, expr);
fflush(stderr);
#if defined(__WIN__) || defined(__WIN32__)
DebugBreak();
#else
abort();
#endif
}
void
erts_alcu_verify_unused(Allctr_t *allctr)
{
UWord no;
no = allctr->sbcs.curr.norm.mseg.no;
no += allctr->sbcs.curr.norm.sys_alloc.no;
no += allctr->mbcs.blocks.curr.no;
if (no) {
UWord sz = allctr->sbcs.blocks.curr.size;
sz += allctr->mbcs.blocks.curr.size;
erl_exit(ERTS_ABORT_EXIT,
"%salloc() used when expected to be unused!\n"
"Total amount of blocks allocated: %bpu\n"
"Total amount of bytes allocated: %bpu\n",
allctr->name_prefix, no, sz);
}
}
void
erts_alcu_verify_unused_ts(Allctr_t *allctr)
{
#ifdef USE_THREADS
erts_mtx_lock(&allctr->mutex);
#endif
erts_alcu_verify_unused(allctr);
#ifdef USE_THREADS
erts_mtx_unlock(&allctr->mutex);
#endif
}
#ifdef DEBUG
int is_sbc_blk(Block_t* blk)
{
return IS_SBC_BLK(blk);
}
#endif
#ifdef ERTS_ALLOC_UTIL_HARD_DEBUG
static void
check_blk_carrier(Allctr_t *allctr, Block_t *iblk)
{
Carrier_t *crr;
CarrierList_t *cl;
if (IS_SBC_BLK(iblk)) {
Carrier_t *sbc = BLK_TO_SBC(iblk);
ASSERT(SBC2BLK(allctr, sbc) == iblk);
ASSERT(CARRIER_SZ(sbc) - SBC_HEADER_SIZE >= SBC_BLK_SZ(iblk));
#if HAVE_ERTS_MSEG
if (IS_MSEG_CARRIER(sbc)) {
ASSERT(CARRIER_SZ(sbc) % ERTS_SACRR_UNIT_SZ == 0);
}
#endif
crr = sbc;
cl = &allctr->sbc_list;
}
else {
Block_t *prev_blk = NULL;
Block_t *blk;
char *carrier_end;
Uint is_free_blk;
Uint tot_blk_sz;
Uint blk_sz;
int has_wrapped_around = 0;
blk = iblk;
tot_blk_sz = 0;
crr = BLK_TO_MBC(blk);
ASSERT(IS_MB_CARRIER(crr));
/* Step around the carrier one whole lap starting at 'iblk'
*/
while (1) {
ASSERT(IS_MBC_BLK(blk));
ASSERT(BLK_TO_MBC(blk) == crr);
if (prev_blk) {
ASSERT(NXT_BLK(prev_blk) == blk);
if (IS_FREE_BLK(prev_blk)) {
ASSERT(IS_PREV_BLK_FREE(blk));
ASSERT(prev_blk == PREV_BLK(blk));
}
else {
ASSERT(IS_PREV_BLK_ALLOCED(blk));
}
}
if (has_wrapped_around) {
ASSERT(((Block_t *) crr) < blk);
if (blk == iblk)
break;
ASSERT(blk < iblk);
}
else
ASSERT(blk >= iblk);
blk_sz = MBC_BLK_SZ(blk);
ASSERT(blk_sz % sizeof(Unit_t) == 0);
ASSERT(blk_sz >= allctr->min_block_size);
tot_blk_sz += blk_sz;
is_free_blk = (int) IS_FREE_BLK(blk);
ASSERT(!is_free_blk
|| IS_LAST_BLK(blk)
|| PREV_BLK_SZ(((char *) blk)+blk_sz) == blk_sz);
if (allctr->check_block)
(*allctr->check_block)(allctr, blk, (int) is_free_blk);
if (IS_LAST_BLK(blk)) {
carrier_end = ((char *) NXT_BLK(blk));
has_wrapped_around = 1;
prev_blk = NULL;
blk = MBC_TO_FIRST_BLK(allctr, crr);
ASSERT(IS_MBC_FIRST_BLK(allctr,blk));
}
else {
prev_blk = blk;
blk = NXT_BLK(blk);
}
}
ASSERT((((char *) crr)
+ MBC_HEADER_SIZE(allctr)
+ tot_blk_sz) == carrier_end);
ASSERT(((char *) crr) + CARRIER_SZ(crr) - sizeof(Unit_t) <= carrier_end
&& carrier_end <= ((char *) crr) + CARRIER_SZ(crr));
if (allctr->check_mbc)
(*allctr->check_mbc)(allctr, crr);
#if HAVE_ERTS_MSEG
if (IS_MSEG_CARRIER(crr)) {
ASSERT(CARRIER_SZ(crr) % ERTS_SACRR_UNIT_SZ == 0);
}
#endif
cl = &allctr->mbc_list;
}
#ifdef DEBUG
if (cl->first == crr) {
ASSERT(!crr->prev);
}
else {
ASSERT(crr->prev);
ASSERT(crr->prev->next == crr);
}
if (cl->last == crr) {
ASSERT(!crr->next);
}
else {
ASSERT(crr->next);
ASSERT(crr->next->prev == crr);
}
#endif
}
#endif /* ERTS_ALLOC_UTIL_HARD_DEBUG */