aboutsummaryrefslogblamecommitdiffstats
path: root/erts/emulator/beam/erl_bif_binary.c
blob: 684fa5d12fe878d28c490abbe387a5e9250e58c0 (plain) (tree)
1
2
3
4
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873


                   
                                                   





































                                                                         
                                                                    













                                                                         



                                                           

                                                        

                                                 




















                                                                             















                                                                                           






                                                                                     






                                                                       
 














                                                    
 









                                                    


                 




                                                                             
                                                                    




































































































                                                                               
                                          

      


                                          


                                




                                          















                                                                              
                                                                       




















                                                                           
                                                                       





                                                                
                                                                       




























                                                                               
                                                                         

























































                                                                            
                                                                           
                                                                       
                                             
























































































































































                                                                                                   





                                                                                          
























































































































                                                                                  

                                                                   































                                                             
                                                       





















                                                          
                                                                  



























































































                                                                            







                                                                     









































































































































































































                                                                                      
                                                                               
































                                                                     
                                                             
















































                                                                          
                                                                  








                                                                     
                                                             

























                                                                     
                                                                 































                                                                    
                                                     

























































                                                                               
                                                          















































                                                                               




































                                                                            

                                                                    




                                

                                                                       
















                                                       





                                                                            
                                    
                        
            


                                                                      
     







                                                                              
                                    
                        
            


                                                                        
     

 

                                       

                 









                                   
                                                                     

                    
                     












                                                       





                                                                   





                                                               
                                                                                 




















                                                                                 
                        









                                   
                                                                     

                    
                     
                     











                                                       





                                                                   





                                                               
                                                                      
































                                                                        

                                                                              










                     










                                    

                                                            







                        

                                                              


































































                                                                                       

                    
                                    

                    
                                    



                           

                                                            


                        


                        

                   

                                                               

                    
                                                  



                                  




                                                                                                    
 

                                
 
                                                                  
 











                                    











                                                                       

 
                                             








                                  
                                                          



                           




























































































































































                                                                                             
                                
































































                                                                                             
                                          
















































                                                                                        
                                                         






















                                                                                        








































































































                                                                                             
                                                                               





                        

                     























































                                                                         

                                                                    




























                                                              

                                                            







                        

                                                               

















































                                                                          
 















                                                                 
 
  


                                                                         

                                                                              








































































                                                                                                  

                                                               











































































































































                                                                              

                                                            



                       
                                                                
















                                                                















                                                      

                                                                             





                                                                         















































































































































































































































































































                                                                                        
  






                                                        
                                                    
























































                                                                       
/*
 * %CopyrightBegin%
 *
 * Copyright Ericsson AB 2010. All Rights Reserved.
 *
 * The contents of this file are subject to the Erlang Public License,
 * Version 1.1, (the "License"); you may not use this file except in
 * compliance with the License. You should have received a copy of the
 * Erlang Public License along with this software. If not, it can be
 * retrieved online at http://www.erlang.org/.
 *
 * Software distributed under the License is distributed on an "AS IS"
 * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
 * the License for the specific language governing rights and limitations
 * under the License.
 *
 * %CopyrightEnd%
 */

/*
 * NOTE: This file contains the BIF's for the *module* binary in stdlib.
 * other BIF's concerning binaries are in binary.c.
 */


#ifdef HAVE_CONFIG_H
#  include "config.h"
#endif

#include "sys.h"
#include "erl_vm.h"
#include "global.h"
#include "erl_process.h"
#include "error.h"
#include "bif.h"
#include "big.h"
#include "erl_binary.h"
#include "erl_bits.h"


/*
 * The native implementation functions for the module binary.
 * Searching is implemented using either Boyer-Moore or Aho-Corasick
 * depending on number of searchstrings (BM if one, AC if more than one).
 * Native implementation is mostly for efficiency, nothing
 * (except binary:referenced_byte_size) really *needs* to be implemented
 * in native code.
 */

/* #define HARDDEBUG */

/* Init and local variables */

static Export binary_match_trap_export;
static BIF_RETTYPE binary_match_trap(BIF_ALIST_3);
static Export binary_matches_trap_export;
static BIF_RETTYPE binary_matches_trap(BIF_ALIST_3);
static Export binary_longest_prefix_trap_export;
static BIF_RETTYPE binary_longest_prefix_trap(BIF_ALIST_3);
static Export binary_longest_suffix_trap_export;
static BIF_RETTYPE binary_longest_suffix_trap(BIF_ALIST_3);
static Export binary_bin_to_list_trap_export;
static BIF_RETTYPE binary_bin_to_list_trap(BIF_ALIST_3);
static Export binary_copy_trap_export;
static BIF_RETTYPE binary_copy_trap(BIF_ALIST_2);
static Uint max_loop_limit;


void erts_init_bif_binary(void)
{
    sys_memset((void *) &binary_match_trap_export, 0, sizeof(Export));
    binary_match_trap_export.address = &binary_match_trap_export.code[3];
    binary_match_trap_export.code[0] = am_erlang;
    binary_match_trap_export.code[1] = am_binary_match_trap;
    binary_match_trap_export.code[2] = 3;
    binary_match_trap_export.code[3] = (BeamInstr) em_apply_bif;
    binary_match_trap_export.code[4] = (BeamInstr) &binary_match_trap;

    sys_memset((void *) &binary_matches_trap_export, 0, sizeof(Export));
    binary_matches_trap_export.address = &binary_matches_trap_export.code[3];
    binary_matches_trap_export.code[0] = am_erlang;
    binary_matches_trap_export.code[1] = am_binary_matches_trap;
    binary_matches_trap_export.code[2] = 3;
    binary_matches_trap_export.code[3] = (BeamInstr) em_apply_bif;
    binary_matches_trap_export.code[4] = (BeamInstr) &binary_matches_trap;

    sys_memset((void *) &binary_longest_prefix_trap_export, 0, sizeof(Export));
    binary_longest_prefix_trap_export.address = &binary_longest_prefix_trap_export.code[3];
    binary_longest_prefix_trap_export.code[0] = am_erlang;
    binary_longest_prefix_trap_export.code[1] = am_binary_longest_prefix_trap;
    binary_longest_prefix_trap_export.code[2] = 3;
    binary_longest_prefix_trap_export.code[3] = (BeamInstr) em_apply_bif;
    binary_longest_prefix_trap_export.code[4] = (BeamInstr) &binary_longest_prefix_trap;

    sys_memset((void *) &binary_longest_suffix_trap_export, 0, sizeof(Export));
    binary_longest_suffix_trap_export.address = &binary_longest_suffix_trap_export.code[3];
    binary_longest_suffix_trap_export.code[0] = am_erlang;
    binary_longest_suffix_trap_export.code[1] = am_binary_longest_suffix_trap;
    binary_longest_suffix_trap_export.code[2] = 3;
    binary_longest_suffix_trap_export.code[3] = (BeamInstr) em_apply_bif;
    binary_longest_suffix_trap_export.code[4] = (BeamInstr) &binary_longest_suffix_trap;

    sys_memset((void *) &binary_bin_to_list_trap_export, 0, sizeof(Export));
    binary_bin_to_list_trap_export.address = &binary_bin_to_list_trap_export.code[3];
    binary_bin_to_list_trap_export.code[0] = am_erlang;
    binary_bin_to_list_trap_export.code[1] = am_binary_bin_to_list_trap;
    binary_bin_to_list_trap_export.code[2] = 3;
    binary_bin_to_list_trap_export.code[3] = (BeamInstr) em_apply_bif;
    binary_bin_to_list_trap_export.code[4] = (BeamInstr) &binary_bin_to_list_trap;
    sys_memset((void *) &binary_copy_trap_export, 0, sizeof(Export));
    binary_copy_trap_export.address = &binary_copy_trap_export.code[3];
    binary_copy_trap_export.code[0] = am_erlang;
    binary_copy_trap_export.code[1] = am_binary_copy_trap;
    binary_copy_trap_export.code[2] = 2;
    binary_copy_trap_export.code[3] = (BeamInstr) em_apply_bif;
    binary_copy_trap_export.code[4] = (BeamInstr) &binary_copy_trap;

    max_loop_limit = 0;
    return;
}

/*
 * Setting the loop_limit for searches for debugging
 */
Sint erts_binary_set_loop_limit(Sint limit)
{
    Sint save = (Sint) max_loop_limit;
    if (limit <= 0) {
	max_loop_limit = 0;
    } else {
	max_loop_limit = (Uint) limit;
    }

    return save;
}

static Uint get_reds(Process *p, int loop_factor)
{
    Uint reds = ERTS_BIF_REDS_LEFT(p) * loop_factor;
    Uint tmp = max_loop_limit;
    if (tmp != 0 && tmp < reds) {
	return tmp;
    }
    if (!reds) {
	reds = 1;
    }
    return reds;
}

/*
 * A micro allocator used when building search structures, just a convenience
 * for building structures inside a pre-allocated magic binary using
 * conventional malloc-like interface.
 */

#define MYALIGN(Size) (SIZEOF_VOID_P * (((Size) / SIZEOF_VOID_P) + \
                       !!(((Size) % SIZEOF_VOID_P))))

#ifdef DEBUG
#define CHECK_ALLOCATOR(My) ASSERT((My).current <= ((My).mem + (My).size))
#else
#define CHECK_ALLOCATOR(My) /* nothing */
#endif

typedef struct _my_allocator {
    Uint size;
    byte *current;
    byte *mem;
} MyAllocator;

static void init_my_allocator(MyAllocator *my, Uint siz, byte *array)
{
    ASSERT((siz % SIZEOF_VOID_P) == 0);
    my->size = siz;
    my->mem = array;
    my->current = my->mem;
}

static void *my_alloc(MyAllocator *my, Uint size)
{
    void *ptr = my->current;
    my->current += MYALIGN(size);
    return ptr;
}

/*
 * The search functionality.
 *
 * The search is byte oriented, which works nicely for UTF-8 as well as
 * latin1 data
 */

#define ALPHABET_SIZE 256

typedef struct _ac_node {
#ifdef HARDDEBUG
    Uint32 id;                        /* To identify h pointer targets when
					 dumping */
#endif
    Uint32 d;                         /* Depth in trie, also represents the
					 length (-1) of the matched string if
					 in final set */
    Sint32 final;                     /* Members in final set represent
				       * matches.
				       * The set representation is scattered
				       * among the nodes in this way:
				       * >0 -> this represents a member of
				       * the final set, <0 -> member of
				       * final set somewhere in the failure
				       * chain,
				       * 0 -> not member of the final set */
    struct _ac_node *h;                /* h(Hode) is the failure function */
    struct _ac_node *g[ALPHABET_SIZE]; /* g(Node,Character) is the
					  transition function */
} ACNode;

typedef struct _ac_trie {
#ifdef HARDDEBUG
    Uint32 idc;
#endif
    Uint32 counter;                    /* Number of added patterns */
    ACNode *root;                      /* pointer to the root state */
} ACTrie;

typedef struct _bm_data {
    byte *x;
    Sint len;
    Sint *goodshift;
    Sint badshift[ALPHABET_SIZE];
} BMData;

#ifdef HARDDEBUG
static void dump_bm_data(BMData *bm);
static void dump_ac_trie(ACTrie *act);
static void dump_ac_node(ACNode *node, int indent, int ch);
#endif

/*
 * The needed size of binary data for a search structure - given the
 * accumulated string lengths.
 */
#define BM_SIZE(StrLen) 	      /* StrLen: length of searchstring */ \
((MYALIGN(sizeof(Sint) * (StrLen))) + /* goodshift array */                \
 MYALIGN(StrLen) +                    /* searchstring saved */             \
 (MYALIGN(sizeof(BMData))))           /* Structure */

#define AC_SIZE(StrLens)       /* StrLens: sum of all searchstring lengths */ \
((MYALIGN(sizeof(ACNode)) *                                                   \
((StrLens)+1)) + 	       /* The actual nodes (including rootnode) */    \
 MYALIGN(sizeof(ACTrie)))      /* Structure */


#ifndef MAX
#define MAX(A,B) (((A) > (B)) ? (A) : (B))
#endif

#ifndef MIN
#define MIN(A,B) (((A) > (B)) ? (B) : (A))
#endif
/*
 * Callback for the magic binary
 */
static void cleanup_my_data_ac(Binary *bp)
{
    return;
}
static void cleanup_my_data_bm(Binary *bp)
{
    return;
}

/*
 * Initiate a (allocated) micro allocator and fill in the base
 * for an Aho-Corasick search trie, given the accumulated length of the search
 * strings.
 */
static ACTrie *create_acdata(MyAllocator *my, Uint len,
			     ACNode ***qbuff /* out */,
			     Binary **the_bin /* out */)
{
    Uint datasize = AC_SIZE(len);
    ACTrie *act;
    ACNode *acn;
    Binary *mb = erts_create_magic_binary(datasize,cleanup_my_data_ac);
    byte *data = ERTS_MAGIC_BIN_DATA(mb);

    init_my_allocator(my, datasize, data);
    act = my_alloc(my, sizeof(ACTrie)); /* Important that this is the first
					   allocation */
    act->counter = 0;
    act->root = acn = my_alloc(my, sizeof(ACNode));
    acn->d = 0;
    acn->final = 0;
    acn->h = NULL;
    memset(acn->g, 0, sizeof(ACNode *) * ALPHABET_SIZE);
#ifdef HARDDEBUG
    act->idc = 0;
    acn->id = 0;
#endif
    *qbuff = erts_alloc(ERTS_ALC_T_TMP, sizeof(ACNode *) * len);
    *the_bin = mb;
    return act;
}

/*
 * The same initialization of allocator and basic data for Boyer-Moore.
 */
static BMData *create_bmdata(MyAllocator *my, byte *x, Uint len,
			     Binary **the_bin /* out */)
{
    Uint datasize = BM_SIZE(len);
    BMData *bmd;
    Binary *mb = erts_create_magic_binary(datasize,cleanup_my_data_bm);
    byte *data = ERTS_MAGIC_BIN_DATA(mb);
    init_my_allocator(my, datasize, data);
    bmd = my_alloc(my, sizeof(BMData));
    bmd->x = my_alloc(my,len);
    memcpy(bmd->x,x,len);
    bmd->len = len;
    bmd->goodshift = my_alloc(my,sizeof(Uint) * len);
    *the_bin = mb;
    return bmd;
}

/*
 * Compilation of search structures
 */

/*
 * Aho Corasick - Build a Trie and fill in the failure functions
 * when all strings are added.
 * The algorithm is nicely described by Dieter B�hler of University of
 * T�bingen:
 * http://www-sr.informatik.uni-tuebingen.de/~buehler/AC/AC.html
 */

/*
 * Helper called once for each search pattern
 */
static void ac_add_one_pattern(MyAllocator *my, ACTrie *act, byte *x, Uint len)
{
    ACNode *acn = act->root;
    Uint32 n = ++act->counter; /* Always increase counter, even if it's a
				  duplicate as this may identify the pattern
				  in the final set (not in current interface
				  though) */
    Uint i = 0;

    while(i < len) {
	if (acn->g[x[i]] != NULL) {
	    /* node exists, continue */
	    acn = acn->g[x[i]];
	    ++i;
	} else {
	    /* allocate a new node */
	    ACNode *nn = my_alloc(my,sizeof(ACNode));
#ifdef HARDDEBUG
	    nn->id = ++(act->idc);
#endif
	    nn->d = i+1;
	    nn->h = act->root;
	    nn->final = 0;
	    memset(nn->g, 0, sizeof(ACNode *) * ALPHABET_SIZE);
	    acn->g[x[i]] = nn;
	    ++i;
	    acn = nn;
	}
    }
    if (acn->final == 0) { /* New pattern, add to final set */
	acn->final = n;
    }
}

/*
 * Called when all search patterns are added.
 */
static void ac_compute_failure_functions(ACTrie *act, ACNode **qbuff)
{
    ACNode *root = act->root;
    ACNode *parent;
    int i;
    int qh = 0,qt = 0;
    ACNode *child, *r;

    /* Set all children of the root to have the root as failure function */
    for (i = 0; i < ALPHABET_SIZE; ++i) {
	if (root->g[i] != NULL) {
	    root->g[i]->h = root;
	    /* Add to que for later traversal */
	    qbuff[qt++] = root->g[i];
	}
    }

    /* So, now we've handled children of the root state, traverse the
       rest of the trie BF... */
    while (qh < qt) {
	parent = qbuff[qh++];
	for (i = 0; i < ALPHABET_SIZE; ++ i) {
	    if ((child = parent->g[i]) != NULL) {
		/* Visit this node to */
		qbuff[qt++] = child;
		/* Search for correct failure function, follow the parent's
		   failure function until you find a similar transition
		   funtion to this child's */
		r =  parent->h;
		while (r != NULL && r->g[i] == NULL) {
		    r = r->h;
		}
		if (r == NULL) {
		    /* Replace NULL failures with the root as we go */
		    child->h = (root->g[i] == NULL) ? root : root->g[i];
		} else {
		    child->h = r->g[i];
		    /*
		     * The "final" set is scattered among the nodes. When
		     * the failure function points to a member of the final
		     * set, we have a match, but we might not see it in the
		     * current node if we dont mark it as a special type of
		     * final, i.e. foolow the failure function and you will
		     * find a real member of final set. This is marked with
		     * a negative string id and only done if this node does
		     * not represent a member in the final set.
		     */
		    if (!(child->final) && (child->h->final)) {
			child->final = -1;
		    }
		}
	    }
	}
    }
    /* Finally the failure function of the root should point to itself */
    root->h = root;
}


/*
 * The actual searching for needles in the haystack...
 * Find first match using Aho-Coracick Trie
 * return pattern number and fill in mpos + mlen if found, otherwise return 0
 * Return the matching pattern that *starts* first, and ends
 * last (difference when overlapping), hence the candidate thing.
 * Basic AC finds the first end before the first start...
 *
 */
typedef struct {
    ACNode *q;
    Uint pos;
    Uint len;
    ACNode *candidate;
    Uint candidate_start;
} ACFindFirstState;


static void ac_init_find_first_match(ACFindFirstState *state, ACTrie *act, Sint startpos, Uint len)
{
    state->q = act->root;
    state->pos = startpos;
    state->len = len;
    state->candidate = NULL;
    state->candidate_start = 0;
}
#define AC_OK 0
#define AC_NOT_FOUND -1
#define AC_RESTART -2

#define AC_LOOP_FACTOR 10

static int ac_find_first_match(ACFindFirstState *state, byte *haystack,
				Uint *mpos, Uint *mlen, Uint *reductions)
{
    ACNode *q = state->q;
    Uint i = state->pos;
    ACNode *candidate = state->candidate, *r;
    Uint len = state->len;
    Uint candidate_start = state->candidate_start;
    Uint rstart;
    register Uint reds = *reductions;

    while (i < len) {
	if (--reds == 0) {
	    state->q = q;
	    state->pos = i;
	    state->len = len;
	    state->candidate = candidate;
	    state->candidate_start = candidate_start;
	    return AC_RESTART;
	}

	while (q->g[haystack[i]] == NULL && q->h != q) {
	    q = q->h;
	}
	if (q->g[haystack[i]] != NULL) {
	    q = q->g[haystack[i]];
	}
#ifdef HARDDEBUG
	erts_printf("ch = %c, Current: %u\n", (int) haystack[i], (unsigned) q->id);
#endif
	++i;
	if (candidate != NULL && (i - q->d) > candidate_start) {
	    break;
	}
	if (q->final) {
	    r = q;
	    while (r->final < 0)
		r = r->h;
	    rstart = i - r->d;
	    if (candidate == NULL || rstart < candidate_start ||
		(rstart == candidate_start && candidate->d < q->d)) {
		candidate_start = rstart;
		candidate = r;
	    }
	}
    }
    *reductions = reds;
    if (!candidate) {
	return AC_NOT_FOUND;
    }
#ifdef HARDDEBUG
    dump_ac_node(candidate,0,'?');
#endif
    *mpos = candidate_start;
    *mlen = candidate->d;
    return AC_OK;
}

typedef struct _findall_data {
    Uint pos;
    Uint len;
#ifdef HARDDEBUG
    Uint id;
#endif
    Eterm epos;
    Eterm elen;
} FindallData;

typedef struct {
    ACNode *q;
    Uint pos;
    Uint len;
    Uint m;
    Uint allocated;
    FindallData *out;
} ACFindAllState;

static void ac_init_find_all(ACFindAllState *state, ACTrie *act, Sint startpos, Uint len)
{
    state->q = act->root;
    state->pos = startpos;
    state->len = len;
    state->m = 0;
    state->allocated = 0;
    state->out = NULL;
}

static void ac_restore_find_all(ACFindAllState *state, char *buff)
{
    memcpy(state,buff,sizeof(ACFindAllState));
    if (state->allocated > 0) {
	state->out = erts_alloc(ERTS_ALC_T_TMP, sizeof(FindallData) * (state->allocated));
	memcpy(state->out,buff+sizeof(ACFindAllState),sizeof(FindallData)*state->m);
    } else {
	state->out = NULL;
    }
}

static void ac_serialize_find_all(ACFindAllState *state, char *buff)
{
    memcpy(buff,state,sizeof(ACFindAllState));
    memcpy(buff+sizeof(ACFindAllState),state->out,sizeof(FindallData)*state->m);
}

static void ac_clean_find_all(ACFindAllState *state)
{
    if (state->out != NULL) {
	erts_free(ERTS_ALC_T_TMP, state->out);
    }
#ifdef HARDDEBUG
    state->out = NULL;
    state->allocated = 0;
#endif
}

#define SIZEOF_AC_SERIALIZED_FIND_ALL_STATE(S) \
          (sizeof(ACFindAllState)+(sizeof(FindallData)*(S).m))

/*
 * Differs to the find_first function in that it stores all matches and the values
 * arte returned only in the state.
 */
static int ac_find_all_non_overlapping(ACFindAllState *state, byte *haystack,
				       Uint *reductions)
{
    ACNode *q = state->q;
    Uint i = state->pos;
    Uint rstart;
    ACNode *r;
    Uint len = state->len;
    Uint m = state->m, save_m;
    Uint allocated = state->allocated;
    FindallData *out = state->out;
    register Uint reds = *reductions;


    while (i < len) {
	if (--reds == 0) {
	    state->q = q;
	    state->pos = i;
	    state->len = len;
	    state->m = m;
	    state->allocated = allocated;
	    state->out = out;
	    return AC_RESTART;
	}
	while (q->g[haystack[i]] == NULL && q->h != q) {
	    q = q->h;
	}
	if (q->g[haystack[i]] != NULL) {
	    q = q->g[haystack[i]];
	}
	++i;
	if (q->final) {
	    r = q;
	    while (r->final) {
		while (r->final < 0)
		    r = r->h;
#ifdef HARDDEBUG
		erts_printf("Trying to add %u\n",(unsigned) r->final);
#endif
		rstart = i - r->d;
		save_m = m;
		while (m > 0 && (out[m-1].pos > rstart ||
				 (out[m-1].pos == rstart &&
				  out[m-1].len < r->d))) {
#ifdef HARDDEBUG
		    erts_printf("Popping %u\n",(unsigned) out[m-1].id);
#endif
		    --m;
		}
#ifdef HARDDEBUG
		if (m > 0) {
		    erts_printf("Pos %u\n",out[m-1].pos);
		    erts_printf("Len %u\n",out[m-1].len);
		}
		erts_printf("Rstart %u\n",rstart);
#endif
		if (m == 0 ||  out[m-1].pos + out[m-1].len <= rstart) {
		    if (m >= allocated) {
			if (!allocated) {
			    allocated = 10;
			    out = erts_alloc(ERTS_ALC_T_TMP,
					     sizeof(FindallData) * allocated);
			} else {
			    allocated *= 2;
			    out = erts_realloc(ERTS_ALC_T_TMP, out,
					       sizeof(FindallData) *
					       allocated);
			}
		    }
		    out[m].pos = rstart;
		    out[m].len = r->d;
#ifdef HARDDEBUG
		    out[m].id = r->final;
#endif
		    ++m;
#ifdef HARDDEBUG
		    erts_printf("Pushing %u\n",(unsigned) out[m-1].id);
#endif
		} else {
#ifdef HARDDEBUG
		    erts_printf("Backtracking %d steps\n",save_m - m);
#endif
		    m = save_m;
		}
		r = r->h;
	    }
	}
    }
    *reductions = reds;
    state->m = m;
    state->out = out;
    return (m == 0) ? AC_NOT_FOUND : AC_OK;
}

/*
 * Boyer Moore - most obviously implemented more or less exactly as
 * Christian Charras and Thierry Lecroq describe it in "Handbook of
 * Exact String-Matching Algorithms"
 * http://www-igm.univ-mlv.fr/~lecroq/string/
 */

/*
 * Call this to compute badshifts array
 */
static void compute_badshifts(BMData *bmd)
{
    Sint i;
    Sint m = bmd->len;

    for (i = 0; i < ALPHABET_SIZE; ++i) {
	bmd->badshift[i] = m;
    }
    for (i = 0; i < m - 1; ++i) {
	bmd->badshift[bmd->x[i]] = m - i - 1;
    }
}

/* Helper for "compute_goodshifts" */
static void compute_suffixes(byte *x, Sint m, Sint *suffixes)
{
    int f,g,i;

    suffixes[m - 1] = m;

    f = 0; /* To avoid use before set warning */

    g = m - 1;

    for (i = m - 2; i >= 0; --i) {
	if (i > g && suffixes[i + m - 1 - f] < i - g) {
	    suffixes[i] = suffixes[i + m - 1 - f];
	} else {
	    if (i < g) {
		g = i;
	    }
	    f = i;
	    while ( g >= 0 && x[g] == x[g + m - 1 - f] ) {
		--g;
	    }
	    suffixes[i] = f - g;
	}
    }
}

/*
 * Call this to compute goodshift array
 */
static void compute_goodshifts(BMData *bmd)
{
    Sint m = bmd->len;
    byte *x = bmd->x;
    Sint i, j;
    Sint *suffixes = erts_alloc(ERTS_ALC_T_TMP, m * sizeof(Sint));

    compute_suffixes(x, m, suffixes);

    for (i = 0; i < m; ++i) {
	bmd->goodshift[i] = m;
    }

    j = 0;

    for (i = m - 1; i >= -1; --i) {
	if (i == -1 || suffixes[i] == i + 1) {
	    while (j < m - 1 - i) {
		if (bmd->goodshift[j] == m) {
		    bmd->goodshift[j] = m - 1 - i;
		}
		++j;
	    }
	}
    }
    for (i = 0; i <= m - 2; ++i) {
	bmd->goodshift[m - 1 - suffixes[i]] = m - 1 - i;
    }
    erts_free(ERTS_ALC_T_TMP, suffixes);
}

typedef struct {
    Sint pos;
    Sint len;
} BMFindFirstState;

#define BM_OK 0 /* used only for find_all */
#define BM_NOT_FOUND -1
#define BM_RESTART -2
#define BM_LOOP_FACTOR 10 /* Should we have a higher value? */

static void bm_init_find_first_match(BMFindFirstState *state, Sint startpos,
				     Uint len)
{
    state->pos = startpos;
    state->len = (Sint) len;
}


static Sint bm_find_first_match(BMFindFirstState *state, BMData *bmd,
				byte *haystack, Uint *reductions)
{
    Sint blen = bmd->len;
    Sint len = state->len;
    Sint *gs = bmd->goodshift;
    Sint *bs = bmd->badshift;
    byte *needle = bmd->x;
    Sint i;
    Sint j = state->pos;
    register Uint reds = *reductions;

    while (j <= len - blen) {
	if (--reds == 0) {
	    state->pos = j;
	    return BM_RESTART;
	}
	for (i = blen - 1; i >= 0 && needle[i] == haystack[i + j]; --i)
	    ;
	if (i < 0) { /* found */
	    *reductions = reds;
	    return j;
	}
	j += MAX(gs[i],bs[haystack[i+j]] - blen + 1 + i);
    }
    *reductions = reds;
    return BM_NOT_FOUND;
}

typedef struct {
    Sint pos;
    Sint len;
    Uint m;
    Uint allocated;
    FindallData *out;
} BMFindAllState;

static void bm_init_find_all(BMFindAllState *state, Sint startpos, Uint len)
{
    state->pos = startpos;
    state->len = (Sint) len;
    state->m = 0;
    state->allocated = 0;
    state->out = NULL;
}

static void bm_restore_find_all(BMFindAllState *state, char *buff)
{
    memcpy(state,buff,sizeof(BMFindAllState));
    if (state->allocated > 0) {
	state->out = erts_alloc(ERTS_ALC_T_TMP, sizeof(FindallData) *
				(state->allocated));
	memcpy(state->out,buff+sizeof(BMFindAllState),
	       sizeof(FindallData)*state->m);
    } else {
	state->out = NULL;
    }
}

static void bm_serialize_find_all(BMFindAllState *state, char *buff)
{
    memcpy(buff,state,sizeof(BMFindAllState));
    memcpy(buff+sizeof(BMFindAllState),state->out,
	   sizeof(FindallData)*state->m);
}

static void bm_clean_find_all(BMFindAllState *state)
{
    if (state->out != NULL) {
	erts_free(ERTS_ALC_T_TMP, state->out);
    }
#ifdef HARDDEBUG
    state->out = NULL;
    state->allocated = 0;
#endif
}

#define SIZEOF_BM_SERIALIZED_FIND_ALL_STATE(S) \
          (sizeof(BMFindAllState)+(sizeof(FindallData)*(S).m))

/*
 * Differs to the find_first function in that it stores all matches and the
 * values are returned only in the state.
 */
static Sint bm_find_all_non_overlapping(BMFindAllState *state,
					BMData *bmd, byte *haystack,
					Uint *reductions)
{
    Sint blen = bmd->len;
    Sint len = state->len;
    Sint *gs = bmd->goodshift;
    Sint *bs = bmd->badshift;
    byte *needle = bmd->x;
    Sint i;
    Sint j = state->pos;
    Uint m = state->m;
    Uint allocated = state->allocated;
    FindallData *out = state->out;
    register Uint reds = *reductions;

    while (j <= len - blen) {
	if (--reds == 0) {
	    state->pos = j;
	    state->m = m;
	    state->allocated = allocated;
	    state->out = out;
	    return BM_RESTART;
	}
	for (i = blen - 1; i >= 0 && needle[i] == haystack[i + j]; --i)
	    ;
	if (i < 0) { /* found */
	    if (m >= allocated) {
		if (!allocated) {
		    allocated = 10;
		    out = erts_alloc(ERTS_ALC_T_TMP, sizeof(FindallData) * allocated);
		} else {
		    allocated *= 2;
		    out = erts_realloc(ERTS_ALC_T_TMP, out,
				       sizeof(FindallData) * allocated);
		}
	    }
	    out[m].pos = j;
	    out[m].len = blen;
	    ++m;
	    j += blen;
	} else {
	    j += MAX(gs[i],bs[haystack[i+j]] - blen + 1 + i);
	}
    }
    state->m = m;
    state->out = out;
    *reductions = reds;
    return (m == 0) ? BM_NOT_FOUND : BM_OK;
}

/*
 * Interface functions (i.e. "bif's")
 */

/*
 * Search functionality interfaces
 */

static int do_binary_match_compile(Eterm argument, Eterm *tag, Binary **binp)
{
    Eterm t, b, comp_term = NIL;
    Uint characters;
    Uint words;

    characters = 0;
    words = 0;

    if (is_list(argument)) {
	t = argument;
	while (is_list(t)) {
	    b = CAR(list_val(t));
	    t = CDR(list_val(t));
	    if (!is_binary(b)) {
		goto badarg;
	    }
	    if (binary_bitsize(b) != 0) {
		goto badarg;
	    }
	    ++words;
	    characters += binary_size(b);
	}
	if (is_not_nil(t)) {
	    goto badarg;
	}
	if (words > 1) {
	    comp_term = argument;
	} else {
	    comp_term = CAR(list_val(argument));
	}
    } else if (is_binary(argument)) {
	if (binary_bitsize(argument) != 0) {
	    goto badarg;
	}
	words = 1;
	comp_term = argument;
	characters = binary_size(argument);
    }

    if (characters == 0) {
	goto badarg;
    }
    ASSERT(words > 0);

    if (words == 1) {
	byte *bytes;
	Uint bitoffs, bitsize;
	byte *temp_alloc = NULL;
	MyAllocator my;
	BMData *bmd;
	Binary *bin;

	ERTS_GET_BINARY_BYTES(comp_term, bytes, bitoffs, bitsize);
	if (bitoffs != 0) {
	    bytes = erts_get_aligned_binary_bytes(comp_term, &temp_alloc);
	}
	bmd = create_bmdata(&my, bytes, characters, &bin);
	compute_badshifts(bmd);
	compute_goodshifts(bmd);
	erts_free_aligned_binary_bytes(temp_alloc);
	CHECK_ALLOCATOR(my);
	*tag = am_bm;
	*binp = bin;
	return 0;
    } else {
	ACTrie *act;
	MyAllocator my;
	ACNode **qbuff;
	Binary *bin;

	act = create_acdata(&my, characters, &qbuff, &bin);
	t = comp_term;
	while (is_list(t)) {
	    byte *bytes;
	    Uint bitoffs, bitsize;
	    byte *temp_alloc = NULL;
	    b = CAR(list_val(t));
	    t = CDR(list_val(t));
	    ERTS_GET_BINARY_BYTES(b, bytes, bitoffs, bitsize);
	    if (bitoffs != 0) {
		bytes = erts_get_aligned_binary_bytes(b, &temp_alloc);
	    }
	    ac_add_one_pattern(&my,act,bytes,binary_size(b));
	    erts_free_aligned_binary_bytes(temp_alloc);
	}
	ac_compute_failure_functions(act,qbuff);
	CHECK_ALLOCATOR(my);
	erts_free(ERTS_ALC_T_TMP,qbuff);
	*tag = am_ac;
	*binp = bin;
	return 0;
    }
 badarg:
    return -1;
}

BIF_RETTYPE binary_compile_pattern_1(BIF_ALIST_1)
{
    Binary *bin;
    Eterm tag, ret;
    Eterm *hp;

    if (do_binary_match_compile(BIF_ARG_1,&tag,&bin)) {
	BIF_ERROR(BIF_P,BADARG);
    }
    hp = HAlloc(BIF_P, PROC_BIN_SIZE+3);
    ret = erts_mk_magic_binary_term(&hp, &MSO(BIF_P), bin);
    ret = TUPLE2(hp, tag, ret);
    BIF_RET(ret);
}

#define DO_BIN_MATCH_OK 0
#define DO_BIN_MATCH_BADARG -1
#define DO_BIN_MATCH_RESTART -2

static int do_binary_match(Process *p, Eterm subject, Uint hsstart, Uint hsend,
			   Eterm type, Binary *bin, Eterm state_term,
			   Eterm *res_term)
{
    byte *bytes;
    Uint bitoffs, bitsize;
    byte *temp_alloc = NULL;

    ERTS_GET_BINARY_BYTES(subject, bytes, bitoffs, bitsize);
    if (bitsize != 0) {
	goto badarg;
    }
    if (bitoffs != 0) {
	bytes = erts_get_aligned_binary_bytes(subject, &temp_alloc);
    }
    if (state_term != NIL) {
	Eterm *ptr = big_val(state_term);
	type = ptr[1];
    }

    if (type == am_bm) {
	BMData *bm;
	Sint pos;
	Eterm ret;
	Eterm *hp;
	BMFindFirstState state;
	Uint reds = get_reds(p, BM_LOOP_FACTOR);
	Uint save_reds = reds;

	bm = (BMData *) ERTS_MAGIC_BIN_DATA(bin);
#ifdef HARDDEBUG
	dump_bm_data(bm);
#endif
	if (state_term == NIL) {
	    bm_init_find_first_match(&state, hsstart, hsend);
	} else {
	    Eterm *ptr = big_val(state_term);
	    memcpy(&state,ptr+2,sizeof(state));
	}
#ifdef HARDDEBUG
	erts_printf("(bm) state->pos = %ld, state->len = %lu\n",state.pos,
		    state.len);
#endif
	pos = bm_find_first_match(&state, bm, bytes, &reds);
	if (pos == BM_NOT_FOUND) {
	    ret = am_nomatch;
	} else if (pos == BM_RESTART) {
	    int x = (sizeof(BMFindFirstState) / sizeof(Eterm)) +
		!!(sizeof(BMFindFirstState) % sizeof(Eterm));
#ifdef HARDDEBUG
	    erts_printf("Trap bm!\n");
#endif
	    hp = HAlloc(p,x+2);
	    hp[0] = make_pos_bignum_header(x+1);
	    hp[1] = type;
	    memcpy(hp+2,&state,sizeof(state));
	    *res_term = make_big(hp);
	    erts_free_aligned_binary_bytes(temp_alloc);
	    return DO_BIN_MATCH_RESTART;
	} else {
	    Eterm erlen = erts_make_integer((Uint) bm->len, p);
	    ret = erts_make_integer(pos,p);
	    hp = HAlloc(p,3);
	    ret = TUPLE2(hp, ret, erlen);
	}
	erts_free_aligned_binary_bytes(temp_alloc);
	BUMP_REDS(p, (save_reds - reds) / BM_LOOP_FACTOR);
	*res_term = ret;
	return DO_BIN_MATCH_OK;
    } else if (type == am_ac) {
	ACTrie *act;
	Uint pos, rlen;
	int acr;
	ACFindFirstState state;
	Eterm ret;
	Eterm *hp;
	Uint reds = get_reds(p, AC_LOOP_FACTOR);
	Uint save_reds = reds;

	act = (ACTrie *) ERTS_MAGIC_BIN_DATA(bin);
#ifdef HARDDEBUG
	dump_ac_trie(act);
#endif
	if (state_term == NIL) {
	    ac_init_find_first_match(&state, act, hsstart, hsend);
	} else {
	    Eterm *ptr = big_val(state_term);
	    memcpy(&state,ptr+2,sizeof(state));
	}
	acr = ac_find_first_match(&state, bytes, &pos, &rlen, &reds);
	if (acr == AC_NOT_FOUND) {
	    ret = am_nomatch;
	} else if (acr == AC_RESTART) {
	    int x = (sizeof(state) / sizeof(Eterm)) +
		!!(sizeof(ACFindFirstState) % sizeof(Eterm));
#ifdef HARDDEBUG
	    erts_printf("Trap ac!\n");
#endif
	    hp = HAlloc(p,x+2);
	    hp[0] = make_pos_bignum_header(x+1);
	    hp[1] = type;
	    memcpy(hp+2,&state,sizeof(state));
	    *res_term = make_big(hp);
	    erts_free_aligned_binary_bytes(temp_alloc);
	    return DO_BIN_MATCH_RESTART;
	} else {
	    Eterm epos = erts_make_integer(pos+hsstart,p);
	    Eterm erlen = erts_make_integer(rlen,p);
	    hp = HAlloc(p,3);
	    ret = TUPLE2(hp, epos, erlen);
	}
	erts_free_aligned_binary_bytes(temp_alloc);
	BUMP_REDS(p, (save_reds - reds) / AC_LOOP_FACTOR);
	*res_term = ret;
	return DO_BIN_MATCH_OK;
    }
 badarg:
    return DO_BIN_MATCH_BADARG;
}

static int do_binary_matches(Process *p, Eterm subject, Uint hsstart,
			     Uint hsend, Eterm type, Binary *bin,
			     Eterm state_term, Eterm *res_term)
{
    byte *bytes;
    Uint bitoffs, bitsize;
    byte *temp_alloc = NULL;

    ERTS_GET_BINARY_BYTES(subject, bytes, bitoffs, bitsize);
    if (bitsize != 0) {
	goto badarg;
    }
    if (bitoffs != 0) {
	bytes = erts_get_aligned_binary_bytes(subject, &temp_alloc);
    }
    if (state_term != NIL) {
	Eterm *ptr = big_val(state_term);
	type = ptr[1];
    }

    if (type == am_bm) {
	BMData *bm;
	Sint pos;
	Eterm ret,tpl;
	Eterm *hp;
	BMFindAllState state;
	Uint reds = get_reds(p, BM_LOOP_FACTOR);
	Uint save_reds = reds;

	bm = (BMData *) ERTS_MAGIC_BIN_DATA(bin);
#ifdef HARDDEBUG
	dump_bm_data(bm);
#endif
	if (state_term == NIL) {
	    bm_init_find_all(&state, hsstart, hsend);
	} else {
	    Eterm *ptr = big_val(state_term);
	    bm_restore_find_all(&state,(char *) (ptr+2));
	}

	pos = bm_find_all_non_overlapping(&state, bm, bytes, &reds);
	if (pos == BM_NOT_FOUND) {
	    ret = NIL;
	} else if (pos == BM_RESTART) {
	    int x =
		(SIZEOF_BM_SERIALIZED_FIND_ALL_STATE(state) / sizeof(Eterm)) +
		!!(SIZEOF_BM_SERIALIZED_FIND_ALL_STATE(state) % sizeof(Eterm));
#ifdef HARDDEBUG
	    erts_printf("Trap bm!\n");
#endif
	    hp = HAlloc(p,x+2);
	    hp[0] = make_pos_bignum_header(x+1);
	    hp[1] = type;
	    bm_serialize_find_all(&state, (char *) (hp+2));
	    *res_term = make_big(hp);
	    erts_free_aligned_binary_bytes(temp_alloc);
	    bm_clean_find_all(&state);
	    return DO_BIN_MATCH_RESTART;
	} else {
	    FindallData *fad = state.out;
	    int i;
	    for (i = 0; i < state.m; ++i) {
		fad[i].epos = erts_make_integer(fad[i].pos,p);
		fad[i].elen = erts_make_integer(fad[i].len,p);
	    }
	    hp = HAlloc(p,state.m * (3 + 2));
	    ret = NIL;
	    for (i = state.m - 1; i >= 0; --i) {
		tpl = TUPLE2(hp, fad[i].epos, fad[i].elen);
		hp +=3;
		ret = CONS(hp,tpl,ret);
		hp += 2;
	    }
	}
	erts_free_aligned_binary_bytes(temp_alloc);
	bm_clean_find_all(&state);
	BUMP_REDS(p, (save_reds - reds) / BM_LOOP_FACTOR);
	*res_term = ret;
	return DO_BIN_MATCH_OK;
    } else if (type == am_ac) {
	ACTrie *act;
	int acr;
	ACFindAllState state;
	Eterm ret,tpl;
	Eterm *hp;
	Uint reds = get_reds(p, AC_LOOP_FACTOR);
	Uint save_reds = reds;

	act = (ACTrie *) ERTS_MAGIC_BIN_DATA(bin);
#ifdef HARDDEBUG
	dump_ac_trie(act);
#endif
	if (state_term == NIL) {
	    ac_init_find_all(&state, act, hsstart, hsend);
	} else {
	    Eterm *ptr = big_val(state_term);
	    ac_restore_find_all(&state,(char *) (ptr+2));
	}
	acr = ac_find_all_non_overlapping(&state, bytes, &reds);
	if (acr == AC_NOT_FOUND) {
	    ret = NIL;
	} else if (acr == AC_RESTART) {
	    int x =
		(SIZEOF_AC_SERIALIZED_FIND_ALL_STATE(state) / sizeof(Eterm)) +
		!!(SIZEOF_AC_SERIALIZED_FIND_ALL_STATE(state) % sizeof(Eterm));
#ifdef HARDDEBUG
	    erts_printf("Trap ac!\n");
#endif
	    hp = HAlloc(p,x+2);
	    hp[0] = make_pos_bignum_header(x+1);
	    hp[1] = type;
	    ac_serialize_find_all(&state, (char *) (hp+2));
	    *res_term = make_big(hp);
	    erts_free_aligned_binary_bytes(temp_alloc);
	    ac_clean_find_all(&state);
	    return DO_BIN_MATCH_RESTART;
	} else {
	    FindallData *fad = state.out;
	    int i;
	    for (i = 0; i < state.m; ++i) {
		fad[i].epos = erts_make_integer(fad[i].pos,p);
		fad[i].elen = erts_make_integer(fad[i].len,p);
	    }
	    hp = HAlloc(p,state.m * (3 + 2));
	    ret = NIL;
	    for (i = state.m - 1; i >= 0; --i) {
		tpl = TUPLE2(hp, fad[i].epos, fad[i].elen);
		hp +=3;
		ret = CONS(hp,tpl,ret);
		hp += 2;
	    }
	}
	erts_free_aligned_binary_bytes(temp_alloc);
	ac_clean_find_all(&state);
	BUMP_REDS(p, (save_reds - reds) / AC_LOOP_FACTOR);
	*res_term = ret;
	return DO_BIN_MATCH_OK;
    }
 badarg:
    return DO_BIN_MATCH_BADARG;
}

static int parse_match_opts_list(Eterm l, Eterm bin, Uint *posp, Uint *endp)
{
    Eterm *tp;
    Uint pos;
    Sint len;
    if (l == ((Eterm) 0) || l == NIL) {
	/* Invalid term or NIL, we're called from binary_match(es)_2 or
	   have no options*/
	*posp = 0;
	*endp = binary_size(bin);
	return 0;
    } else if (is_list(l)) {
	while(is_list(l)) {
	    Eterm t = CAR(list_val(l));
	    Uint orig_size;
	    if (!is_tuple(t)) {
		goto badarg;
	    }
	    tp = tuple_val(t);
	    if (arityval(*tp) != 2) {
		goto badarg;
	    }
	    if (tp[1] != am_scope || is_not_tuple(tp[2])) {
		goto badarg;
	    }
	    tp = tuple_val(tp[2]);
	    if (arityval(*tp) != 2) {
		goto badarg;
	    }
	    if (!term_to_Uint(tp[1], &pos)) {
		goto badarg;
	    }
	    if (!term_to_Sint(tp[2], &len)) {
		goto badarg;
	    }
	    if (len < 0) {
		Sint lentmp = -len;
		/* overflow */
		if (lentmp == len || lentmp < 0 || -lentmp != len) {
		    goto badarg;
		}
		len = lentmp;
		pos -= len;
	    }
	    /* overflow */
	    if ((pos + len) < pos || (len > 0 && (pos + len) == pos)) {
		goto badarg;
	    }
	    *endp = len + pos;
	    *posp = pos;
	    if ((orig_size = binary_size(bin)) < pos ||
		orig_size < (*endp)) {
		goto badarg;
	    }
	    l = CDR(list_val(l));
	}
	return 0;
    } else {
    badarg:
	return 1;
    }
}

static BIF_RETTYPE binary_match_trap(BIF_ALIST_3)
{
    int runres;
    Eterm result;
    Binary *bin = ((ProcBin *) binary_val(BIF_ARG_3))->val;
    runres = do_binary_match(BIF_P,BIF_ARG_1,0,0,NIL,bin,BIF_ARG_2,&result);
    if (runres == DO_BIN_MATCH_OK) {
	BIF_RET(result);
    } else {
	BUMP_ALL_REDS(BIF_P);
	BIF_TRAP3(&binary_match_trap_export, BIF_P, BIF_ARG_1, result,
		  BIF_ARG_3);
    }
}

static BIF_RETTYPE binary_matches_trap(BIF_ALIST_3)
{
    int runres;
    Eterm result;
    Binary *bin = ((ProcBin *) binary_val(BIF_ARG_3))->val;
    runres = do_binary_matches(BIF_P,BIF_ARG_1,0,0,NIL,bin,BIF_ARG_2,&result);
    if (runres == DO_BIN_MATCH_OK) {
	BIF_RET(result);
    } else {
	BUMP_ALL_REDS(BIF_P);
	BIF_TRAP3(&binary_matches_trap_export, BIF_P, BIF_ARG_1, result,
		  BIF_ARG_3);
    }
}

BIF_RETTYPE binary_match_3(BIF_ALIST_3)
{
    Uint hsstart;
    Uint hsend;
    Eterm *tp;
    Eterm type;
    Binary *bin;
    Eterm bin_term = NIL;
    int runres;
    Eterm result;

    if (is_not_binary(BIF_ARG_1)) {
	goto badarg;
    }
    if (parse_match_opts_list(BIF_ARG_3,BIF_ARG_1,&hsstart,&hsend)) {
	goto badarg;
    }
    if (hsend == 0) {
	BIF_RET(am_nomatch);
    }
    if (is_tuple(BIF_ARG_2)) {
	tp = tuple_val(BIF_ARG_2);
	if (arityval(*tp) != 2 || is_not_atom(tp[1])) {
	    goto badarg;
	}
	if (((tp[1] != am_bm) && (tp[1] != am_ac)) ||
	    !ERTS_TERM_IS_MAGIC_BINARY(tp[2])) {
	    goto badarg;
	}
	type = tp[1];
	bin = ((ProcBin *) binary_val(tp[2]))->val;
	if (type == am_bm &&
	    ERTS_MAGIC_BIN_DESTRUCTOR(bin) != cleanup_my_data_bm) {
	    goto badarg;
	}
	if (type == am_ac &&
	    ERTS_MAGIC_BIN_DESTRUCTOR(bin) != cleanup_my_data_ac) {
	    goto badarg;
	}
	bin_term = tp[2];
    } else if (do_binary_match_compile(BIF_ARG_2,&type,&bin)) {
	goto badarg;
    }
    runres = do_binary_match(BIF_P,BIF_ARG_1,hsstart,hsend,type,bin,NIL,&result);
    if (runres == DO_BIN_MATCH_RESTART && bin_term == NIL) {
	Eterm *hp = HAlloc(BIF_P, PROC_BIN_SIZE);
	bin_term = erts_mk_magic_binary_term(&hp, &MSO(BIF_P), bin);
    } else if (bin_term == NIL) {
	erts_bin_free(bin);
    }
    switch (runres) {
    case DO_BIN_MATCH_OK:
	BIF_RET(result);
    case DO_BIN_MATCH_RESTART:
	BUMP_ALL_REDS(BIF_P);
	BIF_TRAP3(&binary_match_trap_export, BIF_P, BIF_ARG_1, result, bin_term);
    default:
	goto badarg;
    }
 badarg:
    BIF_ERROR(BIF_P,BADARG);
}

BIF_RETTYPE binary_matches_3(BIF_ALIST_3)
{
    Uint hsstart, hsend;
    Eterm *tp;
    Eterm type;
    Binary *bin;
    Eterm bin_term = NIL;
    int runres;
    Eterm result;

    if (is_not_binary(BIF_ARG_1)) {
	goto badarg;
    }
    if (parse_match_opts_list(BIF_ARG_3,BIF_ARG_1,&hsstart,&hsend)) {
	goto badarg;
    }
    if (hsend == 0) {
	BIF_RET(NIL);
    }
    if (is_tuple(BIF_ARG_2)) {
	tp = tuple_val(BIF_ARG_2);
	if (arityval(*tp) != 2 || is_not_atom(tp[1])) {
	    goto badarg;
	}
	if (((tp[1] != am_bm) && (tp[1] != am_ac)) ||
	    !ERTS_TERM_IS_MAGIC_BINARY(tp[2])) {
	    goto badarg;
	}
	type = tp[1];
	bin = ((ProcBin *) binary_val(tp[2]))->val;
	if (type == am_bm &&
	    ERTS_MAGIC_BIN_DESTRUCTOR(bin) != cleanup_my_data_bm) {
	    goto badarg;
	}
	if (type == am_ac &&
	    ERTS_MAGIC_BIN_DESTRUCTOR(bin) != cleanup_my_data_ac) {
	    goto badarg;
	}
	bin_term = tp[2];
    } else if (do_binary_match_compile(BIF_ARG_2,&type,&bin)) {
	goto badarg;
    }
    runres = do_binary_matches(BIF_P,BIF_ARG_1,hsstart,hsend,type,bin,
			       NIL,&result);
    if (runres == DO_BIN_MATCH_RESTART && bin_term == NIL) {
	Eterm *hp = HAlloc(BIF_P, PROC_BIN_SIZE);
	bin_term = erts_mk_magic_binary_term(&hp, &MSO(BIF_P), bin);
    } else if (bin_term == NIL) {
	erts_bin_free(bin);
    }
    switch (runres) {
    case DO_BIN_MATCH_OK:
	BIF_RET(result);
    case DO_BIN_MATCH_RESTART:
	BUMP_ALL_REDS(BIF_P);
	BIF_TRAP3(&binary_matches_trap_export, BIF_P, BIF_ARG_1, result,
		  bin_term);
    default:
	goto badarg;
    }
 badarg:
    BIF_ERROR(BIF_P,BADARG);
}


BIF_RETTYPE binary_match_2(BIF_ALIST_2)
{
    return binary_match_3(BIF_P,BIF_ARG_1,BIF_ARG_2,((Eterm) 0));
}


BIF_RETTYPE binary_matches_2(BIF_ALIST_2)
{
    return binary_matches_3(BIF_P,BIF_ARG_1,BIF_ARG_2,((Eterm) 0));
}


BIF_RETTYPE erts_binary_part(Process *p, Eterm binary, Eterm epos, Eterm elen)
{
    Uint pos;
    Sint len;
    size_t orig_size;
    Eterm orig;
    Uint offset;
    Uint bit_offset;
    Uint bit_size;
    Eterm* hp;
    ErlSubBin* sb;

    if (is_not_binary(binary)) {
	goto badarg;
    }
    if (!term_to_Uint(epos, &pos)) {
	goto badarg;
    }
    if (!term_to_Sint(elen, &len)) {
	goto badarg;
    }
    if (len < 0) {
	Sint lentmp = -len;
	/* overflow */
	if (lentmp == len || lentmp < 0 || -lentmp != len) {
	    goto badarg;
	}
	len = lentmp;
	if (len > pos) {
	    goto badarg;
	}
	pos -= len;
    }
    /* overflow */
    if ((pos + len) < pos || (len > 0 && (pos + len) == pos)){
	goto badarg;
    }
    if ((orig_size = binary_size(binary)) < pos ||
	orig_size < (pos + len)) {
	goto badarg;
    }



    hp = HAlloc(p, ERL_SUB_BIN_SIZE);

    ERTS_GET_REAL_BIN(binary, orig, offset, bit_offset, bit_size);
    sb = (ErlSubBin *) hp;
    sb->thing_word = HEADER_SUB_BIN;
    sb->size = len;
    sb->offs = offset + pos;
    sb->orig = orig;
    sb->bitoffs = bit_offset;
    sb->bitsize = 0;
    sb->is_writable = 0;

    BIF_RET(make_binary(sb));

 badarg:
    BIF_ERROR(p, BADARG);
}

#define ERTS_NEED_GC(p, need) ((HEAP_LIMIT((p)) - HEAP_TOP((p))) <= (need))

BIF_RETTYPE erts_gc_binary_part(Process *p, Eterm *reg, Eterm live, int range_is_tuple)
{
    Uint pos;
    Sint len;
    size_t orig_size;
    Eterm orig;
    Uint offset;
    Uint bit_offset;
    Uint bit_size;
    Eterm* hp;
    ErlSubBin* sb;
    Eterm binary;
    Eterm *tp;
    Eterm epos, elen;
    int extra_args;


    if (range_is_tuple) {
	Eterm tpl = reg[live];
	extra_args = 1;
	if (is_not_tuple(tpl)) {
	    goto badarg;
	}
	tp = tuple_val(tpl);
	if (arityval(*tp) != 2) {
	    goto badarg;
	}

	epos = tp[1];
	elen = tp[2];
    } else {
	extra_args = 2;
	epos = reg[live-1];
	elen = reg[live];
    }
    binary = reg[live-extra_args];

    if (is_not_binary(binary)) {
	goto badarg;
    }
    if (!term_to_Uint(epos, &pos)) {
	goto badarg;
    }
    if (!term_to_Sint(elen, &len)) {
	goto badarg;
    }
    if (len < 0) {
	Sint lentmp = -len;
	/* overflow */
	if (lentmp == len || lentmp < 0 || -lentmp != len) {
	    goto badarg;
	}
	len = lentmp;
	if (len > pos) {
	    goto badarg;
	}
	pos -= len;
    }
    /* overflow */
    if ((pos + len) < pos || (len > 0 && (pos + len) == pos)) {
	goto badarg;
    }
    if ((orig_size = binary_size(binary)) < pos ||
	orig_size < (pos + len)) {
	goto badarg;
    }

    if (ERTS_NEED_GC(p, ERL_SUB_BIN_SIZE)) {
	erts_garbage_collect(p, ERL_SUB_BIN_SIZE, reg, live+1-extra_args); /* I don't need the tuple
									      or indices any more */
	binary = reg[live-extra_args];
    }

    hp = p->htop;
    p->htop += ERL_SUB_BIN_SIZE;

    ERTS_GET_REAL_BIN(binary, orig, offset, bit_offset, bit_size);

    sb = (ErlSubBin *) hp;
    sb->thing_word = HEADER_SUB_BIN;
    sb->size = len;
    sb->offs = offset + pos;
    sb->orig = orig;
    sb->bitoffs = bit_offset;
    sb->bitsize = 0;
    sb->is_writable = 0;

    BIF_RET(make_binary(sb));

 badarg:
    BIF_ERROR(p, BADARG);
}
/*************************************************************
 * The actual guard BIFs are in erl_bif_guard.c
 * but the implementation of both the non-gc and the gc
 * variants are here. Note that the functions are named so that they do
 * not clash with the guard bif's erlang:binary_part/2,3
 *************************************************************/

BIF_RETTYPE binary_binary_part_3(BIF_ALIST_3)
{
    return erts_binary_part(BIF_P,BIF_ARG_1,BIF_ARG_2, BIF_ARG_3);
}

BIF_RETTYPE binary_binary_part_2(BIF_ALIST_2)
{
    Eterm *tp;
    if (is_not_tuple(BIF_ARG_2)) {
	goto badarg;
    }
    tp = tuple_val(BIF_ARG_2);
    if (arityval(*tp) != 2) {
	goto badarg;
    }
    return erts_binary_part(BIF_P,BIF_ARG_1,tp[1], tp[2]);
 badarg:
   BIF_ERROR(BIF_P,BADARG);
}

typedef struct {
    int type;            /* CL_TYPE_XXX */
    byte *temp_alloc;    /* Used for erts_get/free_aligned, i.e. CL_TYPE_ALIGNED */
    unsigned char *buff; /* Used for all types, malloced if CL_TYPE_HEAP */
    Uint bufflen;        /* The length (in bytes) of buffer */
} CommonData;

#define COMMON_LOOP_FACTOR 10

#define DIRECTION_PREFIX 0
#define DIRECTION_SUFFIX 1

#define CL_OK 0
#define CL_RESTART 1

/* The type field in the above structure */
#define CL_TYPE_EMPTY 0 /* End of array */
#define CL_TYPE_HEAP 1
#define CL_TYPE_ALIGNED 2
#define CL_TYPE_COMMON 3 /* emacsulated */
#define CL_TYPE_HEAP_NOALLOC 4 /* Will need allocating when trapping */


static int do_search_forward(CommonData *cd, Uint *posp, Uint *redsp)
{
    Uint pos = *posp;
    Sint reds = (Sint) *redsp;
    int i;
    unsigned char current = 0;

    for(;;) {
	for(i = 0; cd[i].type != CL_TYPE_EMPTY; ++i) {
	    if (pos >= cd[i].bufflen) {
		*posp = pos;
		if (reds > 0) {
		    *redsp = (Uint) reds;
		} else {
		    *redsp = 0;
		}
		return CL_OK;
	    }
	    if (i == 0) {
		current = cd[i].buff[pos];
	    } else {
		if (cd[i].buff[pos] != current) {
		    *posp = pos;
		    if (reds > 0) {
			*redsp = (Uint) reds;
		    } else {
			*redsp = 0;
		    }
		    return CL_OK;
		}
	    }
	    --reds;
	}
	++pos;
	if (reds <= 0) {
	    *posp = pos;
	    *redsp = 0;
	    return CL_RESTART;
	}
    }
}
static int do_search_backward(CommonData *cd, Uint *posp, Uint *redsp)
{
    Uint pos = *posp;
    Sint reds = (Sint) *redsp;
    int i;
    unsigned char current = 0;

    for(;;) {
	for(i = 0; cd[i].type != CL_TYPE_EMPTY; ++i) {
	    if (pos >= cd[i].bufflen) {
		*posp = pos;
		if (reds > 0) {
		    *redsp = (Uint) reds;
		} else {
		    *redsp = 0;
		}
		return CL_OK;
	    }
	    if (i == 0) {
		current = cd[i].buff[cd[i].bufflen - 1 - pos];
	    } else {
		if (cd[i].buff[cd[i].bufflen - 1 - pos] != current) {
		    *posp = pos;
		    if (reds > 0) {
			*redsp = (Uint) reds;
		    } else {
			*redsp = 0;
		    }
		    return CL_OK;
		}
	    }
	    --reds;
	}
	++pos;
	if (reds <= 0) {
	    *posp = pos;
	    *redsp = 0;
	    return CL_RESTART;
	}
    }
}

static void cleanup_common_data(Binary *bp)
{
    int i;
    CommonData *cd;
    cd = (CommonData *) ERTS_MAGIC_BIN_DATA(bp);
    for (i=0;cd[i].type != CL_TYPE_EMPTY;++i) {
	switch (cd[i].type) {
	case CL_TYPE_HEAP:
	    erts_free(ERTS_ALC_T_BINARY_BUFFER,cd[i].buff);
	    break;
	case CL_TYPE_ALIGNED:
	    erts_free_aligned_binary_bytes_extra(cd[i].temp_alloc, ERTS_ALC_T_BINARY_BUFFER);
	    break;
	default:
	    break;
	}
    }
    return;
}

static BIF_RETTYPE do_longest_common(Process *p, Eterm list, int direction)
{
    Eterm l = list;
    int n = 0;
    Binary *mb;
    CommonData *cd;
    int i = 0;
    Uint reds = get_reds(p, COMMON_LOOP_FACTOR);
    Uint save_reds = reds;
    int res;
    Export *trapper;
    Uint pos;
    Eterm epos;
    Eterm *hp;
    Eterm bin_term;
    Eterm b;

    /* First just count the number of binaries */
    while (is_list(l)) {
	b = CAR(list_val(l));
	if (!is_binary(b)) {
	    goto badarg;
	}
	++n;
	l = CDR(list_val(l));
    }
    if (l != NIL || n == 0) {
	goto badarg;
    }

    /* OK, now create a buffer of the right size, we can do a magic binary right away,
       that's not too costly. */
    mb = erts_create_magic_binary((n+1)*sizeof(CommonData),cleanup_common_data);
    cd = (CommonData *) ERTS_MAGIC_BIN_DATA(mb);
    l = list;
    while (is_list(l)) {
	Uint bitoffs;
	Uint bitsize;
	Uint offset;
	Eterm real_bin;
	ProcBin* pb;

	cd[i].type = CL_TYPE_EMPTY;
	b = CAR(list_val(l));
	ERTS_GET_REAL_BIN(b, real_bin, offset, bitoffs, bitsize);
	if (bitsize != 0) {
	    erts_bin_free(mb);
	    goto badarg;
	}
	cd[i].bufflen = binary_size(b);
	cd[i].temp_alloc = NULL;
	if (*(binary_val(real_bin)) == HEADER_PROC_BIN) {
	    pb = (ProcBin *) binary_val(real_bin);
	    if (pb->flags) {
		erts_emasculate_writable_binary(pb);
	    }
	    cd[i].buff = erts_get_aligned_binary_bytes_extra(b, &(cd[i].temp_alloc),
							     ERTS_ALC_T_BINARY_BUFFER,0);
	    cd[i].type = (cd[i].temp_alloc != NULL) ? CL_TYPE_ALIGNED : CL_TYPE_COMMON;
	} else { /* Heap binary */
	    cd[i].buff = erts_get_aligned_binary_bytes_extra(b, &(cd[i].temp_alloc),
							     ERTS_ALC_T_BINARY_BUFFER,0);
	    /* CL_TYPE_HEAP_NOALLOC means you have to copy if trapping */
	    cd[i].type = (cd[i].temp_alloc != NULL) ? CL_TYPE_ALIGNED : CL_TYPE_HEAP_NOALLOC;
	}
	++i;
	l = CDR(list_val(l));
    }
    cd[i].type = CL_TYPE_EMPTY;
#if defined(DEBUG) || defined(VALGRIND)
    cd[i].temp_alloc = NULL;
    cd[i].buff = NULL;
    cd[i].bufflen = 0;
#endif

    pos = 0;
    if (direction == DIRECTION_PREFIX) {
	trapper = &binary_longest_prefix_trap_export;
	res = do_search_forward(cd,&pos,&reds);
    } else {
	ASSERT(direction == DIRECTION_SUFFIX);
	trapper = &binary_longest_suffix_trap_export;
	res = do_search_backward(cd,&pos,&reds);
    }
    epos = erts_make_integer(pos,p);
    if (res == CL_OK) {
	erts_bin_free(mb);
	BUMP_REDS(p, (save_reds - reds) / COMMON_LOOP_FACTOR);
	BIF_RET(epos);
    } else {
	ASSERT(res == CL_RESTART);
	/* Copy all heap binaries that are not already copied (aligned) */
	for(i = 0; i < n; ++i) {
	    if (cd[i].type == CL_TYPE_HEAP_NOALLOC) {
		unsigned char *tmp = cd[i].buff;
		cd[i].buff = erts_alloc(ERTS_ALC_T_BINARY_BUFFER, cd[i].bufflen);
		memcpy(cd[i].buff,tmp,cd[i].bufflen);
		cd[i].type = CL_TYPE_HEAP;
	    }
	}
	hp = HAlloc(p, PROC_BIN_SIZE);
	bin_term = erts_mk_magic_binary_term(&hp, &MSO(p), mb);
	BUMP_ALL_REDS(p);
	BIF_TRAP3(trapper, p, bin_term, epos,list);
    }
 badarg:
    BIF_ERROR(p,BADARG);
}

static BIF_RETTYPE do_longest_common_trap(Process *p, Eterm bin_term, Eterm current_pos,
					  Eterm orig_list, int direction)
{
    Uint reds = get_reds(p, COMMON_LOOP_FACTOR);
    Uint save_reds = reds;
    Uint pos;
    Binary *bin;
    CommonData *cd;
    int res;
    Eterm epos;
    Export *trapper;

#ifdef DEBUG
    int r;
    r = term_to_Uint(current_pos, &pos);
    ASSERT(r != 0);
#else
    term_to_Uint(current_pos, &pos);
#endif
    ASSERT(ERTS_TERM_IS_MAGIC_BINARY(bin_term));
    bin = ((ProcBin *) binary_val(bin_term))->val;
    cd = (CommonData *) ERTS_MAGIC_BIN_DATA(bin);
    if (direction == DIRECTION_PREFIX) {
	trapper = &binary_longest_prefix_trap_export;
	res = do_search_forward(cd,&pos,&reds);
    } else {
	ASSERT(direction == DIRECTION_SUFFIX);
	trapper = &binary_longest_suffix_trap_export;
	res = do_search_backward(cd,&pos,&reds);
    }
    epos = erts_make_integer(pos,p);
    if (res == CL_OK) {
	BUMP_REDS(p, (save_reds - reds) / COMMON_LOOP_FACTOR);
	BIF_RET(epos);
    } else {
	ASSERT(res == CL_RESTART);
	/* Copy all heap binaries that are not already copied (aligned) */
	BUMP_ALL_REDS(p);
	BIF_TRAP3(trapper, p, bin_term, epos, orig_list);
    }
}

static BIF_RETTYPE binary_longest_prefix_trap(BIF_ALIST_3)
{
    return do_longest_common_trap(BIF_P,BIF_ARG_1,BIF_ARG_2,BIF_ARG_3,DIRECTION_PREFIX);
}

static BIF_RETTYPE binary_longest_suffix_trap(BIF_ALIST_3)
{
    return do_longest_common_trap(BIF_P,BIF_ARG_1,BIF_ARG_2,BIF_ARG_3,DIRECTION_SUFFIX);
}

BIF_RETTYPE binary_longest_common_prefix_1(BIF_ALIST_1)
{
    return do_longest_common(BIF_P,BIF_ARG_1,DIRECTION_PREFIX);
}

BIF_RETTYPE binary_longest_common_suffix_1(BIF_ALIST_1)
{
    return do_longest_common(BIF_P,BIF_ARG_1,DIRECTION_SUFFIX);
}

BIF_RETTYPE binary_first_1(BIF_ALIST_1)
{
    byte* bytes;
    Uint byte_size;
    Uint bit_offs;
    Uint bit_size;
    Uint res;

    if (is_not_binary(BIF_ARG_1)) {
	goto badarg;
    }
    byte_size = binary_size(BIF_ARG_1);
    if (!byte_size) {
	goto badarg;
    }
    ERTS_GET_BINARY_BYTES(BIF_ARG_1,bytes,bit_offs,bit_size);
    if (bit_size) {
	goto badarg;
    }
    if (bit_offs) {
	res = ((((Uint) bytes[0]) << bit_offs) | (((Uint) bytes[1]) >> (8-bit_offs))) & 0xFF;
    } else {
	res = bytes[0];
    }
    BIF_RET(make_small(res));
 badarg:
    BIF_ERROR(BIF_P,BADARG);
}

BIF_RETTYPE binary_last_1(BIF_ALIST_1)
{
    byte* bytes;
    Uint byte_size;
    Uint bit_offs;
    Uint bit_size;
    Uint res;

    if (is_not_binary(BIF_ARG_1)) {
	goto badarg;
    }
    byte_size = binary_size(BIF_ARG_1);
    if (!byte_size) {
	goto badarg;
    }
    ERTS_GET_BINARY_BYTES(BIF_ARG_1,bytes,bit_offs,bit_size);
    if (bit_size) {
	goto badarg;
    }
    if (bit_offs) {
	res = ((((Uint) bytes[byte_size-1]) << bit_offs) |
	       (((Uint) bytes[byte_size]) >> (8-bit_offs))) & 0xFF;
    } else {
	res = bytes[byte_size-1];
    }
    BIF_RET(make_small(res));
 badarg:
    BIF_ERROR(BIF_P,BADARG);
}

BIF_RETTYPE binary_at_2(BIF_ALIST_2)
{
    byte* bytes;
    Uint byte_size;
    Uint bit_offs;
    Uint bit_size;
    Uint res;
    Uint index;

    if (is_not_binary(BIF_ARG_1)) {
	goto badarg;
    }
    byte_size = binary_size(BIF_ARG_1);
    if (!byte_size) {
	goto badarg;
    }
    if (!term_to_Uint(BIF_ARG_2, &index)) {
	goto badarg;
    }
    if (index >= byte_size) {
	goto badarg;
    }
    ERTS_GET_BINARY_BYTES(BIF_ARG_1,bytes,bit_offs,bit_size);
    if (bit_size) {
	goto badarg;
    }
    if (bit_offs) {
	res = ((((Uint) bytes[index]) << bit_offs) |
	       (((Uint) bytes[index+1]) >> (8-bit_offs))) & 0xFF;
    } else {
	res = bytes[index];
    }
    BIF_RET(make_small(res));
 badarg:
    BIF_ERROR(BIF_P,BADARG);
}

#define BIN_TO_LIST_OK 0
#define BIN_TO_LIST_TRAP 1
/* No badarg, checked before call */

#define BIN_TO_LIST_LOOP_FACTOR 10

static int do_bin_to_list(Process *p, byte *bytes, Uint bit_offs,
			  Uint start, Sint *lenp, Eterm *termp)
{
    Uint reds = get_reds(p, BIN_TO_LIST_LOOP_FACTOR); /* reds can never be 0 */
    Uint len = *lenp;
    Uint loops;
    Eterm *hp;
    Eterm term = *termp;
    Uint n;

    ASSERT(reds > 0);

    loops = MIN(reds,len);

    BUMP_REDS(p, loops / BIN_TO_LIST_LOOP_FACTOR);

    hp = HAlloc(p,2*loops);
    while (loops--) {
	--len;
	if (bit_offs) {
	    n = ((((Uint) bytes[start+len]) << bit_offs) |
		 (((Uint) bytes[start+len+1]) >> (8-bit_offs))) & 0xFF;
	} else {
	    n = bytes[start+len];
	}

	term = CONS(hp,make_small(n),term);
	hp +=2;
    }
    *termp = term;
    *lenp = len;
    if (len) {
	BUMP_ALL_REDS(p);
	return BIN_TO_LIST_TRAP;
    }
    return BIN_TO_LIST_OK;
}


static BIF_RETTYPE do_trap_bin_to_list(Process *p, Eterm binary,
				       Uint start, Sint len, Eterm sofar)
{
    Eterm *hp;
    Eterm blob;

    hp = HAlloc(p,3);
    hp[0] = make_pos_bignum_header(2);
    hp[1] = start;
    hp[2] = (Uint) len;
    blob = make_big(hp);
    BIF_TRAP3(&binary_bin_to_list_trap_export, p, binary, blob, sofar);
}

static BIF_RETTYPE binary_bin_to_list_trap(BIF_ALIST_3)
{
    Eterm *ptr;
    Uint start;
    Sint len;
    byte *bytes;
    Uint bit_offs;
    Uint bit_size;
    Eterm res = BIF_ARG_3;

    ptr  = big_val(BIF_ARG_2);
    start = ptr[1];
    len = (Sint) ptr[2];

    ERTS_GET_BINARY_BYTES(BIF_ARG_1,bytes,bit_offs,bit_size);
    if (do_bin_to_list(BIF_P, bytes, bit_offs, start, &len, &res) ==
	BIN_TO_LIST_OK) {
	BIF_RET(res);
    }
    return do_trap_bin_to_list(BIF_P,BIF_ARG_1,start,len,res);
}

static BIF_RETTYPE binary_bin_to_list_common(Process *p,
					     Eterm bin,
					     Eterm epos,
					     Eterm elen)
{
    Uint pos;
    Sint len;
    size_t sz;
    byte *bytes;
    Uint bit_offs;
    Uint bit_size;
    Eterm res = NIL;

    if (is_not_binary(bin)) {
	goto badarg;
    }
    if (!term_to_Uint(epos, &pos)) {
	goto badarg;
    }
    if (!term_to_Sint(elen, &len)) {
	goto badarg;
    }
    if (len < 0) {
	Sint lentmp = -len;
	/* overflow */
	if (lentmp == len || lentmp < 0 || -lentmp != len) {
	    goto badarg;
	}
	len = lentmp;
	if (len > pos) {
	    goto badarg;
	}
	pos -= len;
    }
    /* overflow */
    if ((pos + len) < pos || (len > 0 && (pos + len) == pos)) {
	goto badarg;
    }
    sz = binary_size(bin);

    if (pos+len > sz) {
	goto badarg;
    }
    ERTS_GET_BINARY_BYTES(bin,bytes,bit_offs,bit_size);
    if (bit_size != 0) {
	goto badarg;
    }
    if(do_bin_to_list(p, bytes, bit_offs, pos, &len, &res) ==
       BIN_TO_LIST_OK) {
	BIF_RET(res);
    }
    return do_trap_bin_to_list(p,bin,pos,len,res);

 badarg:
    BIF_ERROR(p,BADARG);
}

BIF_RETTYPE binary_bin_to_list_3(BIF_ALIST_3)
{
    return binary_bin_to_list_common(BIF_P,BIF_ARG_1,BIF_ARG_2,BIF_ARG_3);
}

BIF_RETTYPE binary_bin_to_list_2(BIF_ALIST_2)
{
    Eterm *tp;

    if (is_not_tuple(BIF_ARG_2)) {
	goto badarg;
    }
    tp = tuple_val(BIF_ARG_2);
    if (arityval(*tp) != 2) {
	goto badarg;
    }
    return binary_bin_to_list_common(BIF_P,BIF_ARG_1,tp[1],tp[2]);
 badarg:
    BIF_ERROR(BIF_P,BADARG);
}

BIF_RETTYPE binary_bin_to_list_1(BIF_ALIST_1)
{
    Uint pos = 0;
    Sint len;
    byte *bytes;
    Uint bit_offs;
    Uint bit_size;
    Eterm res = NIL;

    if (is_not_binary(BIF_ARG_1)) {
	goto badarg;
    }
    len = binary_size(BIF_ARG_1);
    ERTS_GET_BINARY_BYTES(BIF_ARG_1,bytes,bit_offs,bit_size);
    if (bit_size != 0) {
	goto badarg;
    }
    if(do_bin_to_list(BIF_P, bytes, bit_offs, pos, &len, &res) ==
       BIN_TO_LIST_OK) {
	BIF_RET(res);
    }
    return do_trap_bin_to_list(BIF_P,BIF_ARG_1,pos,len,res);
 badarg:
    BIF_ERROR(BIF_P,BADARG);
}

/*
 * Ok, erlang:list_to_binary does not interrupt, and we really don't want
 * an alternative implementation for the exact same thing, why we
 * have descided to use the old non-restarting implementation for now.
 * In reality, there are seldom many iterations involved in doing this, so the
 * problem of long-running bifs is not really that big in this case.
 * So, for now we use the old implementation also in the module binary.
 */

BIF_RETTYPE binary_list_to_bin_1(BIF_ALIST_1)
{
    return erts_list_to_binary_bif(BIF_P, BIF_ARG_1);
}

typedef struct {
    Uint times_left;
    Uint source_size;
    int source_type;
    byte *source;
    byte *temp_alloc;
    Uint result_pos;
    Binary *result;
} CopyBinState;

#define BC_TYPE_EMPTY 0
#define BC_TYPE_HEAP 1
#define BC_TYPE_ALIGNED 2 /* May or may not point to (emasculated) binary, temp_alloc field is set
			     so that erts_free_aligned_binary_bytes_extra can handle either */


#define BINARY_COPY_LOOP_FACTOR 100

static void cleanup_copy_bin_state(Binary *bp)
{
    CopyBinState *cbs = (CopyBinState *) ERTS_MAGIC_BIN_DATA(bp);
    if (cbs->result != NULL) {
	erts_bin_free(cbs->result);
	cbs->result = NULL;
    }
    switch (cbs->source_type) {
    case BC_TYPE_HEAP:
	erts_free(ERTS_ALC_T_BINARY_BUFFER,cbs->source);
	break;
    case BC_TYPE_ALIGNED:
	erts_free_aligned_binary_bytes_extra(cbs->temp_alloc,
					     ERTS_ALC_T_BINARY_BUFFER);
	break;
    default:
	/* otherwise do nothing */
	break;
    }
    cbs->source_type =  BC_TYPE_EMPTY;
}

/*
 * Binary *erts_bin_nrml_alloc(Uint size);
 * Binary *erts_bin_realloc(Binary *bp, Uint size);
 * void erts_bin_free(Binary *bp);
 */
static BIF_RETTYPE do_binary_copy(Process *p, Eterm bin, Eterm en)
{
    Uint n;
    byte *bytes;
    Uint bit_offs;
    Uint bit_size;
    size_t size;
    Uint reds = get_reds(p, BINARY_COPY_LOOP_FACTOR);
    Uint target_size;
    byte *t;
    Uint pos;


    if (is_not_binary(bin)) {
	goto badarg;
    }
    if (!term_to_Uint(en, &n)) {
	goto badarg;
    }
    if (!n) {
	Eterm res_term = erts_new_heap_binary(p,NULL,0,&bytes);
	BIF_RET(res_term);
    }
    ERTS_GET_BINARY_BYTES(bin,bytes,bit_offs,bit_size);
    if (bit_size != 0) {
	goto badarg;
    }

    size = binary_size(bin);
    target_size = size * n;

    if ((target_size - size) >= reds) {
	Eterm orig;
	Uint offset;
	Uint bit_offset;
	Uint bit_size;
	CopyBinState *cbs;
	Eterm *hp;
	Eterm trap_term;
	int i;

	/* We will trap, set up the structure for trapping right away */
	Binary *mb = erts_create_magic_binary(sizeof(CopyBinState),
					      cleanup_copy_bin_state);
	cbs = ERTS_MAGIC_BIN_DATA(mb);

	cbs->temp_alloc = NULL;
	cbs->source = NULL;

	ERTS_GET_REAL_BIN(bin, orig, offset, bit_offset, bit_size);
	if (*(binary_val(orig)) == HEADER_PROC_BIN) {
	    ProcBin* pb = (ProcBin *) binary_val(orig);
	    if (pb->flags) {
		erts_emasculate_writable_binary(pb);
	    }
	    cbs->source =
		erts_get_aligned_binary_bytes_extra(bin,
						    &(cbs->temp_alloc),
						    ERTS_ALC_T_BINARY_BUFFER,
						    0);
	    cbs->source_type = BC_TYPE_ALIGNED;
	} else { /* Heap binary */
	    cbs->source =
		erts_get_aligned_binary_bytes_extra(bin,
						    &(cbs->temp_alloc),
						    ERTS_ALC_T_BINARY_BUFFER,
						    0);
	    if (!(cbs->temp_alloc)) { /* alignment not needed, need to copy */
		byte *tmp = erts_alloc(ERTS_ALC_T_BINARY_BUFFER,size);
		memcpy(tmp,cbs->source,size);
		cbs->source = tmp;
		cbs->source_type = BC_TYPE_HEAP;
	    } else {
		cbs->source_type = BC_TYPE_ALIGNED;
	    }
	}
	cbs->result = erts_bin_nrml_alloc(target_size); /* Always offheap
							   if trapping */
	cbs->result->flags = 0;
	cbs->result->orig_size = target_size;
	erts_refc_init(&(cbs->result->refc), 1);
	t = (byte *) cbs->result->orig_bytes; /* No offset or anything */
	pos = 0;
	i = 0;
	while (pos < reds) {
	    memcpy(t+pos,cbs->source, size);
	    pos += size;
	    ++i;
	}
	cbs->source_size = size;
	cbs->result_pos = pos;
	cbs->times_left = n-i;
	hp = HAlloc(p,PROC_BIN_SIZE);
	trap_term = erts_mk_magic_binary_term(&hp, &MSO(p), mb);
	BUMP_ALL_REDS(p);
	BIF_TRAP2(&binary_copy_trap_export, p, bin, trap_term);
    } else {
	Eterm res_term;
	byte *temp_alloc = NULL;
	byte *source =
	    erts_get_aligned_binary_bytes(bin,
					  &temp_alloc);
	if (target_size <= ERL_ONHEAP_BIN_LIMIT) {
	    res_term = erts_new_heap_binary(p,NULL,target_size,&t);
	} else {
	    res_term = erts_new_mso_binary(p,NULL,target_size);
	    t = ((ProcBin *) binary_val(res_term))->bytes;
	}
	pos = 0;
	while (pos < target_size) {
	    memcpy(t+pos,source, size);
	    pos += size;
	}
	erts_free_aligned_binary_bytes(temp_alloc);
	BUMP_REDS(p,pos / BINARY_COPY_LOOP_FACTOR);
	BIF_RET(res_term);
    }
 badarg:
    BIF_ERROR(p,BADARG);
}

BIF_RETTYPE binary_copy_trap(BIF_ALIST_2)
{
    Uint n;
    size_t size;
    Uint reds = get_reds(BIF_P, BINARY_COPY_LOOP_FACTOR);
    byte *t;
    Uint pos;
    Binary *mb = ((ProcBin *) binary_val(BIF_ARG_2))->val;
    CopyBinState *cbs = (CopyBinState *) ERTS_MAGIC_BIN_DATA(mb);
    Uint opos;

    /* swapout... */
    n = cbs->times_left;
    size = cbs->source_size;
    opos = pos = cbs->result_pos;
    t = (byte *) cbs->result->orig_bytes; /* "well behaved" binary */
    if ((n-1) * size >= reds) {
	Uint i = 0;
	while ((pos - opos) < reds) {
	    memcpy(t+pos,cbs->source, size);
	    pos += size;
	    ++i;
	}
	cbs->result_pos = pos;
	cbs->times_left -= i;
	BUMP_ALL_REDS(BIF_P);
	BIF_TRAP2(&binary_copy_trap_export, BIF_P, BIF_ARG_1, BIF_ARG_2);
    } else {
	Binary *save;
	ProcBin* pb;
	Uint target_size = cbs->result->orig_size;
	while (pos < target_size) {
	    memcpy(t+pos,cbs->source, size);
	    pos += size;
	}
	save =  cbs->result;
	cbs->result = NULL;
	cleanup_copy_bin_state(mb); /* now cbs is dead */
	pb = (ProcBin *) HAlloc(BIF_P, PROC_BIN_SIZE);
	pb->thing_word = HEADER_PROC_BIN;
	pb->size = target_size;
	pb->next = MSO(BIF_P).first;
	MSO(BIF_P).first = (struct erl_off_heap_header*) pb;
	pb->val = save;
	pb->bytes = t;
	pb->flags = 0;

	OH_OVERHEAD(&(MSO(BIF_P)), target_size / sizeof(Eterm));
	BUMP_REDS(BIF_P,(pos - opos) / BINARY_COPY_LOOP_FACTOR);

	BIF_RET(make_binary(pb));
    }
}


BIF_RETTYPE binary_copy_1(BIF_ALIST_1)
{
    return do_binary_copy(BIF_P,BIF_ARG_1,make_small(1));
}

BIF_RETTYPE binary_copy_2(BIF_ALIST_2)
{
    return do_binary_copy(BIF_P,BIF_ARG_1,BIF_ARG_2);
}

BIF_RETTYPE binary_referenced_byte_size_1(BIF_ALIST_1)
{
    ErlSubBin *sb;
    ProcBin *pb;
    Eterm res;
    Eterm bin = BIF_ARG_1;

    if (is_not_binary(BIF_ARG_1)) {
	BIF_ERROR(BIF_P,BADARG);
    }
    sb = (ErlSubBin *) binary_val(bin);
    if (sb->thing_word == HEADER_SUB_BIN) {
	bin = sb->orig;
    }
    pb = (ProcBin *) binary_val(bin);
    if (pb->thing_word == HEADER_PROC_BIN) {
	/* XXX:PaN - Halfword - orig_size is a long, we should handle that */
	res = erts_make_integer((Uint) pb->val->orig_size, BIF_P);
    } else { /* heap binary */
	res = erts_make_integer((Uint) ((ErlHeapBin *) pb)->size, BIF_P);
    }
    BIF_RET(res);
}

#define END_BIG 0
#define END_SMALL 1

#ifdef WORDS_BIGENDIAN
#define END_NATIVE END_BIG
#else
#define END_NATIVE END_SMALL
#endif

static int get_need(Uint u) {
#if defined(ARCH_64) && !HALFWORD_HEAP
    if (u > 0xFFFFFFFFUL) {
	if (u > 0xFFFFFFFFFFFFUL) {
	    if (u > 0xFFFFFFFFFFFFFFUL) {
		return 8;
	    }
	    return 7;
	}
	if (u > 0xFFFFFFFFFFUL) {
	    return 6;
	}
	return 5;
    }
#endif
    if (u > 0xFFFFUL) {
	if (u > 0xFFFFFFUL) {
	    return 4;
	}
	return 3;
    }
    if (u > 0xFFUL) {
	return 2;
    }
    return 1;
}

static BIF_RETTYPE do_encode_unsigned(Process *p, Eterm uns, Eterm endianess)
{
    Eterm res;
    if ((is_not_small(uns) && is_not_big(uns)) || is_not_atom(endianess) ||
	(endianess != am_big && endianess != am_little)) {
	goto badarg;
    }
    if (is_small(uns)) {
	Sint x = signed_val(uns);
	Uint u;
	int n,i;
	byte *b;

	if (x < 0) {
	    goto badarg;
	}

	u = (Uint) x;
	n = get_need(u);
	ASSERT(n <= ERL_ONHEAP_BIN_LIMIT);
	res = erts_new_heap_binary(p, NULL, n, &b);
	if (endianess == am_big) {
	    for(i=n-1;i>=0;--i) {
		b[i] = u & 0xFF;
		u >>= 8;
	    }
	} else {
	    for(i=0;i<n;++i) {
		b[i] = u & 0xFF;
		u >>= 8;
	    }
	}
	BIF_RET(res);
    } else {
	/* Big */
	Eterm *bigp = big_val(uns);
	Uint n;
	dsize_t num_parts = BIG_SIZE(bigp);
	Eterm res;
	byte *b;
	ErtsDigit d;

	if(BIG_SIGN(bigp)) {
	    goto badarg;
	}
	n = (num_parts-1)*sizeof(ErtsDigit)+get_need(BIG_DIGIT(bigp,(num_parts-1)));
	if (n <= ERL_ONHEAP_BIN_LIMIT) {
	    res = erts_new_heap_binary(p,NULL,n,&b);
	} else {
	    res = erts_new_mso_binary(p,NULL,n);
	    b = ((ProcBin *) binary_val(res))->bytes;
	}

	if (endianess == am_big) {
	    Sint i,j;
	    j = 0;
	    d = BIG_DIGIT(bigp,0);
	    for (i=n-1;i>=0;--i) {
		b[i] = d & 0xFF;
		if (!((++j) % sizeof(ErtsDigit))) {
		    d = BIG_DIGIT(bigp,j / sizeof(ErtsDigit));
		} else {
		    d >>= 8;
		}
	    }
	} else {
	    Sint i,j;
	    j = 0;
	    d = BIG_DIGIT(bigp,0);
	    for (i=0;i<n;++i) {
		b[i] = d & 0xFF;
		if (!((++j) % sizeof(ErtsDigit))) {
		    d = BIG_DIGIT(bigp,j / sizeof(ErtsDigit));
		} else {
		    d >>= 8;
		}
	    }

	}
	BIF_RET(res);
    }
 badarg:
    BIF_ERROR(p,BADARG);
}

static BIF_RETTYPE do_decode_unsigned(Process *p, Eterm uns, Eterm endianess)
{
    byte *bytes;
    Uint bitoffs, bitsize;
    Uint size;
    Eterm res;

    if (is_not_binary(uns) || is_not_atom(endianess) ||
	(endianess != am_big && endianess != am_little)) {
	goto badarg;
    }
    ERTS_GET_BINARY_BYTES(uns, bytes, bitoffs, bitsize);
    if (bitsize != 0) {
	goto badarg;
    }
    /* align while rolling */
    size = binary_size(uns);
    if (bitoffs) {
	if (endianess == am_big) {
	    while (size && (((((Uint) bytes[0]) << bitoffs) |
			    (((Uint) bytes[1]) >> (8-bitoffs))) & 0xFF) == 0) {
		++bytes;
		--size;
	    }
	} else {
	    while(size &&
		  (((((Uint) bytes[size-1]) << bitoffs) |
		    (((Uint) bytes[size]) >> (8-bitoffs))) & 0xFF) == 0) {
		--size;
	    }
	}
    } else {
	if (endianess == am_big) {
	    while (size && *bytes == 0) {
		++bytes;
		--size;
	    }
	} else {
	    while(size && bytes[size-1] == 0) {
		--size;
	    }
	}
    }
    if (!size) {
	BIF_RET(make_small(0));
    }

    if (size <= sizeof(Uint)) {
	Uint u = 0;
	Sint i;

	if (endianess == am_big) {
		if (bitoffs) {
		    for(i=0;i<size;++i) {
			u <<=8;
			u |= (((((Uint) bytes[i]) << bitoffs) |
			       (((Uint) bytes[i+1]) >> (8-bitoffs))) & 0xFF);
		    }
		} else {
		    for(i=0;i<size;++i) {
			u <<=8;
			u |= bytes[i];
		    }
		}
	} else {

		if (bitoffs) {
		    for(i=size-1;i>=0;--i) {
			u <<=8;
			u |= (((((Uint) bytes[i]) << bitoffs) |
			       (((Uint) bytes[i+1]) >> (8-bitoffs))) & 0xFF);
		    }
		} else {
		    for(i=size-1;i>=0;--i) {
			u <<=8;
			u |= bytes[i];
		    }
		}
	}
	res = erts_make_integer(u,p);
	BIF_RET(res);
    } else {
	/* Assume big, as we stripped away all zeroes from the MSB part of the binary */
	dsize_t num_parts = size / sizeof(ErtsDigit) + !!(size % sizeof(ErtsDigit));
	Eterm *bigp;

	bigp = HAlloc(p, BIG_NEED_SIZE(num_parts));
	*bigp = make_pos_bignum_header(num_parts);
	res = make_big(bigp);

	if (endianess == am_big) {
	    Sint i,j;
	    ErtsDigit *d;
	    j = size;
	    d = &(BIG_DIGIT(bigp,num_parts - 1));
	    *d = 0;
	    i = 0;
	    if(bitoffs) {
		for (;;){
		    (*d) <<= 8;
		    (*d) |= (((((Uint) bytes[i]) << bitoffs) |
			      (((Uint) bytes[i+1]) >> (8-bitoffs))) & 0xFF);
		    if (++i >= size) {
			break;
		    }
		    if (!(--j % sizeof(ErtsDigit))) {
			--d;
			*d = 0;
		    }
		}
	    } else {
		for (;;){
		    (*d) <<= 8;
		    (*d) |= bytes[i];
		    if (++i >= size) {
			break;
		    }
		    if (!(--j % sizeof(ErtsDigit))) {
			--d;
			*d = 0;
		    }
		}
	    }
	} else {
	    Sint i,j;
	    ErtsDigit *d;
	    j = size;
	    d = &(BIG_DIGIT(bigp,num_parts - 1));
	    *d = 0;
	    i = size-1;
	    if (bitoffs) {
		for (;;){
		    (*d) <<= 8;
		    (*d) |= (((((Uint) bytes[i]) << bitoffs) |
			      (((Uint) bytes[i+1]) >> (8-bitoffs))) & 0xFF);
		    if (--i < 0) {
			break;
		    }
		    if (!(--j % sizeof(ErtsDigit))) {
			--d;
			*d = 0;
		    }
		}
	    } else {
		for (;;){
		    (*d) <<= 8;
		    (*d) |= bytes[i];
		    if (--i < 0) {
			break;
		    }
		    if (!(--j % sizeof(ErtsDigit))) {
			--d;
			*d = 0;
		    }
		}
	    }
	}
	BIF_RET(res);
    }
 badarg:
    BIF_ERROR(p,BADARG);
}

BIF_RETTYPE binary_encode_unsigned_1(BIF_ALIST_1)
{
    return do_encode_unsigned(BIF_P,BIF_ARG_1,am_big);
}

BIF_RETTYPE binary_encode_unsigned_2(BIF_ALIST_2)
{
    return do_encode_unsigned(BIF_P,BIF_ARG_1,BIF_ARG_2);
}

BIF_RETTYPE binary_decode_unsigned_1(BIF_ALIST_1)
{
    return do_decode_unsigned(BIF_P,BIF_ARG_1,am_big);
}

BIF_RETTYPE binary_decode_unsigned_2(BIF_ALIST_2)
{
    return do_decode_unsigned(BIF_P,BIF_ARG_1,BIF_ARG_2);
}

/*
 * Hard debug functions (dump) for the search structures
 */

#ifdef HARDDEBUG
static void dump_bm_data(BMData *bm)
{
    int i,j;
    erts_printf("Dumping Boyer-Moore structure.\n");
    erts_printf("=============================\n");
    erts_printf("Searchstring [%ld]:\n", bm->len);
    erts_printf("<<");
    for (i = 0; i < bm->len; ++i) {
	if (i > 0) {
	    erts_printf(", ");
	}
	erts_printf("%d", (int) bm->x[i]);
	if (bm->x[i] >= 'A') {
	    erts_printf(" ($%c)",(char) bm->x[i]);
	}
    }
    erts_printf(">>\n");
    erts_printf("GoodShift array:\n");
    for (i = 0; i < bm->len; ++i) {
	erts_printf("GoodShift[%d]: %ld\n", i, bm->goodshift[i]);
    }
    erts_printf("BadShift array:\n");
    j = 0;
    for (i = 0; i < ALPHABET_SIZE; i += j) {
	for (j = 0; i + j < ALPHABET_SIZE && j < 6; ++j) {
	    erts_printf("BS[%03d]:%02ld, ", i+j, bm->badshift[i+j]);
	}
	erts_printf("\n");
    }
}

static void dump_ac_node(ACNode *node, int indent, int ch) {
    int i;
    char *spaces = erts_alloc(ERTS_ALC_T_TMP, 10 * indent + 1);
    memset(spaces,' ',10*indent);
    spaces[10*indent] = '\0';
    erts_printf("%s-> %c\n",spaces,ch);
    erts_printf("%sId: %u\n",spaces,(unsigned) node->id);
    erts_printf("%sD: %u\n",spaces,(unsigned)node->d);
    erts_printf("%sFinal: %d\n",spaces,(int)node->final);
    erts_printf("%sFail: %u\n",spaces,(unsigned)node->h->id);
    erts_free(ERTS_ALC_T_TMP,spaces);
    for(i=0;i<ALPHABET_SIZE;++i) {
	if (node->g[i] != NULL && node->g[i] != node) {
	    dump_ac_node(node->g[i],indent+1,i);
	}
    }
}


static void dump_ac_trie(ACTrie *act)
{
    erts_printf("Aho Corasick Trie dump.\n");
    erts_printf("=======================\n");
    erts_printf("Node counter: %u\n", (unsigned) act->idc);
    erts_printf("Searchstring counter: %u\n", (unsigned) act->counter);
    erts_printf("Trie:\n");
    dump_ac_node(act->root, 0, '0');
    return;
}
#endif