aboutsummaryrefslogblamecommitdiffstats
path: root/erts/emulator/beam/erl_cpu_topology.c
blob: cc930ba1e3dcd1d3e8cc7968eb753fd82aa7de9e (plain) (tree)
1
2
3
4
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471


                   
                                                        









































































                                                                         

                                       










                                           

                   

                          


                


















                                                                                

                





                                              
 
                                                
 
                                                










                                                                                 







                                                                                 


































































































































































































































































































                                                                               




                                          




                                                                 
     













                                                                   

                                            






                                                                   


                                       
 





                                                                    
 




                                                                 
                                                          








                                                             





                                          
                                                          



                                                              




























                                                                                    











                                                                   
     

                                               
                                            








                                                                   
                                        





                                                       
















                                                                   

         













                                                                   



























                                                                                


                                                       
                                                       
                                              
                                                               
                                        














                                                                       

                                                           


































































                                                         




                                                            






































































































































































































































































































































































































































































































































































































































































































































































                                                                                 
                             






































































































































































































                                                                                 

                                




















                                                              


























                                                                               
                                          








                                                               

                                                  
 


                                                              












































                                                                    
                                 














                                                              




                                               
 

                                                                  

 


                                                           



                                                      
                               
 
                      
                         

                                  

                  

                                                









                                         
                                                        



                                           

































                                                                         



























































                                                                         
                                             
















                                                   
           

                                            
 
                                    


                   


                                                 


                   
                            







                                                          

                                                            


                            
                        


                                                  
                              



                                               

                                                                 



               
                                                         


                                                         
                  
                            

                                                        

                  
                                                       
 
                                                           




                                                

                                     




                                             
                                              

                                       
                                                                     
 
                                          
 
              




             
                                                           
 

                                                                





                                             
                                                   
 

                                                                



                         
                                                         



                                  


                                                         
 

                                        
 


                                
 

                     














                                                         
                                                 


                                           
                             
 



                                                                
 


                                     



                                                                 
                                        




                             


                                                


                                                       
                     

                                                    


                                                                   

         


                                                     







                                               

                                                                         

                             


                                                            

              


                                         


                                             

                                                                     

             
                           
                            

                                                  

                                             


                                                                    

                      

                                                        


                 
                             
                                                 
                                                                         

                              

                                                 




                                  
                           
                            

                                                  

         

                  
                              

                                                       


                
                                      

                                      


                                                                   
 
                                            



                                     


















































































































































                                                                        
/*
 * %CopyrightBegin%
 *
 * Copyright Ericsson AB 2010-2011. All Rights Reserved.
 *
 * The contents of this file are subject to the Erlang Public License,
 * Version 1.1, (the "License"); you may not use this file except in
 * compliance with the License. You should have received a copy of the
 * Erlang Public License along with this software. If not, it can be
 * retrieved online at http://www.erlang.org/.
 *
 * Software distributed under the License is distributed on an "AS IS"
 * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
 * the License for the specific language governing rights and limitations
 * under the License.
 *
 * %CopyrightEnd%
 */

/*
 * Description:	CPU topology and related functionality
 *
 * Author: 	Rickard Green
 */

#ifdef HAVE_CONFIG_H
#  include "config.h"
#endif

#include <ctype.h>

#include "global.h"
#include "error.h"
#include "bif.h"
#include "erl_cpu_topology.h"

#define ERTS_MAX_READER_GROUPS 8

/*
 * Cpu topology hierarchy.
 */
#define ERTS_TOPOLOGY_NODE		0
#define ERTS_TOPOLOGY_PROCESSOR		1
#define ERTS_TOPOLOGY_PROCESSOR_NODE	2
#define ERTS_TOPOLOGY_CORE		3
#define ERTS_TOPOLOGY_THREAD		4
#define ERTS_TOPOLOGY_LOGICAL		5

#define ERTS_TOPOLOGY_MAX_DEPTH		6

typedef struct {
    int bind_id;
    int bound_id;
} ErtsCpuBindData;

static erts_cpu_info_t *cpuinfo;

static int max_main_threads;
static int reader_groups;

static ErtsCpuBindData *scheduler2cpu_map;
static erts_smp_rwmtx_t cpuinfo_rwmtx;

typedef enum {
    ERTS_CPU_BIND_UNDEFINED,
    ERTS_CPU_BIND_SPREAD,
    ERTS_CPU_BIND_PROCESSOR_SPREAD,
    ERTS_CPU_BIND_THREAD_SPREAD,
    ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD,
    ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD,
    ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD,
    ERTS_CPU_BIND_NO_SPREAD,
    ERTS_CPU_BIND_NONE
} ErtsCpuBindOrder;

#define ERTS_CPU_BIND_DEFAULT_BIND \
  ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD

static int no_cpu_groups_callbacks;
static ErtsCpuBindOrder cpu_bind_order;

static erts_cpu_topology_t *user_cpudata;
static int user_cpudata_size;
static erts_cpu_topology_t *system_cpudata;
static int system_cpudata_size;

typedef struct {
    int level[ERTS_TOPOLOGY_MAX_DEPTH+1];
} erts_avail_cput;

typedef struct {
    int id;
    int sub_levels;
    int cpu_groups;
} erts_cpu_groups_count_t;

typedef struct {
    int logical;
    int cpu_group;
} erts_cpu_groups_map_array_t;

typedef struct erts_cpu_groups_callback_list_t_ erts_cpu_groups_callback_list_t;
struct erts_cpu_groups_callback_list_t_ {
    erts_cpu_groups_callback_list_t *next;
    erts_cpu_groups_callback_t callback;
    void *arg;
};

typedef struct erts_cpu_groups_map_t_ erts_cpu_groups_map_t;
struct erts_cpu_groups_map_t_ {
    erts_cpu_groups_map_t *next;
    int groups;
    erts_cpu_groups_map_array_t *array;
    int size;
    int logical_processors;
    erts_cpu_groups_callback_list_t *callback_list;
};

typedef struct {
    erts_cpu_groups_callback_t callback;
    int ix;
    void *arg;
} erts_cpu_groups_callback_call_t;

static erts_cpu_groups_map_t *cpu_groups_maps;

static erts_cpu_groups_map_t *reader_groups_map;

#define ERTS_TOPOLOGY_CG ERTS_TOPOLOGY_MAX_DEPTH

#define ERTS_MAX_CPU_TOPOLOGY_ID ((int) 0xffff)

#ifdef ERTS_SMP
static void cpu_bind_order_sort(erts_cpu_topology_t *cpudata,
				int size,
				ErtsCpuBindOrder bind_order,
				int mk_seq);
static void write_schedulers_bind_change(erts_cpu_topology_t *cpudata, int size);
#endif

static void reader_groups_callback(int, ErtsSchedulerData *, int, void *);
static erts_cpu_groups_map_t *add_cpu_groups(int groups,
					     erts_cpu_groups_callback_t callback,
					     void *arg);
static void update_cpu_groups_maps(void);
static void make_cpu_groups_map(erts_cpu_groups_map_t *map, int test);
static int cpu_groups_lookup(erts_cpu_groups_map_t *map,
			     ErtsSchedulerData *esdp);

static void create_tmp_cpu_topology_copy(erts_cpu_topology_t **cpudata,
					 int *cpudata_size);
static void destroy_tmp_cpu_topology_copy(erts_cpu_topology_t *cpudata);

static int
int_cmp(const void *vx, const void *vy)
{
    return *((int *) vx) - *((int *) vy);
}

static int
cpu_spread_order_cmp(const void *vx, const void *vy)
{
    erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
    erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;

    if (x->thread != y->thread)
	return x->thread - y->thread;
    if (x->core != y->core)
	return x->core - y->core;
    if (x->processor_node != y->processor_node)
	return x->processor_node - y->processor_node;
    if (x->processor != y->processor)
	return x->processor - y->processor;
    if (x->node != y->node)
	return x->node - y->node;
    return 0;
}

static int
cpu_processor_spread_order_cmp(const void *vx, const void *vy)
{
    erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
    erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;

    if (x->thread != y->thread)
	return x->thread - y->thread;
    if (x->processor_node != y->processor_node)
	return x->processor_node - y->processor_node;
    if (x->core != y->core)
	return x->core - y->core;
    if (x->node != y->node)
	return x->node - y->node;
    if (x->processor != y->processor)
	return x->processor - y->processor;
    return 0;
}

static int
cpu_thread_spread_order_cmp(const void *vx, const void *vy)
{
    erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
    erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;

    if (x->thread != y->thread)
	return x->thread - y->thread;
    if (x->node != y->node)
	return x->node - y->node;
    if (x->processor != y->processor)
	return x->processor - y->processor;
    if (x->processor_node != y->processor_node)
	return x->processor_node - y->processor_node;
    if (x->core != y->core)
	return x->core - y->core;
    return 0;
}

static int
cpu_thread_no_node_processor_spread_order_cmp(const void *vx, const void *vy)
{
    erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
    erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;

    if (x->thread != y->thread)
	return x->thread - y->thread;
    if (x->node != y->node)
	return x->node - y->node;
    if (x->core != y->core)
	return x->core - y->core;
    if (x->processor != y->processor)
	return x->processor - y->processor;
    return 0;
}

static int
cpu_no_node_processor_spread_order_cmp(const void *vx, const void *vy)
{
    erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
    erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;

    if (x->node != y->node)
	return x->node - y->node;
    if (x->thread != y->thread)
	return x->thread - y->thread;
    if (x->core != y->core)
	return x->core - y->core;
    if (x->processor != y->processor)
	return x->processor - y->processor;
    return 0;
}

static int
cpu_no_node_thread_spread_order_cmp(const void *vx, const void *vy)
{
    erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
    erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;

    if (x->node != y->node)
	return x->node - y->node;
    if (x->thread != y->thread)
	return x->thread - y->thread;
    if (x->processor != y->processor)
	return x->processor - y->processor;
    if (x->core != y->core)
	return x->core - y->core;
    return 0;
}

static int
cpu_no_spread_order_cmp(const void *vx, const void *vy)
{
    erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
    erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;

    if (x->node != y->node)
	return x->node - y->node;
    if (x->processor != y->processor)
	return x->processor - y->processor;
    if (x->processor_node != y->processor_node)
	return x->processor_node - y->processor_node;
    if (x->core != y->core)
	return x->core - y->core;
    if (x->thread != y->thread)
	return x->thread - y->thread;
    return 0;
}

static ERTS_INLINE void
make_cpudata_id_seq(erts_cpu_topology_t *cpudata, int size, int no_node)
{
    int ix;
    int node = -1;
    int processor = -1;
    int processor_node = -1;
    int processor_node_node = -1;
    int core = -1;
    int thread = -1;
    int old_node = -1;
    int old_processor = -1;
    int old_processor_node = -1;
    int old_core = -1;
    int old_thread = -1;

    for (ix = 0; ix < size; ix++) {
	if (!no_node || cpudata[ix].node >= 0) {
	    if (old_node == cpudata[ix].node)
		cpudata[ix].node = node;
	    else {
		old_node = cpudata[ix].node;
		old_processor = processor = -1;
		if (!no_node)
		    old_processor_node = processor_node = -1;
		old_core = core = -1;
		old_thread = thread = -1;
		if (no_node || cpudata[ix].node >= 0)
		    cpudata[ix].node = ++node;
	    }
	}
	if (old_processor == cpudata[ix].processor)
	    cpudata[ix].processor = processor;
	else {
	    old_processor = cpudata[ix].processor;
	    if (!no_node)
		processor_node_node = old_processor_node = processor_node = -1;
	    old_core = core = -1;
	    old_thread = thread = -1;
	    cpudata[ix].processor = ++processor;
	}
	if (no_node && cpudata[ix].processor_node < 0)
	    old_processor_node = -1;
	else {
	    if (old_processor_node == cpudata[ix].processor_node) {
		if (no_node)
		    cpudata[ix].node = cpudata[ix].processor_node = node;
		else {
		    if (processor_node_node >= 0)
			cpudata[ix].node = processor_node_node;
		    cpudata[ix].processor_node = processor_node;
		}
	    }
	    else {
		old_processor_node = cpudata[ix].processor_node;
		old_core = core = -1;
		old_thread = thread = -1;
		if (no_node)
		    cpudata[ix].node = cpudata[ix].processor_node = ++node;
		else {
		    cpudata[ix].node = processor_node_node = ++node;
		    cpudata[ix].processor_node = ++processor_node;
		}
	    }
	}
	if (!no_node && cpudata[ix].processor_node < 0)
	    cpudata[ix].processor_node = 0;
	if (old_core == cpudata[ix].core)
	    cpudata[ix].core = core;
	else {
	    old_core = cpudata[ix].core;
	    old_thread = thread = -1;
	    cpudata[ix].core = ++core;
	}
	if (old_thread == cpudata[ix].thread)
	    cpudata[ix].thread = thread;
	else
	    old_thread = cpudata[ix].thread = ++thread;
    }
}

static void
cpu_bind_order_sort(erts_cpu_topology_t *cpudata,
		    int size,
		    ErtsCpuBindOrder bind_order,
		    int mk_seq)
{
    if (size > 1) {
	int no_node = 0;
	int (*cmp_func)(const void *, const void *);
	switch (bind_order) {
	case ERTS_CPU_BIND_SPREAD:
	    cmp_func = cpu_spread_order_cmp;
	    break;
	case ERTS_CPU_BIND_PROCESSOR_SPREAD:
	    cmp_func = cpu_processor_spread_order_cmp;
	    break;
	case ERTS_CPU_BIND_THREAD_SPREAD:
	    cmp_func = cpu_thread_spread_order_cmp;
	    break;
	case ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD:
	    no_node = 1;
	    cmp_func = cpu_thread_no_node_processor_spread_order_cmp;
	    break;
	case ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD:
	    no_node = 1;
	    cmp_func = cpu_no_node_processor_spread_order_cmp;
	    break;
	case ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD:
	    no_node = 1;
	    cmp_func = cpu_no_node_thread_spread_order_cmp;
	    break;
	case ERTS_CPU_BIND_NO_SPREAD:
	    cmp_func = cpu_no_spread_order_cmp;
	    break;
	default:
	    cmp_func = NULL;
	    erl_exit(ERTS_ABORT_EXIT,
		     "Bad cpu bind type: %d\n",
		     (int) cpu_bind_order);
	    break;
	}

	if (mk_seq)
	    make_cpudata_id_seq(cpudata, size, no_node);

	qsort(cpudata, size, sizeof(erts_cpu_topology_t), cmp_func);
    }
}

static int
processor_order_cmp(const void *vx, const void *vy)
{
    erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
    erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;

    if (x->processor != y->processor)
	return x->processor - y->processor;
    if (x->node != y->node)
	return x->node - y->node;
    if (x->processor_node != y->processor_node)
	return x->processor_node - y->processor_node;
    if (x->core != y->core)
	return x->core - y->core;
    if (x->thread != y->thread)
	return x->thread - y->thread;
    return 0;
}

#ifdef ERTS_SMP
void
erts_sched_check_cpu_bind_prep_suspend(ErtsSchedulerData *esdp)
{
    erts_cpu_groups_map_t *cgm;
    erts_cpu_groups_callback_list_t *cgcl;
    erts_cpu_groups_callback_call_t *cgcc;
    int cgcc_ix;

    /* Unbind from cpu */
    erts_smp_rwmtx_rwlock(&cpuinfo_rwmtx);
    if (scheduler2cpu_map[esdp->no].bound_id >= 0
	&& erts_unbind_from_cpu(cpuinfo) == 0) {
	esdp->cpu_id = scheduler2cpu_map[esdp->no].bound_id = -1;
    }

    cgcc = erts_alloc(ERTS_ALC_T_TMP,
		      (no_cpu_groups_callbacks
		       * sizeof(erts_cpu_groups_callback_call_t)));
    cgcc_ix = 0;
    for (cgm = cpu_groups_maps; cgm; cgm = cgm->next) {
	for (cgcl = cgm->callback_list; cgcl; cgcl = cgcl->next) {
	    cgcc[cgcc_ix].callback = cgcl->callback;
	    cgcc[cgcc_ix].ix = cpu_groups_lookup(cgm, esdp);
	    cgcc[cgcc_ix].arg = cgcl->arg;
	    cgcc_ix++;
	}
    }
    ASSERT(no_cpu_groups_callbacks == cgcc_ix);
    erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);

    for (cgcc_ix = 0; cgcc_ix < no_cpu_groups_callbacks; cgcc_ix++)
	cgcc[cgcc_ix].callback(1,
			       esdp,
			       cgcc[cgcc_ix].ix,
			       cgcc[cgcc_ix].arg);

    erts_free(ERTS_ALC_T_TMP, cgcc);

    if (esdp->no <= max_main_threads)
	erts_thr_set_main_status(0, 0);

}

void
erts_sched_check_cpu_bind_post_suspend(ErtsSchedulerData *esdp)
{
    ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(esdp->run_queue));

    if (esdp->no <= max_main_threads)
	erts_thr_set_main_status(1, (int) esdp->no);

    /* Make sure we check if we should bind to a cpu or not... */
    if (esdp->run_queue->flags & ERTS_RUNQ_FLG_SHARED_RUNQ)
	erts_smp_atomic32_set_nob(&esdp->chk_cpu_bind, 1);
    else
	esdp->run_queue->flags |= ERTS_RUNQ_FLG_CHK_CPU_BIND;
}

#endif

void
erts_sched_check_cpu_bind(ErtsSchedulerData *esdp)
{
    int res, cpu_id, cgcc_ix;
    erts_cpu_groups_map_t *cgm;
    erts_cpu_groups_callback_list_t *cgcl;
    erts_cpu_groups_callback_call_t *cgcc;
#ifdef ERTS_SMP
    if (erts_common_run_queue)
	erts_smp_atomic32_set_nob(&esdp->chk_cpu_bind, 0);
    else {
	esdp->run_queue->flags &= ~ERTS_RUNQ_FLG_CHK_CPU_BIND;
    }
#endif
    erts_smp_runq_unlock(esdp->run_queue);
    erts_smp_rwmtx_rwlock(&cpuinfo_rwmtx);
    cpu_id = scheduler2cpu_map[esdp->no].bind_id;
    if (cpu_id >= 0 && cpu_id != scheduler2cpu_map[esdp->no].bound_id) {
	res = erts_bind_to_cpu(cpuinfo, cpu_id);
	if (res == 0)
	    esdp->cpu_id = scheduler2cpu_map[esdp->no].bound_id = cpu_id;
	else {
	    erts_dsprintf_buf_t *dsbufp = erts_create_logger_dsbuf();
	    erts_dsprintf(dsbufp, "Scheduler %d failed to bind to cpu %d: %s\n",
			  (int) esdp->no, cpu_id, erl_errno_id(-res));
	    erts_send_error_to_logger_nogl(dsbufp);
	    if (scheduler2cpu_map[esdp->no].bound_id >= 0)
		goto unbind;
	}
    }
    else if (cpu_id < 0) {
    unbind:
	/* Get rid of old binding */
	res = erts_unbind_from_cpu(cpuinfo);
	if (res == 0)
	    esdp->cpu_id = scheduler2cpu_map[esdp->no].bound_id = -1;
	else if (res != -ENOTSUP) {
	    erts_dsprintf_buf_t *dsbufp = erts_create_logger_dsbuf();
	    erts_dsprintf(dsbufp, "Scheduler %d failed to unbind from cpu %d: %s\n",
			  (int) esdp->no, cpu_id, erl_errno_id(-res));
	    erts_send_error_to_logger_nogl(dsbufp);
	}
    }

    cgcc = erts_alloc(ERTS_ALC_T_TMP,
		      (no_cpu_groups_callbacks
		       * sizeof(erts_cpu_groups_callback_call_t)));
    cgcc_ix = 0;
    for (cgm = cpu_groups_maps; cgm; cgm = cgm->next) {
	for (cgcl = cgm->callback_list; cgcl; cgcl = cgcl->next) {
	    cgcc[cgcc_ix].callback = cgcl->callback;
	    cgcc[cgcc_ix].ix = cpu_groups_lookup(cgm, esdp);
	    cgcc[cgcc_ix].arg = cgcl->arg;
	    cgcc_ix++;
	}
    }

    ASSERT(no_cpu_groups_callbacks == cgcc_ix);
    erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);

    for (cgcc_ix = 0; cgcc_ix < no_cpu_groups_callbacks; cgcc_ix++)
	cgcc[cgcc_ix].callback(0,
			       esdp,
			       cgcc[cgcc_ix].ix,
			       cgcc[cgcc_ix].arg);

    erts_free(ERTS_ALC_T_TMP, cgcc);

    erts_smp_runq_lock(esdp->run_queue);
}

#ifdef ERTS_SMP
void
erts_sched_init_check_cpu_bind(ErtsSchedulerData *esdp)
{
    int cgcc_ix;
    erts_cpu_groups_map_t *cgm;
    erts_cpu_groups_callback_list_t *cgcl;
    erts_cpu_groups_callback_call_t *cgcc;

    erts_smp_rwmtx_rlock(&cpuinfo_rwmtx);

    cgcc = erts_alloc(ERTS_ALC_T_TMP,
		      (no_cpu_groups_callbacks
		       * sizeof(erts_cpu_groups_callback_call_t)));
    cgcc_ix = 0;
    for (cgm = cpu_groups_maps; cgm; cgm = cgm->next) {
	for (cgcl = cgm->callback_list; cgcl; cgcl = cgcl->next) {
	    cgcc[cgcc_ix].callback = cgcl->callback;
	    cgcc[cgcc_ix].ix = cpu_groups_lookup(cgm, esdp);
	    cgcc[cgcc_ix].arg = cgcl->arg;
	    cgcc_ix++;
	}
    }

    ASSERT(no_cpu_groups_callbacks == cgcc_ix);
    erts_smp_rwmtx_runlock(&cpuinfo_rwmtx);

    for (cgcc_ix = 0; cgcc_ix < no_cpu_groups_callbacks; cgcc_ix++)
	cgcc[cgcc_ix].callback(0,
			       esdp,
			       cgcc[cgcc_ix].ix,
			       cgcc[cgcc_ix].arg);

    erts_free(ERTS_ALC_T_TMP, cgcc);

    if (esdp->no <= max_main_threads)
	erts_thr_set_main_status(1, (int) esdp->no);
}
#endif

static void
write_schedulers_bind_change(erts_cpu_topology_t *cpudata, int size)
{
    int s_ix = 1;
    int cpu_ix;

    ERTS_SMP_LC_ASSERT(erts_lc_rwmtx_is_rwlocked(&cpuinfo_rwmtx));

    if (cpu_bind_order != ERTS_CPU_BIND_NONE && size) {

	cpu_bind_order_sort(cpudata, size, cpu_bind_order, 1);

	for (cpu_ix = 0; cpu_ix < size && cpu_ix < erts_no_schedulers; cpu_ix++)
	    if (erts_is_cpu_available(cpuinfo, cpudata[cpu_ix].logical))
		scheduler2cpu_map[s_ix++].bind_id = cpudata[cpu_ix].logical;
    }

    if (s_ix <= erts_no_schedulers)
	for (; s_ix <= erts_no_schedulers; s_ix++)
	    scheduler2cpu_map[s_ix].bind_id = -1;
}

int
erts_init_scheduler_bind_type_string(char *how)
{
    if (sys_strcmp(how, "u") == 0)
	cpu_bind_order = ERTS_CPU_BIND_NONE;
    else if (erts_bind_to_cpu(cpuinfo, -1) == -ENOTSUP)
	return ERTS_INIT_SCHED_BIND_TYPE_NOT_SUPPORTED;
    else if (!system_cpudata && !user_cpudata)
	return ERTS_INIT_SCHED_BIND_TYPE_ERROR_NO_CPU_TOPOLOGY;
    else if (sys_strcmp(how, "db") == 0)
	cpu_bind_order = ERTS_CPU_BIND_DEFAULT_BIND;
    else if (sys_strcmp(how, "s") == 0)
	cpu_bind_order = ERTS_CPU_BIND_SPREAD;
    else if (sys_strcmp(how, "ps") == 0)
	cpu_bind_order = ERTS_CPU_BIND_PROCESSOR_SPREAD;
    else if (sys_strcmp(how, "ts") == 0)
	cpu_bind_order = ERTS_CPU_BIND_THREAD_SPREAD;
    else if (sys_strcmp(how, "tnnps") == 0)
	cpu_bind_order = ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD;
    else if (sys_strcmp(how, "nnps") == 0)
	cpu_bind_order = ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD;
    else if (sys_strcmp(how, "nnts") == 0)
	cpu_bind_order = ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD;
    else if (sys_strcmp(how, "ns") == 0)
	cpu_bind_order = ERTS_CPU_BIND_NO_SPREAD;
    else
	return ERTS_INIT_SCHED_BIND_TYPE_ERROR_NO_BAD_TYPE;
    return ERTS_INIT_SCHED_BIND_TYPE_SUCCESS;
}

static Eterm
bound_schedulers_term(ErtsCpuBindOrder order)
{
    switch (order) {
    case ERTS_CPU_BIND_SPREAD: {
	ERTS_DECL_AM(spread);
	return AM_spread;
    }
    case ERTS_CPU_BIND_PROCESSOR_SPREAD: {
	ERTS_DECL_AM(processor_spread);
	return AM_processor_spread;
    }
    case ERTS_CPU_BIND_THREAD_SPREAD: {
	ERTS_DECL_AM(thread_spread);
	return AM_thread_spread;
    }
    case ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD: {
	ERTS_DECL_AM(thread_no_node_processor_spread);
	return AM_thread_no_node_processor_spread;
    }
    case ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD: {
	ERTS_DECL_AM(no_node_processor_spread);
	return AM_no_node_processor_spread;
    }
    case ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD: {
	ERTS_DECL_AM(no_node_thread_spread);
	return AM_no_node_thread_spread;
    }
    case ERTS_CPU_BIND_NO_SPREAD: {
	ERTS_DECL_AM(no_spread);
	return AM_no_spread;
    }
    case ERTS_CPU_BIND_NONE: {
	ERTS_DECL_AM(unbound);
	return AM_unbound;
    }
    default:
	ASSERT(0);
	return THE_NON_VALUE;
    }
}

Eterm
erts_bound_schedulers_term(Process *c_p)
{
    ErtsCpuBindOrder order;
    erts_smp_rwmtx_rlock(&cpuinfo_rwmtx);
    order = cpu_bind_order;
    erts_smp_rwmtx_runlock(&cpuinfo_rwmtx);
    return bound_schedulers_term(order);
}

Eterm
erts_bind_schedulers(Process *c_p, Eterm how)
{
    int notify = 0;
    Eterm res;
    erts_cpu_topology_t *cpudata;
    int cpudata_size;
    ErtsCpuBindOrder old_cpu_bind_order;

    erts_smp_rwmtx_rwlock(&cpuinfo_rwmtx);

    if (erts_bind_to_cpu(cpuinfo, -1) == -ENOTSUP) {
	if (cpu_bind_order == ERTS_CPU_BIND_NONE
	    && ERTS_IS_ATOM_STR("unbound", how)) {
	    res = bound_schedulers_term(ERTS_CPU_BIND_NONE);
	    goto done;
	}
	ERTS_BIF_PREP_ERROR(res, c_p, EXC_NOTSUP);
    }
    else {

	old_cpu_bind_order = cpu_bind_order;

	if (ERTS_IS_ATOM_STR("default_bind", how))
	    cpu_bind_order = ERTS_CPU_BIND_DEFAULT_BIND;
	else if (ERTS_IS_ATOM_STR("spread", how))
	    cpu_bind_order = ERTS_CPU_BIND_SPREAD;
	else if (ERTS_IS_ATOM_STR("processor_spread", how))
	    cpu_bind_order = ERTS_CPU_BIND_PROCESSOR_SPREAD;
	else if (ERTS_IS_ATOM_STR("thread_spread", how))
	    cpu_bind_order = ERTS_CPU_BIND_THREAD_SPREAD;
	else if (ERTS_IS_ATOM_STR("thread_no_node_processor_spread", how))
	    cpu_bind_order = ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD;
	else if (ERTS_IS_ATOM_STR("no_node_processor_spread", how))
	    cpu_bind_order = ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD;
	else if (ERTS_IS_ATOM_STR("no_node_thread_spread", how))
	    cpu_bind_order = ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD;
	else if (ERTS_IS_ATOM_STR("no_spread", how))
	    cpu_bind_order = ERTS_CPU_BIND_NO_SPREAD;
	else if (ERTS_IS_ATOM_STR("unbound", how))
	    cpu_bind_order = ERTS_CPU_BIND_NONE;
	else {
	    cpu_bind_order = old_cpu_bind_order;
	    ERTS_BIF_PREP_ERROR(res, c_p, BADARG);
	    goto done;
	}

	create_tmp_cpu_topology_copy(&cpudata, &cpudata_size);

	if (!cpudata) {
	    cpu_bind_order = old_cpu_bind_order;
	    ERTS_BIF_PREP_ERROR(res, c_p, BADARG);
	    goto done;
	}

	write_schedulers_bind_change(cpudata, cpudata_size);
	notify = 1;

	destroy_tmp_cpu_topology_copy(cpudata);
    
	res = bound_schedulers_term(old_cpu_bind_order);
    }

 done:

    erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);

    if (notify)
	erts_sched_notify_check_cpu_bind();

    return res;
}

int
erts_sched_bind_atthrcreate_prepare(void)
{
    ErtsSchedulerData *esdp = erts_get_scheduler_data();
    return esdp != NULL && erts_is_scheduler_bound(esdp);
}

int
erts_sched_bind_atthrcreate_child(int unbind)
{
    int res = 0;
    if (unbind) {
	erts_smp_rwmtx_rlock(&cpuinfo_rwmtx);
	res = erts_unbind_from_cpu(cpuinfo);
	erts_smp_rwmtx_runlock(&cpuinfo_rwmtx);
    }
    return res;
}

void
erts_sched_bind_atthrcreate_parent(int unbind)
{

}

int
erts_sched_bind_atfork_prepare(void)
{
    ErtsSchedulerData *esdp = erts_get_scheduler_data();
    int unbind = esdp != NULL && erts_is_scheduler_bound(esdp);
    if (unbind)
	erts_smp_rwmtx_rlock(&cpuinfo_rwmtx);
    return unbind;
}

int
erts_sched_bind_atfork_child(int unbind)
{
    if (unbind) {
	ERTS_SMP_LC_ASSERT(erts_lc_rwmtx_is_rlocked(&cpuinfo_rwmtx)
			   || erts_lc_rwmtx_is_rwlocked(&cpuinfo_rwmtx));
	return erts_unbind_from_cpu(cpuinfo);
    }
    return 0;
}

char *
erts_sched_bind_atvfork_child(int unbind)
{
    if (unbind) {
	ERTS_SMP_LC_ASSERT(erts_lc_rwmtx_is_rlocked(&cpuinfo_rwmtx)
			   || erts_lc_rwmtx_is_rwlocked(&cpuinfo_rwmtx));
	return erts_get_unbind_from_cpu_str(cpuinfo);
    }
    return "false";
}

void
erts_sched_bind_atfork_parent(int unbind)
{
    if (unbind)
	erts_smp_rwmtx_runlock(&cpuinfo_rwmtx);
}

Eterm
erts_fake_scheduler_bindings(Process *p, Eterm how)
{
    ErtsCpuBindOrder fake_cpu_bind_order;
    erts_cpu_topology_t *cpudata;
    int cpudata_size;
    Eterm res;

    if (ERTS_IS_ATOM_STR("default_bind", how))
	fake_cpu_bind_order = ERTS_CPU_BIND_DEFAULT_BIND;
    else if (ERTS_IS_ATOM_STR("spread", how))
	fake_cpu_bind_order = ERTS_CPU_BIND_SPREAD;
    else if (ERTS_IS_ATOM_STR("processor_spread", how))
	fake_cpu_bind_order = ERTS_CPU_BIND_PROCESSOR_SPREAD;
    else if (ERTS_IS_ATOM_STR("thread_spread", how))
	fake_cpu_bind_order = ERTS_CPU_BIND_THREAD_SPREAD;
    else if (ERTS_IS_ATOM_STR("thread_no_node_processor_spread", how))
	fake_cpu_bind_order = ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD;
    else if (ERTS_IS_ATOM_STR("no_node_processor_spread", how))
	fake_cpu_bind_order = ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD;
    else if (ERTS_IS_ATOM_STR("no_node_thread_spread", how))
	fake_cpu_bind_order = ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD;
    else if (ERTS_IS_ATOM_STR("no_spread", how))
	fake_cpu_bind_order = ERTS_CPU_BIND_NO_SPREAD;
    else if (ERTS_IS_ATOM_STR("unbound", how))
	fake_cpu_bind_order = ERTS_CPU_BIND_NONE;
    else {
	ERTS_BIF_PREP_ERROR(res, p, BADARG);
	return res;
    }

    erts_smp_rwmtx_rlock(&cpuinfo_rwmtx);
    create_tmp_cpu_topology_copy(&cpudata, &cpudata_size);
    erts_smp_rwmtx_runlock(&cpuinfo_rwmtx);

    if (!cpudata || fake_cpu_bind_order == ERTS_CPU_BIND_NONE)
	ERTS_BIF_PREP_RET(res, am_false);
    else {
	int i;
	Eterm *hp;
	
	cpu_bind_order_sort(cpudata, cpudata_size, fake_cpu_bind_order, 1);

#ifdef ERTS_FAKE_SCHED_BIND_PRINT_SORTED_CPU_DATA

	erts_fprintf(stderr, "node:          ");
	for (i = 0; i < cpudata_size; i++)
	    erts_fprintf(stderr, " %2d", cpudata[i].node);
	erts_fprintf(stderr, "\n");
	erts_fprintf(stderr, "processor:     ");
	for (i = 0; i < cpudata_size; i++)
	    erts_fprintf(stderr, " %2d", cpudata[i].processor);
	erts_fprintf(stderr, "\n");
	if (fake_cpu_bind_order != ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD
	    && fake_cpu_bind_order != ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD
	    && fake_cpu_bind_order != ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD) {
	    erts_fprintf(stderr, "processor_node:");
	    for (i = 0; i < cpudata_size; i++)
		erts_fprintf(stderr, " %2d", cpudata[i].processor_node);
	    erts_fprintf(stderr, "\n");
	}
	erts_fprintf(stderr, "core:          ");
	for (i = 0; i < cpudata_size; i++)
	    erts_fprintf(stderr, " %2d", cpudata[i].core);
	erts_fprintf(stderr, "\n");
	erts_fprintf(stderr, "thread:        ");
	for (i = 0; i < cpudata_size; i++)
	    erts_fprintf(stderr, " %2d", cpudata[i].thread);
	erts_fprintf(stderr, "\n");
	erts_fprintf(stderr, "logical:       ");
	for (i = 0; i < cpudata_size; i++)
	    erts_fprintf(stderr, " %2d", cpudata[i].logical);
	erts_fprintf(stderr, "\n");
#endif

	hp = HAlloc(p, cpudata_size+1);
	ERTS_BIF_PREP_RET(res, make_tuple(hp));
	*hp++ = make_arityval((Uint) cpudata_size);
	for (i = 0; i < cpudata_size; i++)
	    *hp++ = make_small((Uint) cpudata[i].logical);
    }

    destroy_tmp_cpu_topology_copy(cpudata);

    return res;
}

Eterm
erts_get_schedulers_binds(Process *c_p)
{
    int ix;
    ERTS_DECL_AM(unbound);
    Eterm *hp = HAlloc(c_p, erts_no_schedulers+1);
    Eterm res = make_tuple(hp);

    *(hp++) = make_arityval(erts_no_schedulers);
    erts_smp_rwmtx_rlock(&cpuinfo_rwmtx);
    for (ix = 1; ix <= erts_no_schedulers; ix++)
	*(hp++) = (scheduler2cpu_map[ix].bound_id >= 0
		   ? make_small(scheduler2cpu_map[ix].bound_id)
		   : AM_unbound);
    erts_smp_rwmtx_runlock(&cpuinfo_rwmtx);
    return res;
}

/*
 * CPU topology
 */

typedef struct {
    int *id;
    int used;
    int size;
} ErtsCpuTopIdSeq;

typedef struct {
    ErtsCpuTopIdSeq logical;
    ErtsCpuTopIdSeq thread;
    ErtsCpuTopIdSeq core;
    ErtsCpuTopIdSeq processor_node;
    ErtsCpuTopIdSeq processor;
    ErtsCpuTopIdSeq node;
} ErtsCpuTopEntry;

static void
init_cpu_top_entry(ErtsCpuTopEntry *cte)
{
    int size = 10;
    cte->logical.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
				 sizeof(int)*size);
    cte->logical.size = size;
    cte->thread.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
				sizeof(int)*size);
    cte->thread.size = size;
    cte->core.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
			      sizeof(int)*size);
    cte->core.size = size;
    cte->processor_node.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
					sizeof(int)*size);
    cte->processor_node.size = size;
    cte->processor.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
				   sizeof(int)*size);
    cte->processor.size = size;
    cte->node.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
			      sizeof(int)*size);
    cte->node.size = size;
}

static void
destroy_cpu_top_entry(ErtsCpuTopEntry *cte)
{
    erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->logical.id);
    erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->thread.id);
    erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->core.id);
    erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->processor_node.id);
    erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->processor.id);
    erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->node.id);
}

static int
get_cput_value_or_range(int *v, int *vr, char **str)
{
    long l;
    char *c = *str;
    errno = 0;
    if (!isdigit((unsigned char)*c))
	return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID;
    l = strtol(c, &c, 10);
    if (errno != 0 || l < 0 || ERTS_MAX_CPU_TOPOLOGY_ID < l)
	return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID;
    *v = (int) l;
    if (*c == '-') {
	c++;
	if (!isdigit((unsigned char)*c))
	    return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
	l = strtol(c, &c, 10);
	if (errno != 0 || l < 0 || ERTS_MAX_CPU_TOPOLOGY_ID < l)
	    return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
	*vr = (int) l;
    }
    *str = c;
    return ERTS_INIT_CPU_TOPOLOGY_OK;
}

static int
get_cput_id_seq(ErtsCpuTopIdSeq *idseq, char **str)
{
    int ix = 0;
    int need_size = 0;
    char *c = *str;

    while (1) {
	int res;
	int val;
	int nids;
	int val_range = -1;
	res = get_cput_value_or_range(&val, &val_range, &c);
	if (res != ERTS_INIT_CPU_TOPOLOGY_OK)
	    return res;
	if (val_range < 0 || val_range == val)
	    nids = 1;
	else {
	    if (val_range > val)
		nids = val_range - val + 1;
	    else
		nids = val - val_range + 1;
	}
	need_size += nids;
	if (need_size > idseq->size) {
	    idseq->size = need_size + 10;
	    idseq->id = erts_realloc(ERTS_ALC_T_TMP_CPU_IDS,
				      idseq->id,
				      sizeof(int)*idseq->size);
	}
	if (nids == 1)
	    idseq->id[ix++] = val;
	else if (val_range > val) {
	    for (; val <= val_range; val++)
		idseq->id[ix++] = val;
	}
	else {
	    for (; val >= val_range; val--)
		idseq->id[ix++] = val;
	}
	if (*c != ',')
	    break;
	c++;
    }
    *str = c;
    idseq->used = ix;
    return ERTS_INIT_CPU_TOPOLOGY_OK;
}

static int
get_cput_entry(ErtsCpuTopEntry *cput, char **str)
{
    int h;
    char *c = *str;

    cput->logical.used = 0;
    cput->thread.id[0] = 0;
    cput->thread.used = 1;
    cput->core.id[0] = 0;
    cput->core.used = 1;
    cput->processor_node.id[0] = -1;
    cput->processor_node.used = 1;
    cput->processor.id[0] = 0;
    cput->processor.used = 1;
    cput->node.id[0] = -1;
    cput->node.used = 1;

    h = ERTS_TOPOLOGY_MAX_DEPTH;
    while (*c != ':' && *c != '\0') {
	int res;
	ErtsCpuTopIdSeq *idseqp;
	switch (*c++) {
	case 'L':
	    if (h <= ERTS_TOPOLOGY_LOGICAL)
		return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
	    idseqp = &cput->logical;
	    h = ERTS_TOPOLOGY_LOGICAL;
	    break;
	case 't':
	case 'T':
	    if (h <= ERTS_TOPOLOGY_THREAD)
		return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
	    idseqp = &cput->thread;
	    h = ERTS_TOPOLOGY_THREAD;
	    break;
	case 'c':
	case 'C':
	    if (h <= ERTS_TOPOLOGY_CORE)
		return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
	    idseqp = &cput->core;
	    h = ERTS_TOPOLOGY_CORE;
	    break;
	case 'p':
	case 'P':
	    if (h <= ERTS_TOPOLOGY_PROCESSOR)
		return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
	    idseqp = &cput->processor;
	    h = ERTS_TOPOLOGY_PROCESSOR;
	    break;
	case 'n':
	case 'N':
	    if (h <= ERTS_TOPOLOGY_PROCESSOR) {
	    do_node:
		if (h <= ERTS_TOPOLOGY_NODE)
		    return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
		idseqp = &cput->node;
		h = ERTS_TOPOLOGY_NODE;
	    }
	    else {
		int p_node = 0;
		char *p_chk = c;
		while (*p_chk != '\0' && *p_chk != ':') {
		    if (*p_chk == 'p' || *p_chk == 'P') {
			p_node = 1;
			break;
		    }
		    p_chk++;
		}
		if (!p_node)
		    goto do_node;
		if (h <= ERTS_TOPOLOGY_PROCESSOR_NODE)
		    return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
		idseqp = &cput->processor_node;
		h = ERTS_TOPOLOGY_PROCESSOR_NODE;
	    }
	    break;
	default:
	    return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_TYPE;
	}
	res = get_cput_id_seq(idseqp, &c);
	if (res != ERTS_INIT_CPU_TOPOLOGY_OK)
		return res;
    }

    if (cput->logical.used < 1)
	return ERTS_INIT_CPU_TOPOLOGY_MISSING_LID;

    if (*c == ':') {
	c++;
    }

    if (cput->thread.used != 1
	&& cput->thread.used != cput->logical.used)
	return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
    if (cput->core.used != 1
	&& cput->core.used != cput->logical.used)
	return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
    if (cput->processor_node.used != 1
	&& cput->processor_node.used != cput->logical.used)
	return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
    if (cput->processor.used != 1
	&& cput->processor.used != cput->logical.used)
	return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
    if (cput->node.used != 1
	&& cput->node.used != cput->logical.used)
	return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;

    *str = c;
    return ERTS_INIT_CPU_TOPOLOGY_OK;
}

static int
verify_topology(erts_cpu_topology_t *cpudata, int size)
{
    if (size > 0) {
	int *logical;
	int node, processor, no_nodes, i;

	/* Verify logical ids */
	logical = erts_alloc(ERTS_ALC_T_TMP, sizeof(int)*size);

	for (i = 0; i < size; i++)
	    logical[i] = cpudata[i].logical;

	qsort(logical, size, sizeof(int), int_cmp);
	for (i = 0; i < size-1; i++) {
	    if (logical[i] == logical[i+1]) {
		erts_free(ERTS_ALC_T_TMP, logical);
		return ERTS_INIT_CPU_TOPOLOGY_NOT_UNIQUE_LIDS;
	    }
	}

	erts_free(ERTS_ALC_T_TMP, logical);

	qsort(cpudata, size, sizeof(erts_cpu_topology_t), processor_order_cmp);

	/* Verify unique entities */

	for (i = 1; i < size; i++) {
	    if (cpudata[i-1].processor == cpudata[i].processor
		&& cpudata[i-1].node == cpudata[i].node
		&& (cpudata[i-1].processor_node
		    == cpudata[i].processor_node)
		&& cpudata[i-1].core == cpudata[i].core
		&& cpudata[i-1].thread == cpudata[i].thread) {
		return ERTS_INIT_CPU_TOPOLOGY_NOT_UNIQUE_ENTITIES;
	    }
	}

	/* Verify numa nodes */
	node = cpudata[0].node;
	processor = cpudata[0].processor;
	no_nodes = cpudata[0].node < 0 && cpudata[0].processor_node < 0;
	for (i = 1; i < size; i++) {
	    if (no_nodes) {
		if (cpudata[i].node >= 0 || cpudata[i].processor_node >= 0)
		    return ERTS_INIT_CPU_TOPOLOGY_INVALID_NODES;
	    }
	    else {
		if (cpudata[i].processor == processor && cpudata[i].node != node)
		    return ERTS_INIT_CPU_TOPOLOGY_INVALID_NODES;
		node = cpudata[i].node;
		processor = cpudata[i].processor;
		if (node >= 0 && cpudata[i].processor_node >= 0)
		    return ERTS_INIT_CPU_TOPOLOGY_INVALID_NODES;
		if (node < 0 && cpudata[i].processor_node < 0)
		    return ERTS_INIT_CPU_TOPOLOGY_INVALID_NODES;
	    }
	}
    }

    return ERTS_INIT_CPU_TOPOLOGY_OK;
}

int
erts_init_cpu_topology_string(char *topology_str)
{
    ErtsCpuTopEntry cput;
    int need_size;
    char *c;
    int ix;
    int error = ERTS_INIT_CPU_TOPOLOGY_OK;

    if (user_cpudata)
	erts_free(ERTS_ALC_T_CPUDATA, user_cpudata);
    user_cpudata_size = 10;

    user_cpudata = erts_alloc(ERTS_ALC_T_CPUDATA,
			      (sizeof(erts_cpu_topology_t)
			       * user_cpudata_size));

    init_cpu_top_entry(&cput);

    ix = 0;
    need_size = 0;

    c = topology_str;
    if (*c == '\0') {
	error = ERTS_INIT_CPU_TOPOLOGY_MISSING;
	goto fail;
    }
    do {
	int r;
	error = get_cput_entry(&cput, &c);
	if (error != ERTS_INIT_CPU_TOPOLOGY_OK)
	    goto fail;
	need_size += cput.logical.used;
	if (user_cpudata_size < need_size) {
	    user_cpudata_size = need_size + 10;
	    user_cpudata = erts_realloc(ERTS_ALC_T_CPUDATA,
					user_cpudata,
					(sizeof(erts_cpu_topology_t)
					 * user_cpudata_size));
	}

	ASSERT(cput.thread.used == 1
	       || cput.thread.used == cput.logical.used);
	ASSERT(cput.core.used == 1
	       || cput.core.used == cput.logical.used);
	ASSERT(cput.processor_node.used == 1
	       || cput.processor_node.used == cput.logical.used);
	ASSERT(cput.processor.used == 1
	       || cput.processor.used == cput.logical.used);
	ASSERT(cput.node.used == 1
	       || cput.node.used == cput.logical.used);

	for (r = 0; r < cput.logical.used; r++) {
	    user_cpudata[ix].logical = cput.logical.id[r];
	    user_cpudata[ix].thread =
		cput.thread.id[cput.thread.used == 1 ? 0 : r];
	    user_cpudata[ix].core =
		cput.core.id[cput.core.used == 1 ? 0 : r];
	    user_cpudata[ix].processor_node =
		cput.processor_node.id[cput.processor_node.used == 1 ? 0 : r];
	    user_cpudata[ix].processor =
		cput.processor.id[cput.processor.used == 1 ? 0 : r];
	    user_cpudata[ix].node =
		cput.node.id[cput.node.used == 1 ? 0 : r];
	    ix++;
	}
    } while (*c != '\0');

    if (user_cpudata_size != ix) {
	user_cpudata_size = ix;
	user_cpudata = erts_realloc(ERTS_ALC_T_CPUDATA,
				    user_cpudata,
				    (sizeof(erts_cpu_topology_t)
				     * user_cpudata_size));
    }

    error = verify_topology(user_cpudata, user_cpudata_size);
    if (error == ERTS_INIT_CPU_TOPOLOGY_OK) {
	destroy_cpu_top_entry(&cput);
	return ERTS_INIT_CPU_TOPOLOGY_OK;
    }

 fail:
    if (user_cpudata)
	erts_free(ERTS_ALC_T_CPUDATA, user_cpudata);
    user_cpudata_size = 0;
    destroy_cpu_top_entry(&cput);
    return error;
}

#define ERTS_GET_CPU_TOPOLOGY_ERROR		-1
#define ERTS_GET_USED_CPU_TOPOLOGY		0
#define ERTS_GET_DETECTED_CPU_TOPOLOGY		1
#define ERTS_GET_DEFINED_CPU_TOPOLOGY		2

static Eterm get_cpu_topology_term(Process *c_p, int type);

Eterm
erts_set_cpu_topology(Process *c_p, Eterm term)
{
    erts_cpu_topology_t *cpudata = NULL;
    int cpudata_size = 0;
    Eterm res;

    erts_smp_rwmtx_rwlock(&cpuinfo_rwmtx);
    res = get_cpu_topology_term(c_p, ERTS_GET_USED_CPU_TOPOLOGY);
    if (term == am_undefined) {
	if (user_cpudata)
	    erts_free(ERTS_ALC_T_CPUDATA, user_cpudata);
	user_cpudata = NULL;
	user_cpudata_size = 0;

	if (cpu_bind_order != ERTS_CPU_BIND_NONE && system_cpudata) {
	    cpudata_size = system_cpudata_size;
	    cpudata = erts_alloc(ERTS_ALC_T_TMP,
				 (sizeof(erts_cpu_topology_t)
				  * cpudata_size));

	    sys_memcpy((void *) cpudata,
		       (void *) system_cpudata,
		       sizeof(erts_cpu_topology_t)*cpudata_size);
	}
    }
    else if (is_not_list(term)) {
    error:
	erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);
	res = THE_NON_VALUE;
	goto done;
    }
    else {
	Eterm list = term;
	int ix = 0;

	cpudata_size = 100;
	cpudata = erts_alloc(ERTS_ALC_T_TMP,
			     (sizeof(erts_cpu_topology_t)
			      * cpudata_size));

	while (is_list(list)) {
	    Eterm *lp = list_val(list);
	    Eterm cpu = CAR(lp);
	    Eterm* tp;
	    Sint id;
		
	    if (is_not_tuple(cpu))
		goto error;

	    tp = tuple_val(cpu);

	    if (arityval(tp[0]) != 7 || tp[1] != am_cpu)
		goto error;

	    if (ix >= cpudata_size) {
		cpudata_size += 100;
		cpudata = erts_realloc(ERTS_ALC_T_TMP,
				       cpudata,
				       (sizeof(erts_cpu_topology_t)
					* cpudata_size));
	    }

	    id = signed_val(tp[2]);
	    if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
		goto error;
	    cpudata[ix].node = (int) id;

	    id = signed_val(tp[3]);
	    if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
		goto error;
	    cpudata[ix].processor = (int) id;

	    id = signed_val(tp[4]);
	    if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
		goto error;
	    cpudata[ix].processor_node = (int) id;

	    id = signed_val(tp[5]);
	    if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
		goto error;
	    cpudata[ix].core = (int) id;

	    id = signed_val(tp[6]);
	    if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
		goto error;
	    cpudata[ix].thread = (int) id;

	    id = signed_val(tp[7]);
	    if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
		goto error;
	    cpudata[ix].logical = (int) id;

	    list = CDR(lp);
	    ix++;
	}

	if (is_not_nil(list))
	    goto error;
	
	cpudata_size = ix;

	if (ERTS_INIT_CPU_TOPOLOGY_OK != verify_topology(cpudata, cpudata_size))
	    goto error;

	if (user_cpudata_size != cpudata_size) {
	    if (user_cpudata)
		erts_free(ERTS_ALC_T_CPUDATA, user_cpudata);
	    user_cpudata = erts_alloc(ERTS_ALC_T_CPUDATA,
				      sizeof(erts_cpu_topology_t)*cpudata_size);
	    user_cpudata_size = cpudata_size;
	}

	sys_memcpy((void *) user_cpudata,
		   (void *) cpudata,
		   sizeof(erts_cpu_topology_t)*cpudata_size);
    }

    update_cpu_groups_maps();

    write_schedulers_bind_change(cpudata, cpudata_size);

    erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);
    erts_sched_notify_check_cpu_bind();

 done:

    if (cpudata)
	erts_free(ERTS_ALC_T_TMP, cpudata);

    return res;
}

static void
create_tmp_cpu_topology_copy(erts_cpu_topology_t **cpudata, int *cpudata_size)
{
    if (user_cpudata) {
	*cpudata_size = user_cpudata_size;
	*cpudata = erts_alloc(ERTS_ALC_T_TMP,
			      (sizeof(erts_cpu_topology_t)
			       * (*cpudata_size)));
	sys_memcpy((void *) *cpudata,
		   (void *) user_cpudata,
		   sizeof(erts_cpu_topology_t)*(*cpudata_size));
    }
    else if (system_cpudata) {
	*cpudata_size = system_cpudata_size;
	*cpudata = erts_alloc(ERTS_ALC_T_TMP,
			      (sizeof(erts_cpu_topology_t)
			       * (*cpudata_size)));
	sys_memcpy((void *) *cpudata,
		   (void *) system_cpudata,
		   sizeof(erts_cpu_topology_t)*(*cpudata_size));
    }
    else {
	*cpudata = NULL;
	*cpudata_size = 0;
    }
}

static void
destroy_tmp_cpu_topology_copy(erts_cpu_topology_t *cpudata)
{
    if (cpudata)
	erts_free(ERTS_ALC_T_TMP, cpudata);
}


static Eterm
bld_topology_term(Eterm **hpp,
		  Uint *hszp,
		  erts_cpu_topology_t *cpudata,
		  int size)
{
    Eterm res = NIL;
    int i;

    if (size == 0)
	return am_undefined;

    for (i = size-1; i >= 0; i--) {
	res = erts_bld_cons(hpp,
			    hszp,
			    erts_bld_tuple(hpp,
					   hszp,
					   7,
					   am_cpu,
					   make_small(cpudata[i].node),
					   make_small(cpudata[i].processor),
					   make_small(cpudata[i].processor_node),
					   make_small(cpudata[i].core),
					   make_small(cpudata[i].thread),
					   make_small(cpudata[i].logical)),
			    res);
    }
    return res;
}

static Eterm
get_cpu_topology_term(Process *c_p, int type)
{
#ifdef DEBUG
    Eterm *hp_end;
#endif
    Eterm *hp;
    Uint hsz;
    Eterm res = THE_NON_VALUE;
    erts_cpu_topology_t *cpudata = NULL;
    int size = 0;

    switch (type) {
    case ERTS_GET_USED_CPU_TOPOLOGY:
	if (user_cpudata)
	    goto defined;
	else
	    goto detected;
    case ERTS_GET_DETECTED_CPU_TOPOLOGY:
    detected:
	if (!system_cpudata)
	    res = am_undefined;
	else {
	    size = system_cpudata_size;
	    cpudata = erts_alloc(ERTS_ALC_T_TMP,
				 (sizeof(erts_cpu_topology_t)
				  * size));
	    sys_memcpy((void *) cpudata,
		       (void *) system_cpudata,
		       sizeof(erts_cpu_topology_t)*size);
	}
	break;
    case ERTS_GET_DEFINED_CPU_TOPOLOGY:
    defined:
	if (!user_cpudata)
	    res = am_undefined;
	else {
	    size = user_cpudata_size;
	    cpudata = user_cpudata;
	}
	break;
    default:
	erl_exit(ERTS_ABORT_EXIT, "Bad cpu topology type: %d\n", type);
	break;
    }

    if (res == am_undefined) {
	ASSERT(!cpudata);
	return res;
    }

    hsz = 0;

    bld_topology_term(NULL, &hsz,
		      cpudata, size);

    hp = HAlloc(c_p, hsz);

#ifdef DEBUG
    hp_end = hp + hsz;
#endif

    res = bld_topology_term(&hp, NULL,
			    cpudata, size);

    ASSERT(hp_end == hp);

    if (cpudata && cpudata != system_cpudata && cpudata != user_cpudata)
	erts_free(ERTS_ALC_T_TMP, cpudata);

    return res;
}

Eterm
erts_get_cpu_topology_term(Process *c_p, Eterm which)
{
    Eterm res;
    int type;
    erts_smp_rwmtx_rlock(&cpuinfo_rwmtx);
    if (ERTS_IS_ATOM_STR("used", which))
	type = ERTS_GET_USED_CPU_TOPOLOGY;
    else if (ERTS_IS_ATOM_STR("detected", which))
	type = ERTS_GET_DETECTED_CPU_TOPOLOGY;
    else if (ERTS_IS_ATOM_STR("defined", which))
	type = ERTS_GET_DEFINED_CPU_TOPOLOGY;
    else
	type = ERTS_GET_CPU_TOPOLOGY_ERROR;
    if (type == ERTS_GET_CPU_TOPOLOGY_ERROR)
	res = THE_NON_VALUE;
    else
	res = get_cpu_topology_term(c_p, type);
    erts_smp_rwmtx_runlock(&cpuinfo_rwmtx);
    return res;
}

static void
get_logical_processors(int *conf, int *onln, int *avail)
{
    if (conf)
	*conf = erts_get_cpu_configured(cpuinfo);
    if (onln)
	*onln = erts_get_cpu_online(cpuinfo);
    if (avail)
	*avail = erts_get_cpu_available(cpuinfo);
}

void
erts_get_logical_processors(int *conf, int *onln, int *avail)
{
    erts_smp_rwmtx_rlock(&cpuinfo_rwmtx);
    get_logical_processors(conf, onln, avail);
    erts_smp_rwmtx_runlock(&cpuinfo_rwmtx);
}

void
erts_pre_early_init_cpu_topology(int *max_rg_p,
				 int *conf_p,
				 int *onln_p,
				 int *avail_p)
{
    cpu_groups_maps = NULL;
    no_cpu_groups_callbacks = 0;
    *max_rg_p = ERTS_MAX_READER_GROUPS;
    cpuinfo = erts_cpu_info_create();
    get_logical_processors(conf_p, onln_p, avail_p);
}

void
erts_early_init_cpu_topology(int no_schedulers,
			     int *max_main_threads_p,
			     int max_reader_groups,
			     int *reader_groups_p)
{
    user_cpudata = NULL;
    user_cpudata_size = 0;

    system_cpudata_size = erts_get_cpu_topology_size(cpuinfo);
    system_cpudata = erts_alloc(ERTS_ALC_T_CPUDATA,
				(sizeof(erts_cpu_topology_t)
				 * system_cpudata_size));

    cpu_bind_order = ERTS_CPU_BIND_UNDEFINED;

    if (!erts_get_cpu_topology(cpuinfo, system_cpudata)
	|| ERTS_INIT_CPU_TOPOLOGY_OK != verify_topology(system_cpudata,
							system_cpudata_size)) {
	erts_free(ERTS_ALC_T_CPUDATA, system_cpudata);
	system_cpudata = NULL;
	system_cpudata_size = 0;
    }

    max_main_threads = erts_get_cpu_configured(cpuinfo);
    if (max_main_threads > no_schedulers)
	max_main_threads = no_schedulers;
    *max_main_threads_p = max_main_threads;

    reader_groups = max_main_threads;
    if (reader_groups <= 1 || max_reader_groups <= 1)
	reader_groups = 0;
    if (reader_groups > max_reader_groups)
	reader_groups = max_reader_groups;
    *reader_groups_p = reader_groups;
}

void
erts_init_cpu_topology(void)
{
    int ix;

    erts_smp_rwmtx_init(&cpuinfo_rwmtx, "cpu_info");
    erts_smp_rwmtx_rwlock(&cpuinfo_rwmtx);

    scheduler2cpu_map = erts_alloc(ERTS_ALC_T_CPUDATA,
				   (sizeof(ErtsCpuBindData)
				    * (erts_no_schedulers+1)));
    for (ix = 1; ix <= erts_no_schedulers; ix++) {
	scheduler2cpu_map[ix].bind_id = -1;
	scheduler2cpu_map[ix].bound_id = -1;
    }

    if (cpu_bind_order == ERTS_CPU_BIND_UNDEFINED)
	cpu_bind_order = ERTS_CPU_BIND_NONE;

    reader_groups_map = add_cpu_groups(reader_groups,
				       reader_groups_callback,
				       NULL);

    if (cpu_bind_order == ERTS_CPU_BIND_NONE)
	erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);
    else {
	erts_cpu_topology_t *cpudata;
	int cpudata_size;
	create_tmp_cpu_topology_copy(&cpudata, &cpudata_size);
	write_schedulers_bind_change(cpudata, cpudata_size);
	erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);
	erts_sched_notify_check_cpu_bind();
	destroy_tmp_cpu_topology_copy(cpudata);
    }
}

int
erts_update_cpu_info(void)
{
    int changed;
    erts_smp_rwmtx_rwlock(&cpuinfo_rwmtx);
    changed = erts_cpu_info_update(cpuinfo);
    if (changed) {
	erts_cpu_topology_t *cpudata;
	int cpudata_size;

	if (system_cpudata)
	    erts_free(ERTS_ALC_T_CPUDATA, system_cpudata);

	system_cpudata_size = erts_get_cpu_topology_size(cpuinfo);
	if (!system_cpudata_size)
	    system_cpudata = NULL;
	else {
	    system_cpudata = erts_alloc(ERTS_ALC_T_CPUDATA,
					(sizeof(erts_cpu_topology_t)
					 * system_cpudata_size));

	    if (!erts_get_cpu_topology(cpuinfo, system_cpudata)
		|| (ERTS_INIT_CPU_TOPOLOGY_OK
		    != verify_topology(system_cpudata,
				       system_cpudata_size))) {
		erts_free(ERTS_ALC_T_CPUDATA, system_cpudata);
		system_cpudata = NULL;
		system_cpudata_size = 0;
	    }
	}

	update_cpu_groups_maps();

	create_tmp_cpu_topology_copy(&cpudata, &cpudata_size);
	write_schedulers_bind_change(cpudata, cpudata_size);
	destroy_tmp_cpu_topology_copy(cpudata);
    }
    erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);
    if (changed)
	erts_sched_notify_check_cpu_bind();
    return changed;
}

/*
 * reader groups map
 */

void
reader_groups_callback(int suspending,
		       ErtsSchedulerData *esdp,
		       int group,
		       void *unused)
{
    if (reader_groups && esdp->no <= max_main_threads)
	erts_smp_rwmtx_set_reader_group(suspending ? 0 : group+1);
}

static Eterm get_cpu_groups_map(Process *c_p,
				erts_cpu_groups_map_t *map,
				int offset);
Eterm
erts_debug_reader_groups_map(Process *c_p, int groups)
{
    Eterm res;
    erts_cpu_groups_map_t test;

    test.array = NULL;
    test.groups = groups;
    make_cpu_groups_map(&test, 1);
    if (!test.array)
	res = NIL;
    else {
	res = get_cpu_groups_map(c_p, &test, 1);
	erts_free(ERTS_ALC_T_TMP, test.array);
    }
    return res;
}


Eterm
erts_get_reader_groups_map(Process *c_p)
{
    Eterm res;
    erts_smp_rwmtx_rlock(&cpuinfo_rwmtx);
    res = get_cpu_groups_map(c_p, reader_groups_map, 1);
    erts_smp_rwmtx_runlock(&cpuinfo_rwmtx);
    return res;
}

/*
 * CPU groups
 */

static Eterm
get_cpu_groups_map(Process *c_p,
		   erts_cpu_groups_map_t *map,
		   int offset)
{
#ifdef DEBUG
    Eterm *endp;
#endif
    Eterm res = NIL, tuple;
    Eterm *hp;
    int i;

    hp = HAlloc(c_p, map->logical_processors*(2+3));
#ifdef DEBUG
    endp = hp + map->logical_processors*(2+3);
#endif
    for (i = map->size - 1; i >= 0; i--) {
	if (map->array[i].logical >= 0) {
	    tuple = TUPLE2(hp,
			   make_small(map->array[i].logical),
			   make_small(map->array[i].cpu_group + offset));
	    hp += 3;
	    res = CONS(hp, tuple, res);
	    hp += 2;
	}
    }
    ASSERT(hp == endp);
    return res;
}

static void
make_available_cpu_topology(erts_avail_cput *no,
			    erts_avail_cput *avail,
			    erts_cpu_topology_t *cpudata,
			    int *size,
			    int test)
{
    int len = *size;
    erts_cpu_topology_t last;
    int a, i, j;

    no->level[ERTS_TOPOLOGY_NODE] = -1;
    no->level[ERTS_TOPOLOGY_PROCESSOR] = -1;
    no->level[ERTS_TOPOLOGY_PROCESSOR_NODE] = -1;
    no->level[ERTS_TOPOLOGY_CORE] = -1;
    no->level[ERTS_TOPOLOGY_THREAD] = -1;
    no->level[ERTS_TOPOLOGY_LOGICAL] = -1;

    last.node = INT_MIN;
    last.processor = INT_MIN;
    last.processor_node = INT_MIN;
    last.core = INT_MIN;
    last.thread = INT_MIN;
    last.logical = INT_MIN;

    a = 0;

    for (i = 0; i < len; i++) {

	if (!test && !erts_is_cpu_available(cpuinfo, cpudata[i].logical))
	    continue;

	if (last.node != cpudata[i].node)
	    goto node;
	if (last.processor != cpudata[i].processor)
	    goto processor;
	if (last.processor_node != cpudata[i].processor_node)
	    goto processor_node;
	if (last.core != cpudata[i].core)
	    goto core;
	ASSERT(last.thread != cpudata[i].thread);
	goto thread;

    node:
	no->level[ERTS_TOPOLOGY_NODE]++;
    processor:
	no->level[ERTS_TOPOLOGY_PROCESSOR]++;
    processor_node:
	no->level[ERTS_TOPOLOGY_PROCESSOR_NODE]++;
    core:
	no->level[ERTS_TOPOLOGY_CORE]++;
    thread:
	no->level[ERTS_TOPOLOGY_THREAD]++;

	no->level[ERTS_TOPOLOGY_LOGICAL]++;

	for (j = 0; j < ERTS_TOPOLOGY_LOGICAL; j++)
	    avail[a].level[j] = no->level[j];

	avail[a].level[ERTS_TOPOLOGY_LOGICAL] = cpudata[i].logical;
	avail[a].level[ERTS_TOPOLOGY_CG] = 0;

	ASSERT(last.logical != cpudata[i].logical);

	last = cpudata[i];
	a++;
    }

    no->level[ERTS_TOPOLOGY_NODE]++;
    no->level[ERTS_TOPOLOGY_PROCESSOR]++;
    no->level[ERTS_TOPOLOGY_PROCESSOR_NODE]++;
    no->level[ERTS_TOPOLOGY_CORE]++;
    no->level[ERTS_TOPOLOGY_THREAD]++;
    no->level[ERTS_TOPOLOGY_LOGICAL]++;

    *size = a;
}

static void
cpu_group_insert(erts_cpu_groups_map_t *map,
		 int logical, int cpu_group)
{
    int start = logical % map->size;
    int ix = start;

    do {
	if (map->array[ix].logical < 0) {
	    map->array[ix].logical = logical;
	    map->array[ix].cpu_group = cpu_group;
	    return;
	}
	ix++;
	if (ix == map->size)
	    ix = 0;
    } while (ix != start);

    erl_exit(ERTS_ABORT_EXIT, "Reader groups map full\n");
}


static int
sub_levels(erts_cpu_groups_count_t *cgc, int level, int aix,
	   int avail_sz, erts_avail_cput *avail)
{
    int sub_level = level+1;
    int last = -1;
    cgc->sub_levels = 0;

    do {
	if (last != avail[aix].level[sub_level]) {
	    cgc->sub_levels++;
	    last = avail[aix].level[sub_level];
	}
	aix++;
    }
    while (aix < avail_sz && cgc->id == avail[aix].level[level]);
    cgc->cpu_groups = 0;
    return aix;
}

static int
write_cpu_groups(int *cgp, erts_cpu_groups_count_t *cgcp,
		    int level, int a,
		    int avail_sz, erts_avail_cput *avail)
{
    int cg = *cgp;
    int sub_level = level+1;
    int sl_per_gr = cgcp->sub_levels / cgcp->cpu_groups;
    int xsl = cgcp->sub_levels % cgcp->cpu_groups;
    int sls = 0;
    int last = -1;
    int xsl_cg_lim = (cgcp->cpu_groups - xsl) + cg + 1;

    ASSERT(level < 0 || avail[a].level[level] == cgcp->id);

    do {
	if (last != avail[a].level[sub_level]) {
	    if (!sls) {
		sls = sl_per_gr;
		cg++;
		if (cg >= xsl_cg_lim)
		    sls++;
	    }
	    last = avail[a].level[sub_level];
	    sls--;
	}
	avail[a].level[ERTS_TOPOLOGY_CG] = cg;
	a++;
    } while (a < avail_sz && (level < 0
			      || avail[a].level[level] == cgcp->id));

    ASSERT(cgcp->cpu_groups == cg - *cgp);

    *cgp = cg;

    return a;
}

static int
cg_count_sub_levels_compare(const void *vx, const void *vy)
{
    erts_cpu_groups_count_t *x = (erts_cpu_groups_count_t *) vx;
    erts_cpu_groups_count_t *y = (erts_cpu_groups_count_t *) vy;
    if (x->sub_levels != y->sub_levels)
	return y->sub_levels - x->sub_levels;
    return x->id - y->id;
}

static int
cg_count_id_compare(const void *vx, const void *vy)
{
    erts_cpu_groups_count_t *x = (erts_cpu_groups_count_t *) vx;
    erts_cpu_groups_count_t *y = (erts_cpu_groups_count_t *) vy;
    return x->id - y->id;
}

static void
make_cpu_groups_map(erts_cpu_groups_map_t *map, int test)
{
    int i, spread_level, avail_sz;
    erts_avail_cput no, *avail;
    erts_cpu_topology_t *cpudata;
    ErtsAlcType_t alc_type = (test
			      ? ERTS_ALC_T_TMP
			      : ERTS_ALC_T_CPU_GRPS_MAP);

    if (map->array)
	erts_free(alc_type, map->array);

    map->array = NULL;
    map->logical_processors = 0;
    map->size = 0;

    if (!map->groups)
	return;

    create_tmp_cpu_topology_copy(&cpudata, &avail_sz);

    if (!cpudata)
	return;

    cpu_bind_order_sort(cpudata,
			avail_sz,
			ERTS_CPU_BIND_NO_SPREAD,
			1);

    avail = erts_alloc(ERTS_ALC_T_TMP,
		       sizeof(erts_avail_cput)*avail_sz);

    make_available_cpu_topology(&no, avail, cpudata,
				&avail_sz, test);

    destroy_tmp_cpu_topology_copy(cpudata);

    map->size = avail_sz*2+1;

    map->array = erts_alloc(alc_type,
			    (sizeof(erts_cpu_groups_map_array_t)
			     * map->size));;
    map->logical_processors = avail_sz;

    for (i = 0; i < map->size; i++) {
	map->array[i].logical = -1;
	map->array[i].cpu_group = -1;
    }

    spread_level = ERTS_TOPOLOGY_CORE;
    for (i = ERTS_TOPOLOGY_NODE; i < ERTS_TOPOLOGY_THREAD; i++) {
	if (no.level[i] > map->groups) {
	    spread_level = i;
	    break;
	}
    }

    if (no.level[spread_level] <= map->groups) {
	int a, cg, last = -1;
	cg = -1;
	ASSERT(spread_level == ERTS_TOPOLOGY_CORE);
	for (a = 0; a < avail_sz; a++) {
	    if (last != avail[a].level[spread_level]) {
		cg++;
		last = avail[a].level[spread_level];
	    }
	    cpu_group_insert(map,
			     avail[a].level[ERTS_TOPOLOGY_LOGICAL],
			     cg);
	}
    }
    else { /* map->groups < no.level[spread_level] */
	erts_cpu_groups_count_t *cg_count;
	int a, cg, tl, toplevels;

	tl = spread_level-1;

	if (spread_level == ERTS_TOPOLOGY_NODE)
	    toplevels = 1;
	else
	    toplevels = no.level[tl];

	cg_count = erts_alloc(ERTS_ALC_T_TMP,
			      toplevels*sizeof(erts_cpu_groups_count_t));

	if (toplevels == 1) {
	    cg_count[0].id = 0;
	    cg_count[0].sub_levels = no.level[spread_level];
	    cg_count[0].cpu_groups = map->groups;
	}
	else {
	    int cgs_per_tl, cgs;
	    cgs = map->groups;
	    cgs_per_tl = cgs / toplevels;

	    a = 0;
	    for (i = 0; i < toplevels; i++) {
		cg_count[i].id = avail[a].level[tl];
		a = sub_levels(&cg_count[i], tl, a, avail_sz, avail);
	    }

	    qsort(cg_count,
		  toplevels,
		  sizeof(erts_cpu_groups_count_t),
		  cg_count_sub_levels_compare);

	    for (i = 0; i < toplevels; i++) {
		if (cg_count[i].sub_levels < cgs_per_tl) {
		    cg_count[i].cpu_groups = cg_count[i].sub_levels;
		    cgs -= cg_count[i].sub_levels;
		}
		else {
		    cg_count[i].cpu_groups = cgs_per_tl;
		    cgs -= cgs_per_tl;
		}
	    }

	    while (cgs > 0) {
		for (i = 0; i < toplevels; i++) {
		    if (cg_count[i].sub_levels == cg_count[i].cpu_groups)
			break;
		    else {
			cg_count[i].cpu_groups++;
			if (--cgs == 0)
			    break;
		    }
		}
	    }

	    qsort(cg_count,
		  toplevels,
		  sizeof(erts_cpu_groups_count_t),
		  cg_count_id_compare);
	}

	a = i = 0;
	cg = -1;
	while (a < avail_sz) {
	    a = write_cpu_groups(&cg, &cg_count[i], tl,
				 a, avail_sz, avail);
	    i++;
	}

	ASSERT(map->groups == cg + 1);

	for (a = 0; a < avail_sz; a++)
	    cpu_group_insert(map,
			     avail[a].level[ERTS_TOPOLOGY_LOGICAL],
			     avail[a].level[ERTS_TOPOLOGY_CG]);

	erts_free(ERTS_ALC_T_TMP, cg_count);
    }

    erts_free(ERTS_ALC_T_TMP, avail);
}

static erts_cpu_groups_map_t *
add_cpu_groups(int groups,
	       erts_cpu_groups_callback_t callback,
	       void *arg)
{
    int use_groups = groups;
    erts_cpu_groups_callback_list_t *cgcl;
    erts_cpu_groups_map_t *cgm;

    ERTS_SMP_LC_ASSERT(erts_lc_rwmtx_is_rwlocked(&cpuinfo_rwmtx));

    if (use_groups > max_main_threads)
	use_groups = max_main_threads;

    if (!use_groups)
	return NULL;

    no_cpu_groups_callbacks++;
    cgcl = erts_alloc(ERTS_ALC_T_CPU_GRPS_MAP,
		      sizeof(erts_cpu_groups_callback_list_t));
    cgcl->callback = callback;
    cgcl->arg = arg;

    for (cgm = cpu_groups_maps; cgm; cgm = cgm->next) {
	if (cgm->groups == use_groups) {
	    cgcl->next = cgm->callback_list;
	    cgm->callback_list = cgcl;
	    return cgm;
	}
    }


    cgm = erts_alloc(ERTS_ALC_T_CPU_GRPS_MAP,
		     sizeof(erts_cpu_groups_map_t));
    cgm->next = cpu_groups_maps;
    cgm->groups = use_groups;
    cgm->array = NULL;
    cgm->size = 0;
    cgm->logical_processors = 0;
    cgm->callback_list = cgcl;

    cgcl->next = NULL;

    make_cpu_groups_map(cgm, 0);

    cpu_groups_maps = cgm;

    return cgm;
}

static void
remove_cpu_groups(erts_cpu_groups_callback_t callback, void *arg)
{
    erts_cpu_groups_map_t *prev_cgm, *cgm;
    erts_cpu_groups_callback_list_t *prev_cgcl, *cgcl;

    ERTS_SMP_LC_ASSERT(erts_lc_rwmtx_is_rwlocked(&cpuinfo_rwmtx));

    no_cpu_groups_callbacks--;

    prev_cgm = NULL;
    for (cgm = cpu_groups_maps; cgm; cgm = cgm->next) {
	prev_cgcl = NULL;
	for (cgcl = cgm->callback_list; cgcl; cgcl = cgcl->next) {
	    if (cgcl->callback == callback && cgcl->arg == arg) {
		if (prev_cgcl)
		    prev_cgcl->next = cgcl->next;
		else
		    cgm->callback_list = cgcl->next;
		erts_free(ERTS_ALC_T_CPU_GRPS_MAP, cgcl);
		if (!cgm->callback_list) {
		    if (prev_cgm)
			prev_cgm->next = cgm->next;
		    else
			cpu_groups_maps = cgm->next;
		    if (cgm->array)
			erts_free(ERTS_ALC_T_CPU_GRPS_MAP, cgm->array);
		    erts_free(ERTS_ALC_T_CPU_GRPS_MAP, cgm);
		}
		return;
	    }
	    prev_cgcl = cgcl;
	}
	prev_cgm = cgm;
    }

    erl_exit(ERTS_ABORT_EXIT, "Cpu groups not found\n");
}

static int
cpu_groups_lookup(erts_cpu_groups_map_t *map,
		  ErtsSchedulerData *esdp)
{
    int start, logical, ix;

    ERTS_SMP_LC_ASSERT(erts_lc_rwmtx_is_rlocked(&cpuinfo_rwmtx)
		       || erts_lc_rwmtx_is_rwlocked(&cpuinfo_rwmtx));

    if (esdp->cpu_id < 0)
	return (((int) esdp->no) - 1) % map->groups;

    logical = esdp->cpu_id;
    start = logical % map->size;
    ix = start;

    do {
	if (map->array[ix].logical == logical) {
	    int group = map->array[ix].cpu_group;
	    ASSERT(0 <= group && group < map->groups);
	    return group;
	}
	ix++;
	if (ix == map->size)
	    ix = 0;
    } while (ix != start);

    erl_exit(ERTS_ABORT_EXIT, "Logical cpu id %d not found\n", logical);
}

static void
update_cpu_groups_maps(void)
{
    erts_cpu_groups_map_t *cgm;
    ERTS_SMP_LC_ASSERT(erts_lc_rwmtx_is_rwlocked(&cpuinfo_rwmtx));

    for (cgm = cpu_groups_maps; cgm; cgm = cgm->next)
	make_cpu_groups_map(cgm, 0);
}

void
erts_add_cpu_groups(int groups,
		    erts_cpu_groups_callback_t callback,
		    void *arg)
{
    erts_smp_rwmtx_rwlock(&cpuinfo_rwmtx);
    add_cpu_groups(groups, callback, arg);
    erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);
}

void erts_remove_cpu_groups(erts_cpu_groups_callback_t callback,
			    void *arg)
{
    erts_smp_rwmtx_rwlock(&cpuinfo_rwmtx);
    remove_cpu_groups(callback, arg);
    erts_smp_rwmtx_rwunlock(&cpuinfo_rwmtx);
}