aboutsummaryrefslogblamecommitdiffstats
path: root/erts/emulator/beam/erl_db_tree.c
blob: 8108494fc59a17402acd2c6a1bc105bd7f077b44 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978

                   


                                                        




                                                                      
  



                                                                         
  











































































































                                                                                             
                                                           




                              




























                                                                                              

















































                                                                        














































































                                                                          
















































































































































































                                                                          
                                 
                                     
                                        















































































































































































                                                                                   
                                        












                                                                                 
                                                   












































































                                                                       
                     












                                                                      

                                                                                 
                                   

                            
































                                                                       


                                                   
                                                                                     




































                                                                       
                     






























                                                                       

                                                                           
                               

                        




































































































































































































































                                                                               
                                                                                



                                 
                                  














































































































































































































                                                                               
                                  




































































































                                                                          
                                  















































































































































































































































                                                                                 
                                  



































































































                                                                                      
                                      














































































                                                                                 
                           


                                                      



                                              



































































































                                                                        
                                                              























































































































































                                                                             





























                                                           




















































































































































































































































































































































































































                                                                              


                                
































                                                                                 
                           

                                          





                                                           
                                                     




                                                                




















                                                                   
                                   




































                                                                   
                                   


















































































































































































































































































































































                                                                               
              













                                                                      

                                                                          
                        



















                                                                                  









                                                                    

                                                               













                                                                          
              














                                                                      

                                                                             
                        
                    




















                                                                                  











                                                                

                                                               

































































































































                                                                              
/*
 * %CopyrightBegin%
 *
 * Copyright Ericsson AB 1998-2010. All Rights Reserved.
 *
 * The contents of this file are subject to the Erlang Public License,
 * Version 1.1, (the "License"); you may not use this file except in
 * compliance with the License. You should have received a copy of the
 * Erlang Public License along with this software. If not, it can be
 * retrieved online at http://www.erlang.org/.
 *
 * Software distributed under the License is distributed on an "AS IS"
 * basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
 * the License for the specific language governing rights and limitations
 * under the License.
 *
 * %CopyrightEnd%
 */

/*
** Implementation of ordered ETS tables.
** The tables are implemented as AVL trees (Published by Adelson-Velski 
** and Landis). A nice source for learning about these trees is
** Wirth's Algorithms + Datastructures = Programs.
** The implementation here is however not made with recursion
** as the examples in Wirths book are.
*/

/*
#ifdef DEBUG
#define HARDDEBUG 1
#endif
*/
#ifdef HAVE_CONFIG_H
#  include "config.h"
#endif

#include "sys.h"
#include "erl_vm.h"
#include "global.h"
#include "erl_process.h"
#include "error.h"
#define ERTS_WANT_DB_INTERNAL__
#include "erl_db.h"
#include "bif.h"
#include "big.h"
#include "erl_binary.h"

#include "erl_db_tree.h"



#define GETKEY(dtt, tplp)   (*((tplp) +  (dtt)->common.keypos))
#define GETKEY_WITH_POS(Keypos, Tplp) (*((Tplp) + Keypos))
#define NITEMS(tb) ((int)erts_smp_atomic_read(&(tb)->common.nitems))

/*
** A stack of this size is enough for an AVL tree with more than
** 0xFFFFFFFF elements. May be subject to change if
** the datatype of the element counter is changed to a 64 bit integer.
** The Maximal height of an AVL tree is calculated as:
** h(n) <= 1.4404 * log(n + 2) - 0.328
** Where n denotes the number of nodes, h(n) the height of the tree
** with n nodes and log is the binary logarithm.
*/

#define STACK_NEED 50
#define TREE_MAX_ELEMENTS 0xFFFFFFFFUL

#define PUSH_NODE(Dtt, Tdt)                     \
    ((Dtt)->array[(Dtt)->pos++] = Tdt)

#define POP_NODE(Dtt)			\
     (((Dtt)->pos) ? 			\
      (Dtt)->array[--((Dtt)->pos)] : NULL)

#define TOP_NODE(Dtt)                   \
     ((Dtt->pos) ? 			\
      (Dtt)->array[(Dtt)->pos - 1] : NULL)

#define EMPTY_NODE(Dtt) (TOP_NODE(Dtt) == NULL)



/* Obtain table static stack if available. NULL if not.
** Must be released with release_stack()
*/
static DbTreeStack* get_static_stack(DbTableTree* tb)
{
    if (!erts_smp_atomic_xchg(&tb->is_stack_busy, 1)) {
	return &tb->static_stack;
    }
    return NULL;
}

/* Obtain static stack if available, otherwise empty dynamic stack.
** Must be released with release_stack()
*/
static DbTreeStack* get_any_stack(DbTableTree* tb)
{
    DbTreeStack* stack;
    if (!erts_smp_atomic_xchg(&tb->is_stack_busy, 1)) {
	return &tb->static_stack;
    }
    stack = erts_db_alloc(ERTS_ALC_T_DB_STK, (DbTable *) tb,
			  sizeof(DbTreeStack) + sizeof(TreeDbTerm*) * STACK_NEED);
    stack->pos = 0;
    stack->slot = 0;
    stack->array = (TreeDbTerm**) (stack + 1);
    return stack;
}

static void release_stack(DbTableTree* tb, DbTreeStack* stack)
{
    if (stack == &tb->static_stack) {
	ASSERT(erts_smp_atomic_read(&tb->is_stack_busy) == 1);
	erts_smp_atomic_set(&tb->is_stack_busy, 0);
    }
    else {
	erts_db_free(ERTS_ALC_T_DB_STK, (DbTable *) tb,
		     (void *) stack, sizeof(DbTreeStack) + sizeof(TreeDbTerm*) * STACK_NEED);
    }
}

static ERTS_INLINE void reset_static_stack(DbTableTree* tb)
{
    tb->static_stack.pos = 0;
    tb->static_stack.slot = 0;
}

static ERTS_INLINE void free_term(DbTableTree *tb, TreeDbTerm* p)
{
    db_free_term((DbTable*)tb, p, offsetof(TreeDbTerm, dbterm));
}

static ERTS_INLINE TreeDbTerm* new_dbterm(DbTableTree *tb, Eterm obj)
{
    TreeDbTerm* p;
    if (tb->common.compress) {
	p = db_store_term_comp(&tb->common, NULL, offsetof(TreeDbTerm,dbterm), obj);
    }
    else {
	p = db_store_term(&tb->common, NULL, offsetof(TreeDbTerm,dbterm), obj);
    }
    return p;
}
static ERTS_INLINE TreeDbTerm* replace_dbterm(DbTableTree *tb, TreeDbTerm* old,
					      Eterm obj)
{
    TreeDbTerm* p;
    ASSERT(old != NULL);
    if (tb->common.compress) {
	p = db_store_term_comp(&tb->common, &(old->dbterm), offsetof(TreeDbTerm,dbterm), obj);
    }
    else {
	p = db_store_term(&tb->common, &(old->dbterm), offsetof(TreeDbTerm,dbterm), obj);
    }
    return p;
}

/*
** Some macros for "direction stacks"
*/
#define DIR_LEFT 0
#define DIR_RIGHT 1
#define DIR_END 2 

/*
 * Special binary flag
 */
#define BIN_FLAG_ALL_OBJECTS         BIN_FLAG_USR1

/*
 * Number of records to delete before trapping.
 */
#define DELETE_RECORD_LIMIT 12000

/* 
** Debugging
*/
#ifdef HARDDEBUG
static TreeDbTerm *traverse_until(TreeDbTerm *t, int *current, int to);
static void check_slot_pos(DbTableTree *tb);
static void check_saved_stack(DbTableTree *tb);
static int check_table_tree(TreeDbTerm *t);

#define TREE_DEBUG
#endif

#ifdef TREE_DEBUG
/*
** Primitive trace macro
*/
#define DBG erts_fprintf(stderr,"%d\n",__LINE__)

/*
** Debugging dump
*/

static void do_dump_tree2(int to, void *to_arg, int show, TreeDbTerm *t,
			  int offset);

#else

#define DBG /* nothing */

#endif

/*
** Datatypes
*/

/* 
 * This structure is filled in by analyze_pattern() for the select 
 * functions.
 */
struct mp_info {
    int all_objects;		/* True if complete objects are always
				 * returned from the match_spec (can use 
				 * copy_shallow on the return value) */
    int something_can_match;	/* The match_spec is not "impossible" */
    int some_limitation;	/* There is some limitation on the search
				 * area, i. e. least and/or most is set.*/
    int got_partial;		/* The limitation has a partially bound
				 * key */
    Eterm least;		/* The lowest matching key (possibly 
				 * partially bound expression) */
    Eterm most;                 /* The highest matching key (possibly 
				 * partially bound expression) */

    TreeDbTerm *save_term;      /* If the key is completely bound, this
				 * will be the Tree node we're searching
				 * for, otherwise it will be useless */
    Binary *mp;                 /* The compiled match program */
};

/*
 * Used by doit_select(_chunk)
 */
struct select_context {
    Process *p;
    Eterm accum;
    Binary *mp;
    Eterm end_condition;
    Eterm *lastobj;
    Sint32 max;
    int keypos;
    int all_objects;
    Sint got;
    Sint chunk_size;
};

/*
 * Used by doit_select_count
 */
struct select_count_context {
    Process *p;
    Binary *mp;
    Eterm end_condition;
    Eterm *lastobj;
    Sint32 max;
    int keypos;
    int all_objects;
    Sint got;
};

/*
 * Used by doit_select_delete
 */
struct select_delete_context {
    Process *p;
    DbTableTree *tb;
    Uint accum;
    Binary *mp;
    Eterm end_condition;
    int erase_lastterm;
    TreeDbTerm *lastterm;
    Sint32 max;
    int keypos;
};

/*
** Forward declarations 
*/
static TreeDbTerm *linkout_tree(DbTableTree *tb, Eterm key);
static TreeDbTerm *linkout_object_tree(DbTableTree *tb, 
				       Eterm object);
static int do_free_tree_cont(DbTableTree *tb, int num_left);
static void free_term(DbTableTree *tb, TreeDbTerm* p);
static int balance_left(TreeDbTerm **this); 
static int balance_right(TreeDbTerm **this); 
static int delsub(TreeDbTerm **this); 
static TreeDbTerm *slot_search(Process *p, DbTableTree *tb, Sint slot);
static TreeDbTerm *find_node(DbTableTree *tb, Eterm key);
static TreeDbTerm **find_node2(DbTableTree *tb, Eterm key);
static TreeDbTerm *find_next(DbTableTree *tb, DbTreeStack*, Eterm key);
static TreeDbTerm *find_prev(DbTableTree *tb, DbTreeStack*, Eterm key);
static TreeDbTerm *find_next_from_pb_key(DbTableTree *tb, DbTreeStack*,
					 Eterm key);
static TreeDbTerm *find_prev_from_pb_key(DbTableTree *tb, DbTreeStack*,
					 Eterm key);
static void traverse_backwards(DbTableTree *tb,
			       DbTreeStack*,
			       Eterm lastkey,
			       int (*doit)(DbTableTree *tb,
					   TreeDbTerm *,
					   void *,
					   int),
			       void *context); 
static void traverse_forward(DbTableTree *tb,
			     DbTreeStack*,
			     Eterm lastkey,
			     int (*doit)(DbTableTree *tb,
					 TreeDbTerm *,
					 void *,
					 int),
			     void *context); 
static int key_given(DbTableTree *tb, Eterm pattern, TreeDbTerm **ret,
		     Eterm *partly_bound_key);
static Sint cmp_partly_bound(Eterm partly_bound_key, Eterm bound_key);
static Sint do_cmp_partly_bound(Eterm a, Eterm b, int *done);

static int analyze_pattern(DbTableTree *tb, Eterm pattern, 
			   struct mp_info *mpi);
static int doit_select(DbTableTree *tb,
		       TreeDbTerm *this,
		       void *ptr,
		       int forward);
static int doit_select_count(DbTableTree *tb,
			     TreeDbTerm *this,
			     void *ptr,
			     int forward);
static int doit_select_chunk(DbTableTree *tb,
			     TreeDbTerm *this,
			     void *ptr,
			     int forward);
static int doit_select_delete(DbTableTree *tb,
			      TreeDbTerm *this,
			      void *ptr,
			      int forward);
static void do_dump_tree(int to, void *to_arg, TreeDbTerm *t);

static int partly_bound_can_match_lesser(Eterm partly_bound_1, 
					 Eterm partly_bound_2);
static int partly_bound_can_match_greater(Eterm partly_bound_1, 
					  Eterm partly_bound_2); 
static int do_partly_bound_can_match_lesser(Eterm a, Eterm b, 
					    int *done);
static int do_partly_bound_can_match_greater(Eterm a, Eterm b, 
					     int *done);
static BIF_RETTYPE ets_select_reverse(Process *p, Eterm a1, 
				      Eterm a2, Eterm a3);

/* Method interface functions */
static int db_first_tree(Process *p, DbTable *tbl, 
		  Eterm *ret);
static int db_next_tree(Process *p, DbTable *tbl, 
			Eterm key, Eterm *ret);
static int db_last_tree(Process *p, DbTable *tbl, 
			Eterm *ret);
static int db_prev_tree(Process *p, DbTable *tbl, 
			Eterm key,
			Eterm *ret);
static int db_put_tree(DbTable *tbl, Eterm obj, int key_clash_fail);
static int db_get_tree(Process *p, DbTable *tbl, 
		       Eterm key,  Eterm *ret);
static int db_member_tree(DbTable *tbl, Eterm key, Eterm *ret);
static int db_get_element_tree(Process *p, DbTable *tbl, 
			       Eterm key,int ndex,
			       Eterm *ret);
static int db_erase_tree(DbTable *tbl, Eterm key, Eterm *ret);
static int db_erase_object_tree(DbTable *tbl, Eterm object,Eterm *ret);
static int db_slot_tree(Process *p, DbTable *tbl, 
			Eterm slot_term,  Eterm *ret);
static int db_select_tree(Process *p, DbTable *tbl, 
			  Eterm pattern, int reversed, Eterm *ret);
static int db_select_count_tree(Process *p, DbTable *tbl, 
				Eterm pattern,  Eterm *ret);
static int db_select_chunk_tree(Process *p, DbTable *tbl, 
				Eterm pattern, Sint chunk_size,
				int reversed, Eterm *ret);
static int db_select_continue_tree(Process *p, DbTable *tbl,
				   Eterm continuation, Eterm *ret);
static int db_select_count_continue_tree(Process *p, DbTable *tbl,
					 Eterm continuation, Eterm *ret);
static int db_select_delete_tree(Process *p, DbTable *tbl, 
				 Eterm pattern,  Eterm *ret);
static int db_select_delete_continue_tree(Process *p, DbTable *tbl, 
					  Eterm continuation, Eterm *ret);
static void db_print_tree(int to, void *to_arg,
			  int show, DbTable *tbl);
static int db_free_table_tree(DbTable *tbl);

static int db_free_table_continue_tree(DbTable *tbl);

static void db_foreach_offheap_tree(DbTable *,
				    void (*)(ErlOffHeap *, void *),
				    void *);

static int db_delete_all_objects_tree(Process* p, DbTable* tbl);

#ifdef HARDDEBUG
static void db_check_table_tree(DbTable *tbl);
#endif
static int db_lookup_dbterm_tree(DbTable *, Eterm key, DbUpdateHandle*);
static void db_finalize_dbterm_tree(DbUpdateHandle*);

/*
** Static variables
*/

Export ets_select_reverse_exp;

/*
** External interface 
*/
DbTableMethod db_tree =
{
    db_create_tree,
    db_first_tree,
    db_next_tree,
    db_last_tree,
    db_prev_tree,
    db_put_tree,
    db_get_tree,
    db_get_element_tree,
    db_member_tree,
    db_erase_tree,
    db_erase_object_tree,
    db_slot_tree,
    db_select_chunk_tree,
    db_select_tree, /* why not chunk size=0 ??? */
    db_select_delete_tree,
    db_select_continue_tree,
    db_select_delete_continue_tree,
    db_select_count_tree,
    db_select_count_continue_tree,
    db_delete_all_objects_tree,
    db_free_table_tree,
    db_free_table_continue_tree,
    db_print_tree,
    db_foreach_offheap_tree,
#ifdef HARDDEBUG
    db_check_table_tree,
#else
    NULL,
#endif
    db_lookup_dbterm_tree,
    db_finalize_dbterm_tree

};





void db_initialize_tree(void)
{
    memset(&ets_select_reverse_exp, 0, sizeof(Export));
    ets_select_reverse_exp.address = 
	&ets_select_reverse_exp.code[3];
    ets_select_reverse_exp.code[0] = am_ets;
    ets_select_reverse_exp.code[1] = am_reverse;
    ets_select_reverse_exp.code[2] = 3;
    ets_select_reverse_exp.code[3] =
	(BeamInstr) em_apply_bif;
    ets_select_reverse_exp.code[4] = 
	(BeamInstr) &ets_select_reverse;
    return;
};

/*
** Table interface routines ie what's called by the bif's 
*/

int db_create_tree(Process *p, DbTable *tbl)
{
    DbTableTree *tb = &tbl->tree;
    tb->root = NULL;
    tb->static_stack.array = erts_db_alloc(ERTS_ALC_T_DB_STK,
					   (DbTable *) tb,
					   sizeof(TreeDbTerm *) * STACK_NEED);
    tb->static_stack.pos = 0;
    tb->static_stack.slot = 0;
    erts_smp_atomic_init(&tb->is_stack_busy, 0);
    tb->deletion = 0;
    return DB_ERROR_NONE;
}

static int db_first_tree(Process *p, DbTable *tbl, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    DbTreeStack* stack;
    TreeDbTerm *this;
    Eterm e;
    Eterm *hp;
    Uint sz;

    if (( this = tb->root ) == NULL) {
	*ret = am_EOT;
	return DB_ERROR_NONE;
    }
    /* Walk down to the tree to the left */
    if ((stack = get_static_stack(tb)) != NULL) {
	stack->pos = stack->slot = 0;
    }
    while (this->left != NULL) {
	if (stack) PUSH_NODE(stack, this);
	this = this->left;
    }
    if (stack) {
	PUSH_NODE(stack, this);
	stack->slot = 1;
	release_stack(tb,stack);
    }
    e = GETKEY(tb, this->dbterm.tpl);
    sz = size_object(e);

    hp = HAlloc(p, sz);

    *ret = copy_struct(e,sz,&hp,&MSO(p));
    
    return DB_ERROR_NONE;
}

static int db_next_tree(Process *p, DbTable *tbl, Eterm key, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    DbTreeStack* stack;
    TreeDbTerm *this;
    Eterm e;
    Eterm *hp;
    Uint sz;

    if (is_atom(key) && key == am_EOT)
	return DB_ERROR_BADKEY;
    stack = get_any_stack(tb);
    this = find_next(tb, stack, key);
    release_stack(tb,stack);
    if (this == NULL) {
	*ret = am_EOT;
	return DB_ERROR_NONE;
    }
    e = GETKEY(tb, this->dbterm.tpl);
    sz = size_object(e);

    hp = HAlloc(p, sz);

    *ret = copy_struct(e,sz,&hp,&MSO(p));
    
    return DB_ERROR_NONE;
}

static int db_last_tree(Process *p, DbTable *tbl, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    TreeDbTerm *this;
    DbTreeStack* stack;
    Eterm e;
    Eterm *hp;
    Uint sz;

    if (( this = tb->root ) == NULL) {
	*ret = am_EOT;
	return DB_ERROR_NONE;
    }
    /* Walk down to the tree to the left */
    if ((stack = get_static_stack(tb)) != NULL) {
	stack->pos = stack->slot = 0;
    }    
    while (this->right != NULL) {
	if (stack) PUSH_NODE(stack, this);
	this = this->right;
    }
    if (stack) {
	PUSH_NODE(stack, this);
	stack->slot = NITEMS(tb);
	release_stack(tb,stack);
    }
    e = GETKEY(tb, this->dbterm.tpl);
    sz = size_object(e);

    hp = HAlloc(p, sz);

    *ret = copy_struct(e,sz,&hp,&MSO(p));
    
    return DB_ERROR_NONE;
}

static int db_prev_tree(Process *p, DbTable *tbl, Eterm key, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    TreeDbTerm *this;
    DbTreeStack* stack;
    Eterm e;
    Eterm *hp;
    Uint sz;

    if (is_atom(key) && key == am_EOT)
	return DB_ERROR_BADKEY;
    stack = get_any_stack(tb);
    this = find_prev(tb, stack, key);
    release_stack(tb,stack);
    if (this == NULL) {
	*ret = am_EOT;
	return DB_ERROR_NONE;
    }
    e = GETKEY(tb, this->dbterm.tpl);
    sz = size_object(e);

    hp = HAlloc(p, sz);

    *ret = copy_struct(e,sz,&hp,&MSO(p));
    
    return DB_ERROR_NONE;
}

static int db_put_tree(DbTable *tbl, Eterm obj, int key_clash_fail)
{
    DbTableTree *tb = &tbl->tree;
    /* Non recursive insertion in AVL tree, building our own stack */
    TreeDbTerm **tstack[STACK_NEED];
    int tpos = 0;
    int dstack[STACK_NEED+1];
    int dpos = 0;
    int state = 0;
    TreeDbTerm **this = &tb->root;
    Sint c;
    Eterm key;
    int dir;
    TreeDbTerm *p1, *p2, *p;

    key = GETKEY(tb, tuple_val(obj));

    reset_static_stack(tb);

    dstack[dpos++] = DIR_END;
    for (;;)
	if (!*this) { /* Found our place */
	    state = 1;
	    if (erts_smp_atomic_inctest(&tb->common.nitems) >= TREE_MAX_ELEMENTS) {
		erts_smp_atomic_dec(&tb->common.nitems);
		return DB_ERROR_SYSRES;
	    }
	    *this = new_dbterm(tb, obj);
	    (*this)->balance = 0;
	    (*this)->left = (*this)->right = NULL;
	    break;
	} else if ((c = cmp(key,GETKEY(tb,(*this)->dbterm.tpl))) < 0) { 
	    /* go left */
	    dstack[dpos++] = DIR_LEFT;
	    tstack[tpos++] = this;
	    this = &((*this)->left);
	} else if (c > 0) { /* go right */
	    dstack[dpos++] = DIR_RIGHT;
	    tstack[tpos++] = this;
	    this = &((*this)->right);
	} else if (!key_clash_fail) { /* Equal key and this is a set, replace. */
	    *this = replace_dbterm(tb, *this, obj);
	    break;
	} else {
	    return DB_ERROR_BADKEY; /* key already exists */
	}

    while (state && ( dir = dstack[--dpos] ) != DIR_END) {
	this = tstack[--tpos];
	p = *this;
	if (dir == DIR_LEFT) {
	    switch (p->balance) {
	    case 1:
		p->balance = 0;
		state = 0;
		break;
	    case 0:
		p->balance = -1;
		break;
	    case -1: /* The icky case */
		p1 = p->left;
		if (p1->balance == -1) { /* Single LL rotation */
		    p->left = p1->right;
		    p1->right = p;
		    p->balance = 0;
		    (*this) = p1;
		} else { /* Double RR rotation */
		    p2 = p1->right;
		    p1->right = p2->left;
		    p2->left = p1;
		    p->left = p2->right;
		    p2->right = p;
		    p->balance = (p2->balance == -1) ? +1 : 0;
		    p1->balance = (p2->balance == 1) ? -1 : 0;
		    (*this) = p2;
		}
		(*this)->balance = 0;
		state = 0;
		break;
	    }
	} else { /* dir == DIR_RIGHT */
	    switch (p->balance) {
	    case -1:
		p->balance = 0;
		state = 0;
		break;
	    case 0:
		p->balance = 1;
		break;
	    case 1:
		p1 = p->right;
		if (p1->balance == 1) { /* Single RR rotation */
		    p->right = p1->left;
		    p1->left = p;
		    p->balance = 0;
		    (*this) = p1;
		} else { /* Double RL rotation */
		    p2 = p1->left;
		    p1->left = p2->right;
		    p2->right = p1;
		    p->right = p2->left;
		    p2->left = p;
		    p->balance = (p2->balance == 1) ? -1 : 0;
		    p1->balance = (p2->balance == -1) ? 1 : 0;
		    (*this) = p2;
		}
		(*this)->balance = 0; 
		state = 0;
		break;
	    }
	}
    }
    return DB_ERROR_NONE;
}

static int db_get_tree(Process *p, DbTable *tbl, Eterm key, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    Eterm copy;
    Eterm *hp, *hend;
    TreeDbTerm *this;

    /*
     * This is always a set, so we know exactly how large
     * the data is when we have found it.
     * The list created around it is purely for interface conformance.
     */
    
    this = find_node(tb,key);
    if (this == NULL) {
	*ret = NIL;
    } else {
	hp = HAlloc(p, this->dbterm.size + 2);
	hend = hp + this->dbterm.size + 2;
	copy = db_copy_object_from_ets(&tb->common, &this->dbterm, &hp, &MSO(p));
	*ret = CONS(hp, copy, NIL);
	hp += 2;
	HRelease(p,hend,hp);
    }
    return DB_ERROR_NONE;
}

static int db_member_tree(DbTable *tbl, Eterm key, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;

    *ret = (find_node(tb,key) == NULL) ? am_false : am_true;
    return DB_ERROR_NONE;
}

static int db_get_element_tree(Process *p, DbTable *tbl,
			       Eterm key, int ndex, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    /*
     * Look the node up:
     */
    Eterm *hp;
    TreeDbTerm *this;

    /*
     * This is always a set, so we know exactly how large
     * the data is when we have found it.
     * No list is created around elements in set's so there are no list
     * around the element here either.
     */
    
    this = find_node(tb,key);
    if (this == NULL) {
	return DB_ERROR_BADKEY;
    } else {
	if (ndex > arityval(this->dbterm.tpl[0])) {
	    return DB_ERROR_BADPARAM;
	}
	*ret = db_copy_element_from_ets(&tb->common, p, &this->dbterm, ndex, &hp, 0);
    }
    return DB_ERROR_NONE;
}

static int db_erase_tree(DbTable *tbl, Eterm key, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    TreeDbTerm *res;

    *ret = am_true;

    if ((res = linkout_tree(tb, key)) != NULL) {
	free_term(tb, res);
    }
    return DB_ERROR_NONE;
}

static int db_erase_object_tree(DbTable *tbl, Eterm object, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    TreeDbTerm *res;

    *ret = am_true;

    if ((res = linkout_object_tree(tb, object)) != NULL) {
	free_term(tb, res);
    }
    return DB_ERROR_NONE;
}


static int db_slot_tree(Process *p, DbTable *tbl, 
			Eterm slot_term, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    Sint slot;
    TreeDbTerm *st;
    Eterm *hp, *hend;
    Eterm copy;

    /*
     * The notion of a "slot" is not natural in a tree, but we try to
     * simulate it by giving the n'th node in the tree instead.
     * Traversing a tree in this way is not very convenient, but by
     * using the saved stack we at least sometimes will get acceptable 
     * performance.
     */

    if (is_not_small(slot_term) ||
	((slot = signed_val(slot_term)) < 0) ||
	(slot > NITEMS(tb)))
	return DB_ERROR_BADPARAM;

    if (slot == NITEMS(tb)) {
	*ret = am_EOT;
	return DB_ERROR_NONE;
    }

    /* 
     * We use the slot position and search from there, slot positions 
     * are counted from 1 and up.
     */
    ++slot;
    st = slot_search(p, tb, slot); 
    if (st == NULL) {
	*ret = am_false;
	return DB_ERROR_UNSPEC;
    }
    hp = HAlloc(p, st->dbterm.size + 2);
    hend = hp + st->dbterm.size + 2;
    copy = db_copy_object_from_ets(&tb->common, &st->dbterm, &hp, &MSO(p));
    *ret = CONS(hp, copy, NIL);
    hp += 2;
    HRelease(p,hend,hp);
    return DB_ERROR_NONE;
}



static BIF_RETTYPE ets_select_reverse(Process *p, Eterm a1, Eterm a2, Eterm a3)
{
    Eterm list;
    Eterm result;
    Eterm* hp;
    Eterm* hend;

    int max_iter = CONTEXT_REDS * 10;

    if (is_nil(a1)) {
	hp = HAlloc(p, 3);
	BIF_RET(TUPLE2(hp,a2,a3));
    } else if (is_not_list(a1)) {
    error:
	BIF_ERROR(p, BADARG);
    }
    
    list = a1;
    result = a2;
    hp = hend = NULL;
    while (is_list(list)) {
	Eterm* pair = list_val(list);
	if (--max_iter == 0) {
	    BUMP_ALL_REDS(p);
	    HRelease(p, hend, hp);
	    BIF_TRAP3(&ets_select_reverse_exp, p, list, result, a3);
	}
	if (hp == hend) {
	    hp = HAlloc(p, 64);
	    hend = hp + 64;
	}
	result = CONS(hp, CAR(pair), result);
	hp += 2;
	list = CDR(pair);
    }
    if (is_not_nil(list))  {
	goto error;
    }
    HRelease(p, hend, hp);
    BUMP_REDS(p,CONTEXT_REDS - max_iter / 10);
    hp = HAlloc(p,3);
    BIF_RET(TUPLE2(hp, result, a3));
}

static BIF_RETTYPE bif_trap1(Export *bif,
			     Process *p, 
			     Eterm p1) 
{
    BIF_TRAP1(bif, p, p1);
}
    
static BIF_RETTYPE bif_trap3(Export *bif,
			     Process *p, 
			     Eterm p1, 
			     Eterm p2,
			     Eterm p3) 
{
    BIF_TRAP3(bif, p, p1, p2, p3);
}
    
/*
** This is called either when the select bif traps or when ets:select/1 
** is called. It does mostly the same as db_select_tree and may in either case
** trap to itself again (via the ets:select/1 bif).
** Note that this is common for db_select_tree and db_select_chunk_tree.
*/
static int db_select_continue_tree(Process *p, 
				   DbTable *tbl,
				   Eterm continuation,
				   Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    DbTreeStack* stack;
    struct select_context sc;
    unsigned sz;
    Eterm *hp; 
    Eterm lastkey;
    Eterm end_condition; 
    Binary *mp;
    Eterm key;
    Eterm *tptr;
    Sint chunk_size;
    Sint reverse;


#define RET_TO_BIF(Term, State) do { *ret = (Term); return State; } while(0);

    /* Decode continuation. We know it's a tuple but not the arity or 
       anything else */

    tptr = tuple_val(continuation);

    if (arityval(*tptr) != 8)
	RET_TO_BIF(NIL,DB_ERROR_BADPARAM);
    
    if (!is_small(tptr[4]) || !is_binary(tptr[5]) || 
	!(is_list(tptr[6]) || tptr[6] == NIL) || !is_small(tptr[7]) ||
	!is_small(tptr[8]))
	RET_TO_BIF(NIL,DB_ERROR_BADPARAM);
    
    lastkey = tptr[2];
    end_condition = tptr[3];
    if (!(thing_subtag(*binary_val(tptr[5])) == REFC_BINARY_SUBTAG))
	RET_TO_BIF(NIL,DB_ERROR_BADPARAM);
    mp = ((ProcBin *) binary_val(tptr[5]))->val;
    if (!IsMatchProgBinary(mp))
	RET_TO_BIF(NIL,DB_ERROR_BADPARAM);
    chunk_size = signed_val(tptr[4]);

    sc.p = p;
    sc.accum = tptr[6];
    sc.mp = mp;
    sc.end_condition = NIL;
    sc.lastobj = NULL;
    sc.max = 1000;
    sc.keypos = tb->common.keypos;
    sc.all_objects = mp->flags & BIN_FLAG_ALL_OBJECTS;
    sc.chunk_size = chunk_size;
    reverse = unsigned_val(tptr[7]);
    sc.got = signed_val(tptr[8]);

    stack = get_any_stack(tb);
    if (chunk_size) {
	if (reverse) {
	    traverse_backwards(tb, stack, lastkey, &doit_select_chunk, &sc); 
	} else {
	    traverse_forward(tb, stack, lastkey, &doit_select_chunk, &sc); 
	}
    } else {
	if (reverse) {
	    traverse_forward(tb, stack, lastkey, &doit_select, &sc);
	} else {
	    traverse_backwards(tb, stack, lastkey, &doit_select, &sc);
	}
    }
    release_stack(tb,stack);

    BUMP_REDS(p, 1000 - sc.max);

    if (sc.max > 0 || (chunk_size && sc.got == chunk_size)) {
	if (chunk_size) {
	    Eterm *hp; 
	    unsigned sz;

	    if (sc.got < chunk_size || sc.lastobj == NULL) { 
		/* end of table, sc.lastobj may be NULL as we may have been
		   at the very last object in the table when trapping. */
		if (!sc.got) {
		    RET_TO_BIF(am_EOT, DB_ERROR_NONE);
		} else {
		    RET_TO_BIF(bif_trap3(&ets_select_reverse_exp, p,
					 sc.accum, NIL, am_EOT), 
			       DB_ERROR_NONE);
		}
	    }

	    key = GETKEY(tb, sc.lastobj);

	    sz = size_object(key);
	    hp = HAlloc(p, 9 + sz);
	    key = copy_struct(key, sz, &hp, &MSO(p));
	    continuation = TUPLE8
		(hp,
		 tptr[1],
		 key,
		 tptr[3], 
		 tptr[4],
		 tptr[5],
		 NIL,
		 tptr[7],
		 make_small(0));
	    RET_TO_BIF(bif_trap3(&ets_select_reverse_exp, p,
				 sc.accum, NIL, continuation), 
		       DB_ERROR_NONE);
	} else {
	    RET_TO_BIF(sc.accum, DB_ERROR_NONE);
	}
    }	
    key = GETKEY(tb, sc.lastobj);
    if (chunk_size) {
	if (end_condition != NIL && 
	    ((!reverse && cmp_partly_bound(end_condition,key) < 0) ||
	     (reverse && cmp_partly_bound(end_condition,key) > 0))) { 
	    /* done anyway */
	    if (!sc.got) {
		RET_TO_BIF(am_EOT, DB_ERROR_NONE);
	    } else {
		RET_TO_BIF(bif_trap3(&ets_select_reverse_exp, p, 
				     sc.accum, NIL, am_EOT), 
			   DB_ERROR_NONE);
	    }
	}
    } else {
	if (end_condition != NIL && 
	    ((!reverse && cmp_partly_bound(end_condition,key) > 0) ||
	     (reverse && cmp_partly_bound(end_condition,key) < 0))) { 
	    /* done anyway */
	    RET_TO_BIF(sc.accum,DB_ERROR_NONE);
	}
    }
    /* Not done yet, let's trap. */
    sz = size_object(key);
    hp = HAlloc(p, 9 + sz);
    key = copy_struct(key, sz, &hp, &MSO(p));
    continuation = TUPLE8
	(hp,
	 tptr[1],
	 key,
	 tptr[3], 
	 tptr[4],
	 tptr[5],
	 sc.accum,
	 tptr[7],
	 make_small(sc.got));
    RET_TO_BIF(bif_trap1(bif_export[BIF_ets_select_1], p, continuation), 
	       DB_ERROR_NONE);

#undef RET_TO_BIF
}


static int db_select_tree(Process *p, DbTable *tbl, 
			  Eterm pattern, int reverse, Eterm *ret)
{
    /* Strategy: Traverse backwards to build resulting list from tail to head */
    DbTableTree *tb = &tbl->tree;
    DbTreeStack* stack;
    struct select_context sc;
    struct mp_info mpi;
    Eterm lastkey = THE_NON_VALUE;
    Eterm key;
    Eterm continuation;
    unsigned sz;
    Eterm *hp; 
    TreeDbTerm *this;
    int errcode;
    Eterm mpb;


#define RET_TO_BIF(Term,RetVal) do { 	       	\
	if (mpi.mp != NULL) {			\
	    erts_bin_free(mpi.mp);       	\
	}					\
	*ret = (Term); 				\
	return RetVal; 			        \
    } while(0)

    mpi.mp = NULL;

    sc.accum = NIL;
    sc.lastobj = NULL;
    sc.p = p;
    sc.max = 1000; 
    sc.end_condition = NIL;
    sc.keypos = tb->common.keypos;
    sc.got = 0;
    sc.chunk_size = 0;

    if ((errcode = analyze_pattern(tb, pattern, &mpi)) != DB_ERROR_NONE) {
	RET_TO_BIF(NIL,errcode);
    }

    if (!mpi.something_can_match) {
	RET_TO_BIF(NIL,DB_ERROR_NONE);  
	/* can't possibly match anything */
    }

    sc.mp = mpi.mp;
    sc.all_objects = mpi.all_objects;

    if (!mpi.got_partial && mpi.some_limitation && 
	cmp(mpi.least,mpi.most) == 0) {
	doit_select(tb,mpi.save_term,&sc,0 /* direction doesn't matter */);
	RET_TO_BIF(sc.accum,DB_ERROR_NONE);
    }

    stack = get_any_stack(tb);
    if (reverse) {
	if (mpi.some_limitation) {
	    if ((this = find_prev_from_pb_key(tb, stack, mpi.least)) != NULL) {
		lastkey = GETKEY(tb, this->dbterm.tpl);
	    }
	    sc.end_condition = mpi.most;
	}
	
	traverse_forward(tb, stack, lastkey, &doit_select, &sc);
    } else {
	if (mpi.some_limitation) {
	    if ((this = find_next_from_pb_key(tb, stack, mpi.most)) != NULL) {
		lastkey = GETKEY(tb, this->dbterm.tpl);
	    }
	    sc.end_condition = mpi.least;
	}
	
	traverse_backwards(tb, stack, lastkey, &doit_select, &sc);
    }
    release_stack(tb,stack);
#ifdef HARDDEBUG
	erts_fprintf(stderr,"Least: %T\n", mpi.least);
	erts_fprintf(stderr,"Most: %T\n", mpi.most);
#endif
    BUMP_REDS(p, 1000 - sc.max);
    if (sc.max > 0) {
	RET_TO_BIF(sc.accum,DB_ERROR_NONE);
    }

    key = GETKEY(tb, sc.lastobj);
    sz = size_object(key);
    hp = HAlloc(p, 9 + sz + PROC_BIN_SIZE);
    key = copy_struct(key, sz, &hp, &MSO(p));
    if (mpi.all_objects)
	(mpi.mp)->flags |= BIN_FLAG_ALL_OBJECTS;
    mpb=db_make_mp_binary(p,mpi.mp,&hp);
	    
    continuation = TUPLE8
	(hp,
	 tb->common.id,
	 key,
	 sc.end_condition, /* From the match program, needn't be copied */
	 make_small(0), /* Chunk size of zero means not chunked to the
			   continuation BIF */
	 mpb,
	 sc.accum,
	 make_small(reverse),
	 make_small(sc.got));

    /* Don't free mpi.mp, so don't use macro */
    *ret = bif_trap1(bif_export[BIF_ets_select_1], p, continuation); 
    return DB_ERROR_NONE;

#undef RET_TO_BIF

}

    
/*
** This is called either when the select_count bif traps.
*/
static int db_select_count_continue_tree(Process *p, 
					 DbTable *tbl,
					 Eterm continuation,
					 Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    DbTreeStack* stack;
    struct select_count_context sc;
    unsigned sz;
    Eterm *hp; 
    Eterm lastkey;
    Eterm end_condition; 
    Binary *mp;
    Eterm key;
    Eterm *tptr;
    Eterm egot;


#define RET_TO_BIF(Term, State) do { *ret = (Term); return State; } while(0);

    /* Decode continuation. We know it's a tuple and everything else as
     this is only called by ourselves */

    /* continuation: 
       {Table, Lastkey, EndCondition, MatchProgBin, HowManyGot}*/

    tptr = tuple_val(continuation);

    if (arityval(*tptr) != 5)
	erl_exit(1,"Internal error in ets:select_count/1");
    
    lastkey = tptr[2];
    end_condition = tptr[3];
    if (!(thing_subtag(*binary_val(tptr[4])) == REFC_BINARY_SUBTAG))
	RET_TO_BIF(NIL,DB_ERROR_BADPARAM);
    mp = ((ProcBin *) binary_val(tptr[4]))->val;
    if (!IsMatchProgBinary(mp))
	RET_TO_BIF(NIL,DB_ERROR_BADPARAM);

    sc.p = p;
    sc.mp = mp;
    sc.end_condition = NIL;
    sc.lastobj = NULL;
    sc.max = 1000;
    sc.keypos = tb->common.keypos;
    if (is_big(tptr[5])) {
	sc.got = big_to_uint32(tptr[5]);
    } else {
	sc.got = unsigned_val(tptr[5]);
    }

    stack = get_any_stack(tb);
    traverse_backwards(tb, stack, lastkey, &doit_select_count, &sc);
    release_stack(tb,stack);

    BUMP_REDS(p, 1000 - sc.max);

    if (sc.max > 0) {
	RET_TO_BIF(erts_make_integer(sc.got,p), DB_ERROR_NONE);
    }	
    key = GETKEY(tb, sc.lastobj);
    if (end_condition != NIL && 
	(cmp_partly_bound(end_condition,key) > 0)) { 
	/* done anyway */
	RET_TO_BIF(make_small(sc.got),DB_ERROR_NONE);
    }
    /* Not done yet, let's trap. */
    sz = size_object(key);
    if (IS_USMALL(0, sc.got)) {
	hp = HAlloc(p, sz + 6);
	egot = make_small(sc.got);
    }
    else {
	hp = HAlloc(p, BIG_UINT_HEAP_SIZE + sz + 6);
	egot = uint_to_big(sc.got, hp);
	hp += BIG_UINT_HEAP_SIZE;
    }
    key = copy_struct(key, sz, &hp, &MSO(p));
    continuation = TUPLE5
	(hp,
	 tptr[1],
	 key,
	 tptr[3], 
	 tptr[4],
	 egot);
    RET_TO_BIF(bif_trap1(&ets_select_count_continue_exp, p, continuation), 
	       DB_ERROR_NONE);

#undef RET_TO_BIF
}


static int db_select_count_tree(Process *p, DbTable *tbl, 
				Eterm pattern, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    DbTreeStack* stack;
    struct select_count_context sc;
    struct mp_info mpi;
    Eterm lastkey = THE_NON_VALUE;
    Eterm key;
    Eterm continuation;
    unsigned sz;
    Eterm *hp; 
    TreeDbTerm *this;
    int errcode;
    Eterm egot;
    Eterm mpb;


#define RET_TO_BIF(Term,RetVal) do { 	       	\
	if (mpi.mp != NULL) {			\
	    erts_bin_free(mpi.mp);       	\
	}					\
	*ret = (Term); 				\
	return RetVal; 			        \
    } while(0)

    mpi.mp = NULL;

    sc.lastobj = NULL;
    sc.p = p;
    sc.max = 1000; 
    sc.end_condition = NIL;
    sc.keypos = tb->common.keypos;
    sc.got = 0;

    if ((errcode = analyze_pattern(tb, pattern, &mpi)) != DB_ERROR_NONE) {
	RET_TO_BIF(NIL,errcode);
    }

    if (!mpi.something_can_match) {
	RET_TO_BIF(make_small(0),DB_ERROR_NONE);  
	/* can't possibly match anything */
    }

    sc.mp = mpi.mp;
    sc.all_objects = mpi.all_objects;

    if (!mpi.got_partial && mpi.some_limitation && 
	cmp(mpi.least,mpi.most) == 0) {
	doit_select_count(tb,mpi.save_term,&sc,0 /* dummy */);
	RET_TO_BIF(erts_make_integer(sc.got,p),DB_ERROR_NONE);
    }

    stack = get_any_stack(tb);
    if (mpi.some_limitation) {
	if ((this = find_next_from_pb_key(tb, stack, mpi.most)) != NULL) {
	    lastkey = GETKEY(tb, this->dbterm.tpl);
	}
	sc.end_condition = mpi.least;
    }
    
    traverse_backwards(tb, stack, lastkey, &doit_select_count, &sc);
    release_stack(tb,stack);
    BUMP_REDS(p, 1000 - sc.max);
    if (sc.max > 0) {
	RET_TO_BIF(erts_make_integer(sc.got,p),DB_ERROR_NONE);
    }

    key = GETKEY(tb, sc.lastobj);
    sz = size_object(key);
    if (IS_USMALL(0, sc.got)) {
	hp = HAlloc(p, sz + PROC_BIN_SIZE + 6);
	egot = make_small(sc.got);
    }
    else {
	hp = HAlloc(p, BIG_UINT_HEAP_SIZE + sz + PROC_BIN_SIZE + 6);
	egot = uint_to_big(sc.got, hp);
	hp += BIG_UINT_HEAP_SIZE;
    }
    key = copy_struct(key, sz, &hp, &MSO(p));
    if (mpi.all_objects)
	(mpi.mp)->flags |= BIN_FLAG_ALL_OBJECTS;
    mpb = db_make_mp_binary(p,mpi.mp,&hp);
	    
    continuation = TUPLE5
	(hp,
	 tb->common.id,
	 key,
	 sc.end_condition, /* From the match program, needn't be copied */
	 mpb,
	 egot);

    /* Don't free mpi.mp, so don't use macro */
    *ret = bif_trap1(&ets_select_count_continue_exp, p, continuation); 
    return DB_ERROR_NONE;

#undef RET_TO_BIF

}

static int db_select_chunk_tree(Process *p, DbTable *tbl, 
				Eterm pattern, Sint chunk_size,
				int reverse,
				Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    DbTreeStack* stack;
    struct select_context sc;
    struct mp_info mpi;
    Eterm lastkey = THE_NON_VALUE;
    Eterm key;
    Eterm continuation;
    unsigned sz;
    Eterm *hp; 
    TreeDbTerm *this;
    int errcode;
    Eterm mpb;


#define RET_TO_BIF(Term,RetVal) do { 		\
	if (mpi.mp != NULL) {			\
	    erts_bin_free(mpi.mp);		\
	}					\
	*ret = (Term); 				\
	return RetVal; 			        \
    } while(0)

    mpi.mp = NULL;

    sc.accum = NIL;
    sc.lastobj = NULL;
    sc.p = p;
    sc.max = 1000; 
    sc.end_condition = NIL;
    sc.keypos = tb->common.keypos;
    sc.got = 0;
    sc.chunk_size = chunk_size;

    if ((errcode = analyze_pattern(tb, pattern, &mpi)) != DB_ERROR_NONE) {
	RET_TO_BIF(NIL,errcode);
    }

    if (!mpi.something_can_match) {
	RET_TO_BIF(am_EOT,DB_ERROR_NONE);
	/* can't possibly match anything */
    }

    sc.mp = mpi.mp;
    sc.all_objects = mpi.all_objects;

    if (!mpi.got_partial && mpi.some_limitation && 
	cmp(mpi.least,mpi.most) == 0) {
	doit_select(tb,mpi.save_term,&sc, 0 /* direction doesn't matter */);
	if (sc.accum != NIL) {
	    hp=HAlloc(p, 3);
	    RET_TO_BIF(TUPLE2(hp,sc.accum,am_EOT),DB_ERROR_NONE);
	} else {
	    RET_TO_BIF(am_EOT,DB_ERROR_NONE);
	}
    }

    stack = get_any_stack(tb);
    if (reverse) {
	if (mpi.some_limitation) {
	    if ((this = find_next_from_pb_key(tb, stack, mpi.most)) != NULL) {
		lastkey = GETKEY(tb, this->dbterm.tpl);
	    }
	    sc.end_condition = mpi.least;
	}

	traverse_backwards(tb, stack, lastkey, &doit_select_chunk, &sc);
    } else {
	if (mpi.some_limitation) {
	    if ((this = find_prev_from_pb_key(tb, stack, mpi.least)) != NULL) {
		lastkey = GETKEY(tb, this->dbterm.tpl);
	    }
	    sc.end_condition = mpi.most;
	}

	traverse_forward(tb, stack, lastkey, &doit_select_chunk, &sc);
    }
    release_stack(tb,stack);

    BUMP_REDS(p, 1000 - sc.max);
    if (sc.max > 0 || sc.got == chunk_size) {
	Eterm *hp; 
	unsigned sz;

	if (sc.got < chunk_size ||
	    sc.lastobj == NULL) { 
	    /* We haven't got all and we haven't trapped 
	       which should mean we are at the end of the 
	       table, sc.lastobj may be NULL if the table was empty */
	    
	    if (!sc.got) {
		RET_TO_BIF(am_EOT, DB_ERROR_NONE);
	    } else {
		RET_TO_BIF(bif_trap3(&ets_select_reverse_exp, p,
				     sc.accum, NIL, am_EOT), 
			   DB_ERROR_NONE);
	    }
	}

	key = GETKEY(tb, sc.lastobj);
	sz = size_object(key);
	hp = HAlloc(p, 9 + sz + PROC_BIN_SIZE);
	key = copy_struct(key, sz, &hp, &MSO(p));
	if (mpi.all_objects)
	    (mpi.mp)->flags |= BIN_FLAG_ALL_OBJECTS;
	mpb = db_make_mp_binary(p,mpi.mp,&hp);
	
	continuation = TUPLE8
	    (hp,
	     tb->common.id,
	     key,
	     sc.end_condition, /* From the match program, 
				  needn't be copied */
	     make_small(chunk_size),
	     mpb,
	     NIL,
	     make_small(reverse),
	     make_small(0));
	/* Don't let RET_TO_BIF macro free mpi.mp*/
	*ret = bif_trap3(&ets_select_reverse_exp, p,
			 sc.accum, NIL, continuation);
	return DB_ERROR_NONE; 
    }

    key = GETKEY(tb, sc.lastobj);
    sz = size_object(key);
    hp = HAlloc(p, 9 + sz + PROC_BIN_SIZE);
    key = copy_struct(key, sz, &hp, &MSO(p));

    if (mpi.all_objects)
	(mpi.mp)->flags |= BIN_FLAG_ALL_OBJECTS;
    mpb = db_make_mp_binary(p,mpi.mp,&hp);    
    continuation = TUPLE8
	(hp,
	 tb->common.id,
	 key,
	 sc.end_condition, /* From the match program, needn't be copied */
	 make_small(chunk_size),
	 mpb,
	 sc.accum,
	 make_small(reverse),
	 make_small(sc.got));
    /* Don't let RET_TO_BIF macro free mpi.mp*/
    *ret = bif_trap1(bif_export[BIF_ets_select_1], p, continuation);
    return DB_ERROR_NONE;

#undef RET_TO_BIF

}

/*
** This is called when select_delete traps
*/
static int db_select_delete_continue_tree(Process *p, 
					  DbTable *tbl,
					  Eterm continuation,
					  Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    struct select_delete_context sc;
    unsigned sz;
    Eterm *hp; 
    Eterm lastkey;
    Eterm end_condition; 
    Binary *mp;
    Eterm key;
    Eterm *tptr;
    Eterm eaccsum;


#define RET_TO_BIF(Term, State) do { 		\
	if (sc.erase_lastterm) {		\
	    free_term(tb, sc.lastterm);		\
	}					\
	*ret = (Term); 				\
	return State; 				\
    } while(0);

    /* Decode continuation. We know it's correct, this can only be called
       by trapping */

    tptr = tuple_val(continuation);

    lastkey = tptr[2];
    end_condition = tptr[3];

    sc.erase_lastterm = 0; /* Before first RET_TO_BIF */
    sc.lastterm = NULL;

    mp = ((ProcBin *) binary_val(tptr[4]))->val;
    sc.p = p;
    sc.tb = tb;
    if (is_big(tptr[5])) {
	sc.accum = big_to_uint32(tptr[5]);
    } else {
	sc.accum = unsigned_val(tptr[5]);
    }
    sc.mp = mp;
    sc.end_condition = NIL;
    sc.max = 1000;
    sc.keypos = tb->common.keypos;

    ASSERT(!erts_smp_atomic_read(&tb->is_stack_busy));
    traverse_backwards(tb, &tb->static_stack, lastkey, &doit_select_delete, &sc);

    BUMP_REDS(p, 1000 - sc.max);

    if (sc.max > 0) {
	RET_TO_BIF(erts_make_integer(sc.accum, p), DB_ERROR_NONE);
    }	
    key = GETKEY(tb, (sc.lastterm)->dbterm.tpl);
    if (end_condition != NIL && 
	cmp_partly_bound(end_condition,key) > 0) { /* done anyway */
	RET_TO_BIF(erts_make_integer(sc.accum,p),DB_ERROR_NONE);
    }
    /* Not done yet, let's trap. */
    sz = size_object(key);
    if (IS_USMALL(0, sc.accum)) {
	hp = HAlloc(p, sz + 6);
	eaccsum = make_small(sc.accum);
    }
    else {
	hp = HAlloc(p, BIG_UINT_HEAP_SIZE + sz + 6);
	eaccsum = uint_to_big(sc.accum, hp);
	hp += BIG_UINT_HEAP_SIZE;
    }
    key = copy_struct(key, sz, &hp, &MSO(p));
    continuation = TUPLE5
	(hp,
	 tptr[1],
	 key,
	 tptr[3], 
	 tptr[4],
	 eaccsum);
    RET_TO_BIF(bif_trap1(&ets_select_delete_continue_exp, p, continuation), 
	       DB_ERROR_NONE);

#undef RET_TO_BIF
}

static int db_select_delete_tree(Process *p, DbTable *tbl, 
				 Eterm pattern, Eterm *ret)
{
    DbTableTree *tb = &tbl->tree;
    struct select_delete_context sc;
    struct mp_info mpi;
    Eterm lastkey = THE_NON_VALUE;
    Eterm key;
    Eterm continuation;
    unsigned sz;
    Eterm *hp; 
    TreeDbTerm *this;
    int errcode;
    Eterm mpb;
    Eterm eaccsum;

#define RET_TO_BIF(Term,RetVal) do { 	       	\
	if (mpi.mp != NULL) {			\
	    erts_bin_free(mpi.mp);       	\
	}					\
	if (sc.erase_lastterm) {                \
	    free_term(tb, sc.lastterm);         \
	}                                       \
	*ret = (Term); 				\
	return RetVal; 			        \
    } while(0)

    mpi.mp = NULL;

    sc.accum = 0;
    sc.erase_lastterm = 0;
    sc.lastterm = NULL;
    sc.p = p;
    sc.max = 1000; 
    sc.end_condition = NIL;
    sc.keypos = tb->common.keypos;
    sc.tb = tb;
    
    if ((errcode = analyze_pattern(tb, pattern, &mpi)) != DB_ERROR_NONE) {
	RET_TO_BIF(0,errcode);
    }

    if (!mpi.something_can_match) {
	RET_TO_BIF(make_small(0),DB_ERROR_NONE);  
	/* can't possibly match anything */
    }

    sc.mp = mpi.mp;

    if (!mpi.got_partial && mpi.some_limitation && 
	cmp(mpi.least,mpi.most) == 0) {
	doit_select_delete(tb,mpi.save_term,&sc, 0 /* direction doesn't 
						      matter */);
	RET_TO_BIF(erts_make_integer(sc.accum,p),DB_ERROR_NONE);
    }

    if (mpi.some_limitation) {
	if ((this = find_next_from_pb_key(tb, &tb->static_stack, mpi.most)) != NULL) {
	    lastkey = GETKEY(tb, this->dbterm.tpl);
	}
	sc.end_condition = mpi.least;
    }

    traverse_backwards(tb, &tb->static_stack, lastkey, &doit_select_delete, &sc);
    BUMP_REDS(p, 1000 - sc.max);

    if (sc.max > 0) {
	RET_TO_BIF(erts_make_integer(sc.accum,p), DB_ERROR_NONE);
    }

    key = GETKEY(tb, (sc.lastterm)->dbterm.tpl);
    sz = size_object(key);
    if (IS_USMALL(0, sc.accum)) {
	hp = HAlloc(p, sz + PROC_BIN_SIZE + 6);
	eaccsum = make_small(sc.accum);
    }
    else {
	hp = HAlloc(p, BIG_UINT_HEAP_SIZE + sz + PROC_BIN_SIZE + 6);
	eaccsum = uint_to_big(sc.accum, hp);
	hp += BIG_UINT_HEAP_SIZE;
    }
    key = copy_struct(key, sz, &hp, &MSO(p));
    mpb = db_make_mp_binary(p,mpi.mp,&hp);
    
    continuation = TUPLE5
	(hp,
	 tb->common.id,
	 key,
	 sc.end_condition, /* From the match program, needn't be copied */
	 mpb,
	 eaccsum);

    /* Don't free mpi.mp, so don't use macro */
    if (sc.erase_lastterm) {
	free_term(tb, sc.lastterm);
    }
    *ret = bif_trap1(&ets_select_delete_continue_exp, p, continuation); 
    return DB_ERROR_NONE;

#undef RET_TO_BIF

}

/*
** Other interface routines (not directly coupled to one bif)
*/

/* Display tree contents (for dump) */
static void db_print_tree(int to, void *to_arg, 
			  int show,
			  DbTable *tbl)
{
    DbTableTree *tb = &tbl->tree;
#ifdef TREE_DEBUG
    if (show)
	erts_print(to, to_arg, "\nTree data dump:\n"
		   "------------------------------------------------\n");
    do_dump_tree2(to, to_arg, show, tb->root, 0);
    if (show)
	erts_print(to, to_arg, "\n"
		   "------------------------------------------------\n");
#else
    erts_print(to, to_arg, "Ordered set (AVL tree), Elements: %d\n", NITEMS(tb));
    do_dump_tree(to, to_arg, tb->root);
#endif
}

/* release all memory occupied by a single table */
static int db_free_table_tree(DbTable *tbl)
{
    while (!db_free_table_continue_tree(tbl))
	;
    return 1;
}

static int db_free_table_continue_tree(DbTable *tbl)
{
    DbTableTree *tb = &tbl->tree;
    int result;

    if (!tb->deletion) {
	tb->static_stack.pos = 0;
	tb->deletion = 1;
	PUSH_NODE(&tb->static_stack, tb->root);
    }
    result = do_free_tree_cont(tb, DELETE_RECORD_LIMIT);
    if (result) {		/* Completely done. */
	erts_db_free(ERTS_ALC_T_DB_STK,
		     (DbTable *) tb,
		     (void *) tb->static_stack.array,
		     sizeof(TreeDbTerm *) * STACK_NEED);
	ASSERT(erts_smp_atomic_read(&tb->common.memory_size)
	       == sizeof(DbTable));
    }
    return result;
}

static int db_delete_all_objects_tree(Process* p, DbTable* tbl)
{
    db_free_table_tree(tbl);
    db_create_tree(p, tbl);
    erts_smp_atomic_set(&tbl->tree.common.nitems, 0);
    return 0;
}

static void do_db_tree_foreach_offheap(TreeDbTerm *,
				       void (*)(ErlOffHeap *, void *),
				       void *);

static void db_foreach_offheap_tree(DbTable *tbl,
				    void (*func)(ErlOffHeap *, void *),
				    void * arg)
{
    do_db_tree_foreach_offheap(tbl->tree.root, func, arg);
}


/*
** Functions for internal use
*/


static void
do_db_tree_foreach_offheap(TreeDbTerm *tdbt,
			   void (*func)(ErlOffHeap *, void *),
			   void * arg)
{
    ErlOffHeap tmp_offheap;
    if(!tdbt)
	return;
    do_db_tree_foreach_offheap(tdbt->left, func, arg);
    tmp_offheap.first = tdbt->dbterm.first_oh;
    tmp_offheap.overhead = 0;
    (*func)(&tmp_offheap, arg);
    tdbt->dbterm.first_oh = tmp_offheap.first;
    do_db_tree_foreach_offheap(tdbt->right, func, arg);
}

static TreeDbTerm *linkout_tree(DbTableTree *tb, 
				Eterm key)
{
    TreeDbTerm **tstack[STACK_NEED];
    int tpos = 0;
    int dstack[STACK_NEED+1];
    int dpos = 0;
    int state = 0;
    TreeDbTerm **this = &tb->root;
    Sint c;
    int dir;
    TreeDbTerm *q = NULL;

    /*
     * Somewhat complicated, deletion in an AVL tree,
     * The two helpers balance_left and balance_right are used to
     * keep the balance. As in insert, we do the stacking ourselves.
     */

    reset_static_stack(tb);
    dstack[dpos++] = DIR_END;
    for (;;) {
	if (!*this) { /* Failure */
	    return NULL;
	} else if ((c = cmp(key,GETKEY(tb,(*this)->dbterm.tpl))) < 0) { 
	    dstack[dpos++] = DIR_LEFT;
	    tstack[tpos++] = this;
	    this = &((*this)->left);
	} else if (c > 0) { /* go right */
	    dstack[dpos++] = DIR_RIGHT;
	    tstack[tpos++] = this;
	    this = &((*this)->right);
	} else { /* Equal key, found the one to delete*/
	    q = (*this);
	    if (q->right == NULL) {
		(*this) = q->left;
		state = 1;
	    } else if (q->left == NULL) {
		(*this) = q->right;
		state = 1;
	    } else {
		dstack[dpos++] = DIR_LEFT;
		tstack[tpos++] = this;
		state = delsub(this);
	    }
	    erts_smp_atomic_dec(&tb->common.nitems);
	    break;
	}
    }
    while (state && ( dir = dstack[--dpos] ) != DIR_END) {
	this = tstack[--tpos];
	if (dir == DIR_LEFT) {
	    state = balance_left(this);
	} else {
	    state = balance_right(this);
	}
    }
    return q;
}

static TreeDbTerm *linkout_object_tree(DbTableTree *tb, 
				       Eterm object)
{
    TreeDbTerm **tstack[STACK_NEED];
    int tpos = 0;
    int dstack[STACK_NEED+1];
    int dpos = 0;
    int state = 0;
    TreeDbTerm **this = &tb->root;
    Sint c;
    int dir;
    TreeDbTerm *q = NULL;
    Eterm key;

    /*
     * Somewhat complicated, deletion in an AVL tree,
     * The two helpers balance_left and balance_right are used to
     * keep the balance. As in insert, we do the stacking ourselves.
     */

    
    key = GETKEY(tb, tuple_val(object));

    reset_static_stack(tb);
    dstack[dpos++] = DIR_END;
    for (;;) {
	if (!*this) { /* Failure */
	    return NULL;
	} else if ((c = cmp(key,GETKEY(tb,(*this)->dbterm.tpl))) < 0) { 
	    dstack[dpos++] = DIR_LEFT;
	    tstack[tpos++] = this;
	    this = &((*this)->left);
	} else if (c > 0) { /* go right */
	    dstack[dpos++] = DIR_RIGHT;
	    tstack[tpos++] = this;
	    this = &((*this)->right);
	} else { /* Equal key, found the only possible matching object*/
	    if (!db_eq(&tb->common,object,&(*this)->dbterm)) {
		return NULL;
	    }
	    q = (*this);
	    if (q->right == NULL) {
		(*this) = q->left;
		state = 1;
	    } else if (q->left == NULL) {
		(*this) = q->right;
		state = 1;
	    } else {
		dstack[dpos++] = DIR_LEFT;
		tstack[tpos++] = this;
		state = delsub(this);
	    }
	    erts_smp_atomic_dec(&tb->common.nitems);
	    break;
	}
    }
    while (state && ( dir = dstack[--dpos] ) != DIR_END) {
	this = tstack[--tpos];
	if (dir == DIR_LEFT) {
	    state = balance_left(this);
	} else {
	    state = balance_right(this);
	}
    }
    return q;
}

/*
** For the select functions, analyzes the pattern and determines which
** part of the tree should be searched. Also compiles the match program
*/
static int analyze_pattern(DbTableTree *tb, Eterm pattern, 
			   struct mp_info *mpi)
{
    Eterm lst, tpl, ttpl;
    Eterm *matches,*guards, *bodies;
    Eterm sbuff[30];
    Eterm *buff = sbuff;
    Eterm *ptpl;
    int i;
    int num_heads = 0;
    Eterm key;
    Eterm partly_bound;
    int res;
    Eterm least = 0;
    Eterm most = 0;

    mpi->some_limitation = 1;
    mpi->got_partial = 0;
    mpi->something_can_match = 0;
    mpi->mp = NULL;
    mpi->all_objects = 1;
    mpi->save_term = NULL;

    for (lst = pattern; is_list(lst); lst = CDR(list_val(lst)))
	++num_heads;

    if (lst != NIL) {/* proper list... */
	return DB_ERROR_BADPARAM;
    }
    if (num_heads > 10) {
	buff = erts_alloc(ERTS_ALC_T_DB_TMP, sizeof(Eterm) * num_heads * 3);
    }

    matches = buff;
    guards = buff + num_heads;
    bodies = buff + (num_heads * 2);

    i = 0;
    for(lst = pattern; is_list(lst); lst = CDR(list_val(lst))) {
	Eterm body;
	ttpl = CAR(list_val(lst));
	if (!is_tuple(ttpl)) {
	    if (buff != sbuff) { 
		erts_free(ERTS_ALC_T_DB_TMP, buff);
	    }
	    return DB_ERROR_BADPARAM;
	}
	ptpl = tuple_val(ttpl);
	if (ptpl[0] != make_arityval(3U)) {
	    if (buff != sbuff) { 
		erts_free(ERTS_ALC_T_DB_TMP, buff);
	    }
	    return DB_ERROR_BADPARAM;
	}
	matches[i] = tpl = ptpl[1];
	guards[i] = ptpl[2];
	bodies[i] = body = ptpl[3];
	if (!is_list(body) || CDR(list_val(body)) != NIL ||
	    CAR(list_val(body)) != am_DollarUnderscore) {
	    mpi->all_objects = 0;
	}
	++i;

	partly_bound = NIL;
	res = key_given(tb, tpl, &mpi->save_term, &partly_bound);
	if ( res >= 0 ) {   /* Can match something */
	    key = 0;
	    mpi->something_can_match = 1;
	    if (res > 0) {
		key = GETKEY(tb,tuple_val(tpl)); 
	    } else if (partly_bound != NIL) {
		mpi->got_partial = 1;
		key = partly_bound;
	    } else {
		mpi->some_limitation = 0;
	    }
	    if (key != 0) {
		if (least == 0 || 
		    partly_bound_can_match_lesser(key,least)) {
		    least = key;
		}
		if (most == 0 || 
		    partly_bound_can_match_greater(key,most)) {
		    most = key;
		}
	    }
	}
    }
    mpi->least = least;
    mpi->most = most;

    /*
     * It would be nice not to compile the match_spec if nothing could match,
     * but then the select calls would not fail like they should on bad 
     * match specs that happen to specify non existent keys etc.
     */
    if ((mpi->mp = db_match_compile(matches, guards, bodies,
				    num_heads, DCOMP_TABLE, NULL)) 
	== NULL) {
	if (buff != sbuff) { 
	    erts_free(ERTS_ALC_T_DB_TMP, buff);
	}
	return DB_ERROR_BADPARAM;
    }
    if (buff != sbuff) { 
	erts_free(ERTS_ALC_T_DB_TMP, buff);
    }
    return DB_ERROR_NONE;
}

static void do_dump_tree(int to, void *to_arg, TreeDbTerm *t)
{
    if (t != NULL) {
	do_dump_tree(to, to_arg, t->left);
	erts_print(to, to_arg, "%T\n", make_tuple(t->dbterm.tpl));
	do_dump_tree(to, to_arg, t->right); 
    }
}

static int do_free_tree_cont(DbTableTree *tb, int num_left)
{
    TreeDbTerm *root;
    TreeDbTerm *p;

    for (;;) {
	root = POP_NODE(&tb->static_stack);
	if (root == NULL) break;
	for (;;) {
	    if ((p = root->left) != NULL) {
		root->left = NULL;
		PUSH_NODE(&tb->static_stack, root);
		root = p;
	    } else if ((p = root->right) != NULL) {
		root->right = NULL;
		PUSH_NODE(&tb->static_stack, root);
		root = p;
	    } else {
		free_term(tb, root);
		if (--num_left > 0) {
		    break;
		} else {
		    return 0;	/* Done enough for now */
		}
	    }
	}
    }
    return 1;
}

/*
 * Deletion helpers
 */
static int balance_left(TreeDbTerm **this) 
{
    TreeDbTerm *p, *p1, *p2;
    int b1, b2, h = 1;
    
    p = *this;
    switch (p->balance) {
    case -1:
	p->balance = 0;
	break;
    case 0:
	p->balance = 1;
	h = 0;
	break;
    case 1:
	p1 = p->right;
	b1 = p1->balance;
	if (b1 >= 0) { /* Single RR rotation */
	    p->right = p1->left;
	    p1->left = p;
	    if (b1 == 0) {
		p->balance = 1;
		p1->balance = -1;
		h = 0;
	    } else {
		p->balance = p1->balance = 0;
	    }
	    (*this) = p1;
	} else { /* Double RL rotation */
	    p2 = p1->left;
	    b2 = p2->balance;
	    p1->left = p2->right;
	    p2->right = p1;
	    p->right = p2->left;
	    p2->left = p;
	    p->balance = (b2 == 1) ? -1 : 0;
	    p1->balance = (b2 == -1) ? 1 : 0;
	    p2->balance = 0;
	    (*this) = p2;
	}
	break;
    }
    return h;
}

static int balance_right(TreeDbTerm **this) 
{
    TreeDbTerm *p, *p1, *p2;
    int b1, b2, h = 1;
    
    p = *this;
    switch (p->balance) {
    case 1:
	p->balance = 0;
	break;
    case 0:
	p->balance = -1;
	h = 0;
	break;
    case -1:
	p1 = p->left;
	b1 = p1->balance;
	if (b1 <= 0) { /* Single LL rotation */
	    p->left = p1->right;
	    p1->right = p;
	    if (b1 == 0) {
		p->balance = -1;
		p1->balance = 1;
		h = 0;
	    } else {
		p->balance = p1->balance = 0;
	    }
	    (*this) = p1;
	} else { /* Double LR rotation */
	    p2 = p1->right;
	    b2 = p2->balance;
	    p1->right = p2->left;
	    p2->left = p1;
	    p->left = p2->right;
	    p2->right = p;
	    p->balance = (b2 == -1) ? 1 : 0;
	    p1->balance = (b2 == 1) ? -1 : 0;
	    p2->balance = 0;
	    (*this) = p2;
	}
    }
    return h;
}

static int delsub(TreeDbTerm **this) 
{
    TreeDbTerm **tstack[STACK_NEED];
    int tpos = 0;
    TreeDbTerm *q = (*this);
    TreeDbTerm **r = &(q->left);
    int h;

    /*
     * Walk down the tree to the right and search 
     * for a void right child, pick that child out
     * and return it to be put in the deleted 
     * object's place.
     */
    
    while ((*r)->right != NULL) {
	tstack[tpos++] = r;
	r = &((*r)->right);
    }
    *this = *r;
    *r = (*r)->left;
    (*this)->left = q->left;
    (*this)->right = q->right;
    (*this)->balance = q->balance;
    tstack[0] = &((*this)->left);
    h = 1;
    while (tpos && h) {
	r = tstack[--tpos];
	h = balance_right(r);
    }
    return h;
}

/*
 * Helper for db_slot
 */

static TreeDbTerm *slot_search(Process *p, DbTableTree *tb, Sint slot)
{
    TreeDbTerm *this;
    TreeDbTerm *tmp;
    DbTreeStack* stack = get_any_stack(tb);
    ASSERT(stack != NULL);

    if (slot == 1) { /* Don't search from where we are if we are 
			looking for the first slot */
	stack->slot = 0;
    }

    if (stack->slot == 0) { /* clear stack if slot positions 
				are not recorded */
	stack->pos = 0;
    }
    if (EMPTY_NODE(stack)) {
	this = tb->root;
	if (this == NULL)
	    goto done;
	while (this->left != NULL){
	    PUSH_NODE(stack, this);
	    this = this->left;
	}
	PUSH_NODE(stack, this);
	stack->slot = 1;
    }
    this = TOP_NODE(stack);
    while (stack->slot != slot && this != NULL) {
	if (slot > stack->slot) {
	    if (this->right != NULL) {
		this = this->right;
		while (this->left != NULL) {
		    PUSH_NODE(stack, this);
		    this = this->left;
		}
		PUSH_NODE(stack, this);
	    } else {
		for (;;) {
		    tmp = POP_NODE(stack);
		    this = TOP_NODE(stack);
		    if (this == NULL || this->left == tmp)
			break;
		}
	    }		
	    ++(stack->slot);
	} else {
	    if (this->left != NULL) {
		this = this->left;
		while (this->right != NULL) {
		    PUSH_NODE(stack, this);
		    this = this->right;
		}
		PUSH_NODE(stack, this);
	    } else {
		for (;;) {
		    tmp = POP_NODE(stack);
		    this = TOP_NODE(stack);
		    if (this == NULL || this->right == tmp)
			break;
		}
	    }		
	    --(stack->slot);
	}
    }
done:
    release_stack(tb,stack);
    return this;
}

/*
 * Find next and previous in sort order
 */

static TreeDbTerm *find_next(DbTableTree *tb, DbTreeStack* stack, Eterm key)
{
    TreeDbTerm *this;
    TreeDbTerm *tmp;
    Sint c;

    if(( this = TOP_NODE(stack)) != NULL) {
	if (!CMP_EQ(GETKEY(tb, this->dbterm.tpl),key)) {
	    /* Start from the beginning */
	    stack->pos = stack->slot = 0;
	}
    }
    if (EMPTY_NODE(stack)) { /* Have to rebuild the stack */
	if (( this = tb->root ) == NULL)
	    return NULL;
	for (;;) {
	    PUSH_NODE(stack, this);
	    if (( c = cmp(GETKEY(tb, this->dbterm.tpl),key) ) < 0) {
		if (this->right == NULL) /* We are at the previos 
					    and the element does
					    not exist */
		    break;
		else
		    this = this->right;
	    } else if (c > 0) {
		if (this->left == NULL) /* Done */
		    return this;
		else
		    this = this->left;
	    } else
		break;
	}
    }
    /* The next element from this... */
    if (this->right != NULL) {
	this = this->right;
	PUSH_NODE(stack,this);
	while (this->left != NULL) {
	    this = this->left;
	    PUSH_NODE(stack, this);
	}
	if (stack->slot > 0) 
	    ++(stack->slot);
    } else {
	do {
	    tmp = POP_NODE(stack);
	    if (( this = TOP_NODE(stack)) == NULL) {
		stack->slot = 0;
		return NULL;
	    }
	} while (this->right == tmp);
	if (stack->slot > 0) 
	    ++(stack->slot);
    }
    return this;
}

static TreeDbTerm *find_prev(DbTableTree *tb, DbTreeStack* stack, Eterm key)
{
    TreeDbTerm *this;
    TreeDbTerm *tmp;
    Sint c;

    if(( this = TOP_NODE(stack)) != NULL) {
	if (!CMP_EQ(GETKEY(tb, this->dbterm.tpl),key)) {
	    /* Start from the beginning */
	    stack->pos = stack->slot = 0;
	}
    }
    if (EMPTY_NODE(stack)) { /* Have to rebuild the stack */
	if (( this = tb->root ) == NULL)
	    return NULL;
	for (;;) {
	    PUSH_NODE(stack, this);
	    if (( c = cmp(GETKEY(tb, this->dbterm.tpl),key) ) > 0) {
		if (this->left == NULL) /* We are at the next 
					   and the element does
					   not exist */
		    break;
		else
		    this = this->left;
	    } else if (c < 0) {
		if (this->right == NULL) /* Done */
		    return this;
		else
		    this = this->right;
	    } else
		break;
	}
    }
    /* The previous element from this... */
    if (this->left != NULL) {
	this = this->left;
	PUSH_NODE(stack,this);
	while (this->right != NULL) {
	    this = this->right;
	    PUSH_NODE(stack, this);
	}
	if (stack->slot > 0) 
	    --(stack->slot);
    } else {
	do {
	    tmp = POP_NODE(stack);
	    if (( this = TOP_NODE(stack)) == NULL) {
		stack->slot = 0;
		return NULL;
	    }
	} while (this->left == tmp);
	if (stack->slot > 0) 
	    --(stack->slot);
    }
    return this;
}

static TreeDbTerm *find_next_from_pb_key(DbTableTree *tb, DbTreeStack* stack,
					 Eterm key)
{
    TreeDbTerm *this;
    TreeDbTerm *tmp;
    Sint c;

    /* spool the stack, we have to "re-search" */
    stack->pos = stack->slot = 0;
    if (( this = tb->root ) == NULL)
	return NULL;
    for (;;) {
	PUSH_NODE(stack, this);
	if (( c = cmp_partly_bound(key,GETKEY(tb, this->dbterm.tpl)) ) >= 0) {
	    if (this->right == NULL) {
		do {
		    tmp = POP_NODE(stack);
		    if (( this = TOP_NODE(stack)) == NULL) {
			return NULL;
		    }
		} while (this->right == tmp);
		return this;
	    } else
		this = this->right;
	} else /*if (c < 0)*/ {
	    if (this->left == NULL) /* Done */
		return this;
	    else
		this = this->left;
	} 
    }
}

static TreeDbTerm *find_prev_from_pb_key(DbTableTree *tb, DbTreeStack* stack,
					 Eterm key)
{
    TreeDbTerm *this;
    TreeDbTerm *tmp;
    Sint c;

    /* spool the stack, we have to "re-search" */
    stack->pos = stack->slot = 0;
    if (( this = tb->root ) == NULL)
	return NULL;
    for (;;) {
	PUSH_NODE(stack, this);
	if (( c = cmp_partly_bound(key,GETKEY(tb, this->dbterm.tpl)) ) <= 0) {
	    if (this->left == NULL) {
		do {
		    tmp = POP_NODE(stack);
		    if (( this = TOP_NODE(stack)) == NULL) {
			return NULL;
		    }
		} while (this->left == tmp);
		return this;
	    } else
		this = this->left;
	} else /*if (c < 0)*/ {
	    if (this->right == NULL) /* Done */
		return this;
	    else
		this = this->right;
	} 
    }
}


/*
 * Just lookup a node
 */
static TreeDbTerm *find_node(DbTableTree *tb, Eterm key)
{
    TreeDbTerm *this;
    Sint res;
    DbTreeStack* stack = get_static_stack(tb);

    if(!stack || EMPTY_NODE(stack) 
       || !CMP_EQ(GETKEY(tb, ( this = TOP_NODE(stack) )->dbterm.tpl), key)) {

	this = tb->root;
	while (this != NULL && 
	       ( res = cmp(key, GETKEY(tb, this->dbterm.tpl)) ) != 0) {
	    if (res < 0)
		this = this->left;
	    else
		this = this->right;
	}
    }
    if (stack) {
	release_stack(tb,stack);
    }
    return this;
}

/*
 * Lookup a node and return the address of the node pointer in the tree
 */
static TreeDbTerm **find_node2(DbTableTree *tb, Eterm key)
{
    TreeDbTerm **this;
    Sint res;

    this = &tb->root;
    while ((*this) != NULL && 
	   ( res = cmp(key, GETKEY(tb, (*this)->dbterm.tpl)) ) != 0) {
	if (res < 0)
	    this = &((*this)->left);
	else
	    this = &((*this)->right);
    }
    if (*this == NULL)
	return NULL;
    return this;
}

static int db_lookup_dbterm_tree(DbTable *tbl, Eterm key, DbUpdateHandle* handle)
{
    DbTableTree *tb = &tbl->tree;
    TreeDbTerm **pp = find_node2(tb, key);

    if (pp == NULL) return 0;

    handle->tb = tbl;
    handle->dbterm = &(*pp)->dbterm;
    handle->mustResize = 0;
    handle->bp = (void**) pp;
    handle->new_size = (*pp)->dbterm.size;
    return 1;
}

static void db_finalize_dbterm_tree(DbUpdateHandle* handle)
{
    if (handle->mustResize) {
	TreeDbTerm* oldp = (TreeDbTerm*) *handle->bp;

	db_finalize_resize(handle, offsetof(TreeDbTerm,dbterm));
	reset_static_stack(&handle->tb->tree);

	free_term(&handle->tb->tree, oldp);
    }
#ifdef DEBUG
    handle->dbterm = 0;
#endif
    return;
}   

/*
 * Traverse the tree with a callback function, used by db_match_xxx
 */
static void traverse_backwards(DbTableTree *tb,
			       DbTreeStack* stack,
			       Eterm lastkey,
			       int (*doit)(DbTableTree *,
					   TreeDbTerm *,
					   void *,
					   int),
			       void *context) 
{
    TreeDbTerm *this, *next;

    if (lastkey == THE_NON_VALUE) {
	stack->pos = stack->slot = 0;
	if (( this = tb->root ) == NULL) {
	    return;
	}
	while (this != NULL) {
	    PUSH_NODE(stack, this);
	    this = this->right;
	}
	this = TOP_NODE(stack);
	next = find_prev(tb, stack, GETKEY(tb, this->dbterm.tpl));
	if (!((*doit)(tb, this, context, 0)))
	    return;
    } else {
	next = find_prev(tb, stack, lastkey);
    }

    while ((this = next) != NULL) {
	next = find_prev(tb, stack, GETKEY(tb, this->dbterm.tpl));
	if (!((*doit)(tb, this, context, 0)))
	    return;
    }
}

/*
 * Traverse the tree with a callback function, used by db_match_xxx
 */
static void traverse_forward(DbTableTree *tb,
			     DbTreeStack* stack,
			     Eterm lastkey,
			     int (*doit)(DbTableTree *,
					 TreeDbTerm *,
					 void *,
					 int),
			     void *context) 
{
    TreeDbTerm *this, *next;

    if (lastkey == THE_NON_VALUE) {
	stack->pos = stack->slot = 0;
	if (( this = tb->root ) == NULL) {
	    return;
	}
	while (this != NULL) {
	    PUSH_NODE(stack, this);
	    this = this->left;
	}
	this = TOP_NODE(stack);
	next = find_next(tb, stack, GETKEY(tb, this->dbterm.tpl));
	if (!((*doit)(tb, this, context, 1)))
	    return;
    } else {
	next = find_next(tb, stack, lastkey);
    }

    while ((this = next) != NULL) {
	next = find_next(tb, stack, GETKEY(tb, this->dbterm.tpl));
	if (!((*doit)(tb, this, context, 1)))
	    return;
    }
}

/*
 * Returns 0 if not given 1 if given and -1 on no possible match
 * if key is given; *ret is set to point to the object concerned.
 */
static int key_given(DbTableTree *tb, Eterm pattern, TreeDbTerm **ret, 
		     Eterm *partly_bound)
{
    TreeDbTerm *this;
    Eterm key;

    ASSERT(ret != NULL);
    if (pattern == am_Underscore || db_is_variable(pattern) != -1)
	return 0;
    key = db_getkey(tb->common.keypos, pattern);
    if (is_non_value(key))
	return -1;  /* can't possibly match anything */
    if (!db_has_variable(key)) {   /* Bound key */
	if (( this = find_node(tb, key) ) == NULL) {
	    return -1;
	}
	*ret = this; 
	return 1;
    } else if (partly_bound != NULL && key != am_Underscore && 
	       db_is_variable(key) < 0)
	*partly_bound = key;
	
    return 0;
}



static Sint do_cmp_partly_bound(Eterm a, Eterm b, int *done)
{
    Eterm* aa;
    Eterm* bb;
    Eterm a_hdr;
    Eterm b_hdr;
    int i;
    Sint j;

    /* A variable matches anything */
    if (is_atom(a) && (a == am_Underscore || (db_is_variable(a) >= 0))) {
	*done = 1;
	return 0;
    }
    if (a == b)
	return 0;
    
    switch (a & _TAG_PRIMARY_MASK) {
    case TAG_PRIMARY_LIST:
	if (!is_list(b)) {
	    return cmp(a,b);
	}
	aa = list_val(a);
	bb = list_val(b);
	while (1) {
	    if ((j = do_cmp_partly_bound(*aa++, *bb++, done)) != 0 || *done) 
		return j;
	    if (*aa==*bb)
		return 0;
	    if (is_not_list(*aa) || is_not_list(*bb))
		return do_cmp_partly_bound(*aa, *bb, done);
	    aa = list_val(*aa);
	    bb = list_val(*bb);
	}
    case TAG_PRIMARY_BOXED:
	if ((b & _TAG_PRIMARY_MASK) != TAG_PRIMARY_BOXED) {
	    return cmp(a,b);
	}
	a_hdr = ((*boxed_val(a)) & _TAG_HEADER_MASK) >> _TAG_PRIMARY_SIZE;
	b_hdr = ((*boxed_val(b)) & _TAG_HEADER_MASK) >> _TAG_PRIMARY_SIZE;
	if (a_hdr != b_hdr) {
	    return cmp(a, b);
	}
	if (a_hdr == (_TAG_HEADER_ARITYVAL >> _TAG_PRIMARY_SIZE)) {
	    aa = tuple_val(a);
	    bb = tuple_val(b);
	    /* compare the arities */
	    i = arityval(*aa);	/* get the arity*/
	    if (i < arityval(*bb)) return(-1);
	    if (i > arityval(*bb)) return(1);
	    while (i--) {
		if ((j = do_cmp_partly_bound(*++aa, *++bb, done)) != 0 
		    || *done) 
		    return j;
	    }
	    return 0;
	}
	/* Drop through */
      default:
	  return cmp(a, b);
    }
}

static Sint cmp_partly_bound(Eterm partly_bound_key, Eterm bound_key) 
{
    int done = 0;
    Sint ret = do_cmp_partly_bound(partly_bound_key, bound_key, &done);
#ifdef HARDDEBUG
    erts_fprintf(stderr,"\ncmp_partly_bound: %T", partly_bound_key);
    if (ret < 0)
	erts_fprintf(stderr," < ");
    else if (ret > 0)
	erts_fprintf(stderr," > ");
    else
	erts_fprintf(stderr," == ");
    erts_fprintf(stderr,"%T\n",bound_key);
#endif
    return ret;
}

/*
** For partly_bound debugging....
**
BIF_RETTYPE ets_testnisse_2(BIF_ALIST_2)
BIF_ADECL_2
{
    Eterm r1 = make_small(partly_bound_can_match_lesser(BIF_ARG_1,
							BIF_ARG_2));
    Eterm r2 = make_small(partly_bound_can_match_greater(BIF_ARG_1,
							 BIF_ARG_2));
    Eterm *hp = HAlloc(BIF_P,3);
    Eterm ret;

    ret = TUPLE2(hp,r1,r2);
    BIF_RET(ret);
}
**
*/
static int partly_bound_can_match_lesser(Eterm partly_bound_1, 
					 Eterm partly_bound_2) 
{
    int done = 0;
    int ret = do_partly_bound_can_match_lesser(partly_bound_1, 
					       partly_bound_2, 
					       &done);
#ifdef HARDDEBUG
    erts_fprintf(stderr,"\npartly_bound_can_match_lesser: %T",partly_bound_1);
    if (ret)
	erts_fprintf(stderr," can match lesser than ");
    else
	erts_fprintf(stderr," can not match lesser than ");
    erts_fprintf(stderr,"%T\n",partly_bound_2);
#endif
    return ret;
}

static int partly_bound_can_match_greater(Eterm partly_bound_1, 
					  Eterm partly_bound_2) 
{
    int done = 0;
    int ret = do_partly_bound_can_match_greater(partly_bound_1, 
						partly_bound_2, 
						&done);
#ifdef HARDDEBUG
    erts_fprintf(stderr,"\npartly_bound_can_match_greater: %T",partly_bound_1);
    if (ret)
	erts_fprintf(stderr," can match greater than ");
    else
	erts_fprintf(stderr," can not match greater than ");
    erts_fprintf(stderr,"%T\n",partly_bound_2);
#endif
    return ret;
}

static int do_partly_bound_can_match_lesser(Eterm a, Eterm b, 
					    int *done)
{
    Eterm* aa;
    Eterm* bb;
    Sint i;
    int j;

    if (is_atom(a) && (a == am_Underscore || 
		       (db_is_variable(a) >= 0))) {
	*done = 1;
	if (is_atom(b) && (b == am_Underscore || 
			   (db_is_variable(b) >= 0))) {
	    return 0;
	} else {
	    return 1;
	}
    } else if (is_atom(b) && (b == am_Underscore || 
			      (db_is_variable(b) >= 0))) {
	*done = 1;
	return 0;
    }

    if (a == b)
	return 0;

    if (not_eq_tags(a,b)) {
	*done = 1;
	return (cmp(a, b) < 0) ? 1 : 0;
    }

    /* we now know that tags are the same */
    switch (tag_val_def(a)) {
    case TUPLE_DEF:
	aa = tuple_val(a);
	bb = tuple_val(b);
	/* compare the arities */
	if (arityval(*aa) < arityval(*bb)) return 1;
	if (arityval(*aa) > arityval(*bb)) return 0;
	i = arityval(*aa);	/* get the arity*/
	while (i--) {
	    if ((j = do_partly_bound_can_match_lesser(*++aa, *++bb, 
						      done)) != 0 
		|| *done) 
		return j;
	}
	return 0;
    case LIST_DEF:
	aa = list_val(a);
	bb = list_val(b);
	while (1) {
	    if ((j = do_partly_bound_can_match_lesser(*aa++, *bb++, 
						      done)) != 0 
		|| *done) 
		return j;
	    if (*aa==*bb)
		return 0;
	    if (is_not_list(*aa) || is_not_list(*bb))
		return do_partly_bound_can_match_lesser(*aa, *bb, 
							done);
	    aa = list_val(*aa);
	    bb = list_val(*bb);
	}
    default:
	if((i = cmp(a, b)) != 0) {
	    *done = 1;
	}
	return (i < 0) ? 1 : 0;
    }
}

static int do_partly_bound_can_match_greater(Eterm a, Eterm b, 
					    int *done)
{
    Eterm* aa;
    Eterm* bb;
    Sint i;
    int j;

    if (is_atom(a) && (a == am_Underscore || 
		       (db_is_variable(a) >= 0))) {
	*done = 1;
	if (is_atom(b) && (b == am_Underscore || 
			   (db_is_variable(b) >= 0))) {
	    return 0;
	} else {
	    return 1;
	}
    } else if (is_atom(b) && (b == am_Underscore || 
			      (db_is_variable(b) >= 0))) {
	*done = 1;
	return 0;
    }

    if (a == b)
	return 0;

    if (not_eq_tags(a,b)) {
	*done = 1;
	return (cmp(a, b) > 0) ? 1 : 0;
    }

    /* we now know that tags are the same */
    switch (tag_val_def(a)) {
    case TUPLE_DEF:
	aa = tuple_val(a);
	bb = tuple_val(b);
	/* compare the arities */
	if (arityval(*aa) < arityval(*bb)) return 0;
	if (arityval(*aa) > arityval(*bb)) return 1;
	i = arityval(*aa);	/* get the arity*/
	while (i--) {
	    if ((j = do_partly_bound_can_match_greater(*++aa, *++bb, 
						      done)) != 0 
		|| *done) 
		return j;
	}
	return 0;
    case LIST_DEF:
	aa = list_val(a);
	bb = list_val(b);
	while (1) {
	    if ((j = do_partly_bound_can_match_greater(*aa++, *bb++, 
						      done)) != 0 
		|| *done) 
		return j;
	    if (*aa==*bb)
		return 0;
	    if (is_not_list(*aa) || is_not_list(*bb))
		return do_partly_bound_can_match_greater(*aa, *bb, 
							done);
	    aa = list_val(*aa);
	    bb = list_val(*bb);
	}
    default:
	if((i = cmp(a, b)) != 0) {
	    *done = 1;
	}
	return (i > 0) ? 1 : 0;
    }
}

/*
 * Callback functions for the different match functions
 */

static int doit_select(DbTableTree *tb, TreeDbTerm *this, void *ptr,
		       int forward)
{
    struct select_context *sc = (struct select_context *) ptr;
    Eterm ret;
    Eterm* hp;

    sc->lastobj = this->dbterm.tpl;
    
    if (sc->end_condition != NIL && 
	((forward && 
	  cmp_partly_bound(sc->end_condition, 
			   GETKEY_WITH_POS(sc->keypos, 
					   this->dbterm.tpl)) < 0) ||
	 (!forward && 
	  cmp_partly_bound(sc->end_condition, 
			   GETKEY_WITH_POS(sc->keypos, 
					   this->dbterm.tpl)) > 0))) {
	return 0;
    }
    ret = db_prog_match_and_copy(&tb->common,sc->p,sc->mp,sc->all_objects,
				 &this->dbterm, &hp, 2);
    if (is_value(ret)) {
	sc->accum = CONS(hp, ret, sc->accum);
    }
    if (MBUF(sc->p)) {
	/*
	 * Force a trap and GC if a heap fragment was created. Many heap fragments
	 * make the GC slow.
	 */
	sc->max = 0;
    }
    if (--(sc->max) <= 0) {
	return 0;
    }
    return 1;
}

static int doit_select_count(DbTableTree *tb, TreeDbTerm *this, void *ptr,
			     int forward)
{
    struct select_count_context *sc = (struct select_count_context *) ptr;
    Eterm ret;

    sc->lastobj = this->dbterm.tpl;
    
    /* Always backwards traversing */
    if (sc->end_condition != NIL && 
	(cmp_partly_bound(sc->end_condition, 
			  GETKEY_WITH_POS(sc->keypos, 
					  this->dbterm.tpl)) > 0)) {
	return 0;
    }
    ret = db_prog_match_and_copy(&tb->common, sc->p, sc->mp, 0,
				 &this->dbterm, NULL, 0);
    if (ret == am_true) {
	++(sc->got);
    }
    if (--(sc->max) <= 0) {
	return 0;
    }
    return 1;
}

static int doit_select_chunk(DbTableTree *tb, TreeDbTerm *this, void *ptr,
			     int forward)
{
    struct select_context *sc = (struct select_context *) ptr;
    Eterm ret;
    Eterm* hp;

    sc->lastobj = this->dbterm.tpl;
    
    if (sc->end_condition != NIL && 
	((forward && 
	  cmp_partly_bound(sc->end_condition, 
			   GETKEY_WITH_POS(sc->keypos, 
					   this->dbterm.tpl)) < 0) ||
	 (!forward && 
	  cmp_partly_bound(sc->end_condition, 
			   GETKEY_WITH_POS(sc->keypos, 
					   this->dbterm.tpl)) > 0))) {
	return 0;
    }

    ret = db_prog_match_and_copy(&tb->common, sc->p, sc->mp, sc->all_objects,
				 &this->dbterm, &hp, 2);
    if (is_value(ret)) {
	++(sc->got);
	sc->accum = CONS(hp, ret, sc->accum);
    }
    if (MBUF(sc->p)) {
	/*
	 * Force a trap and GC if a heap fragment was created. Many heap fragments
	 * make the GC slow.
	 */
	sc->max = 0;
    }
    if (--(sc->max) <= 0 || sc->got == sc->chunk_size) {
	return 0;
    }
    return 1;
}


static int doit_select_delete(DbTableTree *tb, TreeDbTerm *this, void *ptr,
			      int forward)
{
    struct select_delete_context *sc = (struct select_delete_context *) ptr;
    Eterm ret;
    Eterm key;

    if (sc->erase_lastterm)
	free_term(tb, sc->lastterm);
    sc->erase_lastterm = 0;
    sc->lastterm = this;
    
    if (sc->end_condition != NIL && 
	cmp_partly_bound(sc->end_condition, 
			 GETKEY_WITH_POS(sc->keypos, 
					 this->dbterm.tpl)) > 0)
	return 0;
    ret = db_prog_match_and_copy(&tb->common, sc->p, sc->mp, 0,
				 &this->dbterm, NULL, 0);
    if (ret == am_true) {
	key = GETKEY(sc->tb, this->dbterm.tpl);
	linkout_tree(sc->tb, key);
	sc->erase_lastterm = 1;
	++sc->accum;
    }
    if (--(sc->max) <= 0) {
	return 0;
    }
    return 1;
}

#ifdef TREE_DEBUG
static void do_dump_tree2(int to, void *to_arg, int show, TreeDbTerm *t,
			  int offset)
{
    if (t == NULL)
	return 0;
    do_dump_tree2(to, to_arg, show, t->right, offset + 4);
    if (show) {
	erts_print(to, to_arg, "%*s%T (addr = %p, bal = %d)\n"
		   offset, "", make_tuple(t->dbterm.tpl),
		   t, t->balance);
    }
    do_dump_tree2(to, to_arg, show, t->left, offset + 4); 
    return sum;
}

#endif

#ifdef HARDDEBUG

void db_check_table_tree(DbTable *tbl)
{
    DbTableTree *tb = &tbl->tree;
    check_table_tree(tb->root);
    check_saved_stack(tb);
    check_slot_pos(tb);
}

static TreeDbTerm *traverse_until(TreeDbTerm *t, int *current, int to)
{
    TreeDbTerm *tmp;
    if (t == NULL) 
	return NULL;
    tmp = traverse_until(t->left, current, to);
    if (tmp != NULL)
	return tmp;
    ++(*current);
    if (*current == to)
	return t;
    return traverse_until(t->right, current, to);
}

static void check_slot_pos(DbTableTree *tb)
{
    int pos = 0;
    TreeDbTerm *t;
    if (tb->stack.slot == 0 || tb->stack.pos == 0)
	return;
    t = traverse_until(tb->root, &pos, tb->stack.slot);
    if (t != tb->stack.array[tb->stack.pos - 1]) {
	erts_fprintf(stderr, "Slot position does not correspont with stack, "
		   "element position %d is really 0x%08X, when stack says "
		   "it's 0x%08X\n", tb->stack.slot, t, 
		   tb->stack.array[tb->stack.pos - 1]);
	do_dump_tree2(ERTS_PRINT_STDERR, NULL, 1, tb->root, 0);
    }
}
	

static void check_saved_stack(DbTableTree *tb)
{
     TreeDbTerm *t = tb->root;
     DbTreeStack* stack = &tb->static_stack;
     int n = 0;
     if (stack->pos == 0)
	 return;
     if (t != stack->array[0]) {
	 erts_fprintf(stderr,"tb->stack[0] is 0x%08X, should be 0x%08X\n",
		      stack->array[0], t);
	 do_dump_tree2(ERTS_PRINT_STDERR, NULL, 1, tb->root, 0);
	 return;
     }
     while (n < stack->pos) {
	 if (t == NULL) {
	     erts_fprintf(stderr, "NULL pointer in tree when stack not empty,"
			" stack depth is %d\n", n);
	     do_dump_tree2(ERTS_PRINT_STDERR, NULL, 1, tb->root, 0);
	     return;
	 }
	 n++;
	 if (n < stack->pos) {
	     if (stack->array[n] == t->left)
		 t = t->left;
	     else if (stack->array[n] == t->right)
		 t = t->right;
	     else {
		 erts_fprintf(stderr, "tb->stack[%d] == 0x%08X does not "
			    "represent child pointer in tree!"
			    "(left == 0x%08X, right == 0x%08X\n", 
			    n, tb->stack[n], t->left, t->right);
		 do_dump_tree2(ERTS_PRINT_STDERR, NULL, 1, tb->root, 0);
		 return;
	     }
	 }
     }
}

static int check_table_tree(TreeDbTerm *t)
{
    int lh, rh;
    if (t == NULL)
	return 0;
    lh = check_table_tree(t->left);
    rh = check_table_tree(t->right);
    if ((rh - lh) != t->balance) {
	erts_fprintf(stderr, "Invalid tree balance for this node:\n");
	erts_fprintf(stderr,"balance = %d, left = 0x%08X, right = 0x%08X\n"
		     "data = %T",
		     t->balance, t->left, t->right,
		     make_tuple(t->dbterm.tpl));
	erts_fprintf(stderr,"\nDump:\n---------------------------------\n");
	do_dump_tree2(ERTS_PRINT_STDERR, NULL, 1, t, 0);
	erts_fprintf(stderr,"\n---------------------------------\n");
    }
    return ((rh > lh) ? rh : lh) + 1;
}
	
#endif