/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 1996-2010. All Rights Reserved.
*
* The contents of this file are subject to the Erlang Public License,
* Version 1.1, (the "License"); you may not use this file except in
* compliance with the License. You should have received a copy of the
* Erlang Public License along with this software. If not, it can be
* retrieved online at http://www.erlang.org/.
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* %CopyrightEnd%
*/
#define ERL_PROCESS_C__
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stddef.h> /* offsetof() */
#include <ctype.h>
#include "sys.h"
#include "erl_vm.h"
#include "global.h"
#include "erl_process.h"
#include "erl_nmgc.h"
#include "error.h"
#include "bif.h"
#include "erl_db.h"
#include "dist.h"
#include "beam_catches.h"
#include "erl_instrument.h"
#include "erl_threads.h"
#include "erl_binary.h"
#include "beam_bp.h"
#define ERTS_RUNQ_CHECK_BALANCE_REDS_PER_SCHED (2000*CONTEXT_REDS)
#define ERTS_RUNQ_CALL_CHECK_BALANCE_REDS \
(ERTS_RUNQ_CHECK_BALANCE_REDS_PER_SCHED/2)
#define ERTS_PROC_MIN_CONTEXT_SWITCH_REDS_COST (CONTEXT_REDS/10)
#define ERTS_SCHED_SPIN_UNTIL_YIELD 100
#define ERTS_SCHED_SYS_SLEEP_SPINCOUNT 10
#define ERTS_SCHED_TSE_SLEEP_SPINCOUNT_FACT 1000
#define ERTS_SCHED_TSE_SLEEP_SPINCOUNT \
(ERTS_SCHED_SYS_SLEEP_SPINCOUNT*ERTS_SCHED_TSE_SLEEP_SPINCOUNT_FACT)
#define ERTS_SCHED_SUSPEND_SLEEP_SPINCOUNT 0
#define ERTS_WAKEUP_OTHER_LIMIT (10*CONTEXT_REDS)
#define ERTS_WAKEUP_OTHER_DEC 10
#define ERTS_WAKEUP_OTHER_FIXED_INC (CONTEXT_REDS/10)
#define ERTS_MAX_CPU_TOPOLOGY_ID ((int) 0xffff)
#if 0 || defined(DEBUG)
#define ERTS_FAKE_SCHED_BIND_PRINT_SORTED_CPU_DATA
#endif
#if defined(DEBUG) && 0
#define HARDDEBUG
#else
#undef HARDDEBUG
#endif
#ifdef HARDDEBUG
#define HARDDEBUG_RUNQS
#endif
#ifdef HIPE
#include "hipe_mode_switch.h" /* for hipe_init_process() */
#include "hipe_signal.h" /* for hipe_thread_signal_init() */
#endif
#ifdef ERTS_ENABLE_LOCK_COUNT
#include "erl_lock_count.h"
#endif
#define MAX_BIT (1 << PRIORITY_MAX)
#define HIGH_BIT (1 << PRIORITY_HIGH)
#define NORMAL_BIT (1 << PRIORITY_NORMAL)
#define LOW_BIT (1 << PRIORITY_LOW)
#define ERTS_MAYBE_SAVE_TERMINATING_PROCESS(P) \
do { \
ERTS_SMP_LC_ASSERT(erts_lc_mtx_is_locked(&proc_tab_mtx)); \
if (saved_term_procs.end) \
save_terminating_process((P)); \
} while (0)
#define ERTS_EMPTY_RUNQ(RQ) \
((RQ)->len == 0 && (RQ)->misc.start == NULL)
extern BeamInstr beam_apply[];
extern BeamInstr beam_exit[];
extern BeamInstr beam_continue_exit[];
static Sint p_last;
static Sint p_next;
static Sint p_serial;
static Uint p_serial_mask;
static Uint p_serial_shift;
Uint erts_no_schedulers;
Uint erts_max_processes = ERTS_DEFAULT_MAX_PROCESSES;
Uint erts_process_tab_index_mask;
#ifdef ERTS_SMP
Uint erts_max_main_threads;
#endif
int erts_sched_thread_suggested_stack_size = -1;
#ifdef ERTS_ENABLE_LOCK_CHECK
ErtsLcPSDLocks erts_psd_required_locks[ERTS_PSD_SIZE];
#endif
#ifdef ERTS_SMP
int erts_disable_proc_not_running_opt;
#define ERTS_SCHDLR_SSPND_CHNG_WAITER (((long) 1) << 0)
#define ERTS_SCHDLR_SSPND_CHNG_MSB (((long) 1) << 1)
#define ERTS_SCHDLR_SSPND_CHNG_ONLN (((long) 1) << 2)
#ifndef DEBUG
#define ERTS_SCHDLR_SSPND_CHNG_SET(VAL, OLD_VAL) \
erts_smp_atomic_set(&schdlr_sspnd.changing, (VAL))
#else
#define ERTS_SCHDLR_SSPND_CHNG_SET(VAL, OLD_VAL) \
do { \
long old_val__ = erts_smp_atomic_xchg(&schdlr_sspnd.changing, \
(VAL)); \
ASSERT(old_val__ == (OLD_VAL)); \
} while (0)
#endif
static struct {
erts_smp_mtx_t mtx;
erts_smp_cnd_t cnd;
int online;
int curr_online;
int wait_curr_online;
erts_smp_atomic_t changing;
erts_smp_atomic_t active;
struct {
erts_smp_atomic_t ongoing;
long wait_active;
ErtsProcList *procs;
} msb; /* Multi Scheduling Block */
} schdlr_sspnd;
static struct {
erts_smp_mtx_t update_mtx;
erts_smp_atomic_t active_runqs;
int last_active_runqs;
erts_smp_atomic_t used_runqs;
int forced_check_balance;
erts_smp_atomic_t checking_balance;
int halftime;
int full_reds_history_index;
struct {
int active_runqs;
int reds;
int max_len;
} prev_rise;
Uint n;
} balance_info;
#define ERTS_BLNCE_SAVE_RISE(ACTIVE, MAX_LEN, REDS) \
do { \
balance_info.prev_rise.active_runqs = (ACTIVE); \
balance_info.prev_rise.max_len = (MAX_LEN); \
balance_info.prev_rise.reds = (REDS); \
} while (0)
#endif
/*
* Cpu topology hierarchy.
*/
#define ERTS_TOPOLOGY_NODE 0
#define ERTS_TOPOLOGY_PROCESSOR 1
#define ERTS_TOPOLOGY_PROCESSOR_NODE 2
#define ERTS_TOPOLOGY_CORE 3
#define ERTS_TOPOLOGY_THREAD 4
#define ERTS_TOPOLOGY_LOGICAL 5
#define ERTS_TOPOLOGY_MAX_DEPTH 6
typedef struct {
int bind_id;
int bound_id;
} ErtsCpuBindData;
static ErtsCpuBindData *scheduler2cpu_map;
erts_smp_rwmtx_t erts_cpu_bind_rwmtx;
typedef enum {
ERTS_CPU_BIND_UNDEFINED,
ERTS_CPU_BIND_SPREAD,
ERTS_CPU_BIND_PROCESSOR_SPREAD,
ERTS_CPU_BIND_THREAD_SPREAD,
ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD,
ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD,
ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD,
ERTS_CPU_BIND_NO_SPREAD,
ERTS_CPU_BIND_NONE
} ErtsCpuBindOrder;
#define ERTS_CPU_BIND_DEFAULT_BIND \
ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD
ErtsCpuBindOrder cpu_bind_order;
static erts_cpu_topology_t *user_cpudata;
static int user_cpudata_size;
static erts_cpu_topology_t *system_cpudata;
static int system_cpudata_size;
erts_sched_stat_t erts_sched_stat;
ErtsRunQueue *erts_common_run_queue;
#ifdef USE_THREADS
static erts_tsd_key_t sched_data_key;
#endif
static erts_smp_mtx_t proc_tab_mtx;
static erts_smp_atomic_t function_calls;
#ifdef ERTS_SMP
static erts_smp_atomic_t doing_sys_schedule;
static erts_smp_atomic_t no_empty_run_queues;
#else /* !ERTS_SMP */
ErtsSchedulerData *erts_scheduler_data;
#endif
ErtsAlignedRunQueue *erts_aligned_run_queues;
Uint erts_no_run_queues;
typedef union {
ErtsSchedulerData esd;
char align[ERTS_ALC_CACHE_LINE_ALIGN_SIZE(sizeof(ErtsSchedulerData))];
} ErtsAlignedSchedulerData;
ErtsAlignedSchedulerData *erts_aligned_scheduler_data;
#ifdef ERTS_SMP
typedef union {
ErtsSchedulerSleepInfo ssi;
char align[ERTS_ALC_CACHE_LINE_ALIGN_SIZE(sizeof(ErtsSchedulerSleepInfo))];
} ErtsAlignedSchedulerSleepInfo;
static ErtsAlignedSchedulerSleepInfo *aligned_sched_sleep_info;
#endif
#ifndef BM_COUNTERS
static int processes_busy;
#endif
Process** process_tab;
static Uint last_reductions;
static Uint last_exact_reductions;
Uint erts_default_process_flags;
Eterm erts_system_monitor;
Eterm erts_system_monitor_msg_queue_len;
Eterm erts_system_monitor_long_gc;
Eterm erts_system_monitor_large_heap;
struct erts_system_monitor_flags_t erts_system_monitor_flags;
/* system performance monitor */
Eterm erts_system_profile;
struct erts_system_profile_flags_t erts_system_profile_flags;
#ifdef HYBRID
Uint erts_num_active_procs;
Process** erts_active_procs;
#endif
static erts_smp_atomic_t process_count;
typedef struct ErtsTermProcElement_ ErtsTermProcElement;
struct ErtsTermProcElement_ {
ErtsTermProcElement *next;
ErtsTermProcElement *prev;
int ix;
union {
struct {
Eterm pid;
SysTimeval spawned;
SysTimeval exited;
} process;
struct {
SysTimeval time;
} bif_invocation;
} u;
};
static struct {
ErtsTermProcElement *start;
ErtsTermProcElement *end;
} saved_term_procs;
ERTS_SCHED_PREF_QUICK_ALLOC_IMPL(misc_op_list,
ErtsMiscOpList,
10,
ERTS_ALC_T_MISC_OP_LIST)
ERTS_SCHED_PREF_QUICK_ALLOC_IMPL(proclist,
ErtsProcList,
200,
ERTS_ALC_T_PROC_LIST)
#define ERTS_RUNQ_IX(IX) \
(ASSERT_EXPR(0 <= (IX) && (IX) < erts_no_run_queues), \
&erts_aligned_run_queues[(IX)].runq)
#define ERTS_SCHEDULER_IX(IX) \
(ASSERT_EXPR(0 <= (IX) && (IX) < erts_no_schedulers), \
&erts_aligned_scheduler_data[(IX)].esd)
#define ERTS_SCHED_SLEEP_INFO_IX(IX) \
(ASSERT_EXPR(0 <= (IX) && (IX) < erts_no_schedulers), \
&aligned_sched_sleep_info[(IX)].ssi)
#define ERTS_FOREACH_RUNQ(RQVAR, DO) \
do { \
ErtsRunQueue *RQVAR; \
int ix__; \
for (ix__ = 0; ix__ < erts_no_run_queues; ix__++) { \
RQVAR = ERTS_RUNQ_IX(ix__); \
erts_smp_runq_lock(RQVAR); \
{ DO; } \
erts_smp_runq_unlock(RQVAR); \
} \
} while (0)
#define ERTS_FOREACH_OP_RUNQ(RQVAR, DO) \
do { \
ErtsRunQueue *RQVAR; \
int ix__; \
ERTS_SMP_LC_ASSERT(erts_smp_lc_mtx_is_locked(&schdlr_sspnd.mtx)); \
for (ix__ = 0; ix__ < schdlr_sspnd.online; ix__++) { \
RQVAR = ERTS_RUNQ_IX(ix__); \
erts_smp_runq_lock(RQVAR); \
{ DO; } \
erts_smp_runq_unlock(RQVAR); \
} \
} while (0)
#define ERTS_ATOMIC_FOREACH_RUNQ_X(RQVAR, DO, DOX) \
do { \
ErtsRunQueue *RQVAR; \
int ix__; \
for (ix__ = 0; ix__ < erts_no_run_queues; ix__++) { \
RQVAR = ERTS_RUNQ_IX(ix__); \
erts_smp_runq_lock(RQVAR); \
{ DO; } \
} \
{ DOX; } \
for (ix__ = 0; ix__ < erts_no_run_queues; ix__++) \
erts_smp_runq_unlock(ERTS_RUNQ_IX(ix__)); \
} while (0)
#define ERTS_ATOMIC_FOREACH_RUNQ(RQVAR, DO) \
ERTS_ATOMIC_FOREACH_RUNQ_X(RQVAR, DO, )
/*
* Local functions.
*/
static void init_processes_bif(void);
static void save_terminating_process(Process *p);
static void exec_misc_ops(ErtsRunQueue *);
static void print_function_from_pc(int to, void *to_arg, BeamInstr* x);
static int stack_element_dump(int to, void *to_arg, Process* p, Eterm* sp,
int yreg);
#ifdef ERTS_SMP
static void handle_pending_exiters(ErtsProcList *);
static void cpu_bind_order_sort(erts_cpu_topology_t *cpudata,
int size,
ErtsCpuBindOrder bind_order,
int mk_seq);
static void signal_schedulers_bind_change(erts_cpu_topology_t *cpudata, int size);
#endif
static int reader_group_lookup(int logical);
static void create_tmp_cpu_topology_copy(erts_cpu_topology_t **cpudata,
int *cpudata_size);
static void destroy_tmp_cpu_topology_copy(erts_cpu_topology_t *cpudata);
static void early_cpu_bind_init(void);
static void late_cpu_bind_init(void);
#if defined(ERTS_SMP) && defined(ERTS_ENABLE_LOCK_CHECK)
int
erts_smp_lc_runq_is_locked(ErtsRunQueue *runq)
{
return erts_smp_lc_mtx_is_locked(&runq->mtx);
}
#endif
void
erts_pre_init_process(void)
{
#ifdef USE_THREADS
erts_tsd_key_create(&sched_data_key);
#endif
#ifdef ERTS_ENABLE_LOCK_CHECK
{
int ix;
erts_psd_required_locks[ERTS_PSD_ERROR_HANDLER].get_locks
= ERTS_PSD_ERROR_HANDLER_BUF_GET_LOCKS;
erts_psd_required_locks[ERTS_PSD_ERROR_HANDLER].set_locks
= ERTS_PSD_ERROR_HANDLER_BUF_SET_LOCKS;
erts_psd_required_locks[ERTS_PSD_SAVED_CALLS_BUF].get_locks
= ERTS_PSD_SAVED_CALLS_BUF_GET_LOCKS;
erts_psd_required_locks[ERTS_PSD_SAVED_CALLS_BUF].set_locks
= ERTS_PSD_SAVED_CALLS_BUF_SET_LOCKS;
erts_psd_required_locks[ERTS_PSD_SCHED_ID].get_locks
= ERTS_PSD_SCHED_ID_GET_LOCKS;
erts_psd_required_locks[ERTS_PSD_SCHED_ID].set_locks
= ERTS_PSD_SCHED_ID_SET_LOCKS;
erts_psd_required_locks[ERTS_PSD_DIST_ENTRY].get_locks
= ERTS_PSD_DIST_ENTRY_GET_LOCKS;
erts_psd_required_locks[ERTS_PSD_DIST_ENTRY].set_locks
= ERTS_PSD_DIST_ENTRY_SET_LOCKS;
erts_psd_required_locks[ERTS_PSD_CALL_TIME_BP].get_locks
= ERTS_PSD_CALL_TIME_BP_GET_LOCKS;
erts_psd_required_locks[ERTS_PSD_CALL_TIME_BP].set_locks
= ERTS_PSD_CALL_TIME_BP_SET_LOCKS;
/* Check that we have locks for all entries */
for (ix = 0; ix < ERTS_PSD_SIZE; ix++) {
ERTS_SMP_LC_ASSERT(erts_psd_required_locks[ix].get_locks);
ERTS_SMP_LC_ASSERT(erts_psd_required_locks[ix].set_locks);
}
}
#endif
}
/* initialize the scheduler */
void
erts_init_process(void)
{
Uint proc_bits = ERTS_PROC_BITS;
#ifdef ERTS_SMP
erts_disable_proc_not_running_opt = 0;
erts_init_proc_lock();
#endif
init_proclist_alloc();
erts_smp_atomic_init(&process_count, 0);
if (erts_use_r9_pids_ports) {
proc_bits = ERTS_R9_PROC_BITS;
ASSERT(erts_max_processes <= (1 << ERTS_R9_PROC_BITS));
}
process_tab = (Process**) erts_alloc(ERTS_ALC_T_PROC_TABLE,
erts_max_processes*sizeof(Process*));
sys_memzero(process_tab, erts_max_processes * sizeof(Process*));
#ifdef HYBRID
erts_active_procs = (Process**)
erts_alloc(ERTS_ALC_T_ACTIVE_PROCS,
erts_max_processes * sizeof(Process*));
erts_num_active_procs = 0;
#endif
erts_smp_mtx_init(&proc_tab_mtx, "proc_tab");
p_last = -1;
p_next = 0;
p_serial = 0;
p_serial_shift = erts_fit_in_bits(erts_max_processes - 1);
p_serial_mask = ((~(~((Uint) 0) << proc_bits)) >> p_serial_shift);
erts_process_tab_index_mask = ~(~((Uint) 0) << p_serial_shift);
#ifndef BM_COUNTERS
processes_busy = 0;
#endif
last_reductions = 0;
last_exact_reductions = 0;
erts_default_process_flags = 0;
}
void
erts_late_init_process(void)
{
int ix;
init_processes_bif();
erts_smp_spinlock_init(&erts_sched_stat.lock, "sched_stat");
for (ix = 0; ix < ERTS_NO_PRIO_LEVELS; ix++) {
Eterm atom;
char *atom_str;
switch (ix) {
case PRIORITY_MAX:
atom_str = "process_max";
break;
case PRIORITY_HIGH:
atom_str = "process_high";
break;
case PRIORITY_NORMAL:
atom_str = "process_normal";
break;
case PRIORITY_LOW:
atom_str = "process_low";
break;
case ERTS_PORT_PRIO_LEVEL:
atom_str = "port";
break;
default:
atom_str = "bad_prio";
ASSERT(!"bad prio");
break;
}
atom = am_atom_put(atom_str, sys_strlen(atom_str));
erts_sched_stat.prio[ix].name = atom;
erts_sched_stat.prio[ix].total_executed = 0;
erts_sched_stat.prio[ix].executed = 0;
erts_sched_stat.prio[ix].total_migrated = 0;
erts_sched_stat.prio[ix].migrated = 0;
}
}
static ERTS_INLINE ErtsProcList *
proclist_create(Process *p)
{
ErtsProcList *plp = proclist_alloc();
plp->pid = p->id;
plp->started = p->started;
return plp;
}
static ERTS_INLINE void
proclist_destroy(ErtsProcList *plp)
{
proclist_free(plp);
}
static ERTS_INLINE int
proclist_same(ErtsProcList *plp, Process *p)
{
return (plp->pid == p->id
&& erts_cmp_timeval(&plp->started, &p->started) == 0);
}
ErtsProcList *
erts_proclist_create(Process *p)
{
return proclist_create(p);
}
void
erts_proclist_destroy(ErtsProcList *plp)
{
proclist_destroy(plp);
}
int
erts_proclist_same(ErtsProcList *plp, Process *p)
{
return proclist_same(plp, p);
}
void *
erts_psd_set_init(Process *p, ErtsProcLocks plocks, int ix, void *data)
{
void *old;
ErtsProcLocks xplocks;
int refc = 0;
ErtsPSD *psd = erts_alloc(ERTS_ALC_T_PSD, sizeof(ErtsPSD));
int i;
for (i = 0; i < ERTS_PSD_SIZE; i++)
psd->data[i] = NULL;
ERTS_SMP_LC_ASSERT(plocks);
ERTS_SMP_LC_ASSERT(plocks == erts_proc_lc_my_proc_locks(p));
xplocks = ERTS_PROC_LOCKS_ALL;
xplocks &= ~plocks;
if (xplocks && erts_smp_proc_trylock(p, xplocks) == EBUSY) {
if (xplocks & ERTS_PROC_LOCK_MAIN) {
erts_smp_proc_inc_refc(p);
erts_smp_proc_unlock(p, plocks);
erts_smp_proc_lock(p, ERTS_PROC_LOCKS_ALL);
refc = 1;
}
else {
if (plocks & ERTS_PROC_LOCKS_ALL_MINOR)
erts_smp_proc_unlock(p, plocks & ERTS_PROC_LOCKS_ALL_MINOR);
erts_smp_proc_lock(p, ERTS_PROC_LOCKS_ALL_MINOR);
}
}
if (!p->psd)
p->psd = psd;
if (xplocks)
erts_smp_proc_unlock(p, xplocks);
if (refc)
erts_smp_proc_dec_refc(p);
ASSERT(p->psd);
if (p->psd != psd)
erts_free(ERTS_ALC_T_PSD, psd);
old = p->psd->data[ix];
p->psd->data[ix] = data;
ERTS_SMP_LC_ASSERT(plocks == erts_proc_lc_my_proc_locks(p));
return old;
}
#ifdef ERTS_SMP
void
erts_sched_finish_poke(ErtsSchedulerSleepInfo *ssi, long flags)
{
switch (flags & ERTS_SSI_FLGS_SLEEP_TYPE) {
case ERTS_SSI_FLG_POLL_SLEEPING:
erts_sys_schedule_interrupt(1);
break;
case ERTS_SSI_FLG_TSE_SLEEPING:
erts_tse_set(ssi->event);
break;
case 0:
break;
default:
erl_exit(ERTS_ABORT_EXIT, "%s:%d: Internal error\n",
__FILE__, __LINE__);
break;
}
}
#ifdef ERTS_SMP_SCHEDULERS_NEED_TO_CHECK_CHILDREN
void
erts_smp_notify_check_children_needed(void)
{
int i;
for (i = 0; i < erts_no_schedulers; i++) {
long aux_work;
ErtsSchedulerSleepInfo *ssi;
ssi = ERTS_SCHED_SLEEP_INFO_IX(i);
aux_work = erts_smp_atomic_bor(&ssi->aux_work,
ERTS_SSI_AUX_WORK_CHECK_CHILDREN);
if (!(aux_work & ERTS_SSI_AUX_WORK_CHECK_CHILDREN))
erts_sched_poke(ssi);
}
}
#endif
#ifdef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
static ERTS_INLINE long
blockable_aux_work(ErtsSchedulerData *esdp,
ErtsSchedulerSleepInfo *ssi,
long aux_work)
{
if (aux_work & ERTS_SSI_BLOCKABLE_AUX_WORK_MASK) {
#ifdef ERTS_SMP_SCHEDULERS_NEED_TO_CHECK_CHILDREN
if (aux_work & ERTS_SSI_AUX_WORK_CHECK_CHILDREN) {
aux_work = erts_smp_atomic_band(&ssi->aux_work,
~ERTS_SSI_AUX_WORK_CHECK_CHILDREN);
aux_work &= ~ERTS_SSI_AUX_WORK_CHECK_CHILDREN;
erts_check_children();
}
#endif
}
return aux_work;
}
#endif
#ifdef ERTS_SCHED_NEED_NONBLOCKABLE_AUX_WORK
static ERTS_INLINE long
nonblockable_aux_work(ErtsSchedulerData *esdp,
ErtsSchedulerSleepInfo *ssi,
long aux_work)
{
if (aux_work & ERTS_SSI_NONBLOCKABLE_AUX_WORK_MASK) {
}
}
#endif
static void
prepare_for_block(void *vrq)
{
erts_smp_runq_unlock((ErtsRunQueue *) vrq);
}
static void
resume_after_block(void *vrq)
{
erts_smp_runq_lock((ErtsRunQueue *) vrq);
}
#endif
static ERTS_INLINE void
sched_waiting_sys(Uint no, ErtsRunQueue *rq)
{
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
ASSERT(rq->waiting >= 0);
rq->flags |= (ERTS_RUNQ_FLG_OUT_OF_WORK
| ERTS_RUNQ_FLG_HALFTIME_OUT_OF_WORK);
rq->waiting++;
rq->waiting *= -1;
rq->woken = 0;
if (erts_system_profile_flags.scheduler)
profile_scheduler(make_small(no), am_inactive);
}
static ERTS_INLINE void
sched_active_sys(Uint no, ErtsRunQueue *rq)
{
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
ASSERT(rq->waiting < 0);
rq->waiting *= -1;
rq->waiting--;
if (erts_system_profile_flags.scheduler)
profile_scheduler(make_small(no), am_active);
}
Uint
erts_active_schedulers(void)
{
/* RRRRRRRRR */
Uint as = erts_no_schedulers;
ERTS_ATOMIC_FOREACH_RUNQ(rq, as -= abs(rq->waiting));
ASSERT(as >= 0);
return as;
}
static ERTS_INLINE int
prepare_for_sys_schedule(void)
{
#ifdef ERTS_SMP
while (!erts_port_task_have_outstanding_io_tasks()
&& !erts_smp_atomic_xchg(&doing_sys_schedule, 1)) {
if (!erts_port_task_have_outstanding_io_tasks())
return 1;
erts_smp_atomic_set(&doing_sys_schedule, 0);
}
return 0;
#else
return !erts_port_task_have_outstanding_io_tasks();
#endif
}
#ifdef ERTS_SMP
static ERTS_INLINE void
sched_change_waiting_sys_to_waiting(Uint no, ErtsRunQueue *rq)
{
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
ASSERT(rq->waiting < 0);
rq->waiting *= -1;
}
static ERTS_INLINE void
sched_waiting(Uint no, ErtsRunQueue *rq)
{
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
rq->flags |= (ERTS_RUNQ_FLG_OUT_OF_WORK
| ERTS_RUNQ_FLG_HALFTIME_OUT_OF_WORK);
if (rq->waiting < 0)
rq->waiting--;
else
rq->waiting++;
rq->woken = 0;
if (erts_system_profile_flags.scheduler)
profile_scheduler(make_small(no), am_inactive);
}
static ERTS_INLINE void
sched_active(Uint no, ErtsRunQueue *rq)
{
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
if (rq->waiting < 0)
rq->waiting++;
else
rq->waiting--;
if (erts_system_profile_flags.scheduler)
profile_scheduler(make_small(no), am_active);
}
static int ERTS_INLINE
ongoing_multi_scheduling_block(void)
{
return erts_smp_atomic_read(&schdlr_sspnd.msb.ongoing) != 0;
}
static ERTS_INLINE void
empty_runq(ErtsRunQueue *rq)
{
long oifls = erts_smp_atomic_band(&rq->info_flags, ~ERTS_RUNQ_IFLG_NONEMPTY);
if (oifls & ERTS_RUNQ_IFLG_NONEMPTY) {
#ifdef DEBUG
long empty = erts_smp_atomic_read(&no_empty_run_queues);
/*
* For a short period of time no_empty_run_queues may have
* been increased twice for a specific run queue.
*/
ASSERT(0 <= empty && empty < 2*erts_no_run_queues);
#endif
erts_smp_atomic_inc(&no_empty_run_queues);
}
}
static ERTS_INLINE void
non_empty_runq(ErtsRunQueue *rq)
{
long oifls = erts_smp_atomic_bor(&rq->info_flags, ERTS_RUNQ_IFLG_NONEMPTY);
if (!(oifls & ERTS_RUNQ_IFLG_NONEMPTY)) {
#ifdef DEBUG
long empty = erts_smp_atomic_read(&no_empty_run_queues);
/*
* For a short period of time no_empty_run_queues may have
* been increased twice for a specific run queue.
*/
ASSERT(0 < empty && empty <= 2*erts_no_run_queues);
#endif
erts_smp_atomic_dec(&no_empty_run_queues);
}
}
static long
sched_prep_spin_wait(ErtsSchedulerSleepInfo *ssi)
{
long oflgs;
long nflgs = (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_WAITING);
long xflgs = 0;
do {
oflgs = erts_smp_atomic_cmpxchg(&ssi->flags, nflgs, xflgs);
if (oflgs == xflgs)
return nflgs;
xflgs = oflgs;
} while (!(oflgs & ERTS_SSI_FLG_SUSPENDED));
return oflgs;
}
static long
sched_prep_cont_spin_wait(ErtsSchedulerSleepInfo *ssi)
{
long oflgs;
long nflgs = (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_WAITING);
long xflgs = ERTS_SSI_FLG_WAITING;
do {
oflgs = erts_smp_atomic_cmpxchg(&ssi->flags, nflgs, xflgs);
if (oflgs == xflgs)
return nflgs;
xflgs = oflgs;
nflgs |= oflgs & ERTS_SSI_FLG_SUSPENDED;
} while (oflgs & ERTS_SSI_FLG_WAITING);
return oflgs;
}
static long
sched_spin_wait(ErtsSchedulerSleepInfo *ssi, int spincount)
{
long until_yield = ERTS_SCHED_SPIN_UNTIL_YIELD;
int sc = spincount;
long flgs;
do {
flgs = erts_smp_atomic_read(&ssi->flags);
if ((flgs & (ERTS_SSI_FLG_SLEEPING|ERTS_SSI_FLG_WAITING))
!= (ERTS_SSI_FLG_SLEEPING|ERTS_SSI_FLG_WAITING)) {
break;
}
ERTS_SPIN_BODY;
if (--until_yield == 0) {
until_yield = ERTS_SCHED_SPIN_UNTIL_YIELD;
erts_thr_yield();
}
} while (--sc > 0);
return flgs;
}
static long
sched_set_sleeptype(ErtsSchedulerSleepInfo *ssi, long sleep_type)
{
long oflgs;
long nflgs = ERTS_SSI_FLG_SLEEPING|ERTS_SSI_FLG_WAITING|sleep_type;
long xflgs = ERTS_SSI_FLG_SLEEPING|ERTS_SSI_FLG_WAITING;
if (sleep_type == ERTS_SSI_FLG_TSE_SLEEPING)
erts_tse_reset(ssi->event);
while (1) {
oflgs = erts_smp_atomic_cmpxchg(&ssi->flags, nflgs, xflgs);
if (oflgs == xflgs)
return nflgs;
if ((oflgs & (ERTS_SSI_FLG_SLEEPING|ERTS_SSI_FLG_WAITING))
!= (ERTS_SSI_FLG_SLEEPING|ERTS_SSI_FLG_WAITING)) {
return oflgs;
}
xflgs = oflgs;
nflgs |= oflgs & ERTS_SSI_FLG_SUSPENDED;
}
}
#define ERTS_SCHED_WAIT_WOKEN(FLGS) \
(((FLGS) & (ERTS_SSI_FLG_WAITING|ERTS_SSI_FLG_SUSPENDED)) \
!= ERTS_SSI_FLG_WAITING)
static void
scheduler_wait(long *fcalls, ErtsSchedulerData *esdp, ErtsRunQueue *rq)
{
ErtsSchedulerSleepInfo *ssi = esdp->ssi;
int spincount;
long flgs;
#if defined(ERTS_SCHED_NEED_NONBLOCKABLE_AUX_WORK) \
|| defined(ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK)
long aux_work;
#endif
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
erts_smp_spin_lock(&rq->sleepers.lock);
flgs = sched_prep_spin_wait(ssi);
if (flgs & ERTS_SSI_FLG_SUSPENDED) {
/* Go suspend instead... */
erts_smp_spin_unlock(&rq->sleepers.lock);
return;
}
ssi->prev = NULL;
ssi->next = rq->sleepers.list;
if (rq->sleepers.list)
rq->sleepers.list->prev = ssi;
rq->sleepers.list = ssi;
erts_smp_spin_unlock(&rq->sleepers.lock);
/*
* If all schedulers are waiting, one of them *should*
* be waiting in erl_sys_schedule()
*/
if (!prepare_for_sys_schedule()) {
sched_waiting(esdp->no, rq);
erts_smp_runq_unlock(rq);
spincount = ERTS_SCHED_TSE_SLEEP_SPINCOUNT;
tse_wait:
#ifdef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
aux_work = erts_smp_atomic_read(&ssi->aux_work);
tse_blockable_aux_work:
aux_work = blockable_aux_work(esdp, ssi, aux_work);
#endif
erts_smp_activity_begin(ERTS_ACTIVITY_WAIT, NULL, NULL, NULL);
while (1) {
#ifdef ERTS_SCHED_NEED_NONBLOCKABLE_AUX_WORK
#ifndef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
aux_work = erts_smp_atomic_read(&ssi->aux_work);
#endif
nonblockable_aux_work(esdp, ssi, aux_work);
#endif
flgs = sched_spin_wait(ssi, spincount);
if (flgs & ERTS_SSI_FLG_SLEEPING) {
ASSERT(flgs & ERTS_SSI_FLG_WAITING);
flgs = sched_set_sleeptype(ssi, ERTS_SSI_FLG_TSE_SLEEPING);
if (flgs & ERTS_SSI_FLG_SLEEPING) {
int res;
ASSERT(flgs & ERTS_SSI_FLG_TSE_SLEEPING);
ASSERT(flgs & ERTS_SSI_FLG_WAITING);
do {
res = erts_tse_wait(ssi->event);
} while (res == EINTR);
}
}
if (!(flgs & ERTS_SSI_FLG_WAITING)) {
ASSERT(!(flgs & ERTS_SSI_FLG_SLEEPING));
break;
}
flgs = sched_prep_cont_spin_wait(ssi);
spincount = ERTS_SCHED_TSE_SLEEP_SPINCOUNT;
if (!(flgs & ERTS_SSI_FLG_WAITING)) {
ASSERT(!(flgs & ERTS_SSI_FLG_SLEEPING));
break;
}
#ifdef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
aux_work = erts_smp_atomic_read(&ssi->aux_work);
if (aux_work & ERTS_SSI_BLOCKABLE_AUX_WORK_MASK) {
erts_smp_activity_end(ERTS_ACTIVITY_WAIT, NULL, NULL, NULL);
goto tse_blockable_aux_work;
}
#endif
}
erts_smp_activity_end(ERTS_ACTIVITY_WAIT, NULL, NULL, NULL);
if (flgs & ~ERTS_SSI_FLG_SUSPENDED)
erts_smp_atomic_band(&ssi->flags, ERTS_SSI_FLG_SUSPENDED);
erts_smp_runq_lock(rq);
sched_active(esdp->no, rq);
}
else {
long dt;
erts_smp_atomic_set(&function_calls, 0);
*fcalls = 0;
sched_waiting_sys(esdp->no, rq);
erts_smp_runq_unlock(rq);
spincount = ERTS_SCHED_SYS_SLEEP_SPINCOUNT;
while (spincount-- > 0) {
sys_poll_aux_work:
erl_sys_schedule(1); /* Might give us something to do */
dt = do_time_read_and_reset();
if (dt) bump_timer(dt);
sys_aux_work:
#ifdef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
aux_work = erts_smp_atomic_read(&ssi->aux_work);
aux_work = blockable_aux_work(esdp, ssi, aux_work);
#endif
#ifdef ERTS_SCHED_NEED_NONBLOCKABLE_AUX_WORK
#ifndef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
aux_work = erts_smp_atomic_read(&ssi->aux_work);
#endif
nonblockable_aux_work(esdp, ssi, aux_work);
#endif
flgs = erts_smp_atomic_read(&ssi->flags);
if (!(flgs & ERTS_SSI_FLG_WAITING)) {
ASSERT(!(flgs & ERTS_SSI_FLG_SLEEPING));
goto sys_woken;
}
if (!(flgs & ERTS_SSI_FLG_SLEEPING)) {
flgs = sched_prep_cont_spin_wait(ssi);
if (!(flgs & ERTS_SSI_FLG_WAITING)) {
ASSERT(!(flgs & ERTS_SSI_FLG_SLEEPING));
goto sys_woken;
}
}
/*
* If we got new I/O tasks we aren't allowed to
* call erl_sys_schedule() until it is handled.
*/
if (erts_port_task_have_outstanding_io_tasks()) {
erts_smp_atomic_set(&doing_sys_schedule, 0);
/*
* Got to check that we still got I/O tasks; otherwise
* we have to continue checking for I/O...
*/
if (!prepare_for_sys_schedule()) {
spincount *= ERTS_SCHED_TSE_SLEEP_SPINCOUNT_FACT;
goto tse_wait;
}
}
}
erts_smp_runq_lock(rq);
/*
* If we got new I/O tasks we aren't allowed to
* sleep in erl_sys_schedule().
*/
if (erts_port_task_have_outstanding_io_tasks()) {
erts_smp_atomic_set(&doing_sys_schedule, 0);
/*
* Got to check that we still got I/O tasks; otherwise
* we have to wait in erl_sys_schedule() after all...
*/
if (prepare_for_sys_schedule())
goto do_sys_schedule;
/*
* Not allowed to wait in erl_sys_schedule;
* do tse wait instead...
*/
sched_change_waiting_sys_to_waiting(esdp->no, rq);
erts_smp_runq_unlock(rq);
spincount = 0;
goto tse_wait;
}
else {
do_sys_schedule:
erts_sys_schedule_interrupt(0);
flgs = sched_set_sleeptype(ssi, ERTS_SSI_FLG_POLL_SLEEPING);
if (!(flgs & ERTS_SSI_FLG_SLEEPING)) {
if (!(flgs & ERTS_SSI_FLG_WAITING))
goto sys_locked_woken;
erts_smp_runq_unlock(rq);
flgs = sched_prep_cont_spin_wait(ssi);
if (!(flgs & ERTS_SSI_FLG_WAITING)) {
ASSERT(!(flgs & ERTS_SSI_FLG_SLEEPING));
goto sys_woken;
}
ASSERT(!erts_port_task_have_outstanding_io_tasks());
goto sys_poll_aux_work;
}
ASSERT(flgs & ERTS_SSI_FLG_POLL_SLEEPING);
ASSERT(flgs & ERTS_SSI_FLG_WAITING);
erts_smp_runq_unlock(rq);
erl_sys_schedule(0);
dt = do_time_read_and_reset();
if (dt) bump_timer(dt);
flgs = sched_prep_cont_spin_wait(ssi);
if (flgs & ERTS_SSI_FLG_WAITING)
goto sys_aux_work;
sys_woken:
erts_smp_runq_lock(rq);
sys_locked_woken:
erts_smp_atomic_set(&doing_sys_schedule, 0);
if (flgs & ~ERTS_SSI_FLG_SUSPENDED)
erts_smp_atomic_band(&ssi->flags, ERTS_SSI_FLG_SUSPENDED);
sched_active_sys(esdp->no, rq);
}
}
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
}
static ERTS_INLINE long
ssi_flags_set_wake(ErtsSchedulerSleepInfo *ssi)
{
/* reset all flags but suspended */
long oflgs;
long nflgs = 0;
long xflgs = ERTS_SSI_FLG_SLEEPING|ERTS_SSI_FLG_WAITING;
while (1) {
oflgs = erts_smp_atomic_cmpxchg(&ssi->flags, nflgs, xflgs);
if (oflgs == xflgs)
return oflgs;
nflgs = oflgs & ERTS_SSI_FLG_SUSPENDED;
xflgs = oflgs;
}
}
static void
wake_scheduler(ErtsRunQueue *rq, int incq, int one)
{
int res;
ErtsSchedulerSleepInfo *ssi;
ErtsSchedulerSleepList *sl;
/*
* The unlocked run queue is not strictly necessary
* from a thread safety or deadlock prevention
* perspective. It will, however, cost us performance
* if it is locked during wakup of another scheduler,
* so all code *should* handle this without having
* the lock on the run queue.
*/
ERTS_SMP_LC_ASSERT(!erts_smp_lc_runq_is_locked(rq));
sl = &rq->sleepers;
erts_smp_spin_lock(&sl->lock);
ssi = sl->list;
if (!ssi)
erts_smp_spin_unlock(&sl->lock);
else if (one) {
long flgs;
if (ssi->prev)
ssi->prev->next = ssi->next;
else {
ASSERT(sl->list == ssi);
sl->list = ssi->next;
}
if (ssi->next)
ssi->next->prev = ssi->prev;
res = sl->list != NULL;
erts_smp_spin_unlock(&sl->lock);
flgs = ssi_flags_set_wake(ssi);
erts_sched_finish_poke(ssi, flgs);
if (incq && !erts_common_run_queue && (flgs & ERTS_SSI_FLG_WAITING))
non_empty_runq(rq);
}
else {
sl->list = NULL;
erts_smp_spin_unlock(&sl->lock);
do {
ErtsSchedulerSleepInfo *wake_ssi = ssi;
ssi = ssi->next;
erts_sched_finish_poke(ssi, ssi_flags_set_wake(wake_ssi));
} while (ssi);
}
}
static void
wake_all_schedulers(void)
{
if (erts_common_run_queue)
wake_scheduler(erts_common_run_queue, 0, 0);
else {
int ix;
for (ix = 0; ix < erts_no_run_queues; ix++) {
ErtsRunQueue *rq = ERTS_RUNQ_IX(ix);
wake_scheduler(rq, 0, 1);
}
}
}
static ERTS_INLINE int
chk_wake_sched(ErtsRunQueue *crq, int ix, int activate)
{
long iflgs;
ErtsRunQueue *wrq;
if (crq->ix == ix)
return 0;
wrq = ERTS_RUNQ_IX(ix);
iflgs = erts_smp_atomic_read(&wrq->info_flags);
if (!(iflgs & (ERTS_RUNQ_IFLG_SUSPENDED|ERTS_RUNQ_IFLG_NONEMPTY))) {
if (activate) {
if (ix == erts_smp_atomic_cmpxchg(&balance_info.active_runqs, ix+1, ix)) {
erts_smp_xrunq_lock(crq, wrq);
wrq->flags &= ~ERTS_RUNQ_FLG_INACTIVE;
erts_smp_xrunq_unlock(crq, wrq);
}
}
wake_scheduler(wrq, 0, 1);
return 1;
}
return 0;
}
static void
wake_scheduler_on_empty_runq(ErtsRunQueue *crq)
{
int ix = crq->ix;
int stop_ix = ix;
int active_ix = erts_smp_atomic_read(&balance_info.active_runqs);
int balance_ix = erts_smp_atomic_read(&balance_info.used_runqs);
if (active_ix > balance_ix)
active_ix = balance_ix;
if (ix >= active_ix)
stop_ix = ix = active_ix;
/* Try to wake a scheduler on an active run queue */
while (1) {
ix--;
if (ix < 0) {
if (active_ix == stop_ix)
break;
ix = active_ix - 1;
}
if (ix == stop_ix)
break;
if (chk_wake_sched(crq, ix, 0))
return;
}
if (active_ix < balance_ix) {
/* Try to activate a new run queue and wake its scheduler */
(void) chk_wake_sched(crq, active_ix, 1);
}
}
#endif /* ERTS_SMP */
static ERTS_INLINE void
smp_notify_inc_runq(ErtsRunQueue *runq)
{
#ifdef ERTS_SMP
if (runq)
wake_scheduler(runq, 1, 1);
#endif
}
void
erts_smp_notify_inc_runq(ErtsRunQueue *runq)
{
smp_notify_inc_runq(runq);
}
#ifdef ERTS_SMP
ErtsRunQueue *
erts_prepare_emigrate(ErtsRunQueue *c_rq, ErtsRunQueueInfo *c_rqi, int prio)
{
ASSERT(ERTS_CHK_RUNQ_FLG_EMIGRATE(c_rq->flags, prio));
ASSERT(ERTS_CHK_RUNQ_FLG_EVACUATE(c_rq->flags, prio)
|| c_rqi->len >= c_rqi->migrate.limit.this);
while (1) {
ErtsRunQueue *n_rq = c_rqi->migrate.runq;
ERTS_DBG_VERIFY_VALID_RUNQP(n_rq);
erts_smp_xrunq_lock(c_rq, n_rq);
/*
* erts_smp_xrunq_lock() may release lock on c_rq! We have
* to check that we still want to emigrate and emigrate
* to the same run queue as before.
*/
if (ERTS_CHK_RUNQ_FLG_EMIGRATE(c_rq->flags, prio)) {
Uint32 force = (ERTS_CHK_RUNQ_FLG_EVACUATE(c_rq->flags, prio)
| (c_rq->flags & ERTS_RUNQ_FLG_INACTIVE));
if (force || c_rqi->len > c_rqi->migrate.limit.this) {
ErtsRunQueueInfo *n_rqi;
/* We still want to emigrate */
if (n_rq != c_rqi->migrate.runq) {
/* Ahh... run queue changed; need to do it all over again... */
erts_smp_runq_unlock(n_rq);
continue;
}
else {
if (prio == ERTS_PORT_PRIO_LEVEL)
n_rqi = &n_rq->ports.info;
else
n_rqi = &n_rq->procs.prio_info[prio];
if (force || (n_rqi->len < c_rqi->migrate.limit.other)) {
/* emigrate ... */
return n_rq;
}
}
}
}
ASSERT(n_rq != c_rq);
erts_smp_runq_unlock(n_rq);
if (!(c_rq->flags & ERTS_RUNQ_FLG_INACTIVE)) {
/* No more emigrations to this runq */
ERTS_UNSET_RUNQ_FLG_EMIGRATE(c_rq->flags, prio);
ERTS_DBG_SET_INVALID_RUNQP(c_rqi->migrate.runq, 0x3);
}
return NULL;
}
}
static void
immigrate(ErtsRunQueue *rq)
{
int prio;
ASSERT(rq->flags & ERTS_RUNQ_FLGS_IMMIGRATE_QMASK);
for (prio = 0; prio < ERTS_NO_PRIO_LEVELS; prio++) {
if (ERTS_CHK_RUNQ_FLG_IMMIGRATE(rq->flags, prio)) {
ErtsRunQueueInfo *rqi = (prio == ERTS_PORT_PRIO_LEVEL
? &rq->ports.info
: &rq->procs.prio_info[prio]);
ErtsRunQueue *from_rq = rqi->migrate.runq;
int rq_locked, from_rq_locked;
ERTS_DBG_VERIFY_VALID_RUNQP(from_rq);
rq_locked = 1;
from_rq_locked = 1;
erts_smp_xrunq_lock(rq, from_rq);
/*
* erts_smp_xrunq_lock() may release lock on rq! We have
* to check that we still want to immigrate from the same
* run queue as before.
*/
if (ERTS_CHK_RUNQ_FLG_IMMIGRATE(rq->flags, prio)
&& from_rq == rqi->migrate.runq) {
ErtsRunQueueInfo *from_rqi = (prio == ERTS_PORT_PRIO_LEVEL
? &from_rq->ports.info
: &from_rq->procs.prio_info[prio]);
if ((ERTS_CHK_RUNQ_FLG_EVACUATE(rq->flags, prio)
&& ERTS_CHK_RUNQ_FLG_EVACUATE(from_rq->flags, prio)
&& from_rqi->len)
|| (from_rqi->len > rqi->migrate.limit.other
&& rqi->len < rqi->migrate.limit.this)) {
if (prio == ERTS_PORT_PRIO_LEVEL) {
Port *prt = from_rq->ports.start;
if (prt) {
int prt_locked = 0;
(void) erts_port_migrate(prt, &prt_locked,
from_rq, &from_rq_locked,
rq, &rq_locked);
if (prt_locked)
erts_smp_port_unlock(prt);
}
}
else {
Process *proc;
ErtsRunPrioQueue *from_rpq;
from_rpq = (prio == PRIORITY_LOW
? &from_rq->procs.prio[PRIORITY_NORMAL]
: &from_rq->procs.prio[prio]);
for (proc = from_rpq->first; proc; proc = proc->next)
if (proc->prio == prio && !proc->bound_runq)
break;
if (proc) {
ErtsProcLocks proc_locks = 0;
(void) erts_proc_migrate(proc, &proc_locks,
from_rq, &from_rq_locked,
rq, &rq_locked);
if (proc_locks)
erts_smp_proc_unlock(proc, proc_locks);
}
}
}
else {
ERTS_UNSET_RUNQ_FLG_IMMIGRATE(rq->flags, prio);
ERTS_DBG_SET_INVALID_RUNQP(rqi->migrate.runq, 0x1);
}
}
if (from_rq_locked)
erts_smp_runq_unlock(from_rq);
if (!rq_locked)
erts_smp_runq_lock(rq);
}
}
}
static void
evacuate_run_queue(ErtsRunQueue *evac_rq, ErtsRunQueue *rq)
{
Port *prt;
int notify_to_rq = 0;
int prio;
int prt_locked = 0;
int rq_locked = 0;
int evac_rq_locked = 1;
ErtsMigrateResult mres;
erts_smp_runq_lock(evac_rq);
erts_smp_atomic_bor(&evac_rq->scheduler->ssi->flags, ERTS_SSI_FLG_SUSPENDED);
evac_rq->flags &= ~ERTS_RUNQ_FLGS_IMMIGRATE_QMASK;
evac_rq->flags |= (ERTS_RUNQ_FLGS_EMIGRATE_QMASK
| ERTS_RUNQ_FLGS_EVACUATE_QMASK
| ERTS_RUNQ_FLG_SUSPENDED);
erts_smp_atomic_bor(&evac_rq->info_flags, ERTS_RUNQ_IFLG_SUSPENDED);
/*
* Need to set up evacuation paths first since we
* may release the run queue lock on evac_rq
* when evacuating.
*/
evac_rq->misc.evac_runq = rq;
evac_rq->ports.info.migrate.runq = rq;
for (prio = 0; prio < ERTS_NO_PROC_PRIO_LEVELS; prio++)
evac_rq->procs.prio_info[prio].migrate.runq = rq;
/* Evacuate scheduled misc ops */
if (evac_rq->misc.start) {
rq_locked = 1;
erts_smp_xrunq_lock(evac_rq, rq);
if (rq->misc.end)
rq->misc.end->next = evac_rq->misc.start;
else
rq->misc.start = evac_rq->misc.start;
rq->misc.end = evac_rq->misc.end;
evac_rq->misc.start = NULL;
evac_rq->misc.end = NULL;
}
/* Evacuate scheduled ports */
prt = evac_rq->ports.start;
while (prt) {
mres = erts_port_migrate(prt, &prt_locked,
evac_rq, &evac_rq_locked,
rq, &rq_locked);
if (mres == ERTS_MIGRATE_SUCCESS)
notify_to_rq = 1;
if (prt_locked)
erts_smp_port_unlock(prt);
if (!evac_rq_locked) {
evac_rq_locked = 1;
erts_smp_runq_lock(evac_rq);
}
prt = evac_rq->ports.start;
}
/* Evacuate scheduled processes */
for (prio = 0; prio < ERTS_NO_PROC_PRIO_LEVELS; prio++) {
Process *proc;
switch (prio) {
case PRIORITY_MAX:
case PRIORITY_HIGH:
case PRIORITY_NORMAL:
proc = evac_rq->procs.prio[prio].first;
while (proc) {
ErtsProcLocks proc_locks = 0;
/* Bound processes are stuck... */
while (proc->bound_runq) {
proc = proc->next;
if (!proc)
goto end_of_proc;
}
mres = erts_proc_migrate(proc, &proc_locks,
evac_rq, &evac_rq_locked,
rq, &rq_locked);
if (mres == ERTS_MIGRATE_SUCCESS)
notify_to_rq = 1;
if (proc_locks)
erts_smp_proc_unlock(proc, proc_locks);
if (!evac_rq_locked) {
erts_smp_runq_lock(evac_rq);
evac_rq_locked = 1;
}
proc = evac_rq->procs.prio[prio].first;
}
end_of_proc:
#ifdef DEBUG
for (proc = evac_rq->procs.prio[prio].first;
proc;
proc = proc->next) {
ASSERT(proc->bound_runq);
}
#endif
break;
case PRIORITY_LOW:
break;
default:
ASSERT(!"Invalid process priority");
break;
}
}
if (rq_locked)
erts_smp_runq_unlock(rq);
if (evac_rq_locked)
erts_smp_runq_unlock(evac_rq);
if (notify_to_rq)
smp_notify_inc_runq(rq);
wake_scheduler(evac_rq, 0, 1);
}
static int
try_steal_task_from_victim(ErtsRunQueue *rq, int *rq_lockedp, ErtsRunQueue *vrq)
{
Process *proc;
int vrq_locked;
if (*rq_lockedp)
erts_smp_xrunq_lock(rq, vrq);
else
erts_smp_runq_lock(vrq);
vrq_locked = 1;
ERTS_SMP_LC_CHK_RUNQ_LOCK(rq, *rq_lockedp);
ERTS_SMP_LC_CHK_RUNQ_LOCK(vrq, vrq_locked);
/*
* Check for a runnable process to steal...
*/
switch (vrq->flags & ERTS_RUNQ_FLGS_PROCS_QMASK) {
case MAX_BIT:
case MAX_BIT|HIGH_BIT:
case MAX_BIT|NORMAL_BIT:
case MAX_BIT|LOW_BIT:
case MAX_BIT|HIGH_BIT|NORMAL_BIT:
case MAX_BIT|HIGH_BIT|LOW_BIT:
case MAX_BIT|NORMAL_BIT|LOW_BIT:
case MAX_BIT|HIGH_BIT|NORMAL_BIT|LOW_BIT:
for (proc = vrq->procs.prio[PRIORITY_MAX].last;
proc;
proc = proc->prev) {
if (!proc->bound_runq)
break;
}
if (proc)
break;
case HIGH_BIT:
case HIGH_BIT|NORMAL_BIT:
case HIGH_BIT|LOW_BIT:
case HIGH_BIT|NORMAL_BIT|LOW_BIT:
for (proc = vrq->procs.prio[PRIORITY_HIGH].last;
proc;
proc = proc->prev) {
if (!proc->bound_runq)
break;
}
if (proc)
break;
case NORMAL_BIT:
case LOW_BIT:
case NORMAL_BIT|LOW_BIT:
for (proc = vrq->procs.prio[PRIORITY_NORMAL].last;
proc;
proc = proc->prev) {
if (!proc->bound_runq)
break;
}
if (proc)
break;
case 0:
proc = NULL;
break;
default:
ASSERT(!"Invalid queue mask");
proc = NULL;
break;
}
if (proc) {
ErtsProcLocks proc_locks = 0;
int res;
ErtsMigrateResult mres;
mres = erts_proc_migrate(proc, &proc_locks,
vrq, &vrq_locked,
rq, rq_lockedp);
if (proc_locks)
erts_smp_proc_unlock(proc, proc_locks);
res = !0;
switch (mres) {
case ERTS_MIGRATE_FAILED_RUNQ_SUSPENDED:
res = 0;
case ERTS_MIGRATE_SUCCESS:
if (vrq_locked)
erts_smp_runq_unlock(vrq);
return res;
default: /* Other failures */
break;
}
}
ERTS_SMP_LC_CHK_RUNQ_LOCK(rq, *rq_lockedp);
ERTS_SMP_LC_CHK_RUNQ_LOCK(vrq, vrq_locked);
if (!vrq_locked) {
if (*rq_lockedp)
erts_smp_xrunq_lock(rq, vrq);
else
erts_smp_runq_lock(vrq);
vrq_locked = 1;
}
ERTS_SMP_LC_CHK_RUNQ_LOCK(rq, *rq_lockedp);
ERTS_SMP_LC_CHK_RUNQ_LOCK(vrq, vrq_locked);
/*
* Check for a runnable port to steal...
*/
if (vrq->ports.info.len) {
Port *prt = vrq->ports.end;
int prt_locked = 0;
int res;
ErtsMigrateResult mres;
mres = erts_port_migrate(prt, &prt_locked,
vrq, &vrq_locked,
rq, rq_lockedp);
if (prt_locked)
erts_smp_port_unlock(prt);
res = !0;
switch (mres) {
case ERTS_MIGRATE_FAILED_RUNQ_SUSPENDED:
res = 0;
case ERTS_MIGRATE_SUCCESS:
if (vrq_locked)
erts_smp_runq_unlock(vrq);
return res;
default: /* Other failures */
break;
}
}
if (vrq_locked)
erts_smp_runq_unlock(vrq);
return 0;
}
static ERTS_INLINE int
check_possible_steal_victim(ErtsRunQueue *rq, int *rq_lockedp, int vix)
{
ErtsRunQueue *vrq = ERTS_RUNQ_IX(vix);
long iflgs = erts_smp_atomic_read(&vrq->info_flags);
if (iflgs & ERTS_RUNQ_IFLG_NONEMPTY)
return try_steal_task_from_victim(rq, rq_lockedp, vrq);
else
return 0;
}
static int
try_steal_task(ErtsRunQueue *rq)
{
int res, rq_locked, vix, active_rqs, blnc_rqs;
if (erts_common_run_queue)
return 0;
/*
* We are not allowed to steal jobs to this run queue
* if it is suspended. Note that it might get suspended
* at any time when we don't have the lock on the run
* queue.
*/
if (rq->flags & ERTS_RUNQ_FLG_SUSPENDED)
return 0;
res = 0;
rq_locked = 1;
ERTS_SMP_LC_CHK_RUNQ_LOCK(rq, rq_locked);
active_rqs = erts_smp_atomic_read(&balance_info.active_runqs);
blnc_rqs = erts_smp_atomic_read(&balance_info.used_runqs);
if (active_rqs > blnc_rqs)
active_rqs = blnc_rqs;
if (rq->ix < active_rqs) {
/* First try to steal from an inactive run queue... */
if (active_rqs < blnc_rqs) {
int no = blnc_rqs - active_rqs;
int stop_ix = vix = active_rqs + rq->ix % no;
while (erts_smp_atomic_read(&no_empty_run_queues) < blnc_rqs) {
res = check_possible_steal_victim(rq, &rq_locked, vix);
if (res)
goto done;
vix++;
if (vix >= blnc_rqs)
vix = active_rqs;
if (vix == stop_ix)
break;
}
}
vix = rq->ix;
/* ... then try to steal a job from another active queue... */
while (erts_smp_atomic_read(&no_empty_run_queues) < blnc_rqs) {
vix++;
if (vix >= active_rqs)
vix = 0;
if (vix == rq->ix)
break;
res = check_possible_steal_victim(rq, &rq_locked, vix);
if (res)
goto done;
}
}
done:
if (!rq_locked)
erts_smp_runq_lock(rq);
if (!res)
res = !ERTS_EMPTY_RUNQ(rq);
return res;
}
/* Run queue balancing */
typedef struct {
Uint32 flags;
struct {
int max_len;
int avail;
int reds;
int migration_limit;
int emigrate_to;
int immigrate_from;
} prio[ERTS_NO_PRIO_LEVELS];
int reds;
int full_reds;
int full_reds_history_sum;
int full_reds_history_change;
int oowc;
int max_len;
} ErtsRunQueueBalance;
static ErtsRunQueueBalance *run_queue_info;
typedef struct {
int qix;
int len;
} ErtsRunQueueCompare;
static ErtsRunQueueCompare *run_queue_compare;
static int
rqc_len_cmp(const void *x, const void *y)
{
return ((ErtsRunQueueCompare *) x)->len - ((ErtsRunQueueCompare *) y)->len;
}
#define ERTS_PERCENT(X, Y) \
((Y) == 0 \
? ((X) == 0 ? 100 : INT_MAX) \
: ((100*(X))/(Y)))
#define ERTS_UPDATE_FULL_REDS(QIX, LAST_REDS) \
do { \
run_queue_info[(QIX)].full_reds \
= run_queue_info[(QIX)].full_reds_history_sum; \
run_queue_info[(QIX)].full_reds += (LAST_REDS); \
run_queue_info[(QIX)].full_reds \
>>= ERTS_FULL_REDS_HISTORY_AVG_SHFT; \
run_queue_info[(QIX)].full_reds_history_sum \
-= run_queue_info[(QIX)].full_reds_history_change; \
run_queue_info[(QIX)].full_reds_history_sum += (LAST_REDS); \
run_queue_info[(QIX)].full_reds_history_change = (LAST_REDS); \
} while (0)
#define ERTS_DBG_CHK_FULL_REDS_HISTORY(RQ) \
do { \
int sum__ = 0; \
int rix__; \
for (rix__ = 0; rix__ < ERTS_FULL_REDS_HISTORY_SIZE; rix__++) \
sum__ += (RQ)->full_reds_history[rix__]; \
ASSERT(sum__ == (RQ)->full_reds_history_sum); \
} while (0);
static void
check_balance(ErtsRunQueue *c_rq)
{
ErtsRunQueueBalance avg = {0};
Sint64 scheds_reds, full_scheds_reds;
int forced, active, current_active, oowc, half_full_scheds, full_scheds,
mmax_len, blnc_no_rqs, qix, pix, freds_hist_ix;
if (erts_smp_atomic_xchg(&balance_info.checking_balance, 1)) {
c_rq->check_balance_reds = INT_MAX;
return;
}
blnc_no_rqs = (int) erts_smp_atomic_read(&balance_info.used_runqs);
if (blnc_no_rqs == 1) {
c_rq->check_balance_reds = INT_MAX;
erts_smp_atomic_set(&balance_info.checking_balance, 0);
return;
}
erts_smp_runq_unlock(c_rq);
if (balance_info.halftime) {
balance_info.halftime = 0;
erts_smp_atomic_set(&balance_info.checking_balance, 0);
ERTS_FOREACH_RUNQ(rq,
{
if (rq->waiting)
rq->flags |= ERTS_RUNQ_FLG_HALFTIME_OUT_OF_WORK;
else
rq->flags &= ~ERTS_RUNQ_FLG_HALFTIME_OUT_OF_WORK;
rq->check_balance_reds = ERTS_RUNQ_CALL_CHECK_BALANCE_REDS;
});
erts_smp_runq_lock(c_rq);
return;
}
/*
* check_balance() is never called in more threads
* than one at a time, i.e., we will normally never
* get any conflicts on the balance_info.update_mtx.
* However, when blocking multi scheduling (which performance
* critical applications do *not* do) migration information
* is manipulated. Such updates of the migration information
* might clash with balancing.
*/
erts_smp_mtx_lock(&balance_info.update_mtx);
forced = balance_info.forced_check_balance;
balance_info.forced_check_balance = 0;
blnc_no_rqs = (int) erts_smp_atomic_read(&balance_info.used_runqs);
if (blnc_no_rqs == 1) {
erts_smp_mtx_unlock(&balance_info.update_mtx);
erts_smp_runq_lock(c_rq);
c_rq->check_balance_reds = INT_MAX;
erts_smp_atomic_set(&balance_info.checking_balance, 0);
return;
}
freds_hist_ix = balance_info.full_reds_history_index;
balance_info.full_reds_history_index++;
if (balance_info.full_reds_history_index >= ERTS_FULL_REDS_HISTORY_SIZE)
balance_info.full_reds_history_index = 0;
current_active = erts_smp_atomic_read(&balance_info.active_runqs);
/* Read balance information for all run queues */
for (qix = 0; qix < blnc_no_rqs; qix++) {
ErtsRunQueue *rq = ERTS_RUNQ_IX(qix);
erts_smp_runq_lock(rq);
run_queue_info[qix].flags = rq->flags;
for (pix = 0; pix < ERTS_NO_PROC_PRIO_LEVELS; pix++) {
run_queue_info[qix].prio[pix].max_len
= rq->procs.prio_info[pix].max_len;
run_queue_info[qix].prio[pix].reds
= rq->procs.prio_info[pix].reds;
}
run_queue_info[qix].prio[ERTS_PORT_PRIO_LEVEL].max_len
= rq->ports.info.max_len;
run_queue_info[qix].prio[ERTS_PORT_PRIO_LEVEL].reds
= rq->ports.info.reds;
run_queue_info[qix].full_reds_history_sum
= rq->full_reds_history_sum;
run_queue_info[qix].full_reds_history_change
= rq->full_reds_history[freds_hist_ix];
run_queue_info[qix].oowc = rq->out_of_work_count;
run_queue_info[qix].max_len = rq->max_len;
rq->check_balance_reds = INT_MAX;
erts_smp_runq_unlock(rq);
}
full_scheds = 0;
half_full_scheds = 0;
full_scheds_reds = 0;
scheds_reds = 0;
oowc = 0;
mmax_len = 0;
/* Calculate availability for each priority in each run queues */
for (qix = 0; qix < blnc_no_rqs; qix++) {
int treds = 0;
if (run_queue_info[qix].flags & ERTS_RUNQ_FLG_OUT_OF_WORK) {
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++) {
run_queue_info[qix].prio[pix].avail = 100;
treds += run_queue_info[qix].prio[pix].reds;
}
if (!(run_queue_info[qix].flags & ERTS_RUNQ_FLG_HALFTIME_OUT_OF_WORK))
half_full_scheds++;
ERTS_UPDATE_FULL_REDS(qix, ERTS_RUNQ_CHECK_BALANCE_REDS_PER_SCHED);
}
else {
ASSERT(!(run_queue_info[qix].flags & ERTS_RUNQ_FLG_HALFTIME_OUT_OF_WORK));
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++)
treds += run_queue_info[qix].prio[pix].reds;
if (treds == 0) {
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++)
run_queue_info[qix].prio[pix].avail = 0;
}
else {
int xreds = 0;
int procreds = treds;
procreds -= run_queue_info[qix].prio[ERTS_PORT_PRIO_LEVEL].reds;
for (pix = 0; pix < ERTS_NO_PROC_PRIO_LEVELS; pix++) {
int av;
if (xreds == 0)
av = 100;
else if (procreds == xreds)
av = 0;
else {
av = (100*(procreds - xreds)) / procreds;
if (av == 0)
av = 1;
}
run_queue_info[qix].prio[pix].avail = av;
if (pix < PRIORITY_NORMAL) /* ie., max or high */
xreds += run_queue_info[qix].prio[pix].reds;
}
run_queue_info[qix].prio[ERTS_PORT_PRIO_LEVEL].avail = 100;
}
ERTS_UPDATE_FULL_REDS(qix, treds);
full_scheds_reds += run_queue_info[qix].full_reds;
full_scheds++;
half_full_scheds++;
}
run_queue_info[qix].reds = treds;
scheds_reds += treds;
oowc += run_queue_info[qix].oowc;
if (mmax_len < run_queue_info[qix].max_len)
mmax_len = run_queue_info[qix].max_len;
}
if (!forced && half_full_scheds != blnc_no_rqs) {
int min = 1;
if (min < half_full_scheds)
min = half_full_scheds;
if (full_scheds) {
active = (scheds_reds - 1)/ERTS_RUNQ_CHECK_BALANCE_REDS_PER_SCHED+1;
}
else {
active = balance_info.last_active_runqs - 1;
}
if (balance_info.last_active_runqs < current_active) {
ERTS_BLNCE_SAVE_RISE(current_active, mmax_len, scheds_reds);
active = current_active;
}
else if (active < balance_info.prev_rise.active_runqs) {
if (ERTS_PERCENT(mmax_len,
balance_info.prev_rise.max_len) >= 90
&& ERTS_PERCENT(scheds_reds,
balance_info.prev_rise.reds) >= 90) {
active = balance_info.prev_rise.active_runqs;
}
}
if (active < min)
active = min;
else if (active > blnc_no_rqs)
active = blnc_no_rqs;
if (active == blnc_no_rqs)
goto all_active;
for (qix = 0; qix < active; qix++) {
run_queue_info[qix].flags = 0;
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++) {
run_queue_info[qix].prio[pix].emigrate_to = -1;
run_queue_info[qix].prio[pix].immigrate_from = -1;
run_queue_info[qix].prio[pix].migration_limit = 0;
}
}
for (qix = active; qix < blnc_no_rqs; qix++) {
run_queue_info[qix].flags = ERTS_RUNQ_FLG_INACTIVE;
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++) {
int tix = qix % active;
ERTS_SET_RUNQ_FLG_EMIGRATE(run_queue_info[qix].flags, pix);
run_queue_info[qix].prio[pix].emigrate_to = tix;
run_queue_info[qix].prio[pix].immigrate_from = -1;
run_queue_info[qix].prio[pix].migration_limit = 0;
}
}
}
else {
if (balance_info.last_active_runqs < current_active)
ERTS_BLNCE_SAVE_RISE(current_active, mmax_len, scheds_reds);
all_active:
active = blnc_no_rqs;
for (qix = 0; qix < blnc_no_rqs; qix++) {
if (full_scheds_reds > 0) {
/* Calculate availability compared to other schedulers */
if (!(run_queue_info[qix].flags & ERTS_RUNQ_FLG_OUT_OF_WORK)) {
Sint64 tmp = ((Sint64) run_queue_info[qix].full_reds
* (Sint64) full_scheds);
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++) {
Sint64 avail = run_queue_info[qix].prio[pix].avail;
avail = (avail*tmp)/full_scheds_reds;
ASSERT(avail >= 0);
run_queue_info[qix].prio[pix].avail = (int) avail;
}
}
}
/* Calculate average max length */
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++) {
run_queue_info[qix].prio[pix].emigrate_to = -1;
run_queue_info[qix].prio[pix].immigrate_from = -1;
avg.prio[pix].max_len += run_queue_info[qix].prio[pix].max_len;
avg.prio[pix].avail += run_queue_info[qix].prio[pix].avail;
}
}
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++) {
int max_len = avg.prio[pix].max_len;
if (max_len != 0) {
int avail = avg.prio[pix].avail;
if (avail != 0) {
max_len = ((100*max_len - 1) / avail) + 1;
avg.prio[pix].max_len = max_len;
ASSERT(max_len >= 0);
}
}
}
/* Calculate migration limits for all priority queues in all
run queues */
for (qix = 0; qix < blnc_no_rqs; qix++) {
run_queue_info[qix].flags = 0; /* Reset for later use... */
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++) {
int limit;
if (avg.prio[pix].max_len == 0
|| run_queue_info[qix].prio[pix].avail == 0)
limit = 0;
else
limit = (((avg.prio[pix].max_len
* run_queue_info[qix].prio[pix].avail) - 1)
/ 100 + 1);
run_queue_info[qix].prio[pix].migration_limit = limit;
}
}
/* Setup migration paths for all priorities */
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++) {
int low = 0, high = 0;
for (qix = 0; qix < blnc_no_rqs; qix++) {
int len_diff = run_queue_info[qix].prio[pix].max_len;
len_diff -= run_queue_info[qix].prio[pix].migration_limit;
#ifdef DBG_PRINT
if (pix == 2) erts_fprintf(stderr, "%d ", len_diff);
#endif
run_queue_compare[qix].qix = qix;
run_queue_compare[qix].len = len_diff;
if (len_diff != 0) {
if (len_diff < 0)
low++;
else
high++;
}
}
#ifdef DBG_PRINT
if (pix == 2) erts_fprintf(stderr, "\n");
#endif
if (low && high) {
int from_qix;
int to_qix;
int eof = 0;
int eot = 0;
int tix = 0;
int fix = blnc_no_rqs-1;
qsort(run_queue_compare,
blnc_no_rqs,
sizeof(ErtsRunQueueCompare),
rqc_len_cmp);
while (1) {
if (run_queue_compare[fix].len <= 0)
eof = 1;
if (run_queue_compare[tix].len >= 0)
eot = 1;
if (eof || eot)
break;
from_qix = run_queue_compare[fix].qix;
to_qix = run_queue_compare[tix].qix;
if (run_queue_info[from_qix].prio[pix].avail == 0) {
ERTS_SET_RUNQ_FLG_EVACUATE(run_queue_info[from_qix].flags,
pix);
ERTS_SET_RUNQ_FLG_EVACUATE(run_queue_info[to_qix].flags,
pix);
}
ERTS_SET_RUNQ_FLG_EMIGRATE(run_queue_info[from_qix].flags, pix);
ERTS_SET_RUNQ_FLG_IMMIGRATE(run_queue_info[to_qix].flags, pix);
run_queue_info[from_qix].prio[pix].emigrate_to = to_qix;
run_queue_info[to_qix].prio[pix].immigrate_from = from_qix;
tix++;
fix--;
#ifdef DBG_PRINT
if (pix == 2) erts_fprintf(stderr, "%d >--> %d\n", from_qix, to_qix);
#endif
}
if (!eot && eof) {
if (fix < blnc_no_rqs-1)
fix++;
if (run_queue_compare[fix].len > 0) {
int fix2 = -1;
while (tix < fix) {
if (run_queue_compare[tix].len >= 0)
break;
if (fix2 < fix)
fix2 = blnc_no_rqs-1;
from_qix = run_queue_compare[fix2].qix;
to_qix = run_queue_compare[tix].qix;
ASSERT(to_qix != from_qix);
if (run_queue_info[from_qix].prio[pix].avail == 0)
ERTS_SET_RUNQ_FLG_EVACUATE(run_queue_info[to_qix].flags,
pix);
ERTS_SET_RUNQ_FLG_IMMIGRATE(run_queue_info[to_qix].flags, pix);
run_queue_info[to_qix].prio[pix].immigrate_from = from_qix;
tix++;
fix2--;
#ifdef DBG_PRINT
if (pix == 2) erts_fprintf(stderr, "%d --> %d\n", from_qix, to_qix);
#endif
}
}
}
else if (!eof && eot) {
if (tix > 0)
tix--;
if (run_queue_compare[tix].len < 0) {
int tix2 = 0;
while (tix < fix) {
if (run_queue_compare[fix].len <= 0)
break;
if (tix2 > tix)
tix2 = 0;
from_qix = run_queue_compare[fix].qix;
to_qix = run_queue_compare[tix2].qix;
ASSERT(to_qix != from_qix);
if (run_queue_info[from_qix].prio[pix].avail == 0)
ERTS_SET_RUNQ_FLG_EVACUATE(run_queue_info[from_qix].flags,
pix);
ERTS_SET_RUNQ_FLG_EMIGRATE(run_queue_info[from_qix].flags, pix);
run_queue_info[from_qix].prio[pix].emigrate_to = to_qix;
fix--;
tix2++;
#ifdef DBG_PRINT
if (pix == 2) erts_fprintf(stderr, "%d >-- %d\n", from_qix, to_qix);
#endif
}
}
}
}
}
#ifdef DBG_PRINT
erts_fprintf(stderr, "--------------------------------\n");
#endif
}
balance_info.last_active_runqs = active;
erts_smp_atomic_set(&balance_info.active_runqs, active);
balance_info.halftime = 1;
erts_smp_atomic_set(&balance_info.checking_balance, 0);
/* Write migration paths and reset balance statistics in all queues */
for (qix = 0; qix < blnc_no_rqs; qix++) {
int mqix;
Uint32 flags;
ErtsRunQueue *rq = ERTS_RUNQ_IX(qix);
ErtsRunQueueInfo *rqi;
flags = run_queue_info[qix].flags;
erts_smp_runq_lock(rq);
flags |= (rq->flags & ~ERTS_RUNQ_FLGS_MIGRATION_INFO);
ASSERT(!(flags & ERTS_RUNQ_FLG_OUT_OF_WORK));
if (rq->waiting)
flags |= ERTS_RUNQ_FLG_OUT_OF_WORK;
rq->full_reds_history_sum
= run_queue_info[qix].full_reds_history_sum;
rq->full_reds_history[freds_hist_ix]
= run_queue_info[qix].full_reds_history_change;
ERTS_DBG_CHK_FULL_REDS_HISTORY(rq);
rq->out_of_work_count = 0;
rq->flags = flags;
rq->max_len = rq->len;
for (pix = 0; pix < ERTS_NO_PRIO_LEVELS; pix++) {
rqi = (pix == ERTS_PORT_PRIO_LEVEL
? &rq->ports.info
: &rq->procs.prio_info[pix]);
rqi->max_len = rqi->len;
rqi->reds = 0;
if (!(ERTS_CHK_RUNQ_FLG_EMIGRATE(flags, pix)
| ERTS_CHK_RUNQ_FLG_IMMIGRATE(flags, pix))) {
ASSERT(run_queue_info[qix].prio[pix].immigrate_from < 0);
ASSERT(run_queue_info[qix].prio[pix].emigrate_to < 0);
#ifdef DEBUG
rqi->migrate.limit.this = -1;
rqi->migrate.limit.other = -1;
ERTS_DBG_SET_INVALID_RUNQP(rqi->migrate.runq, 0x2);
#endif
}
else if (ERTS_CHK_RUNQ_FLG_EMIGRATE(flags, pix)) {
ASSERT(!ERTS_CHK_RUNQ_FLG_IMMIGRATE(flags, pix));
ASSERT(run_queue_info[qix].prio[pix].immigrate_from < 0);
ASSERT(run_queue_info[qix].prio[pix].emigrate_to >= 0);
mqix = run_queue_info[qix].prio[pix].emigrate_to;
rqi->migrate.limit.this
= run_queue_info[qix].prio[pix].migration_limit;
rqi->migrate.limit.other
= run_queue_info[mqix].prio[pix].migration_limit;
rqi->migrate.runq = ERTS_RUNQ_IX(mqix);
}
else {
ASSERT(ERTS_CHK_RUNQ_FLG_IMMIGRATE(flags, pix));
ASSERT(run_queue_info[qix].prio[pix].emigrate_to < 0);
ASSERT(run_queue_info[qix].prio[pix].immigrate_from >= 0);
mqix = run_queue_info[qix].prio[pix].immigrate_from;
rqi->migrate.limit.this
= run_queue_info[qix].prio[pix].migration_limit;
rqi->migrate.limit.other
= run_queue_info[mqix].prio[pix].migration_limit;
rqi->migrate.runq = ERTS_RUNQ_IX(mqix);
}
}
rq->check_balance_reds = ERTS_RUNQ_CALL_CHECK_BALANCE_REDS;
erts_smp_runq_unlock(rq);
}
balance_info.n++;
erts_smp_mtx_unlock(&balance_info.update_mtx);
erts_smp_runq_lock(c_rq);
}
#endif /* #ifdef ERTS_SMP */
Uint
erts_debug_nbalance(void)
{
#ifdef ERTS_SMP
Uint n;
erts_smp_mtx_lock(&balance_info.update_mtx);
n = balance_info.n;
erts_smp_mtx_unlock(&balance_info.update_mtx);
return n;
#else
return 0;
#endif
}
void
erts_early_init_scheduling(void)
{
early_cpu_bind_init();
}
void
erts_init_scheduling(int mrq, int no_schedulers, int no_schedulers_online)
{
int ix, n;
#ifndef ERTS_SMP
mrq = 0;
#endif
init_misc_op_list_alloc();
ASSERT(no_schedulers_online <= no_schedulers);
ASSERT(no_schedulers_online >= 1);
ASSERT(no_schedulers >= 1);
/* Create and initialize run queues */
n = (int) (mrq ? no_schedulers : 1);
erts_aligned_run_queues = erts_alloc(ERTS_ALC_T_RUNQS,
(sizeof(ErtsAlignedRunQueue)*(n+1)));
if ((((UWord) erts_aligned_run_queues) & ERTS_CACHE_LINE_MASK) != 0)
erts_aligned_run_queues = ((ErtsAlignedRunQueue *)
((((UWord) erts_aligned_run_queues)
& ~ERTS_CACHE_LINE_MASK)
+ ERTS_CACHE_LINE_SIZE));
ASSERT((((UWord) erts_aligned_run_queues) & ERTS_CACHE_LINE_MASK) == 0);
#ifdef ERTS_SMP
erts_smp_atomic_init(&no_empty_run_queues, 0);
#endif
erts_no_run_queues = n;
for (ix = 0; ix < n; ix++) {
int pix, rix;
ErtsRunQueue *rq = ERTS_RUNQ_IX(ix);
rq->ix = ix;
erts_smp_atomic_init(&rq->info_flags, ERTS_RUNQ_IFLG_NONEMPTY);
/* make sure that the "extra" id correponds to the schedulers
* id if the esdp->no <-> ix+1 mapping change.
*/
erts_smp_mtx_init_x(&rq->mtx, "run_queue", make_small(ix + 1));
erts_smp_cnd_init(&rq->cnd);
#ifdef ERTS_SMP
erts_smp_spinlock_init(&rq->sleepers.lock, "run_queue_sleep_list");
rq->sleepers.list = NULL;
#endif
rq->waiting = 0;
rq->woken = 0;
rq->flags = !mrq ? ERTS_RUNQ_FLG_SHARED_RUNQ : 0;
rq->check_balance_reds = ERTS_RUNQ_CALL_CHECK_BALANCE_REDS;
rq->full_reds_history_sum = 0;
for (rix = 0; rix < ERTS_FULL_REDS_HISTORY_SIZE; rix++) {
rq->full_reds_history_sum += ERTS_RUNQ_CHECK_BALANCE_REDS_PER_SCHED;
rq->full_reds_history[rix] = ERTS_RUNQ_CHECK_BALANCE_REDS_PER_SCHED;
}
rq->out_of_work_count = 0;
rq->max_len = 0;
rq->len = 0;
rq->wakeup_other = 0;
rq->wakeup_other_reds = 0;
rq->procs.len = 0;
rq->procs.pending_exiters = NULL;
rq->procs.context_switches = 0;
rq->procs.reductions = 0;
for (pix = 0; pix < ERTS_NO_PROC_PRIO_LEVELS; pix++) {
rq->procs.prio_info[pix].len = 0;
rq->procs.prio_info[pix].max_len = 0;
rq->procs.prio_info[pix].reds = 0;
rq->procs.prio_info[pix].migrate.limit.this = 0;
rq->procs.prio_info[pix].migrate.limit.other = 0;
ERTS_DBG_SET_INVALID_RUNQP(rq->procs.prio_info[pix].migrate.runq,
0x0);
if (pix < ERTS_NO_PROC_PRIO_LEVELS - 1) {
rq->procs.prio[pix].first = NULL;
rq->procs.prio[pix].last = NULL;
}
}
rq->misc.start = NULL;
rq->misc.end = NULL;
rq->misc.evac_runq = NULL;
rq->ports.info.len = 0;
rq->ports.info.max_len = 0;
rq->ports.info.reds = 0;
rq->ports.info.migrate.limit.this = 0;
rq->ports.info.migrate.limit.other = 0;
rq->ports.info.migrate.runq = NULL;
rq->ports.start = NULL;
rq->ports.end = NULL;
}
erts_common_run_queue = !mrq ? ERTS_RUNQ_IX(0) : NULL;
#ifdef ERTS_SMP
if (erts_no_run_queues != 1) {
run_queue_info = erts_alloc(ERTS_ALC_T_RUNQ_BLNS,
(sizeof(ErtsRunQueueBalance)
* erts_no_run_queues));
run_queue_compare = erts_alloc(ERTS_ALC_T_RUNQ_BLNS,
(sizeof(ErtsRunQueueCompare)
* erts_no_run_queues));
}
#endif
n = (int) no_schedulers;
erts_no_schedulers = n;
#ifdef ERTS_SMP
/* Create and initialize scheduler sleep info */
aligned_sched_sleep_info = erts_alloc(ERTS_ALC_T_SCHDLR_SLP_INFO,
(sizeof(ErtsAlignedSchedulerSleepInfo)
*(n+1)));
if ((((Uint) aligned_sched_sleep_info) & ERTS_CACHE_LINE_MASK) == 0)
aligned_sched_sleep_info = ((ErtsAlignedSchedulerSleepInfo *)
((((Uint) aligned_sched_sleep_info)
& ~ERTS_CACHE_LINE_MASK)
+ ERTS_CACHE_LINE_SIZE));
for (ix = 0; ix < n; ix++) {
ErtsSchedulerSleepInfo *ssi = ERTS_SCHED_SLEEP_INFO_IX(ix);
#if 0 /* no need to initialize these... */
ssi->next = NULL;
ssi->prev = NULL;
#endif
erts_smp_atomic_init(&ssi->flags, 0);
ssi->event = NULL; /* initialized in sched_thread_func */
erts_smp_atomic_init(&ssi->aux_work, 0);
}
#endif
/* Create and initialize scheduler specific data */
erts_aligned_scheduler_data = erts_alloc(ERTS_ALC_T_SCHDLR_DATA,
(sizeof(ErtsAlignedSchedulerData)
*(n+1)));
if ((((UWord) erts_aligned_scheduler_data) & ERTS_CACHE_LINE_MASK) != 0)
erts_aligned_scheduler_data = ((ErtsAlignedSchedulerData *)
((((UWord) erts_aligned_scheduler_data)
& ~ERTS_CACHE_LINE_MASK)
+ ERTS_CACHE_LINE_SIZE));
ASSERT((((UWord) erts_aligned_scheduler_data) & ERTS_CACHE_LINE_MASK) == 0);
for (ix = 0; ix < n; ix++) {
ErtsSchedulerData *esdp = ERTS_SCHEDULER_IX(ix);
#ifdef ERTS_SMP
erts_bits_init_state(&esdp->erl_bits_state);
esdp->match_pseudo_process = NULL;
esdp->ssi = ERTS_SCHED_SLEEP_INFO_IX(ix);
esdp->free_process = NULL;
#if HALFWORD_HEAP
/* Registers need to be heap allocated (correct memory range) for tracing to work */
esdp->save_reg = erts_alloc(ERTS_ALC_T_BEAM_REGISTER, ERTS_X_REGS_ALLOCATED * sizeof(Eterm));
#endif
#endif
#if !HEAP_ON_C_STACK
esdp->num_tmp_heap_used = 0;
#endif
esdp->no = (Uint) ix+1;
esdp->current_process = NULL;
esdp->current_port = NULL;
esdp->virtual_reds = 0;
esdp->cpu_id = -1;
erts_init_atom_cache_map(&esdp->atom_cache_map);
if (erts_common_run_queue) {
esdp->run_queue = erts_common_run_queue;
esdp->run_queue->scheduler = NULL;
}
else {
esdp->run_queue = ERTS_RUNQ_IX(ix);
esdp->run_queue->scheduler = esdp;
}
#ifdef ERTS_SMP
erts_smp_atomic_init(&esdp->chk_cpu_bind, 0);
#endif
}
#ifdef ERTS_SMP
erts_smp_mtx_init(&schdlr_sspnd.mtx, "schdlr_sspnd");
erts_smp_cnd_init(&schdlr_sspnd.cnd);
erts_smp_atomic_init(&schdlr_sspnd.changing, 0);
schdlr_sspnd.online = no_schedulers_online;
schdlr_sspnd.curr_online = no_schedulers;
erts_smp_atomic_init(&schdlr_sspnd.msb.ongoing, 0);
erts_smp_atomic_init(&schdlr_sspnd.active, no_schedulers);
schdlr_sspnd.msb.procs = NULL;
erts_smp_atomic_set(&balance_info.used_runqs,
erts_common_run_queue ? 1 : no_schedulers_online);
erts_smp_atomic_init(&balance_info.active_runqs, no_schedulers);
balance_info.last_active_runqs = no_schedulers;
erts_smp_mtx_init(&balance_info.update_mtx, "migration_info_update");
balance_info.forced_check_balance = 0;
balance_info.halftime = 1;
balance_info.full_reds_history_index = 0;
erts_smp_atomic_init(&balance_info.checking_balance, 0);
balance_info.prev_rise.active_runqs = 0;
balance_info.prev_rise.max_len = 0;
balance_info.prev_rise.reds = 0;
balance_info.n = 0;
if (no_schedulers_online < no_schedulers) {
if (erts_common_run_queue) {
for (ix = no_schedulers_online; ix < no_schedulers; ix++)
erts_smp_atomic_bor(&ERTS_SCHED_SLEEP_INFO_IX(ix)->flags,
ERTS_SSI_FLG_SUSPENDED);
}
else {
for (ix = no_schedulers_online; ix < erts_no_run_queues; ix++)
evacuate_run_queue(ERTS_RUNQ_IX(ix),
ERTS_RUNQ_IX(ix % no_schedulers_online));
}
}
schdlr_sspnd.wait_curr_online = no_schedulers_online;
schdlr_sspnd.curr_online *= 2; /* Boot strapping... */
ERTS_SCHDLR_SSPND_CHNG_SET((ERTS_SCHDLR_SSPND_CHNG_ONLN
| ERTS_SCHDLR_SSPND_CHNG_WAITER), 0);
erts_smp_atomic_init(&doing_sys_schedule, 0);
#else /* !ERTS_SMP */
{
ErtsSchedulerData *esdp;
esdp = ERTS_SCHEDULER_IX(0);
erts_scheduler_data = esdp;
#ifdef USE_THREADS
erts_tsd_set(sched_data_key, (void *) esdp);
#endif
}
erts_no_schedulers = 1;
#endif
erts_smp_atomic_init(&function_calls, 0);
/* init port tasks */
erts_port_task_init();
late_cpu_bind_init();
}
ErtsRunQueue *
erts_schedid2runq(Uint id)
{
int ix;
if (erts_common_run_queue)
return erts_common_run_queue;
ix = (int) id - 1;
ASSERT(0 <= ix && ix < erts_no_run_queues);
return ERTS_RUNQ_IX(ix);
}
#ifdef USE_THREADS
ErtsSchedulerData *
erts_get_scheduler_data(void)
{
return (ErtsSchedulerData *) erts_tsd_get(sched_data_key);
}
#endif
static int remove_proc_from_runq(ErtsRunQueue *rq, Process *p, int to_inactive);
static ERTS_INLINE void
suspend_process(ErtsRunQueue *rq, Process *p)
{
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS & erts_proc_lc_my_proc_locks(p));
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
p->rcount++; /* count number of suspend */
#ifdef ERTS_SMP
ASSERT(!(p->runq_flags & ERTS_PROC_RUNQ_FLG_RUNNING)
|| p == erts_get_current_process());
ASSERT(p->status != P_RUNNING
|| p->runq_flags & ERTS_PROC_RUNQ_FLG_RUNNING);
if (p->status_flags & ERTS_PROC_SFLG_PENDADD2SCHEDQ)
goto runable;
#endif
switch(p->status) {
case P_SUSPENDED:
break;
case P_RUNABLE:
#ifdef ERTS_SMP
runable:
if (!ERTS_PROC_PENDING_EXIT(p))
#endif
remove_proc_from_runq(rq, p, 1);
/* else:
* leave process in schedq so it will discover the pending exit
*/
p->rstatus = P_RUNABLE; /* wakeup as runnable */
break;
case P_RUNNING:
p->rstatus = P_RUNABLE; /* wakeup as runnable */
break;
case P_WAITING:
p->rstatus = P_WAITING; /* wakeup as waiting */
break;
case P_EXITING:
return; /* ignore this */
case P_GARBING:
case P_FREE:
erl_exit(1, "bad state in suspend_process()\n");
}
if ((erts_system_profile_flags.runnable_procs) && (p->rcount == 1) && (p->status != P_WAITING)) {
profile_runnable_proc(p, am_inactive);
}
p->status = P_SUSPENDED;
}
static ERTS_INLINE void
resume_process(Process *p)
{
Uint32 *statusp;
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS & erts_proc_lc_my_proc_locks(p));
switch (p->status) {
case P_SUSPENDED:
statusp = &p->status;
break;
case P_GARBING:
if (p->gcstatus == P_SUSPENDED) {
statusp = &p->gcstatus;
break;
}
/* Fall through */
default:
return;
}
ASSERT(p->rcount > 0);
if (--p->rcount > 0) /* multiple suspend */
return;
switch(p->rstatus) {
case P_RUNABLE:
*statusp = P_WAITING; /* make erts_add_to_runq work */
erts_add_to_runq(p);
break;
case P_WAITING:
*statusp = P_WAITING;
break;
default:
erl_exit(1, "bad state in resume_process()\n");
}
p->rstatus = P_FREE;
}
#ifdef ERTS_SMP
static void
susp_sched_prep_block(void *unused)
{
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
}
static void
susp_sched_resume_block(void *unused)
{
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
}
static void
scheduler_ix_resume_wake(Uint ix)
{
ErtsSchedulerSleepInfo *ssi = ERTS_SCHED_SLEEP_INFO_IX(ix);
long xflgs = (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_TSE_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED);
long oflgs;
do {
oflgs = erts_smp_atomic_cmpxchg(&ssi->flags, 0, xflgs);
if (oflgs == xflgs) {
erts_sched_finish_poke(ssi, oflgs);
break;
}
xflgs = oflgs;
} while (oflgs & ERTS_SSI_FLG_SUSPENDED);
}
static long
sched_prep_spin_suspended(ErtsSchedulerSleepInfo *ssi, long xpct)
{
long oflgs;
long nflgs = (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED);
long xflgs = xpct;
do {
oflgs = erts_smp_atomic_cmpxchg(&ssi->flags, nflgs, xflgs);
if (oflgs == xflgs)
return nflgs;
xflgs = oflgs;
} while (oflgs & ERTS_SSI_FLG_SUSPENDED);
return oflgs;
}
static long
sched_spin_suspended(ErtsSchedulerSleepInfo *ssi, int spincount)
{
int until_yield = ERTS_SCHED_SPIN_UNTIL_YIELD;
int sc = spincount;
long flgs;
do {
flgs = erts_smp_atomic_read(&ssi->flags);
if ((flgs & (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED))
!= (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED)) {
break;
}
ERTS_SPIN_BODY;
if (--until_yield == 0) {
until_yield = ERTS_SCHED_SPIN_UNTIL_YIELD;
erts_thr_yield();
}
} while (--sc > 0);
return flgs;
}
static long
sched_set_suspended_sleeptype(ErtsSchedulerSleepInfo *ssi)
{
long oflgs;
long nflgs = (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_TSE_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED);
long xflgs = (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED);
erts_tse_reset(ssi->event);
while (1) {
oflgs = erts_smp_atomic_cmpxchg(&ssi->flags, nflgs, xflgs);
if (oflgs == xflgs)
return nflgs;
if ((oflgs & (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED))
!= (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED)) {
return oflgs;
}
xflgs = oflgs;
}
}
static void
suspend_scheduler(ErtsSchedulerData *esdp)
{
long flgs;
int changing;
long no = (long) esdp->no;
ErtsRunQueue *rq = esdp->run_queue;
ErtsSchedulerSleepInfo *ssi = esdp->ssi;
long active_schedulers;
int curr_online = 1;
int wake = 0;
int reset_read_group = 0;
#if defined(ERTS_SCHED_NEED_NONBLOCKABLE_AUX_WORK) \
|| defined(ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK)
long aux_work;
#endif
/*
* Schedulers may be suspended in two different ways:
* - A scheduler may be suspended since it is not online.
* All schedulers with scheduler ids greater than
* schdlr_sspnd.online are suspended.
* - Multi scheduling is blocked. All schedulers except the
* scheduler with scheduler id 1 are suspended.
*
* Regardless of why a scheduler is suspended, it ends up here.
*/
ASSERT(no != 1);
erts_smp_runq_unlock(esdp->run_queue);
/* Unbind from cpu */
erts_smp_rwmtx_rwlock(&erts_cpu_bind_rwmtx);
if (scheduler2cpu_map[esdp->no].bound_id >= 0
&& erts_unbind_from_cpu(erts_cpuinfo) == 0) {
esdp->cpu_id = scheduler2cpu_map[esdp->no].bound_id = -1;
reset_read_group = 1;
}
erts_smp_rwmtx_rwunlock(&erts_cpu_bind_rwmtx);
if (reset_read_group)
erts_smp_rwmtx_set_reader_group(0);
if (esdp->no <= erts_max_main_threads)
erts_thr_set_main_status(0, 0);
if (erts_system_profile_flags.scheduler)
profile_scheduler(make_small(esdp->no), am_inactive);
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
flgs = sched_prep_spin_suspended(ssi, ERTS_SSI_FLG_SUSPENDED);
if (flgs & ERTS_SSI_FLG_SUSPENDED) {
active_schedulers = erts_smp_atomic_dectest(&schdlr_sspnd.active);
ASSERT(active_schedulers >= 1);
changing = erts_smp_atomic_read(&schdlr_sspnd.changing);
if (changing & ERTS_SCHDLR_SSPND_CHNG_MSB) {
if (active_schedulers == schdlr_sspnd.msb.wait_active)
wake = 1;
if (active_schedulers == 1) {
changing = erts_smp_atomic_band(&schdlr_sspnd.changing,
~ERTS_SCHDLR_SSPND_CHNG_MSB);
changing &= ~ERTS_SCHDLR_SSPND_CHNG_MSB;
}
}
while (1) {
if (changing & ERTS_SCHDLR_SSPND_CHNG_ONLN) {
int changed = 0;
if (no > schdlr_sspnd.online && curr_online) {
schdlr_sspnd.curr_online--;
curr_online = 0;
changed = 1;
}
else if (no <= schdlr_sspnd.online && !curr_online) {
schdlr_sspnd.curr_online++;
curr_online = 1;
changed = 1;
}
if (changed
&& schdlr_sspnd.curr_online == schdlr_sspnd.wait_curr_online)
wake = 1;
if (schdlr_sspnd.online == schdlr_sspnd.curr_online) {
changing = erts_smp_atomic_band(&schdlr_sspnd.changing,
~ERTS_SCHDLR_SSPND_CHNG_ONLN);
changing &= ~ERTS_SCHDLR_SSPND_CHNG_ONLN;
}
}
if (wake) {
erts_smp_cnd_signal(&schdlr_sspnd.cnd);
wake = 0;
}
flgs = erts_smp_atomic_read(&ssi->flags);
if (!(flgs & ERTS_SSI_FLG_SUSPENDED))
break;
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
#ifdef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
aux_work = erts_smp_atomic_read(&ssi->aux_work);
blockable_aux_work:
blockable_aux_work(esdp, ssi, aux_work);
#endif
erts_smp_activity_begin(ERTS_ACTIVITY_WAIT, NULL, NULL, NULL);
while (1) {
long flgs;
#ifdef ERTS_SCHED_NEED_NONBLOCKABLE_AUX_WORK
#ifndef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
aux_work = erts_smp_atomic_read(&ssi->aux_work);
#endif
nonblockable_aux_work(esdp, ssi, aux_work);
#endif
flgs = sched_spin_suspended(ssi, ERTS_SCHED_SUSPEND_SLEEP_SPINCOUNT);
if (flgs == (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED)) {
flgs = sched_set_suspended_sleeptype(ssi);
if (flgs == (ERTS_SSI_FLG_SLEEPING
| ERTS_SSI_FLG_TSE_SLEEPING
| ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED)) {
int res;
do {
res = erts_tse_wait(ssi->event);
} while (res == EINTR);
}
}
flgs = sched_prep_spin_suspended(ssi, (ERTS_SSI_FLG_WAITING
| ERTS_SSI_FLG_SUSPENDED));
if (!(flgs & ERTS_SSI_FLG_SUSPENDED))
break;
changing = erts_smp_atomic_read(&schdlr_sspnd.changing);
if (changing & ~ERTS_SCHDLR_SSPND_CHNG_WAITER)
break;
#ifdef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
aux_work = erts_smp_atomic_read(&ssi->aux_work);
if (aux_work & ERTS_SSI_BLOCKABLE_AUX_WORK_MASK) {
erts_smp_activity_end(ERTS_ACTIVITY_WAIT, NULL, NULL, NULL);
goto blockable_aux_work;
}
#endif
}
erts_smp_activity_end(ERTS_ACTIVITY_WAIT, NULL, NULL, NULL);
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
changing = erts_smp_atomic_read(&schdlr_sspnd.changing);
}
active_schedulers = erts_smp_atomic_inctest(&schdlr_sspnd.active);
changing = erts_smp_atomic_read(&schdlr_sspnd.changing);
if ((changing & ERTS_SCHDLR_SSPND_CHNG_MSB)
&& schdlr_sspnd.online == active_schedulers) {
erts_smp_atomic_band(&schdlr_sspnd.changing,
~ERTS_SCHDLR_SSPND_CHNG_MSB);
}
ASSERT(no <= schdlr_sspnd.online);
ASSERT(!erts_smp_atomic_read(&schdlr_sspnd.msb.ongoing));
}
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
ASSERT(curr_online);
if (erts_system_profile_flags.scheduler)
profile_scheduler(make_small(esdp->no), am_active);
if (esdp->no <= erts_max_main_threads)
erts_thr_set_main_status(1, (int) esdp->no);
erts_smp_runq_lock(esdp->run_queue);
non_empty_runq(esdp->run_queue);
/* Make sure we check if we should bind to a cpu or not... */
if (rq->flags & ERTS_RUNQ_FLG_SHARED_RUNQ)
erts_smp_atomic_set(&esdp->chk_cpu_bind, 1);
else
rq->flags |= ERTS_RUNQ_FLG_CHK_CPU_BIND;
}
#define ERTS_RUNQ_RESET_SUSPEND_INFO(RQ, DBG_ID) \
do { \
int pix__; \
(RQ)->misc.evac_runq = NULL; \
(RQ)->ports.info.migrate.runq = NULL; \
(RQ)->flags &= ~(ERTS_RUNQ_FLGS_IMMIGRATE_QMASK \
| ERTS_RUNQ_FLGS_EMIGRATE_QMASK \
| ERTS_RUNQ_FLGS_EVACUATE_QMASK \
| ERTS_RUNQ_FLG_SUSPENDED); \
(RQ)->flags |= (ERTS_RUNQ_FLG_OUT_OF_WORK \
| ERTS_RUNQ_FLG_HALFTIME_OUT_OF_WORK); \
(RQ)->check_balance_reds = ERTS_RUNQ_CALL_CHECK_BALANCE_REDS; \
erts_smp_atomic_band(&(RQ)->info_flags, ~ERTS_RUNQ_IFLG_SUSPENDED); \
for (pix__ = 0; pix__ < ERTS_NO_PROC_PRIO_LEVELS; pix__++) { \
(RQ)->procs.prio_info[pix__].max_len = 0; \
(RQ)->procs.prio_info[pix__].reds = 0; \
ERTS_DBG_SET_INVALID_RUNQP((RQ)->procs.prio_info[pix__].migrate.runq,\
(DBG_ID)); \
} \
(RQ)->ports.info.max_len = 0; \
(RQ)->ports.info.reds = 0; \
} while (0)
#define ERTS_RUNQ_RESET_MIGRATION_PATHS__(RQ) \
do { \
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked((RQ))); \
(RQ)->misc.evac_runq = NULL; \
(RQ)->ports.info.migrate.runq = NULL; \
(RQ)->flags &= ~(ERTS_RUNQ_FLGS_IMMIGRATE_QMASK \
| ERTS_RUNQ_FLGS_EMIGRATE_QMASK \
| ERTS_RUNQ_FLGS_EVACUATE_QMASK); \
} while (0)
#ifdef DEBUG
#define ERTS_RUNQ_RESET_MIGRATION_PATHS(RQ, DBG_ID) \
do { \
int pix__; \
ERTS_RUNQ_RESET_MIGRATION_PATHS__((RQ)); \
for (pix__ = 0; pix__ < ERTS_NO_PROC_PRIO_LEVELS; pix__++) \
ERTS_DBG_SET_INVALID_RUNQP((RQ)->procs.prio_info[pix__].migrate.runq,\
(DBG_ID)); \
} while (0)
#else
#define ERTS_RUNQ_RESET_MIGRATION_PATHS(RQ, DBG_ID) \
ERTS_RUNQ_RESET_MIGRATION_PATHS__((RQ))
#endif
ErtsSchedSuspendResult
erts_schedulers_state(Uint *total,
Uint *online,
Uint *active,
int yield_allowed)
{
int res;
long changing;
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
changing = erts_smp_atomic_read(&schdlr_sspnd.changing);
if (yield_allowed && (changing & ~ERTS_SCHDLR_SSPND_CHNG_WAITER))
res = ERTS_SCHDLR_SSPND_YIELD_RESTART;
else {
*active = *online = schdlr_sspnd.online;
if (ongoing_multi_scheduling_block())
*active = 1;
res = ERTS_SCHDLR_SSPND_DONE;
}
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
*total = erts_no_schedulers;
return res;
}
ErtsSchedSuspendResult
erts_set_schedulers_online(Process *p,
ErtsProcLocks plocks,
Sint new_no,
Sint *old_no)
{
int ix, res, no, have_unlocked_plocks;
long changing;
if (new_no < 1 || erts_no_schedulers < new_no)
return ERTS_SCHDLR_SSPND_EINVAL;
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
have_unlocked_plocks = 0;
no = (int) new_no;
changing = erts_smp_atomic_read(&schdlr_sspnd.changing);
if (changing) {
res = ERTS_SCHDLR_SSPND_YIELD_RESTART;
}
else {
int online = *old_no = schdlr_sspnd.online;
if (no == schdlr_sspnd.online) {
res = ERTS_SCHDLR_SSPND_DONE;
}
else {
ERTS_SCHDLR_SSPND_CHNG_SET((ERTS_SCHDLR_SSPND_CHNG_ONLN
| ERTS_SCHDLR_SSPND_CHNG_WAITER), 0);
schdlr_sspnd.online = no;
if (no > online) {
int ix;
schdlr_sspnd.wait_curr_online = no;
if (ongoing_multi_scheduling_block()) {
for (ix = online; ix < no; ix++)
erts_sched_poke(ERTS_SCHED_SLEEP_INFO_IX(ix));
}
else if (erts_common_run_queue) {
for (ix = online; ix < no; ix++)
scheduler_ix_resume_wake(ix);
}
else {
if (plocks) {
have_unlocked_plocks = 1;
erts_smp_proc_unlock(p, plocks);
}
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
erts_smp_mtx_lock(&balance_info.update_mtx);
for (ix = online; ix < no; ix++) {
ErtsRunQueue *rq = ERTS_RUNQ_IX(ix);
erts_smp_runq_lock(rq);
ERTS_RUNQ_RESET_SUSPEND_INFO(rq, 0x5);
erts_smp_runq_unlock(rq);
scheduler_ix_resume_wake(ix);
}
/*
* Spread evacuation paths among all online
* run queues.
*/
for (ix = no; ix < erts_no_run_queues; ix++) {
ErtsRunQueue *from_rq = ERTS_RUNQ_IX(ix);
ErtsRunQueue *to_rq = ERTS_RUNQ_IX(ix % no);
evacuate_run_queue(from_rq, to_rq);
}
erts_smp_atomic_set(&balance_info.used_runqs, no);
erts_smp_mtx_unlock(&balance_info.update_mtx);
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
}
res = ERTS_SCHDLR_SSPND_DONE;
}
else /* if (no < online) */ {
if (p->scheduler_data->no <= no) {
res = ERTS_SCHDLR_SSPND_DONE;
schdlr_sspnd.wait_curr_online = no;
}
else {
/*
* Yield! Current process needs to migrate
* before bif returns.
*/
res = ERTS_SCHDLR_SSPND_YIELD_DONE;
schdlr_sspnd.wait_curr_online = no+1;
}
if (ongoing_multi_scheduling_block()) {
for (ix = no; ix < online; ix++)
erts_sched_poke(ERTS_SCHED_SLEEP_INFO_IX(ix));
}
else if (erts_common_run_queue) {
for (ix = no; ix < online; ix++) {
ErtsSchedulerSleepInfo *ssi;
ssi = ERTS_SCHED_SLEEP_INFO_IX(ix);
erts_smp_atomic_bor(&ssi->flags,
ERTS_SSI_FLG_SUSPENDED);
}
wake_all_schedulers();
}
else {
if (plocks) {
have_unlocked_plocks = 1;
erts_smp_proc_unlock(p, plocks);
}
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
erts_smp_mtx_lock(&balance_info.update_mtx);
for (ix = 0; ix < online; ix++) {
ErtsRunQueue *rq = ERTS_RUNQ_IX(ix);
erts_smp_runq_lock(rq);
ERTS_RUNQ_RESET_MIGRATION_PATHS(rq, 0x6);
erts_smp_runq_unlock(rq);
}
/*
* Evacutation order important! Newly suspended run queues
* has to be evacuated last.
*/
for (ix = erts_no_run_queues-1; ix >= no; ix--)
evacuate_run_queue(ERTS_RUNQ_IX(ix),
ERTS_RUNQ_IX(ix % no));
erts_smp_atomic_set(&balance_info.used_runqs, no);
erts_smp_mtx_unlock(&balance_info.update_mtx);
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
for (ix = no; ix < online; ix++) {
ErtsRunQueue *rq = ERTS_RUNQ_IX(ix);
wake_scheduler(rq, 0, 1);
}
}
}
erts_smp_activity_begin(ERTS_ACTIVITY_WAIT,
susp_sched_prep_block,
susp_sched_resume_block,
NULL);
while (schdlr_sspnd.curr_online != schdlr_sspnd.wait_curr_online)
erts_smp_cnd_wait(&schdlr_sspnd.cnd, &schdlr_sspnd.mtx);
erts_smp_activity_end(ERTS_ACTIVITY_WAIT,
susp_sched_prep_block,
susp_sched_resume_block,
NULL);
ASSERT(res != ERTS_SCHDLR_SSPND_DONE
? (ERTS_SCHDLR_SSPND_CHNG_WAITER
& erts_smp_atomic_read(&schdlr_sspnd.changing))
: (ERTS_SCHDLR_SSPND_CHNG_WAITER
== erts_smp_atomic_read(&schdlr_sspnd.changing)));
erts_smp_atomic_band(&schdlr_sspnd.changing, ~ERTS_SCHDLR_SSPND_CHNG_WAITER);
}
}
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
if (have_unlocked_plocks)
erts_smp_proc_lock(p, plocks);
return res;
}
ErtsSchedSuspendResult
erts_block_multi_scheduling(Process *p, ErtsProcLocks plocks, int on, int all)
{
int ix, res, have_unlocked_plocks = 0;
long changing;
ErtsProcList *plp;
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
changing = erts_smp_atomic_read(&schdlr_sspnd.changing);
if (changing) {
res = ERTS_SCHDLR_SSPND_YIELD_RESTART; /* Yield */
}
else if (on) { /* ------ BLOCK ------ */
if (schdlr_sspnd.msb.procs) {
plp = proclist_create(p);
plp->next = schdlr_sspnd.msb.procs;
schdlr_sspnd.msb.procs = plp;
p->flags |= F_HAVE_BLCKD_MSCHED;
ASSERT(erts_smp_atomic_read(&schdlr_sspnd.active) == 1);
ASSERT(p->scheduler_data->no == 1);
res = ERTS_SCHDLR_SSPND_DONE_MSCHED_BLOCKED;
}
else {
int online = schdlr_sspnd.online;
p->flags |= F_HAVE_BLCKD_MSCHED;
if (plocks) {
have_unlocked_plocks = 1;
erts_smp_proc_unlock(p, plocks);
}
ASSERT(0 == erts_smp_atomic_read(&schdlr_sspnd.msb.ongoing));
erts_smp_atomic_set(&schdlr_sspnd.msb.ongoing, 1);
if (online == 1) {
res = ERTS_SCHDLR_SSPND_DONE_MSCHED_BLOCKED;
ASSERT(erts_smp_atomic_read(&schdlr_sspnd.active) == 1);
ASSERT(p->scheduler_data->no == 1);
}
else {
ERTS_SCHDLR_SSPND_CHNG_SET((ERTS_SCHDLR_SSPND_CHNG_MSB
| ERTS_SCHDLR_SSPND_CHNG_WAITER), 0);
if (p->scheduler_data->no == 1) {
res = ERTS_SCHDLR_SSPND_DONE_MSCHED_BLOCKED;
schdlr_sspnd.msb.wait_active = 1;
}
else {
/*
* Yield! Current process needs to migrate
* before bif returns.
*/
res = ERTS_SCHDLR_SSPND_YIELD_DONE_MSCHED_BLOCKED;
schdlr_sspnd.msb.wait_active = 2;
}
if (erts_common_run_queue) {
for (ix = 1; ix < online; ix++)
erts_smp_atomic_bor(&ERTS_SCHED_SLEEP_INFO_IX(ix)->flags,
ERTS_SSI_FLG_SUSPENDED);
wake_all_schedulers();
}
else {
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
erts_smp_mtx_lock(&balance_info.update_mtx);
erts_smp_atomic_set(&balance_info.used_runqs, 1);
for (ix = 0; ix < online; ix++) {
ErtsRunQueue *rq = ERTS_RUNQ_IX(ix);
erts_smp_runq_lock(rq);
ASSERT(!(rq->flags & ERTS_RUNQ_FLG_SUSPENDED));
ERTS_RUNQ_RESET_MIGRATION_PATHS(rq, 0x7);
erts_smp_runq_unlock(rq);
}
/*
* Evacuate all activities in all other run queues
* into the first run queue. Note order is important,
* online run queues has to be evacuated last.
*/
for (ix = erts_no_run_queues-1; ix >= 1; ix--)
evacuate_run_queue(ERTS_RUNQ_IX(ix), ERTS_RUNQ_IX(0));
erts_smp_mtx_unlock(&balance_info.update_mtx);
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
}
erts_smp_activity_begin(ERTS_ACTIVITY_WAIT,
susp_sched_prep_block,
susp_sched_resume_block,
NULL);
while (erts_smp_atomic_read(&schdlr_sspnd.active)
!= schdlr_sspnd.msb.wait_active)
erts_smp_cnd_wait(&schdlr_sspnd.cnd, &schdlr_sspnd.mtx);
erts_smp_activity_end(ERTS_ACTIVITY_WAIT,
susp_sched_prep_block,
susp_sched_resume_block,
NULL);
ASSERT(res != ERTS_SCHDLR_SSPND_DONE_MSCHED_BLOCKED
? (ERTS_SCHDLR_SSPND_CHNG_WAITER
& erts_smp_atomic_read(&schdlr_sspnd.changing))
: (ERTS_SCHDLR_SSPND_CHNG_WAITER
== erts_smp_atomic_read(&schdlr_sspnd.changing)));
erts_smp_atomic_band(&schdlr_sspnd.changing,
~ERTS_SCHDLR_SSPND_CHNG_WAITER);
}
plp = proclist_create(p);
plp->next = schdlr_sspnd.msb.procs;
schdlr_sspnd.msb.procs = plp;
#ifdef DEBUG
ERTS_FOREACH_RUNQ(srq,
{
if (srq != ERTS_RUNQ_IX(0)) {
ASSERT(ERTS_EMPTY_RUNQ(srq));
ASSERT(srq->flags & ERTS_RUNQ_FLG_SUSPENDED);
}
});
#endif
ASSERT(p->scheduler_data);
}
}
else if (!ongoing_multi_scheduling_block()) {
/* unblock not ongoing */
ASSERT(!schdlr_sspnd.msb.procs);
res = ERTS_SCHDLR_SSPND_DONE;
}
else { /* ------ UNBLOCK ------ */
if (p->flags & F_HAVE_BLCKD_MSCHED) {
ErtsProcList **plpp = &schdlr_sspnd.msb.procs;
plp = schdlr_sspnd.msb.procs;
while (plp) {
if (!proclist_same(plp, p)){
plpp = &plp->next;
plp = plp->next;
}
else {
*plpp = plp->next;
proclist_destroy(plp);
if (!all)
break;
plp = *plpp;
}
}
}
if (schdlr_sspnd.msb.procs)
res = ERTS_SCHDLR_SSPND_DONE_MSCHED_BLOCKED;
else {
ERTS_SCHDLR_SSPND_CHNG_SET(ERTS_SCHDLR_SSPND_CHNG_MSB, 0);
#ifdef DEBUG
ERTS_FOREACH_RUNQ(rq,
{
if (rq != p->scheduler_data->run_queue) {
if (!ERTS_EMPTY_RUNQ(rq)) {
Process *rp;
int pix;
ASSERT(rq->ports.info.len == 0);
for (pix = 0; pix < ERTS_NO_PROC_PRIO_LEVELS; pix++) {
for (rp = rq->procs.prio[pix].first;
rp;
rp = rp->next) {
ASSERT(rp->bound_runq);
}
}
}
ASSERT(rq->flags & ERTS_RUNQ_FLG_SUSPENDED);
}
});
#endif
p->flags &= ~F_HAVE_BLCKD_MSCHED;
erts_smp_atomic_set(&schdlr_sspnd.msb.ongoing, 0);
if (schdlr_sspnd.online == 1) {
/* No schedulers to resume */
ASSERT(erts_smp_atomic_read(&schdlr_sspnd.active) == 1);
ERTS_SCHDLR_SSPND_CHNG_SET(0, ERTS_SCHDLR_SSPND_CHNG_MSB);
}
else if (erts_common_run_queue) {
for (ix = 1; ix < schdlr_sspnd.online; ix++)
erts_smp_atomic_band(&ERTS_SCHED_SLEEP_INFO_IX(ix)->flags,
~ERTS_SSI_FLG_SUSPENDED);
wake_all_schedulers();
}
else {
int online = schdlr_sspnd.online;
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
if (plocks) {
have_unlocked_plocks = 1;
erts_smp_proc_unlock(p, plocks);
}
erts_smp_mtx_lock(&balance_info.update_mtx);
/* Resume all online run queues */
for (ix = 1; ix < online; ix++) {
ErtsRunQueue *rq = ERTS_RUNQ_IX(ix);
erts_smp_runq_lock(rq);
ERTS_RUNQ_RESET_SUSPEND_INFO(rq, 0x4);
erts_smp_runq_unlock(rq);
scheduler_ix_resume_wake(ix);
}
/* Spread evacuation paths among all online run queues */
for (ix = online; ix < erts_no_run_queues; ix++)
evacuate_run_queue(ERTS_RUNQ_IX(ix),
ERTS_RUNQ_IX(ix % online));
erts_smp_atomic_set(&balance_info.used_runqs, online);
/* Make sure that we balance soon... */
balance_info.forced_check_balance = 1;
erts_smp_runq_lock(ERTS_RUNQ_IX(0));
ERTS_RUNQ_IX(0)->check_balance_reds = 0;
erts_smp_runq_unlock(ERTS_RUNQ_IX(0));
erts_smp_mtx_unlock(&balance_info.update_mtx);
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
}
res = ERTS_SCHDLR_SSPND_DONE;
}
}
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
if (have_unlocked_plocks)
erts_smp_proc_lock(p, plocks);
return res;
}
#ifdef DEBUG
void
erts_dbg_multi_scheduling_return_trap(Process *p, Eterm return_value)
{
if (return_value == am_blocked) {
long active = erts_smp_atomic_read(&schdlr_sspnd.active);
ASSERT(1 <= active && active <= 2);
ASSERT(ERTS_PROC_GET_SCHDATA(p)->no == 1);
}
}
#endif
int
erts_is_multi_scheduling_blocked(void)
{
int res;
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
res = schdlr_sspnd.msb.procs != NULL;
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
return res;
}
Eterm
erts_multi_scheduling_blockers(Process *p)
{
Eterm res = NIL;
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
if (schdlr_sspnd.msb.procs) {
Eterm *hp, *hp_end;
ErtsProcList *plp1, *plp2;
Uint max_size;
ASSERT(schdlr_sspnd.msb.procs);
for (max_size = 0, plp1 = schdlr_sspnd.msb.procs;
plp1;
plp1 = plp1->next) {
max_size += 2;
}
ASSERT(max_size);
hp = HAlloc(p, max_size);
hp_end = hp + max_size;
for (plp1 = schdlr_sspnd.msb.procs; plp1; plp1 = plp1->next) {
for (plp2 = schdlr_sspnd.msb.procs;
plp2->pid != plp1->pid;
plp2 = plp2->next);
if (plp2 == plp1) {
res = CONS(hp, plp1->pid, res);
hp += 2;
}
/* else: already in result list */
}
HRelease(p, hp_end, hp);
}
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
return res;
}
static void *
sched_thread_func(void *vesdp)
{
#ifdef ERTS_SMP
Uint no = ((ErtsSchedulerData *) vesdp)->no;
#endif
#ifdef ERTS_ENABLE_LOCK_CHECK
{
char buf[31];
erts_snprintf(&buf[0], 31, "scheduler %bpu", no);
erts_lc_set_thread_name(&buf[0]);
}
#endif
erts_alloc_reg_scheduler_id(no);
erts_tsd_set(sched_data_key, vesdp);
#ifdef ERTS_SMP
if (no <= erts_max_main_threads) {
erts_thr_set_main_status(1, (int) no);
if (erts_reader_groups) {
int rg = (int) no;
if (rg > erts_reader_groups)
rg = (((int) no) - 1) % erts_reader_groups + 1;
erts_smp_rwmtx_set_reader_group(rg);
}
}
erts_proc_lock_prepare_proc_lock_waiter();
ERTS_SCHED_SLEEP_INFO_IX(no - 1)->event = erts_tse_fetch();
#endif
erts_register_blockable_thread();
#ifdef HIPE
hipe_thread_signal_init();
#endif
erts_thread_init_float();
erts_smp_mtx_lock(&schdlr_sspnd.mtx);
ASSERT(erts_smp_atomic_read(&schdlr_sspnd.changing)
& ERTS_SCHDLR_SSPND_CHNG_ONLN);
if (--schdlr_sspnd.curr_online == schdlr_sspnd.wait_curr_online) {
erts_smp_atomic_band(&schdlr_sspnd.changing,
~ERTS_SCHDLR_SSPND_CHNG_ONLN);
if (((ErtsSchedulerData *) vesdp)->no != 1)
erts_smp_cnd_signal(&schdlr_sspnd.cnd);
}
if (((ErtsSchedulerData *) vesdp)->no == 1) {
if (schdlr_sspnd.curr_online != schdlr_sspnd.wait_curr_online) {
erts_smp_activity_begin(ERTS_ACTIVITY_WAIT,
susp_sched_prep_block,
susp_sched_resume_block,
NULL);
while (schdlr_sspnd.curr_online != schdlr_sspnd.wait_curr_online)
erts_smp_cnd_wait(&schdlr_sspnd.cnd, &schdlr_sspnd.mtx);
erts_smp_activity_end(ERTS_ACTIVITY_WAIT,
susp_sched_prep_block,
susp_sched_resume_block,
NULL);
}
ERTS_SCHDLR_SSPND_CHNG_SET(0, ERTS_SCHDLR_SSPND_CHNG_WAITER);
}
erts_smp_mtx_unlock(&schdlr_sspnd.mtx);
process_main();
/* No schedulers should *ever* terminate */
erl_exit(ERTS_ABORT_EXIT, "Scheduler thread number %bpu terminated\n",
((ErtsSchedulerData *) vesdp)->no);
return NULL;
}
void
erts_start_schedulers(void)
{
int res = 0;
Uint actual = 0;
Uint wanted = erts_no_schedulers;
Uint wanted_no_schedulers = erts_no_schedulers;
ethr_thr_opts opts = ETHR_THR_OPTS_DEFAULT_INITER;
opts.detached = 1;
opts.suggested_stack_size = erts_sched_thread_suggested_stack_size;
if (wanted < 1)
wanted = 1;
if (wanted > ERTS_MAX_NO_OF_SCHEDULERS) {
wanted = ERTS_MAX_NO_OF_SCHEDULERS;
res = ENOTSUP;
}
erts_block_system(0);
while (actual < wanted) {
ErtsSchedulerData *esdp = ERTS_SCHEDULER_IX(actual);
actual++;
ASSERT(actual == esdp->no);
res = ethr_thr_create(&esdp->tid,sched_thread_func,(void*)esdp,&opts);
if (res != 0) {
actual--;
break;
}
}
erts_no_schedulers = actual;
erts_release_system();
if (actual < 1)
erl_exit(1,
"Failed to create any scheduler-threads: %s (%d)\n",
erl_errno_id(res),
res);
if (res != 0) {
erts_dsprintf_buf_t *dsbufp = erts_create_logger_dsbuf();
ASSERT(actual != wanted_no_schedulers);
erts_dsprintf(dsbufp,
"Failed to create %bpu scheduler-threads (%s:%d); "
"only %bpu scheduler-thread%s created.\n",
wanted_no_schedulers, erl_errno_id(res), res,
actual, actual == 1 ? " was" : "s were");
erts_send_error_to_logger_nogl(dsbufp);
}
}
#endif /* ERTS_SMP */
static int
int_cmp(const void *vx, const void *vy)
{
return *((int *) vx) - *((int *) vy);
}
static int
cpu_spread_order_cmp(const void *vx, const void *vy)
{
erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;
if (x->thread != y->thread)
return x->thread - y->thread;
if (x->core != y->core)
return x->core - y->core;
if (x->processor_node != y->processor_node)
return x->processor_node - y->processor_node;
if (x->processor != y->processor)
return x->processor - y->processor;
if (x->node != y->node)
return x->node - y->node;
return 0;
}
static int
cpu_processor_spread_order_cmp(const void *vx, const void *vy)
{
erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;
if (x->thread != y->thread)
return x->thread - y->thread;
if (x->processor_node != y->processor_node)
return x->processor_node - y->processor_node;
if (x->core != y->core)
return x->core - y->core;
if (x->node != y->node)
return x->node - y->node;
if (x->processor != y->processor)
return x->processor - y->processor;
return 0;
}
static int
cpu_thread_spread_order_cmp(const void *vx, const void *vy)
{
erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;
if (x->thread != y->thread)
return x->thread - y->thread;
if (x->node != y->node)
return x->node - y->node;
if (x->processor != y->processor)
return x->processor - y->processor;
if (x->processor_node != y->processor_node)
return x->processor_node - y->processor_node;
if (x->core != y->core)
return x->core - y->core;
return 0;
}
static int
cpu_thread_no_node_processor_spread_order_cmp(const void *vx, const void *vy)
{
erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;
if (x->thread != y->thread)
return x->thread - y->thread;
if (x->node != y->node)
return x->node - y->node;
if (x->core != y->core)
return x->core - y->core;
if (x->processor != y->processor)
return x->processor - y->processor;
return 0;
}
static int
cpu_no_node_processor_spread_order_cmp(const void *vx, const void *vy)
{
erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;
if (x->node != y->node)
return x->node - y->node;
if (x->thread != y->thread)
return x->thread - y->thread;
if (x->core != y->core)
return x->core - y->core;
if (x->processor != y->processor)
return x->processor - y->processor;
return 0;
}
static int
cpu_no_node_thread_spread_order_cmp(const void *vx, const void *vy)
{
erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;
if (x->node != y->node)
return x->node - y->node;
if (x->thread != y->thread)
return x->thread - y->thread;
if (x->processor != y->processor)
return x->processor - y->processor;
if (x->core != y->core)
return x->core - y->core;
return 0;
}
static int
cpu_no_spread_order_cmp(const void *vx, const void *vy)
{
erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;
if (x->node != y->node)
return x->node - y->node;
if (x->processor != y->processor)
return x->processor - y->processor;
if (x->processor_node != y->processor_node)
return x->processor_node - y->processor_node;
if (x->core != y->core)
return x->core - y->core;
if (x->thread != y->thread)
return x->thread - y->thread;
return 0;
}
static ERTS_INLINE void
make_cpudata_id_seq(erts_cpu_topology_t *cpudata, int size, int no_node)
{
int ix;
int node = -1;
int processor = -1;
int processor_node = -1;
int processor_node_node = -1;
int core = -1;
int thread = -1;
int old_node = -1;
int old_processor = -1;
int old_processor_node = -1;
int old_core = -1;
int old_thread = -1;
for (ix = 0; ix < size; ix++) {
if (!no_node || cpudata[ix].node >= 0) {
if (old_node == cpudata[ix].node)
cpudata[ix].node = node;
else {
old_node = cpudata[ix].node;
old_processor = processor = -1;
if (!no_node)
old_processor_node = processor_node = -1;
old_core = core = -1;
old_thread = thread = -1;
if (no_node || cpudata[ix].node >= 0)
cpudata[ix].node = ++node;
}
}
if (old_processor == cpudata[ix].processor)
cpudata[ix].processor = processor;
else {
old_processor = cpudata[ix].processor;
if (!no_node)
processor_node_node = old_processor_node = processor_node = -1;
old_core = core = -1;
old_thread = thread = -1;
cpudata[ix].processor = ++processor;
}
if (no_node && cpudata[ix].processor_node < 0)
old_processor_node = -1;
else {
if (old_processor_node == cpudata[ix].processor_node) {
if (no_node)
cpudata[ix].node = cpudata[ix].processor_node = node;
else {
if (processor_node_node >= 0)
cpudata[ix].node = processor_node_node;
cpudata[ix].processor_node = processor_node;
}
}
else {
old_processor_node = cpudata[ix].processor_node;
old_core = core = -1;
old_thread = thread = -1;
if (no_node)
cpudata[ix].node = cpudata[ix].processor_node = ++node;
else {
cpudata[ix].node = processor_node_node = ++node;
cpudata[ix].processor_node = ++processor_node;
}
}
}
if (!no_node && cpudata[ix].processor_node < 0)
cpudata[ix].processor_node = 0;
if (old_core == cpudata[ix].core)
cpudata[ix].core = core;
else {
old_core = cpudata[ix].core;
old_thread = thread = -1;
cpudata[ix].core = ++core;
}
if (old_thread == cpudata[ix].thread)
cpudata[ix].thread = thread;
else
old_thread = cpudata[ix].thread = ++thread;
}
}
static void
cpu_bind_order_sort(erts_cpu_topology_t *cpudata,
int size,
ErtsCpuBindOrder bind_order,
int mk_seq)
{
if (size > 1) {
int no_node = 0;
int (*cmp_func)(const void *, const void *);
switch (bind_order) {
case ERTS_CPU_BIND_SPREAD:
cmp_func = cpu_spread_order_cmp;
break;
case ERTS_CPU_BIND_PROCESSOR_SPREAD:
cmp_func = cpu_processor_spread_order_cmp;
break;
case ERTS_CPU_BIND_THREAD_SPREAD:
cmp_func = cpu_thread_spread_order_cmp;
break;
case ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD:
no_node = 1;
cmp_func = cpu_thread_no_node_processor_spread_order_cmp;
break;
case ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD:
no_node = 1;
cmp_func = cpu_no_node_processor_spread_order_cmp;
break;
case ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD:
no_node = 1;
cmp_func = cpu_no_node_thread_spread_order_cmp;
break;
case ERTS_CPU_BIND_NO_SPREAD:
cmp_func = cpu_no_spread_order_cmp;
break;
default:
cmp_func = NULL;
erl_exit(ERTS_ABORT_EXIT,
"Bad cpu bind type: %d\n",
(int) cpu_bind_order);
break;
}
if (mk_seq)
make_cpudata_id_seq(cpudata, size, no_node);
qsort(cpudata, size, sizeof(erts_cpu_topology_t), cmp_func);
}
}
static int
processor_order_cmp(const void *vx, const void *vy)
{
erts_cpu_topology_t *x = (erts_cpu_topology_t *) vx;
erts_cpu_topology_t *y = (erts_cpu_topology_t *) vy;
if (x->processor != y->processor)
return x->processor - y->processor;
if (x->node != y->node)
return x->node - y->node;
if (x->processor_node != y->processor_node)
return x->processor_node - y->processor_node;
if (x->core != y->core)
return x->core - y->core;
if (x->thread != y->thread)
return x->thread - y->thread;
return 0;
}
static void
check_cpu_bind(ErtsSchedulerData *esdp)
{
int rg = 0;
int res;
int cpu_id;
erts_smp_runq_unlock(esdp->run_queue);
erts_smp_rwmtx_rwlock(&erts_cpu_bind_rwmtx);
cpu_id = scheduler2cpu_map[esdp->no].bind_id;
if (cpu_id >= 0 && cpu_id != scheduler2cpu_map[esdp->no].bound_id) {
res = erts_bind_to_cpu(erts_cpuinfo, cpu_id);
if (res == 0)
esdp->cpu_id = scheduler2cpu_map[esdp->no].bound_id = cpu_id;
else {
erts_dsprintf_buf_t *dsbufp = erts_create_logger_dsbuf();
erts_dsprintf(dsbufp, "Scheduler %d failed to bind to cpu %d: %s\n",
(int) esdp->no, cpu_id, erl_errno_id(-res));
erts_send_error_to_logger_nogl(dsbufp);
if (scheduler2cpu_map[esdp->no].bound_id >= 0)
goto unbind;
}
}
else if (cpu_id < 0) {
unbind:
/* Get rid of old binding */
res = erts_unbind_from_cpu(erts_cpuinfo);
if (res == 0)
esdp->cpu_id = scheduler2cpu_map[esdp->no].bound_id = -1;
else if (res != -ENOTSUP) {
erts_dsprintf_buf_t *dsbufp = erts_create_logger_dsbuf();
erts_dsprintf(dsbufp, "Scheduler %d failed to unbind from cpu %d: %s\n",
(int) esdp->no, cpu_id, erl_errno_id(-res));
erts_send_error_to_logger_nogl(dsbufp);
}
}
if (erts_reader_groups) {
if (esdp->cpu_id >= 0)
rg = reader_group_lookup(esdp->cpu_id);
else
rg = (((int) esdp->no) - 1) % erts_reader_groups + 1;
}
erts_smp_runq_lock(esdp->run_queue);
#ifdef ERTS_SMP
if (erts_common_run_queue)
erts_smp_atomic_set(&esdp->chk_cpu_bind, 0);
else {
esdp->run_queue->flags &= ~ERTS_RUNQ_FLG_CHK_CPU_BIND;
}
#endif
erts_smp_rwmtx_rwunlock(&erts_cpu_bind_rwmtx);
if (erts_reader_groups)
erts_smp_rwmtx_set_reader_group(rg);
}
static void
signal_schedulers_bind_change(erts_cpu_topology_t *cpudata, int size)
{
int s_ix = 1;
int cpu_ix;
if (cpu_bind_order != ERTS_CPU_BIND_NONE && size) {
cpu_bind_order_sort(cpudata, size, cpu_bind_order, 1);
for (cpu_ix = 0; cpu_ix < size && cpu_ix < erts_no_schedulers; cpu_ix++)
if (erts_is_cpu_available(erts_cpuinfo, cpudata[cpu_ix].logical))
scheduler2cpu_map[s_ix++].bind_id = cpudata[cpu_ix].logical;
}
if (s_ix <= erts_no_schedulers)
for (; s_ix <= erts_no_schedulers; s_ix++)
scheduler2cpu_map[s_ix].bind_id = -1;
#ifdef ERTS_SMP
if (erts_common_run_queue) {
for (s_ix = 0; s_ix < erts_no_schedulers; s_ix++)
erts_smp_atomic_set(&ERTS_SCHEDULER_IX(s_ix)->chk_cpu_bind, 1);
wake_all_schedulers();
}
else {
for (s_ix = 0; s_ix < erts_no_run_queues; s_ix++) {
ErtsRunQueue *rq = ERTS_RUNQ_IX(s_ix);
erts_smp_runq_lock(rq);
rq->flags |= ERTS_RUNQ_FLG_CHK_CPU_BIND;
erts_smp_runq_unlock(rq);
wake_scheduler(rq, 0, 1);
};
}
#else
check_cpu_bind(erts_get_scheduler_data());
#endif
}
int
erts_init_scheduler_bind_type(char *how)
{
if (erts_bind_to_cpu(erts_cpuinfo, -1) == -ENOTSUP)
return ERTS_INIT_SCHED_BIND_TYPE_NOT_SUPPORTED;
if (!system_cpudata && !user_cpudata)
return ERTS_INIT_SCHED_BIND_TYPE_ERROR_NO_CPU_TOPOLOGY;
if (sys_strcmp(how, "db") == 0)
cpu_bind_order = ERTS_CPU_BIND_DEFAULT_BIND;
else if (sys_strcmp(how, "s") == 0)
cpu_bind_order = ERTS_CPU_BIND_SPREAD;
else if (sys_strcmp(how, "ps") == 0)
cpu_bind_order = ERTS_CPU_BIND_PROCESSOR_SPREAD;
else if (sys_strcmp(how, "ts") == 0)
cpu_bind_order = ERTS_CPU_BIND_THREAD_SPREAD;
else if (sys_strcmp(how, "tnnps") == 0)
cpu_bind_order = ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD;
else if (sys_strcmp(how, "nnps") == 0)
cpu_bind_order = ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD;
else if (sys_strcmp(how, "nnts") == 0)
cpu_bind_order = ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD;
else if (sys_strcmp(how, "ns") == 0)
cpu_bind_order = ERTS_CPU_BIND_NO_SPREAD;
else if (sys_strcmp(how, "u") == 0)
cpu_bind_order = ERTS_CPU_BIND_NONE;
else
return ERTS_INIT_SCHED_BIND_TYPE_ERROR_NO_BAD_TYPE;
return ERTS_INIT_SCHED_BIND_TYPE_SUCCESS;
}
/*
* reader groups map
*/
typedef struct {
int level[ERTS_TOPOLOGY_MAX_DEPTH+1];
} erts_avail_cput;
typedef struct {
int *map;
int size;
int groups;
} erts_reader_groups_map_test;
typedef struct {
int id;
int sub_levels;
int reader_groups;
} erts_rg_count_t;
typedef struct {
int logical;
int reader_group;
} erts_reader_groups_map_t;
typedef struct {
erts_reader_groups_map_t *map;
int map_size;
int logical_processors;
int groups;
} erts_make_reader_groups_map_test;
static int reader_groups_available_cpu_check;
static int reader_groups_logical_processors;
static int reader_groups_map_size;
static erts_reader_groups_map_t *reader_groups_map;
#define ERTS_TOPOLOGY_RG ERTS_TOPOLOGY_MAX_DEPTH
static void
make_reader_groups_map(erts_make_reader_groups_map_test *test);
static Eterm
get_reader_groups_map(Process *c_p,
erts_reader_groups_map_t *map,
int map_size,
int logical_processors)
{
#ifdef DEBUG
Eterm *endp;
#endif
Eterm res = NIL, tuple;
Eterm *hp;
int i;
hp = HAlloc(c_p, logical_processors*(2+3));
#ifdef DEBUG
endp = hp + logical_processors*(2+3);
#endif
for (i = map_size - 1; i >= 0; i--) {
if (map[i].logical >= 0) {
tuple = TUPLE2(hp,
make_small(map[i].logical),
make_small(map[i].reader_group));
hp += 3;
res = CONS(hp, tuple, res);
hp += 2;
}
}
ASSERT(hp == endp);
return res;
}
Eterm
erts_debug_reader_groups_map(Process *c_p, int groups)
{
Eterm res;
erts_make_reader_groups_map_test test;
test.groups = groups;
make_reader_groups_map(&test);
if (!test.map)
res = NIL;
else {
res = get_reader_groups_map(c_p,
test.map,
test.map_size,
test.logical_processors);
erts_free(ERTS_ALC_T_TMP, test.map);
}
return res;
}
Eterm
erts_get_reader_groups_map(Process *c_p)
{
Eterm res;
erts_smp_rwmtx_rlock(&erts_cpu_bind_rwmtx);
res = get_reader_groups_map(c_p,
reader_groups_map,
reader_groups_map_size,
reader_groups_logical_processors);
erts_smp_rwmtx_runlock(&erts_cpu_bind_rwmtx);
return res;
}
static void
make_available_cpu_topology(erts_avail_cput *no,
erts_avail_cput *avail,
erts_cpu_topology_t *cpudata,
int *size,
int test)
{
int len = *size;
erts_cpu_topology_t last;
int a, i, j;
no->level[ERTS_TOPOLOGY_NODE] = -1;
no->level[ERTS_TOPOLOGY_PROCESSOR] = -1;
no->level[ERTS_TOPOLOGY_PROCESSOR_NODE] = -1;
no->level[ERTS_TOPOLOGY_CORE] = -1;
no->level[ERTS_TOPOLOGY_THREAD] = -1;
no->level[ERTS_TOPOLOGY_LOGICAL] = -1;
last.node = INT_MIN;
last.processor = INT_MIN;
last.processor_node = INT_MIN;
last.core = INT_MIN;
last.thread = INT_MIN;
last.logical = INT_MIN;
a = 0;
for (i = 0; i < len; i++) {
if (!test && !erts_is_cpu_available(erts_cpuinfo, cpudata[i].logical))
continue;
if (last.node != cpudata[i].node)
goto node;
if (last.processor != cpudata[i].processor)
goto processor;
if (last.processor_node != cpudata[i].processor_node)
goto processor_node;
if (last.core != cpudata[i].core)
goto core;
ASSERT(last.thread != cpudata[i].thread);
goto thread;
node:
no->level[ERTS_TOPOLOGY_NODE]++;
processor:
no->level[ERTS_TOPOLOGY_PROCESSOR]++;
processor_node:
no->level[ERTS_TOPOLOGY_PROCESSOR_NODE]++;
core:
no->level[ERTS_TOPOLOGY_CORE]++;
thread:
no->level[ERTS_TOPOLOGY_THREAD]++;
no->level[ERTS_TOPOLOGY_LOGICAL]++;
for (j = 0; j < ERTS_TOPOLOGY_LOGICAL; j++)
avail[a].level[j] = no->level[j];
avail[a].level[ERTS_TOPOLOGY_LOGICAL] = cpudata[i].logical;
avail[a].level[ERTS_TOPOLOGY_RG] = 0;
ASSERT(last.logical != cpudata[a].logical);
last = cpudata[i];
a++;
}
no->level[ERTS_TOPOLOGY_NODE]++;
no->level[ERTS_TOPOLOGY_PROCESSOR]++;
no->level[ERTS_TOPOLOGY_PROCESSOR_NODE]++;
no->level[ERTS_TOPOLOGY_CORE]++;
no->level[ERTS_TOPOLOGY_THREAD]++;
no->level[ERTS_TOPOLOGY_LOGICAL]++;
*size = a;
}
static int
reader_group_lookup(int logical)
{
int start = logical % reader_groups_map_size;
int ix = start;
do {
if (reader_groups_map[ix].logical == logical) {
ASSERT(reader_groups_map[ix].reader_group > 0);
return reader_groups_map[ix].reader_group;
}
ix++;
if (ix == reader_groups_map_size)
ix = 0;
} while (ix != start);
erl_exit(ERTS_ABORT_EXIT, "Logical cpu id %d not found\n", logical);
}
static void
reader_group_insert(erts_reader_groups_map_t *map, int map_size,
int logical, int reader_group)
{
int start = logical % map_size;
int ix = start;
do {
if (map[ix].logical < 0) {
map[ix].logical = logical;
map[ix].reader_group = reader_group;
return;
}
ix++;
if (ix == map_size)
ix = 0;
} while (ix != start);
erl_exit(ERTS_ABORT_EXIT, "Reader groups map full\n");
}
static int
sub_levels(erts_rg_count_t *rgc, int level, int aix, int avail_sz, erts_avail_cput *avail)
{
int sub_level = level+1;
int last = -1;
rgc->sub_levels = 0;
do {
if (last != avail[aix].level[sub_level]) {
rgc->sub_levels++;
last = avail[aix].level[sub_level];
}
aix++;
}
while (aix < avail_sz && rgc->id == avail[aix].level[level]);
rgc->reader_groups = 0;
return aix;
}
static int
write_reader_groups(int *rgp, erts_rg_count_t *rgcp,
int level, int a,
int avail_sz, erts_avail_cput *avail)
{
int rg = *rgp;
int sub_level = level+1;
int sl_per_gr = rgcp->sub_levels / rgcp->reader_groups;
int xsl = rgcp->sub_levels % rgcp->reader_groups;
int sls = 0;
int last = -1;
int xsl_rg_lim = (rgcp->reader_groups - xsl) + rg + 1;
ASSERT(level < 0 || avail[a].level[level] == rgcp->id)
do {
if (last != avail[a].level[sub_level]) {
if (!sls) {
sls = sl_per_gr;
rg++;
if (rg >= xsl_rg_lim)
sls++;
}
last = avail[a].level[sub_level];
sls--;
}
avail[a].level[ERTS_TOPOLOGY_RG] = rg;
a++;
} while (a < avail_sz && (level < 0
|| avail[a].level[level] == rgcp->id));
ASSERT(rgcp->reader_groups == rg - *rgp);
*rgp = rg;
return a;
}
static int
rg_count_sub_levels_compare(const void *vx, const void *vy)
{
erts_rg_count_t *x = (erts_rg_count_t *) vx;
erts_rg_count_t *y = (erts_rg_count_t *) vy;
if (x->sub_levels != y->sub_levels)
return y->sub_levels - x->sub_levels;
return x->id - y->id;
}
static int
rg_count_id_compare(const void *vx, const void *vy)
{
erts_rg_count_t *x = (erts_rg_count_t *) vx;
erts_rg_count_t *y = (erts_rg_count_t *) vy;
return x->id - y->id;
}
static void
make_reader_groups_map(erts_make_reader_groups_map_test *test)
{
int i, spread_level, avail_sz;
erts_avail_cput no, *avail;
erts_cpu_topology_t *cpudata;
erts_reader_groups_map_t *map;
int map_sz;
int groups = erts_reader_groups;
if (test) {
test->map = NULL;
test->map_size = 0;
groups = test->groups;
}
if (!groups)
return;
if (!test) {
if (reader_groups_map)
erts_free(ERTS_ALC_T_RDR_GRPS_MAP, reader_groups_map);
reader_groups_logical_processors = 0;
reader_groups_map_size = 0;
reader_groups_map = NULL;
}
create_tmp_cpu_topology_copy(&cpudata, &avail_sz);
if (!cpudata)
return;
cpu_bind_order_sort(cpudata,
avail_sz,
ERTS_CPU_BIND_NO_SPREAD,
1);
avail = erts_alloc(ERTS_ALC_T_TMP,
sizeof(erts_avail_cput)*avail_sz);
make_available_cpu_topology(&no, avail, cpudata,
&avail_sz, test != NULL);
destroy_tmp_cpu_topology_copy(cpudata);
map_sz = avail_sz*2+1;
if (test) {
map = erts_alloc(ERTS_ALC_T_TMP,
(sizeof(erts_reader_groups_map_t)
* map_sz));
test->map = map;
test->map_size = map_sz;
test->logical_processors = avail_sz;
}
else {
map = erts_alloc(ERTS_ALC_T_RDR_GRPS_MAP,
(sizeof(erts_reader_groups_map_t)
* map_sz));
reader_groups_map = map;
reader_groups_logical_processors = avail_sz;
reader_groups_map_size = map_sz;
}
for (i = 0; i < map_sz; i++) {
map[i].logical = -1;
map[i].reader_group = 0;
}
spread_level = ERTS_TOPOLOGY_CORE;
for (i = ERTS_TOPOLOGY_NODE; i < ERTS_TOPOLOGY_THREAD; i++) {
if (no.level[i] > groups) {
spread_level = i;
break;
}
}
if (no.level[spread_level] <= groups) {
int a, rg, last = -1;
rg = 0;
ASSERT(spread_level == ERTS_TOPOLOGY_CORE);
for (a = 0; a < avail_sz; a++) {
if (last != avail[a].level[spread_level]) {
rg++;
last = avail[a].level[spread_level];
}
reader_group_insert(map,
map_sz,
avail[a].level[ERTS_TOPOLOGY_LOGICAL],
rg);
}
}
else { /* groups < no.level[spread_level] */
erts_rg_count_t *rg_count;
int a, rg, tl, toplevels;
tl = spread_level-1;
if (spread_level == ERTS_TOPOLOGY_NODE)
toplevels = 1;
else
toplevels = no.level[tl];
rg_count = erts_alloc(ERTS_ALC_T_TMP,
toplevels*sizeof(erts_rg_count_t));
if (toplevels == 1) {
rg_count[0].id = 0;
rg_count[0].sub_levels = no.level[spread_level];
rg_count[0].reader_groups = groups;
}
else {
int rgs_per_tl, rgs;
rgs = groups;
rgs_per_tl = rgs / toplevels;
a = 0;
for (i = 0; i < toplevels; i++) {
rg_count[i].id = avail[a].level[tl];
a = sub_levels(&rg_count[i], tl, a, avail_sz, avail);
}
qsort(rg_count,
toplevels,
sizeof(erts_rg_count_t),
rg_count_sub_levels_compare);
for (i = 0; i < toplevels; i++) {
if (rg_count[i].sub_levels < rgs_per_tl) {
rg_count[i].reader_groups = rg_count[i].sub_levels;
rgs -= rg_count[i].sub_levels;
}
else {
rg_count[i].reader_groups = rgs_per_tl;
rgs -= rgs_per_tl;
}
}
while (rgs > 0) {
for (i = 0; i < toplevels; i++) {
if (rg_count[i].sub_levels == rg_count[i].reader_groups)
break;
else {
rg_count[i].reader_groups++;
if (--rgs == 0)
break;
}
}
}
qsort(rg_count,
toplevels,
sizeof(erts_rg_count_t),
rg_count_id_compare);
}
a = i = rg = 0;
while (a < avail_sz) {
a = write_reader_groups(&rg, &rg_count[i], tl,
a, avail_sz, avail);
i++;
}
ASSERT(groups == rg);
for (a = 0; a < avail_sz; a++)
reader_group_insert(map,
map_sz,
avail[a].level[ERTS_TOPOLOGY_LOGICAL],
avail[a].level[ERTS_TOPOLOGY_RG]);
erts_free(ERTS_ALC_T_TMP, rg_count);
}
erts_free(ERTS_ALC_T_TMP, avail);
}
/*
* CPU topology
*/
typedef struct {
int *id;
int used;
int size;
} ErtsCpuTopIdSeq;
typedef struct {
ErtsCpuTopIdSeq logical;
ErtsCpuTopIdSeq thread;
ErtsCpuTopIdSeq core;
ErtsCpuTopIdSeq processor_node;
ErtsCpuTopIdSeq processor;
ErtsCpuTopIdSeq node;
} ErtsCpuTopEntry;
static void
init_cpu_top_entry(ErtsCpuTopEntry *cte)
{
int size = 10;
cte->logical.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
sizeof(int)*size);
cte->logical.size = size;
cte->thread.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
sizeof(int)*size);
cte->thread.size = size;
cte->core.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
sizeof(int)*size);
cte->core.size = size;
cte->processor_node.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
sizeof(int)*size);
cte->processor_node.size = size;
cte->processor.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
sizeof(int)*size);
cte->processor.size = size;
cte->node.id = erts_alloc(ERTS_ALC_T_TMP_CPU_IDS,
sizeof(int)*size);
cte->node.size = size;
}
static void
destroy_cpu_top_entry(ErtsCpuTopEntry *cte)
{
erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->logical.id);
erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->thread.id);
erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->core.id);
erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->processor_node.id);
erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->processor.id);
erts_free(ERTS_ALC_T_TMP_CPU_IDS, cte->node.id);
}
static int
get_cput_value_or_range(int *v, int *vr, char **str)
{
long l;
char *c = *str;
errno = 0;
if (!isdigit((unsigned char)*c))
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID;
l = strtol(c, &c, 10);
if (errno != 0 || l < 0 || ERTS_MAX_CPU_TOPOLOGY_ID < l)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID;
*v = (int) l;
if (*c == '-') {
c++;
if (!isdigit((unsigned char)*c))
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
l = strtol(c, &c, 10);
if (errno != 0 || l < 0 || ERTS_MAX_CPU_TOPOLOGY_ID < l)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
*vr = (int) l;
}
*str = c;
return ERTS_INIT_CPU_TOPOLOGY_OK;
}
static int
get_cput_id_seq(ErtsCpuTopIdSeq *idseq, char **str)
{
int ix = 0;
int need_size = 0;
char *c = *str;
while (1) {
int res;
int val;
int nids;
int val_range = -1;
res = get_cput_value_or_range(&val, &val_range, &c);
if (res != ERTS_INIT_CPU_TOPOLOGY_OK)
return res;
if (val_range < 0 || val_range == val)
nids = 1;
else {
if (val_range > val)
nids = val_range - val + 1;
else
nids = val - val_range + 1;
}
need_size += nids;
if (need_size > idseq->size) {
idseq->size = need_size + 10;
idseq->id = erts_realloc(ERTS_ALC_T_TMP_CPU_IDS,
idseq->id,
sizeof(int)*idseq->size);
}
if (nids == 1)
idseq->id[ix++] = val;
else if (val_range > val) {
for (; val <= val_range; val++)
idseq->id[ix++] = val;
}
else {
for (; val >= val_range; val--)
idseq->id[ix++] = val;
}
if (*c != ',')
break;
c++;
}
*str = c;
idseq->used = ix;
return ERTS_INIT_CPU_TOPOLOGY_OK;
}
static int
get_cput_entry(ErtsCpuTopEntry *cput, char **str)
{
int h;
char *c = *str;
cput->logical.used = 0;
cput->thread.id[0] = 0;
cput->thread.used = 1;
cput->core.id[0] = 0;
cput->core.used = 1;
cput->processor_node.id[0] = -1;
cput->processor_node.used = 1;
cput->processor.id[0] = 0;
cput->processor.used = 1;
cput->node.id[0] = -1;
cput->node.used = 1;
h = ERTS_TOPOLOGY_MAX_DEPTH;
while (*c != ':' && *c != '\0') {
int res;
ErtsCpuTopIdSeq *idseqp;
switch (*c++) {
case 'L':
if (h <= ERTS_TOPOLOGY_LOGICAL)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
idseqp = &cput->logical;
h = ERTS_TOPOLOGY_LOGICAL;
break;
case 't':
case 'T':
if (h <= ERTS_TOPOLOGY_THREAD)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
idseqp = &cput->thread;
h = ERTS_TOPOLOGY_THREAD;
break;
case 'c':
case 'C':
if (h <= ERTS_TOPOLOGY_CORE)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
idseqp = &cput->core;
h = ERTS_TOPOLOGY_CORE;
break;
case 'p':
case 'P':
if (h <= ERTS_TOPOLOGY_PROCESSOR)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
idseqp = &cput->processor;
h = ERTS_TOPOLOGY_PROCESSOR;
break;
case 'n':
case 'N':
if (h <= ERTS_TOPOLOGY_PROCESSOR) {
do_node:
if (h <= ERTS_TOPOLOGY_NODE)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
idseqp = &cput->node;
h = ERTS_TOPOLOGY_NODE;
}
else {
int p_node = 0;
char *p_chk = c;
while (*p_chk != '\0' && *p_chk != ':') {
if (*p_chk == 'p' || *p_chk == 'P') {
p_node = 1;
break;
}
p_chk++;
}
if (!p_node)
goto do_node;
if (h <= ERTS_TOPOLOGY_PROCESSOR_NODE)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_HIERARCHY;
idseqp = &cput->processor_node;
h = ERTS_TOPOLOGY_PROCESSOR_NODE;
}
break;
default:
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_TYPE;
}
res = get_cput_id_seq(idseqp, &c);
if (res != ERTS_INIT_CPU_TOPOLOGY_OK)
return res;
}
if (cput->logical.used < 1)
return ERTS_INIT_CPU_TOPOLOGY_MISSING_LID;
if (*c == ':') {
c++;
}
if (cput->thread.used != 1
&& cput->thread.used != cput->logical.used)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
if (cput->core.used != 1
&& cput->core.used != cput->logical.used)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
if (cput->processor_node.used != 1
&& cput->processor_node.used != cput->logical.used)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
if (cput->processor.used != 1
&& cput->processor.used != cput->logical.used)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
if (cput->node.used != 1
&& cput->node.used != cput->logical.used)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_ID_RANGE;
*str = c;
return ERTS_INIT_CPU_TOPOLOGY_OK;
}
static int
verify_topology(erts_cpu_topology_t *cpudata, int size)
{
if (size > 0) {
int *logical;
int node, processor, no_nodes, i;
/* Verify logical ids */
logical = erts_alloc(ERTS_ALC_T_TMP, sizeof(int)*size);
for (i = 0; i < size; i++)
logical[i] = cpudata[i].logical;
qsort(logical, size, sizeof(int), int_cmp);
for (i = 0; i < size-1; i++) {
if (logical[i] == logical[i+1]) {
erts_free(ERTS_ALC_T_TMP, logical);
return ERTS_INIT_CPU_TOPOLOGY_NOT_UNIQUE_LIDS;
}
}
erts_free(ERTS_ALC_T_TMP, logical);
qsort(cpudata, size, sizeof(erts_cpu_topology_t), processor_order_cmp);
/* Verify unique entities */
for (i = 1; i < size; i++) {
if (cpudata[i-1].processor == cpudata[i].processor
&& cpudata[i-1].node == cpudata[i].node
&& (cpudata[i-1].processor_node
== cpudata[i].processor_node)
&& cpudata[i-1].core == cpudata[i].core
&& cpudata[i-1].thread == cpudata[i].thread) {
return ERTS_INIT_CPU_TOPOLOGY_NOT_UNIQUE_ENTITIES;
}
}
/* Verify numa nodes */
node = cpudata[0].node;
processor = cpudata[0].processor;
no_nodes = cpudata[0].node < 0 && cpudata[0].processor_node < 0;
for (i = 1; i < size; i++) {
if (no_nodes) {
if (cpudata[i].node >= 0 || cpudata[i].processor_node >= 0)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_NODES;
}
else {
if (cpudata[i].processor == processor && cpudata[i].node != node)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_NODES;
node = cpudata[i].node;
processor = cpudata[i].processor;
if (node >= 0 && cpudata[i].processor_node >= 0)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_NODES;
if (node < 0 && cpudata[i].processor_node < 0)
return ERTS_INIT_CPU_TOPOLOGY_INVALID_NODES;
}
}
}
return ERTS_INIT_CPU_TOPOLOGY_OK;
}
int
erts_init_cpu_topology(char *topology_str)
{
ErtsCpuTopEntry cput;
int need_size;
char *c;
int ix;
int error = ERTS_INIT_CPU_TOPOLOGY_OK;
if (user_cpudata)
erts_free(ERTS_ALC_T_CPUDATA, user_cpudata);
user_cpudata_size = 10;
user_cpudata = erts_alloc(ERTS_ALC_T_CPUDATA,
(sizeof(erts_cpu_topology_t)
* user_cpudata_size));
init_cpu_top_entry(&cput);
ix = 0;
need_size = 0;
c = topology_str;
if (*c == '\0') {
error = ERTS_INIT_CPU_TOPOLOGY_MISSING;
goto fail;
}
do {
int r;
error = get_cput_entry(&cput, &c);
if (error != ERTS_INIT_CPU_TOPOLOGY_OK)
goto fail;
need_size += cput.logical.used;
if (user_cpudata_size < need_size) {
user_cpudata_size = need_size + 10;
user_cpudata = erts_realloc(ERTS_ALC_T_CPUDATA,
user_cpudata,
(sizeof(erts_cpu_topology_t)
* user_cpudata_size));
}
ASSERT(cput.thread.used == 1
|| cput.thread.used == cput.logical.used);
ASSERT(cput.core.used == 1
|| cput.core.used == cput.logical.used);
ASSERT(cput.processor_node.used == 1
|| cput.processor_node.used == cput.logical.used);
ASSERT(cput.processor.used == 1
|| cput.processor.used == cput.logical.used);
ASSERT(cput.node.used == 1
|| cput.node.used == cput.logical.used);
for (r = 0; r < cput.logical.used; r++) {
user_cpudata[ix].logical = cput.logical.id[r];
user_cpudata[ix].thread =
cput.thread.id[cput.thread.used == 1 ? 0 : r];
user_cpudata[ix].core =
cput.core.id[cput.core.used == 1 ? 0 : r];
user_cpudata[ix].processor_node =
cput.processor_node.id[cput.processor_node.used == 1 ? 0 : r];
user_cpudata[ix].processor =
cput.processor.id[cput.processor.used == 1 ? 0 : r];
user_cpudata[ix].node =
cput.node.id[cput.node.used == 1 ? 0 : r];
ix++;
}
} while (*c != '\0');
if (user_cpudata_size != ix) {
user_cpudata_size = ix;
user_cpudata = erts_realloc(ERTS_ALC_T_CPUDATA,
user_cpudata,
(sizeof(erts_cpu_topology_t)
* user_cpudata_size));
}
error = verify_topology(user_cpudata, user_cpudata_size);
if (error == ERTS_INIT_CPU_TOPOLOGY_OK) {
destroy_cpu_top_entry(&cput);
return ERTS_INIT_CPU_TOPOLOGY_OK;
}
fail:
if (user_cpudata)
erts_free(ERTS_ALC_T_CPUDATA, user_cpudata);
user_cpudata_size = 0;
destroy_cpu_top_entry(&cput);
return error;
}
#define ERTS_GET_CPU_TOPOLOGY_ERROR -1
#define ERTS_GET_USED_CPU_TOPOLOGY 0
#define ERTS_GET_DETECTED_CPU_TOPOLOGY 1
#define ERTS_GET_DEFINED_CPU_TOPOLOGY 2
static Eterm get_cpu_topology_term(Process *c_p, int type);
Eterm
erts_set_cpu_topology(Process *c_p, Eterm term)
{
erts_cpu_topology_t *cpudata = NULL;
int cpudata_size = 0;
Eterm res;
erts_smp_rwmtx_rwlock(&erts_cpu_bind_rwmtx);
res = get_cpu_topology_term(c_p, ERTS_GET_USED_CPU_TOPOLOGY);
if (term == am_undefined) {
if (user_cpudata)
erts_free(ERTS_ALC_T_CPUDATA, user_cpudata);
user_cpudata = NULL;
user_cpudata_size = 0;
if (cpu_bind_order != ERTS_CPU_BIND_NONE && system_cpudata) {
cpudata_size = system_cpudata_size;
cpudata = erts_alloc(ERTS_ALC_T_TMP,
(sizeof(erts_cpu_topology_t)
* cpudata_size));
sys_memcpy((void *) cpudata,
(void *) system_cpudata,
sizeof(erts_cpu_topology_t)*cpudata_size);
}
}
else if (is_not_list(term)) {
error:
res = THE_NON_VALUE;
goto done;
}
else {
Eterm list = term;
int ix = 0;
cpudata_size = 100;
cpudata = erts_alloc(ERTS_ALC_T_TMP,
(sizeof(erts_cpu_topology_t)
* cpudata_size));
while (is_list(list)) {
Eterm *lp = list_val(list);
Eterm cpu = CAR(lp);
Eterm* tp;
Sint id;
if (is_not_tuple(cpu))
goto error;
tp = tuple_val(cpu);
if (arityval(tp[0]) != 7 || tp[1] != am_cpu)
goto error;
if (ix >= cpudata_size) {
cpudata_size += 100;
cpudata = erts_realloc(ERTS_ALC_T_TMP,
cpudata,
(sizeof(erts_cpu_topology_t)
* cpudata_size));
}
id = signed_val(tp[2]);
if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
goto error;
cpudata[ix].node = (int) id;
id = signed_val(tp[3]);
if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
goto error;
cpudata[ix].processor = (int) id;
id = signed_val(tp[4]);
if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
goto error;
cpudata[ix].processor_node = (int) id;
id = signed_val(tp[5]);
if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
goto error;
cpudata[ix].core = (int) id;
id = signed_val(tp[6]);
if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
goto error;
cpudata[ix].thread = (int) id;
id = signed_val(tp[7]);
if (id < -1 || ERTS_MAX_CPU_TOPOLOGY_ID < id)
goto error;
cpudata[ix].logical = (int) id;
list = CDR(lp);
ix++;
}
if (is_not_nil(list))
goto error;
cpudata_size = ix;
if (ERTS_INIT_CPU_TOPOLOGY_OK != verify_topology(cpudata, cpudata_size))
goto error;
if (user_cpudata_size != cpudata_size) {
if (user_cpudata)
erts_free(ERTS_ALC_T_CPUDATA, user_cpudata);
user_cpudata = erts_alloc(ERTS_ALC_T_CPUDATA,
sizeof(erts_cpu_topology_t)*cpudata_size);
user_cpudata_size = cpudata_size;
}
sys_memcpy((void *) user_cpudata,
(void *) cpudata,
sizeof(erts_cpu_topology_t)*cpudata_size);
}
make_reader_groups_map(NULL);
signal_schedulers_bind_change(cpudata, cpudata_size);
done:
erts_smp_rwmtx_rwunlock(&erts_cpu_bind_rwmtx);
if (cpudata)
erts_free(ERTS_ALC_T_TMP, cpudata);
return res;
}
static Eterm
bound_schedulers_term(ErtsCpuBindOrder order)
{
switch (order) {
case ERTS_CPU_BIND_SPREAD: {
ERTS_DECL_AM(spread);
return AM_spread;
}
case ERTS_CPU_BIND_PROCESSOR_SPREAD: {
ERTS_DECL_AM(processor_spread);
return AM_processor_spread;
}
case ERTS_CPU_BIND_THREAD_SPREAD: {
ERTS_DECL_AM(thread_spread);
return AM_thread_spread;
}
case ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD: {
ERTS_DECL_AM(thread_no_node_processor_spread);
return AM_thread_no_node_processor_spread;
}
case ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD: {
ERTS_DECL_AM(no_node_processor_spread);
return AM_no_node_processor_spread;
}
case ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD: {
ERTS_DECL_AM(no_node_thread_spread);
return AM_no_node_thread_spread;
}
case ERTS_CPU_BIND_NO_SPREAD: {
ERTS_DECL_AM(no_spread);
return AM_no_spread;
}
case ERTS_CPU_BIND_NONE: {
ERTS_DECL_AM(unbound);
return AM_unbound;
}
default:
ASSERT(0);
return THE_NON_VALUE;
}
}
Eterm
erts_bound_schedulers_term(Process *c_p)
{
ErtsCpuBindOrder order;
erts_smp_rwmtx_rlock(&erts_cpu_bind_rwmtx);
order = cpu_bind_order;
erts_smp_rwmtx_runlock(&erts_cpu_bind_rwmtx);
return bound_schedulers_term(order);
}
static void
create_tmp_cpu_topology_copy(erts_cpu_topology_t **cpudata, int *cpudata_size)
{
if (user_cpudata) {
*cpudata_size = user_cpudata_size;
*cpudata = erts_alloc(ERTS_ALC_T_TMP,
(sizeof(erts_cpu_topology_t)
* (*cpudata_size)));
sys_memcpy((void *) *cpudata,
(void *) user_cpudata,
sizeof(erts_cpu_topology_t)*(*cpudata_size));
}
else if (system_cpudata) {
*cpudata_size = system_cpudata_size;
*cpudata = erts_alloc(ERTS_ALC_T_TMP,
(sizeof(erts_cpu_topology_t)
* (*cpudata_size)));
sys_memcpy((void *) *cpudata,
(void *) system_cpudata,
sizeof(erts_cpu_topology_t)*(*cpudata_size));
}
else {
*cpudata = NULL;
*cpudata_size = 0;
}
}
static void
destroy_tmp_cpu_topology_copy(erts_cpu_topology_t *cpudata)
{
if (cpudata)
erts_free(ERTS_ALC_T_TMP, cpudata);
}
Eterm
erts_bind_schedulers(Process *c_p, Eterm how)
{
Eterm res;
erts_cpu_topology_t *cpudata;
int cpudata_size;
ErtsCpuBindOrder old_cpu_bind_order;
erts_smp_rwmtx_rwlock(&erts_cpu_bind_rwmtx);
if (erts_bind_to_cpu(erts_cpuinfo, -1) == -ENOTSUP) {
ERTS_BIF_PREP_ERROR(res, c_p, EXC_NOTSUP);
}
else {
old_cpu_bind_order = cpu_bind_order;
if (ERTS_IS_ATOM_STR("default_bind", how))
cpu_bind_order = ERTS_CPU_BIND_DEFAULT_BIND;
else if (ERTS_IS_ATOM_STR("spread", how))
cpu_bind_order = ERTS_CPU_BIND_SPREAD;
else if (ERTS_IS_ATOM_STR("processor_spread", how))
cpu_bind_order = ERTS_CPU_BIND_PROCESSOR_SPREAD;
else if (ERTS_IS_ATOM_STR("thread_spread", how))
cpu_bind_order = ERTS_CPU_BIND_THREAD_SPREAD;
else if (ERTS_IS_ATOM_STR("thread_no_node_processor_spread", how))
cpu_bind_order = ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD;
else if (ERTS_IS_ATOM_STR("no_node_processor_spread", how))
cpu_bind_order = ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD;
else if (ERTS_IS_ATOM_STR("no_node_thread_spread", how))
cpu_bind_order = ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD;
else if (ERTS_IS_ATOM_STR("no_spread", how))
cpu_bind_order = ERTS_CPU_BIND_NO_SPREAD;
else if (ERTS_IS_ATOM_STR("unbound", how))
cpu_bind_order = ERTS_CPU_BIND_NONE;
else {
cpu_bind_order = old_cpu_bind_order;
ERTS_BIF_PREP_ERROR(res, c_p, BADARG);
goto done;
}
create_tmp_cpu_topology_copy(&cpudata, &cpudata_size);
if (!cpudata) {
cpu_bind_order = old_cpu_bind_order;
ERTS_BIF_PREP_ERROR(res, c_p, BADARG);
goto done;
}
signal_schedulers_bind_change(cpudata, cpudata_size);
destroy_tmp_cpu_topology_copy(cpudata);
res = bound_schedulers_term(old_cpu_bind_order);
}
done:
erts_smp_rwmtx_rwunlock(&erts_cpu_bind_rwmtx);
return res;
}
Eterm
erts_fake_scheduler_bindings(Process *p, Eterm how)
{
ErtsCpuBindOrder fake_cpu_bind_order;
erts_cpu_topology_t *cpudata;
int cpudata_size;
Eterm res;
if (ERTS_IS_ATOM_STR("default_bind", how))
fake_cpu_bind_order = ERTS_CPU_BIND_DEFAULT_BIND;
else if (ERTS_IS_ATOM_STR("spread", how))
fake_cpu_bind_order = ERTS_CPU_BIND_SPREAD;
else if (ERTS_IS_ATOM_STR("processor_spread", how))
fake_cpu_bind_order = ERTS_CPU_BIND_PROCESSOR_SPREAD;
else if (ERTS_IS_ATOM_STR("thread_spread", how))
fake_cpu_bind_order = ERTS_CPU_BIND_THREAD_SPREAD;
else if (ERTS_IS_ATOM_STR("thread_no_node_processor_spread", how))
fake_cpu_bind_order = ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD;
else if (ERTS_IS_ATOM_STR("no_node_processor_spread", how))
fake_cpu_bind_order = ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD;
else if (ERTS_IS_ATOM_STR("no_node_thread_spread", how))
fake_cpu_bind_order = ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD;
else if (ERTS_IS_ATOM_STR("no_spread", how))
fake_cpu_bind_order = ERTS_CPU_BIND_NO_SPREAD;
else if (ERTS_IS_ATOM_STR("unbound", how))
fake_cpu_bind_order = ERTS_CPU_BIND_NONE;
else {
ERTS_BIF_PREP_ERROR(res, p, BADARG);
return res;
}
erts_smp_rwmtx_rlock(&erts_cpu_bind_rwmtx);
create_tmp_cpu_topology_copy(&cpudata, &cpudata_size);
erts_smp_rwmtx_runlock(&erts_cpu_bind_rwmtx);
if (!cpudata || fake_cpu_bind_order == ERTS_CPU_BIND_NONE)
ERTS_BIF_PREP_RET(res, am_false);
else {
int i;
Eterm *hp;
cpu_bind_order_sort(cpudata, cpudata_size, fake_cpu_bind_order, 1);
#ifdef ERTS_FAKE_SCHED_BIND_PRINT_SORTED_CPU_DATA
erts_fprintf(stderr, "node: ");
for (i = 0; i < cpudata_size; i++)
erts_fprintf(stderr, " %2d", cpudata[i].node);
erts_fprintf(stderr, "\n");
erts_fprintf(stderr, "processor: ");
for (i = 0; i < cpudata_size; i++)
erts_fprintf(stderr, " %2d", cpudata[i].processor);
erts_fprintf(stderr, "\n");
if (fake_cpu_bind_order != ERTS_CPU_BIND_THREAD_NO_NODE_PROCESSOR_SPREAD
&& fake_cpu_bind_order != ERTS_CPU_BIND_NO_NODE_PROCESSOR_SPREAD
&& fake_cpu_bind_order != ERTS_CPU_BIND_NO_NODE_THREAD_SPREAD) {
erts_fprintf(stderr, "processor_node:");
for (i = 0; i < cpudata_size; i++)
erts_fprintf(stderr, " %2d", cpudata[i].processor_node);
erts_fprintf(stderr, "\n");
}
erts_fprintf(stderr, "core: ");
for (i = 0; i < cpudata_size; i++)
erts_fprintf(stderr, " %2d", cpudata[i].core);
erts_fprintf(stderr, "\n");
erts_fprintf(stderr, "thread: ");
for (i = 0; i < cpudata_size; i++)
erts_fprintf(stderr, " %2d", cpudata[i].thread);
erts_fprintf(stderr, "\n");
erts_fprintf(stderr, "logical: ");
for (i = 0; i < cpudata_size; i++)
erts_fprintf(stderr, " %2d", cpudata[i].logical);
erts_fprintf(stderr, "\n");
#endif
hp = HAlloc(p, cpudata_size+1);
ERTS_BIF_PREP_RET(res, make_tuple(hp));
*hp++ = make_arityval((Uint) cpudata_size);
for (i = 0; i < cpudata_size; i++)
*hp++ = make_small((Uint) cpudata[i].logical);
}
destroy_tmp_cpu_topology_copy(cpudata);
return res;
}
Eterm
erts_get_schedulers_binds(Process *c_p)
{
int ix;
ERTS_DECL_AM(unbound);
Eterm *hp = HAlloc(c_p, erts_no_schedulers+1);
Eterm res = make_tuple(hp);
*(hp++) = make_arityval(erts_no_schedulers);
erts_smp_rwmtx_rlock(&erts_cpu_bind_rwmtx);
for (ix = 1; ix <= erts_no_schedulers; ix++)
*(hp++) = (scheduler2cpu_map[ix].bound_id >= 0
? make_small(scheduler2cpu_map[ix].bound_id)
: AM_unbound);
erts_smp_rwmtx_runlock(&erts_cpu_bind_rwmtx);
return res;
}
static Eterm
bld_topology_term(Eterm **hpp,
Uint *hszp,
erts_cpu_topology_t *cpudata,
int size)
{
Eterm res = NIL;
int i;
if (size == 0)
return am_undefined;
for (i = size-1; i >= 0; i--) {
res = erts_bld_cons(hpp,
hszp,
erts_bld_tuple(hpp,
hszp,
7,
am_cpu,
make_small(cpudata[i].node),
make_small(cpudata[i].processor),
make_small(cpudata[i].processor_node),
make_small(cpudata[i].core),
make_small(cpudata[i].thread),
make_small(cpudata[i].logical)),
res);
}
return res;
}
static Eterm
get_cpu_topology_term(Process *c_p, int type)
{
#ifdef DEBUG
Eterm *hp_end;
#endif
Eterm *hp;
Uint hsz;
Eterm res = THE_NON_VALUE;
erts_cpu_topology_t *cpudata = NULL;
int size = 0;
switch (type) {
case ERTS_GET_USED_CPU_TOPOLOGY:
if (user_cpudata)
goto defined;
else
goto detected;
case ERTS_GET_DETECTED_CPU_TOPOLOGY:
detected:
if (!system_cpudata)
res = am_undefined;
else {
size = system_cpudata_size;
cpudata = erts_alloc(ERTS_ALC_T_TMP,
(sizeof(erts_cpu_topology_t)
* size));
sys_memcpy((void *) cpudata,
(void *) system_cpudata,
sizeof(erts_cpu_topology_t)*size);
}
break;
case ERTS_GET_DEFINED_CPU_TOPOLOGY:
defined:
if (!user_cpudata)
res = am_undefined;
else {
size = user_cpudata_size;
cpudata = user_cpudata;
}
break;
default:
erl_exit(ERTS_ABORT_EXIT, "Bad cpu topology type: %d\n", type);
break;
}
if (res == am_undefined) {
ASSERT(!cpudata);
return res;
}
hsz = 0;
bld_topology_term(NULL, &hsz,
cpudata, size);
hp = HAlloc(c_p, hsz);
#ifdef DEBUG
hp_end = hp + hsz;
#endif
res = bld_topology_term(&hp, NULL,
cpudata, size);
ASSERT(hp_end == hp);
if (cpudata && cpudata != system_cpudata && cpudata != user_cpudata)
erts_free(ERTS_ALC_T_TMP, cpudata);
return res;
}
Eterm
erts_get_cpu_topology_term(Process *c_p, Eterm which)
{
Eterm res;
int type;
erts_smp_rwmtx_rlock(&erts_cpu_bind_rwmtx);
if (ERTS_IS_ATOM_STR("used", which))
type = ERTS_GET_USED_CPU_TOPOLOGY;
else if (ERTS_IS_ATOM_STR("detected", which))
type = ERTS_GET_DETECTED_CPU_TOPOLOGY;
else if (ERTS_IS_ATOM_STR("defined", which))
type = ERTS_GET_DEFINED_CPU_TOPOLOGY;
else
type = ERTS_GET_CPU_TOPOLOGY_ERROR;
if (type == ERTS_GET_CPU_TOPOLOGY_ERROR)
res = THE_NON_VALUE;
else
res = get_cpu_topology_term(c_p, type);
erts_smp_rwmtx_runlock(&erts_cpu_bind_rwmtx);
return res;
}
static void
early_cpu_bind_init(void)
{
user_cpudata = NULL;
user_cpudata_size = 0;
system_cpudata_size = erts_get_cpu_topology_size(erts_cpuinfo);
system_cpudata = erts_alloc(ERTS_ALC_T_CPUDATA,
(sizeof(erts_cpu_topology_t)
* system_cpudata_size));
cpu_bind_order = ERTS_CPU_BIND_UNDEFINED;
reader_groups_available_cpu_check = 1;
reader_groups_logical_processors = 0;
reader_groups_map_size = 0;
reader_groups_map = NULL;
if (!erts_get_cpu_topology(erts_cpuinfo, system_cpudata)
|| ERTS_INIT_CPU_TOPOLOGY_OK != verify_topology(system_cpudata,
system_cpudata_size)) {
erts_free(ERTS_ALC_T_CPUDATA, system_cpudata);
system_cpudata = NULL;
system_cpudata_size = 0;
}
}
static void
late_cpu_bind_init(void)
{
int ix;
erts_smp_rwmtx_init(&erts_cpu_bind_rwmtx, "cpu_bind");
scheduler2cpu_map = erts_alloc(ERTS_ALC_T_CPUDATA,
(sizeof(ErtsCpuBindData)
* (erts_no_schedulers+1)));
for (ix = 1; ix <= erts_no_schedulers; ix++) {
scheduler2cpu_map[ix].bind_id = -1;
scheduler2cpu_map[ix].bound_id = -1;
}
if (cpu_bind_order == ERTS_CPU_BIND_UNDEFINED) {
int ncpus = erts_get_cpu_configured(erts_cpuinfo);
if (ncpus < 1 || erts_no_schedulers < ncpus)
cpu_bind_order = ERTS_CPU_BIND_NONE;
else
cpu_bind_order = ((system_cpudata || user_cpudata)
&& (erts_bind_to_cpu(erts_cpuinfo, -1) != -ENOTSUP)
? ERTS_CPU_BIND_DEFAULT_BIND
: ERTS_CPU_BIND_NONE);
}
make_reader_groups_map(NULL);
if (cpu_bind_order != ERTS_CPU_BIND_NONE) {
erts_cpu_topology_t *cpudata;
int cpudata_size;
create_tmp_cpu_topology_copy(&cpudata, &cpudata_size);
signal_schedulers_bind_change(cpudata, cpudata_size);
destroy_tmp_cpu_topology_copy(cpudata);
}
}
int
erts_update_cpu_info(void)
{
int changed;
erts_smp_rwmtx_rwlock(&erts_cpu_bind_rwmtx);
changed = erts_cpu_info_update(erts_cpuinfo);
if (changed) {
erts_cpu_topology_t *cpudata;
int cpudata_size;
if (system_cpudata)
erts_free(ERTS_ALC_T_CPUDATA, system_cpudata);
system_cpudata_size = erts_get_cpu_topology_size(erts_cpuinfo);
if (!system_cpudata_size)
system_cpudata = NULL;
else {
system_cpudata = erts_alloc(ERTS_ALC_T_CPUDATA,
(sizeof(erts_cpu_topology_t)
* system_cpudata_size));
if (!erts_get_cpu_topology(erts_cpuinfo, system_cpudata)
|| (ERTS_INIT_CPU_TOPOLOGY_OK
!= verify_topology(system_cpudata,
system_cpudata_size))) {
erts_free(ERTS_ALC_T_CPUDATA, system_cpudata);
system_cpudata = NULL;
system_cpudata_size = 0;
}
}
create_tmp_cpu_topology_copy(&cpudata, &cpudata_size);
signal_schedulers_bind_change(cpudata, cpudata_size);
destroy_tmp_cpu_topology_copy(cpudata);
}
erts_smp_rwmtx_rwunlock(&erts_cpu_bind_rwmtx);
return changed;
}
#ifdef ERTS_SMP
static void
add_pend_suspend(Process *suspendee,
Eterm originator_pid,
void (*handle_func)(Process *,
ErtsProcLocks,
int,
Eterm))
{
ErtsPendingSuspend *psp = erts_alloc(ERTS_ALC_T_PEND_SUSPEND,
sizeof(ErtsPendingSuspend));
psp->next = NULL;
#ifdef DEBUG
#if defined(ARCH_64) && !HALFWORD_HEAP
psp->end = (ErtsPendingSuspend *) 0xdeaddeaddeaddead;
#else
psp->end = (ErtsPendingSuspend *) 0xdeaddead;
#endif
#endif
psp->pid = originator_pid;
psp->handle_func = handle_func;
if (suspendee->pending_suspenders)
suspendee->pending_suspenders->end->next = psp;
else
suspendee->pending_suspenders = psp;
suspendee->pending_suspenders->end = psp;
}
static void
handle_pending_suspend(Process *p, ErtsProcLocks p_locks)
{
ErtsPendingSuspend *psp;
int is_alive = !ERTS_PROC_IS_EXITING(p);
ERTS_SMP_LC_ASSERT(p_locks & ERTS_PROC_LOCK_STATUS);
/*
* New pending suspenders might appear while we are processing
* (since we may release the status lock on p while processing).
*/
while (p->pending_suspenders) {
psp = p->pending_suspenders;
p->pending_suspenders = NULL;
while (psp) {
ErtsPendingSuspend *free_psp;
(*psp->handle_func)(p, p_locks, is_alive, psp->pid);
free_psp = psp;
psp = psp->next;
erts_free(ERTS_ALC_T_PEND_SUSPEND, (void *) free_psp);
}
}
}
static ERTS_INLINE void
cancel_suspend_of_suspendee(Process *p, ErtsProcLocks p_locks)
{
if (is_not_nil(p->suspendee)) {
Process *rp;
if (!(p_locks & ERTS_PROC_LOCK_STATUS))
erts_smp_proc_lock(p, ERTS_PROC_LOCK_STATUS);
rp = erts_pid2proc(p, p_locks|ERTS_PROC_LOCK_STATUS,
p->suspendee, ERTS_PROC_LOCK_STATUS);
if (rp) {
erts_resume(rp, ERTS_PROC_LOCK_STATUS);
erts_smp_proc_unlock(rp, ERTS_PROC_LOCK_STATUS);
}
if (!(p_locks & ERTS_PROC_LOCK_STATUS))
erts_smp_proc_unlock(p, ERTS_PROC_LOCK_STATUS);
p->suspendee = NIL;
}
}
static void
handle_pend_sync_suspend(Process *suspendee,
ErtsProcLocks suspendee_locks,
int suspendee_alive,
Eterm suspender_pid)
{
Process *suspender;
ERTS_SMP_LC_ASSERT(suspendee_locks & ERTS_PROC_LOCK_STATUS);
suspender = erts_pid2proc(suspendee,
suspendee_locks,
suspender_pid,
ERTS_PROC_LOCK_STATUS);
if (suspender) {
ASSERT(is_nil(suspender->suspendee));
if (suspendee_alive) {
ErtsRunQueue *rq = erts_get_runq_proc(suspendee);
erts_smp_runq_lock(rq);
suspend_process(rq, suspendee);
erts_smp_runq_unlock(rq);
suspender->suspendee = suspendee->id;
}
/* suspender is suspended waiting for suspendee to suspend;
resume suspender */
resume_process(suspender);
erts_smp_proc_unlock(suspender, ERTS_PROC_LOCK_STATUS);
}
}
/*
* Like erts_pid2proc() but:
*
* * At least ERTS_PROC_LOCK_MAIN have to be held on c_p.
* * At least ERTS_PROC_LOCK_MAIN have to be taken on pid.
* * It also waits for proc to be in a state != running and garbing.
* * If ERTS_PROC_LOCK_BUSY is returned, the calling process has to
* yield (ERTS_BIF_YIELD[0-3]()). c_p might in this case have been
* suspended.
*/
Process *
erts_pid2proc_not_running(Process *c_p, ErtsProcLocks c_p_locks,
Eterm pid, ErtsProcLocks pid_locks)
{
Process *rp;
int unlock_c_p_status;
ERTS_SMP_LC_ASSERT(c_p_locks == erts_proc_lc_my_proc_locks(c_p));
ERTS_SMP_LC_ASSERT(c_p_locks & ERTS_PROC_LOCK_MAIN);
ERTS_SMP_LC_ASSERT(pid_locks & (ERTS_PROC_LOCK_MAIN|ERTS_PROC_LOCK_STATUS));
if (c_p->id == pid)
return erts_pid2proc(c_p, c_p_locks, pid, pid_locks);
if (c_p_locks & ERTS_PROC_LOCK_STATUS)
unlock_c_p_status = 0;
else {
unlock_c_p_status = 1;
erts_smp_proc_lock(c_p, ERTS_PROC_LOCK_STATUS);
}
if (c_p->suspendee == pid) {
/* Process previously suspended by c_p (below)... */
ErtsProcLocks rp_locks = pid_locks|ERTS_PROC_LOCK_STATUS;
rp = erts_pid2proc(c_p, c_p_locks|ERTS_PROC_LOCK_STATUS, pid, rp_locks);
c_p->suspendee = NIL;
ASSERT(c_p->flags & F_P2PNR_RESCHED);
c_p->flags &= ~F_P2PNR_RESCHED;
if (rp)
resume_process(rp);
}
else {
ErtsRunQueue *cp_rq, *rp_rq;
rp = erts_pid2proc(c_p, c_p_locks|ERTS_PROC_LOCK_STATUS,
pid, ERTS_PROC_LOCK_STATUS);
if (!rp) {
c_p->flags &= ~F_P2PNR_RESCHED;
goto done;
}
ASSERT(!(c_p->flags & F_P2PNR_RESCHED));
cp_rq = erts_get_runq_proc(c_p);
rp_rq = erts_get_runq_proc(rp);
erts_smp_runqs_lock(cp_rq, rp_rq);
if (rp->runq_flags & ERTS_PROC_RUNQ_FLG_RUNNING) {
running:
/* Phiu... */
/*
* If we got pending suspenders and suspend ourselves waiting
* to suspend another process we might deadlock.
* In this case we have to yield, be suspended by
* someone else and then do it all over again.
*/
if (!c_p->pending_suspenders) {
/* Mark rp pending for suspend by c_p */
add_pend_suspend(rp, c_p->id, handle_pend_sync_suspend);
ASSERT(is_nil(c_p->suspendee));
/* Suspend c_p; when rp is suspended c_p will be resumed. */
suspend_process(cp_rq, c_p);
c_p->flags |= F_P2PNR_RESCHED;
}
/* Yield (caller is assumed to yield immediately in bif). */
erts_smp_proc_unlock(rp, ERTS_PROC_LOCK_STATUS);
rp = ERTS_PROC_LOCK_BUSY;
}
else {
ErtsProcLocks need_locks = pid_locks & ~ERTS_PROC_LOCK_STATUS;
if (need_locks && erts_smp_proc_trylock(rp, need_locks) == EBUSY) {
erts_smp_runqs_unlock(cp_rq, rp_rq);
erts_smp_proc_unlock(rp, ERTS_PROC_LOCK_STATUS);
rp = erts_pid2proc(c_p, c_p_locks|ERTS_PROC_LOCK_STATUS,
pid, pid_locks|ERTS_PROC_LOCK_STATUS);
if (!rp)
goto done;
/* run-queues may have changed */
cp_rq = erts_get_runq_proc(c_p);
rp_rq = erts_get_runq_proc(rp);
erts_smp_runqs_lock(cp_rq, rp_rq);
if (rp->runq_flags & ERTS_PROC_RUNQ_FLG_RUNNING) {
/* Ahh... */
erts_smp_proc_unlock(rp,
pid_locks & ~ERTS_PROC_LOCK_STATUS);
goto running;
}
}
/* rp is not running and we got the locks we want... */
}
erts_smp_runqs_unlock(cp_rq, rp_rq);
}
done:
if (rp && rp != ERTS_PROC_LOCK_BUSY && !(pid_locks & ERTS_PROC_LOCK_STATUS))
erts_smp_proc_unlock(rp, ERTS_PROC_LOCK_STATUS);
if (unlock_c_p_status)
erts_smp_proc_unlock(c_p, ERTS_PROC_LOCK_STATUS);
return rp;
}
/*
* erts_pid2proc_nropt() is normally the same as
* erts_pid2proc_not_running(). However it is only
* to be used when 'not running' is a pure optimization,
* not a requirement.
*/
Process *
erts_pid2proc_nropt(Process *c_p, ErtsProcLocks c_p_locks,
Eterm pid, ErtsProcLocks pid_locks)
{
if (erts_disable_proc_not_running_opt)
return erts_pid2proc(c_p, c_p_locks, pid, pid_locks);
else
return erts_pid2proc_not_running(c_p, c_p_locks, pid, pid_locks);
}
static ERTS_INLINE void
do_bif_suspend_process(ErtsSuspendMonitor *smon,
Process *suspendee,
ErtsRunQueue *locked_runq)
{
ASSERT(suspendee);
ASSERT(!suspendee->is_exiting);
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS
& erts_proc_lc_my_proc_locks(suspendee));
if (smon) {
if (!smon->active) {
ErtsRunQueue *rq;
if (locked_runq)
rq = locked_runq;
else {
rq = erts_get_runq_proc(suspendee);
erts_smp_runq_lock(rq);
}
suspend_process(rq, suspendee);
if (!locked_runq)
erts_smp_runq_unlock(rq);
}
smon->active += smon->pending;
ASSERT(smon->active);
smon->pending = 0;
}
}
static void
handle_pend_bif_sync_suspend(Process *suspendee,
ErtsProcLocks suspendee_locks,
int suspendee_alive,
Eterm suspender_pid)
{
Process *suspender;
ERTS_SMP_LC_ASSERT(suspendee_locks & ERTS_PROC_LOCK_STATUS);
suspender = erts_pid2proc(suspendee,
suspendee_locks,
suspender_pid,
ERTS_PROC_LOCK_LINK|ERTS_PROC_LOCK_STATUS);
if (suspender) {
ASSERT(is_nil(suspender->suspendee));
if (!suspendee_alive)
erts_delete_suspend_monitor(&suspender->suspend_monitors,
suspendee->id);
else {
ErtsSuspendMonitor *smon;
smon = erts_lookup_suspend_monitor(suspender->suspend_monitors,
suspendee->id);
do_bif_suspend_process(smon, suspendee, NULL);
suspender->suspendee = suspendee->id;
}
/* suspender is suspended waiting for suspendee to suspend;
resume suspender */
resume_process(suspender);
erts_smp_proc_unlock(suspender,
ERTS_PROC_LOCK_LINK|ERTS_PROC_LOCK_STATUS);
}
}
static void
handle_pend_bif_async_suspend(Process *suspendee,
ErtsProcLocks suspendee_locks,
int suspendee_alive,
Eterm suspender_pid)
{
Process *suspender;
ERTS_SMP_LC_ASSERT(suspendee_locks & ERTS_PROC_LOCK_STATUS);
suspender = erts_pid2proc(suspendee,
suspendee_locks,
suspender_pid,
ERTS_PROC_LOCK_LINK);
if (suspender) {
ASSERT(is_nil(suspender->suspendee));
if (!suspendee_alive)
erts_delete_suspend_monitor(&suspender->suspend_monitors,
suspendee->id);
else {
ErtsSuspendMonitor *smon;
smon = erts_lookup_suspend_monitor(suspender->suspend_monitors,
suspendee->id);
do_bif_suspend_process(smon, suspendee, NULL);
}
erts_smp_proc_unlock(suspender, ERTS_PROC_LOCK_LINK);
}
}
#endif /* ERTS_SMP */
/*
* The erlang:suspend_process/2 BIF
*/
BIF_RETTYPE
suspend_process_2(BIF_ALIST_2)
{
Eterm res;
Process* suspendee = NULL;
ErtsSuspendMonitor *smon;
ErtsProcLocks xlocks = (ErtsProcLocks) 0;
/* Options and default values: */
int asynchronous = 0;
int unless_suspending = 0;
if (BIF_P->id == BIF_ARG_1)
goto badarg; /* We are not allowed to suspend ourselves */
if (is_not_nil(BIF_ARG_2)) {
/* Parse option list */
Eterm arg = BIF_ARG_2;
while (is_list(arg)) {
Eterm *lp = list_val(arg);
arg = CAR(lp);
switch (arg) {
case am_unless_suspending:
unless_suspending = 1;
break;
case am_asynchronous:
asynchronous = 1;
break;
default:
goto badarg;
}
arg = CDR(lp);
}
if (is_not_nil(arg))
goto badarg;
}
xlocks = ERTS_PROC_LOCK_LINK | (asynchronous
? (ErtsProcLocks) 0
: ERTS_PROC_LOCK_STATUS);
erts_smp_proc_lock(BIF_P, xlocks);
suspendee = erts_pid2proc(BIF_P,
ERTS_PROC_LOCK_MAIN|xlocks,
BIF_ARG_1,
ERTS_PROC_LOCK_STATUS);
if (!suspendee)
goto no_suspendee;
smon = erts_add_or_lookup_suspend_monitor(&BIF_P->suspend_monitors,
BIF_ARG_1);
#ifndef ERTS_SMP /* no ERTS_SMP */
/* This is really a piece of cake without SMP support... */
if (!smon->active) {
suspend_process(erts_common_run_queue, suspendee);
smon->active++;
res = am_true;
}
else if (unless_suspending)
res = am_false;
else if (smon->active == INT_MAX)
goto system_limit;
else {
smon->active++;
res = am_true;
}
#else /* ERTS_SMP */
/* ... but a little trickier with SMP support ... */
if (asynchronous) {
/* --- Asynchronous suspend begin ---------------------------------- */
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_LINK
& erts_proc_lc_my_proc_locks(BIF_P));
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS
== erts_proc_lc_my_proc_locks(suspendee));
if (smon->active) {
smon->active += smon->pending;
smon->pending = 0;
if (unless_suspending)
res = am_false;
else if (smon->active == INT_MAX)
goto system_limit;
else {
smon->active++;
res = am_true;
}
/* done */
}
else {
/* We havn't got any active suspends on the suspendee */
if (smon->pending && unless_suspending)
res = am_false;
else {
ErtsRunQueue *rq;
if (smon->pending == INT_MAX)
goto system_limit;
smon->pending++;
rq = erts_get_runq_proc(suspendee);
erts_smp_runq_lock(rq);
if (suspendee->runq_flags & ERTS_PROC_RUNQ_FLG_RUNNING)
add_pend_suspend(suspendee,
BIF_P->id,
handle_pend_bif_async_suspend);
else
do_bif_suspend_process(smon, suspendee, rq);
erts_smp_runq_unlock(rq);
res = am_true;
}
/* done */
}
/* --- Asynchronous suspend end ------------------------------------ */
}
else /* if (!asynchronous) */ {
/* --- Synchronous suspend begin ----------------------------------- */
ERTS_SMP_LC_ASSERT(((ERTS_PROC_LOCK_LINK|ERTS_PROC_LOCK_STATUS)
& erts_proc_lc_my_proc_locks(BIF_P))
== (ERTS_PROC_LOCK_LINK|ERTS_PROC_LOCK_STATUS));
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS
== erts_proc_lc_my_proc_locks(suspendee));
if (BIF_P->suspendee == BIF_ARG_1) {
/* We are back after a yield and the suspendee
has been suspended on behalf of us. */
ASSERT(smon->active >= 1);
BIF_P->suspendee = NIL;
res = (!unless_suspending || smon->active == 1
? am_true
: am_false);
/* done */
}
else if (smon->active) {
if (unless_suspending)
res = am_false;
else {
smon->active++;
res = am_true;
}
/* done */
}
else {
ErtsRunQueue *cp_rq, *s_rq;
/* We haven't got any active suspends on the suspendee */
/*
* If we have pending suspenders and suspend ourselves waiting
* to suspend another process, or suspend another process
* we might deadlock. In this case we have to yield,
* be suspended by someone else, and then do it all over again.
*/
if (BIF_P->pending_suspenders)
goto yield;
if (!unless_suspending && smon->pending == INT_MAX)
goto system_limit;
if (!unless_suspending || smon->pending == 0)
smon->pending++;
cp_rq = erts_get_runq_proc(BIF_P);
s_rq = erts_get_runq_proc(suspendee);
erts_smp_runqs_lock(cp_rq, s_rq);
if (!(suspendee->runq_flags & ERTS_PROC_RUNQ_FLG_RUNNING)) {
do_bif_suspend_process(smon, suspendee, s_rq);
erts_smp_runqs_unlock(cp_rq, s_rq);
res = (!unless_suspending || smon->active == 1
? am_true
: am_false);
/* done */
}
else {
/* Mark suspendee pending for suspend by BIF_P */
add_pend_suspend(suspendee,
BIF_P->id,
handle_pend_bif_sync_suspend);
ASSERT(is_nil(BIF_P->suspendee));
/*
* Suspend BIF_P; when suspendee is suspended, BIF_P
* will be resumed and this BIF will be called again.
* This time with BIF_P->suspendee == BIF_ARG_1 (see
* above).
*/
suspend_process(cp_rq, BIF_P);
erts_smp_runqs_unlock(cp_rq, s_rq);
goto yield;
}
}
/* --- Synchronous suspend end ------------------------------------- */
}
#endif /* ERTS_SMP */
ASSERT(suspendee->status == P_SUSPENDED || (asynchronous && smon->pending));
ASSERT(suspendee->status == P_SUSPENDED || !smon->active);
erts_smp_proc_unlock(suspendee, ERTS_PROC_LOCK_STATUS);
erts_smp_proc_unlock(BIF_P, xlocks);
BIF_RET(res);
system_limit:
ERTS_BIF_PREP_ERROR(res, BIF_P, SYSTEM_LIMIT);
goto do_return;
no_suspendee:
#ifdef ERTS_SMP
BIF_P->suspendee = NIL;
#endif
erts_delete_suspend_monitor(&BIF_P->suspend_monitors, BIF_ARG_1);
badarg:
ERTS_BIF_PREP_ERROR(res, BIF_P, BADARG);
#ifdef ERTS_SMP
goto do_return;
yield:
ERTS_BIF_PREP_YIELD2(res, bif_export[BIF_suspend_process_2],
BIF_P, BIF_ARG_1, BIF_ARG_2);
#endif
do_return:
if (suspendee)
erts_smp_proc_unlock(suspendee, ERTS_PROC_LOCK_STATUS);
if (xlocks)
erts_smp_proc_unlock(BIF_P, xlocks);
return res;
}
/*
* The erlang:resume_process/1 BIF
*/
BIF_RETTYPE
resume_process_1(BIF_ALIST_1)
{
ErtsSuspendMonitor *smon;
Process *suspendee;
int is_active;
if (BIF_P->id == BIF_ARG_1)
BIF_ERROR(BIF_P, BADARG);
erts_smp_proc_lock(BIF_P, ERTS_PROC_LOCK_LINK);
smon = erts_lookup_suspend_monitor(BIF_P->suspend_monitors, BIF_ARG_1);
if (!smon) {
/* No previous suspend or dead suspendee */
goto error;
}
else if (smon->pending) {
smon->pending--;
ASSERT(smon->pending >= 0);
if (smon->active) {
smon->active += smon->pending;
smon->pending = 0;
}
is_active = smon->active;
}
else if (smon->active) {
smon->active--;
ASSERT(smon->pending >= 0);
is_active = 1;
}
else {
/* No previous suspend or dead suspendee */
goto error;
}
if (smon->active || smon->pending || !is_active) {
/* Leave the suspendee as it is; just verify that it is still alive */
suspendee = erts_pid2proc(BIF_P,
ERTS_PROC_LOCK_MAIN|ERTS_PROC_LOCK_LINK,
BIF_ARG_1,
0);
if (!suspendee)
goto no_suspendee;
}
else {
/* Resume */
suspendee = erts_pid2proc(BIF_P,
ERTS_PROC_LOCK_MAIN|ERTS_PROC_LOCK_LINK,
BIF_ARG_1,
ERTS_PROC_LOCK_STATUS);
if (!suspendee)
goto no_suspendee;
ASSERT(suspendee->status == P_SUSPENDED
|| (suspendee->status == P_GARBING
&& suspendee->gcstatus == P_SUSPENDED));
resume_process(suspendee);
erts_smp_proc_unlock(suspendee, ERTS_PROC_LOCK_STATUS);
}
if (!smon->active && !smon->pending)
erts_delete_suspend_monitor(&BIF_P->suspend_monitors, BIF_ARG_1);
erts_smp_proc_unlock(BIF_P, ERTS_PROC_LOCK_LINK);
BIF_RET(am_true);
no_suspendee:
/* cleanup */
erts_delete_suspend_monitor(&BIF_P->suspend_monitors, BIF_ARG_1);
error:
erts_smp_proc_unlock(BIF_P, ERTS_PROC_LOCK_LINK);
BIF_ERROR(BIF_P, BADARG);
}
Uint
erts_run_queues_len(Uint *qlen)
{
int i = 0;
Uint len = 0;
ERTS_ATOMIC_FOREACH_RUNQ(rq,
{
if (qlen)
qlen[i++] = rq->procs.len;
len += rq->procs.len;
}
);
return len;
}
#ifdef HARDDEBUG_RUNQS
static void
check_procs_runq(ErtsRunQueue *runq, Process *p_in_q, Process *p_not_in_q)
{
int len[ERTS_NO_PROC_PRIO_LEVELS] = {0};
int tot_len;
int prioq, prio;
int found_p_in_q;
Process *p, *prevp;
found_p_in_q = 0;
for (prioq = 0; prioq < ERTS_NO_PROC_PRIO_LEVELS - 1; prioq++) {
prevp = NULL;
for (p = runq->procs.prio[prioq].first; p; p = p->next) {
ASSERT(p != p_not_in_q);
if (p == p_in_q)
found_p_in_q = 1;
switch (p->prio) {
case PRIORITY_MAX:
case PRIORITY_HIGH:
case PRIORITY_NORMAL:
ASSERT(prioq == p->prio);
break;
case PRIORITY_LOW:
ASSERT(prioq == PRIORITY_NORMAL);
break;
default:
ASSERT(!"Bad prio on process");
}
len[p->prio]++;
ASSERT(prevp == p->prev);
if (p->prev) {
ASSERT(p->prev->next == p);
}
else {
ASSERT(runq->procs.prio[prioq].first == p);
}
if (p->next) {
ASSERT(p->next->prev == p);
}
else {
ASSERT(runq->procs.prio[prioq].last == p);
}
ASSERT(p->run_queue == runq);
prevp = p;
}
}
ASSERT(!p_in_q || found_p_in_q);
tot_len = 0;
for (prio = 0; prio < ERTS_NO_PROC_PRIO_LEVELS; prio++) {
ASSERT(len[prio] == runq->procs.prio_info[prio].len);
if (len[prio]) {
ASSERT(runq->flags & (1 << prio));
}
else {
ASSERT(!(runq->flags & (1 << prio)));
}
tot_len += len[prio];
}
ASSERT(runq->procs.len == tot_len);
}
# define ERTS_DBG_CHK_PROCS_RUNQ(RQ) check_procs_runq((RQ), NULL, NULL)
# define ERTS_DBG_CHK_PROCS_RUNQ_PROC(RQ, P) check_procs_runq((RQ), (P), NULL)
# define ERTS_DBG_CHK_PROCS_RUNQ_NOPROC(RQ, P) check_procs_runq((RQ), NULL, (P))
#else
# define ERTS_DBG_CHK_PROCS_RUNQ(RQ)
# define ERTS_DBG_CHK_PROCS_RUNQ_PROC(RQ, P)
# define ERTS_DBG_CHK_PROCS_RUNQ_NOPROC(RQ, P)
#endif
static ERTS_INLINE void
enqueue_process(ErtsRunQueue *runq, Process *p)
{
ErtsRunPrioQueue *rpq;
ErtsRunQueueInfo *rqi;
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(runq));
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS & erts_proc_lc_my_proc_locks(p));
ASSERT(p->bound_runq || !(runq->flags & ERTS_RUNQ_FLG_SUSPENDED));
rqi = &runq->procs.prio_info[p->prio];
rqi->len++;
if (rqi->max_len < rqi->len)
rqi->max_len = rqi->len;
runq->procs.len++;
runq->len++;
if (runq->max_len < runq->len)
runq->max_len = runq->len;
runq->flags |= (1 << p->prio);
rpq = (p->prio == PRIORITY_LOW
? &runq->procs.prio[PRIORITY_NORMAL]
: &runq->procs.prio[p->prio]);
p->next = NULL;
p->prev = rpq->last;
if (rpq->last)
rpq->last->next = p;
else
rpq->first = p;
rpq->last = p;
switch (p->status) {
case P_EXITING:
break;
case P_GARBING:
p->gcstatus = P_RUNABLE;
break;
default:
p->status = P_RUNABLE;
break;
}
#ifdef ERTS_SMP
p->status_flags |= ERTS_PROC_SFLG_INRUNQ;
#endif
ERTS_DBG_CHK_PROCS_RUNQ_PROC(runq, p);
}
static ERTS_INLINE int
dequeue_process(ErtsRunQueue *runq, Process *p)
{
ErtsRunPrioQueue *rpq;
int res = 1;
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(runq));
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS & erts_proc_lc_my_proc_locks(p));
ERTS_DBG_CHK_PROCS_RUNQ(runq);
rpq = &runq->procs.prio[p->prio == PRIORITY_LOW ? PRIORITY_NORMAL : p->prio];
if (p->prev) {
p->prev->next = p->next;
}
else if (rpq->first == p) {
rpq->first = p->next;
}
else {
res = 0;
}
if (p->next) {
p->next->prev = p->prev;
}
else if (rpq->last == p) {
rpq->last = p->prev;
}
else {
ASSERT(res == 0);
}
if (res) {
if (--runq->procs.prio_info[p->prio].len == 0)
runq->flags &= ~(1 << p->prio);
runq->procs.len--;
runq->len--;
#ifdef ERTS_SMP
p->status_flags &= ~ERTS_PROC_SFLG_INRUNQ;
#endif
}
ERTS_DBG_CHK_PROCS_RUNQ_NOPROC(runq, p);
return res;
}
/* schedule a process */
static ERTS_INLINE ErtsRunQueue *
internal_add_to_runq(ErtsRunQueue *runq, Process *p)
{
Uint32 prev_status = p->status;
ErtsRunQueue *add_runq;
#ifdef ERTS_SMP
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS & erts_proc_lc_my_proc_locks(p));
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(runq));
if (p->status_flags & ERTS_PROC_SFLG_INRUNQ)
return NULL;
else if (p->runq_flags & ERTS_PROC_RUNQ_FLG_RUNNING) {
ASSERT(p->status != P_SUSPENDED);
ERTS_DBG_CHK_PROCS_RUNQ_NOPROC(runq, p);
p->status_flags |= ERTS_PROC_SFLG_PENDADD2SCHEDQ;
return NULL;
}
ASSERT(!p->scheduler_data);
#endif
ERTS_DBG_CHK_PROCS_RUNQ_NOPROC(runq, p);
#ifndef ERTS_SMP
/* Never schedule a suspended process (ok in smp case) */
ASSERT(p->status != P_SUSPENDED);
add_runq = runq;
#else
ASSERT(!p->bound_runq || p->bound_runq == p->run_queue);
if (p->bound_runq) {
if (p->bound_runq == runq)
add_runq = runq;
else {
add_runq = p->bound_runq;
erts_smp_xrunq_lock(runq, add_runq);
}
}
else {
add_runq = erts_check_emigration_need(runq, p->prio);
if (!add_runq)
add_runq = runq;
else /* Process emigrated */
p->run_queue = add_runq;
}
#endif
/* Enqueue the process */
enqueue_process(add_runq, p);
if ((erts_system_profile_flags.runnable_procs)
&& (prev_status == P_WAITING
|| prev_status == P_SUSPENDED)) {
profile_runnable_proc(p, am_active);
}
if (add_runq != runq)
erts_smp_runq_unlock(add_runq);
return add_runq;
}
void
erts_add_to_runq(Process *p)
{
ErtsRunQueue *notify_runq;
ErtsRunQueue *runq = erts_get_runq_proc(p);
erts_smp_runq_lock(runq);
notify_runq = internal_add_to_runq(runq, p);
erts_smp_runq_unlock(runq);
smp_notify_inc_runq(notify_runq);
}
/* Possibly remove a scheduled process we need to suspend */
static int
remove_proc_from_runq(ErtsRunQueue *rq, Process *p, int to_inactive)
{
int res;
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS & erts_proc_lc_my_proc_locks(p));
#ifdef ERTS_SMP
if (p->status_flags & ERTS_PROC_SFLG_PENDADD2SCHEDQ) {
p->status_flags &= ~ERTS_PROC_SFLG_PENDADD2SCHEDQ;
ASSERT(!remove_proc_from_runq(rq, p, 0));
return 1;
}
#endif
res = dequeue_process(rq, p);
if (res && erts_system_profile_flags.runnable_procs && to_inactive)
profile_runnable_proc(p, am_inactive);
#ifdef ERTS_SMP
ASSERT(!(p->status_flags & ERTS_PROC_SFLG_INRUNQ));
#endif
return res;
}
#ifdef ERTS_SMP
ErtsMigrateResult
erts_proc_migrate(Process *p, ErtsProcLocks *plcks,
ErtsRunQueue *from_rq, int *from_locked,
ErtsRunQueue *to_rq, int *to_locked)
{
ERTS_SMP_LC_ASSERT(*plcks == erts_proc_lc_my_proc_locks(p));
ERTS_SMP_LC_ASSERT((ERTS_PROC_LOCK_STATUS & *plcks)
|| from_locked);
ERTS_SMP_LC_CHK_RUNQ_LOCK(from_rq, *from_locked);
ERTS_SMP_LC_CHK_RUNQ_LOCK(to_rq, *to_locked);
ASSERT(!erts_common_run_queue);
/*
* If we have the lock on the run queue to migrate to,
* check that it isn't suspended. If it is suspended,
* we will refuse to migrate to it anyway.
*/
if (*to_locked && (to_rq->flags & ERTS_RUNQ_FLG_SUSPENDED))
return ERTS_MIGRATE_FAILED_RUNQ_SUSPENDED;
/* We need status lock on process and locks on both run queues */
if (!(ERTS_PROC_LOCK_STATUS & *plcks)) {
if (erts_smp_proc_trylock(p, ERTS_PROC_LOCK_STATUS) == EBUSY) {
ErtsProcLocks lcks = *plcks;
Eterm pid = p->id;
Process *proc = *plcks ? p : NULL;
if (*from_locked) {
*from_locked = 0;
erts_smp_runq_unlock(from_rq);
}
if (*to_locked) {
*to_locked = 0;
erts_smp_runq_unlock(to_rq);
}
proc = erts_pid2proc_opt(proc,
lcks,
pid,
lcks|ERTS_PROC_LOCK_STATUS,
ERTS_P2P_FLG_ALLOW_OTHER_X);
if (!proc) {
*plcks = 0;
return ERTS_MIGRATE_FAILED_NOT_IN_RUNQ;
}
ASSERT(proc == p);
}
*plcks |= ERTS_PROC_LOCK_STATUS;
}
ASSERT(!p->bound_runq);
ERTS_SMP_LC_CHK_RUNQ_LOCK(from_rq, *from_locked);
ERTS_SMP_LC_CHK_RUNQ_LOCK(to_rq, *to_locked);
if (p->run_queue != from_rq)
return ERTS_MIGRATE_FAILED_RUNQ_CHANGED;
if (!*from_locked || !*to_locked) {
if (from_rq < to_rq) {
if (!*to_locked) {
if (!*from_locked)
erts_smp_runq_lock(from_rq);
erts_smp_runq_lock(to_rq);
}
else if (erts_smp_runq_trylock(from_rq) == EBUSY) {
erts_smp_runq_unlock(to_rq);
erts_smp_runq_lock(from_rq);
erts_smp_runq_lock(to_rq);
}
}
else {
if (!*from_locked) {
if (!*to_locked)
erts_smp_runq_lock(to_rq);
erts_smp_runq_lock(from_rq);
}
else if (erts_smp_runq_trylock(to_rq) == EBUSY) {
erts_smp_runq_unlock(from_rq);
erts_smp_runq_lock(to_rq);
erts_smp_runq_lock(from_rq);
}
}
*to_locked = *from_locked = 1;
}
ERTS_SMP_LC_CHK_RUNQ_LOCK(from_rq, *from_locked);
ERTS_SMP_LC_CHK_RUNQ_LOCK(to_rq, *to_locked);
/* Ok we now got all locks we need; do it... */
/* Refuse to migrate to a suspended run queue */
if (to_rq->flags & ERTS_RUNQ_FLG_SUSPENDED)
return ERTS_MIGRATE_FAILED_RUNQ_SUSPENDED;
if ((p->runq_flags & ERTS_PROC_RUNQ_FLG_RUNNING)
|| !(p->status_flags & ERTS_PROC_SFLG_INRUNQ))
return ERTS_MIGRATE_FAILED_NOT_IN_RUNQ;
dequeue_process(from_rq, p);
p->run_queue = to_rq;
enqueue_process(to_rq, p);
return ERTS_MIGRATE_SUCCESS;
}
#endif /* ERTS_SMP */
Eterm
erts_process_status(Process *c_p, ErtsProcLocks c_p_locks,
Process *rp, Eterm rpid)
{
Eterm res = am_undefined;
Process *p;
if (rp) {
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS
& erts_proc_lc_my_proc_locks(rp));
p = rp;
}
else {
p = erts_pid2proc_opt(c_p, c_p_locks,
rpid, ERTS_PROC_LOCK_STATUS,
ERTS_P2P_FLG_ALLOW_OTHER_X);
}
if (p) {
switch (p->status) {
case P_RUNABLE:
res = am_runnable;
break;
case P_WAITING:
res = am_waiting;
break;
case P_RUNNING:
res = am_running;
break;
case P_EXITING:
res = am_exiting;
break;
case P_GARBING:
res = am_garbage_collecting;
break;
case P_SUSPENDED:
res = am_suspended;
break;
case P_FREE: /* We cannot look up a process in P_FREE... */
default: /* Not a valid status... */
erl_exit(1, "Bad status (%b32u) found for process %T\n",
p->status, p->id);
break;
}
#ifdef ERTS_SMP
if (!rp && (p != c_p || !(ERTS_PROC_LOCK_STATUS & c_p_locks)))
erts_smp_proc_unlock(p, ERTS_PROC_LOCK_STATUS);
}
else {
int i;
ErtsSchedulerData *esdp;
if (erts_common_run_queue)
erts_smp_runq_lock(erts_common_run_queue);
for (i = 0; i < erts_no_schedulers; i++) {
esdp = ERTS_SCHEDULER_IX(i);
if (!erts_common_run_queue)
erts_smp_runq_lock(esdp->run_queue);
if (esdp->free_process && esdp->free_process->id == rpid) {
res = am_free;
if (!erts_common_run_queue)
erts_smp_runq_unlock(esdp->run_queue);
break;
}
if (!erts_common_run_queue)
erts_smp_runq_unlock(esdp->run_queue);
}
if (erts_common_run_queue)
erts_smp_runq_unlock(erts_common_run_queue);
#endif
}
return res;
}
/*
** Suspend a process
** If we are to suspend on a port the busy_port is the thing
** otherwise busy_port is NIL
*/
void
erts_suspend(Process* process, ErtsProcLocks process_locks, Port *busy_port)
{
ErtsRunQueue *rq;
ERTS_SMP_LC_ASSERT(process_locks == erts_proc_lc_my_proc_locks(process));
if (!(process_locks & ERTS_PROC_LOCK_STATUS))
erts_smp_proc_lock(process, ERTS_PROC_LOCK_STATUS);
rq = erts_get_runq_proc(process);
erts_smp_runq_lock(rq);
suspend_process(rq, process);
erts_smp_runq_unlock(rq);
if (busy_port)
erts_wake_process_later(busy_port, process);
if (!(process_locks & ERTS_PROC_LOCK_STATUS))
erts_smp_proc_unlock(process, ERTS_PROC_LOCK_STATUS);
}
void
erts_resume(Process* process, ErtsProcLocks process_locks)
{
ERTS_SMP_LC_ASSERT(process_locks == erts_proc_lc_my_proc_locks(process));
if (!(process_locks & ERTS_PROC_LOCK_STATUS))
erts_smp_proc_lock(process, ERTS_PROC_LOCK_STATUS);
resume_process(process);
if (!(process_locks & ERTS_PROC_LOCK_STATUS))
erts_smp_proc_unlock(process, ERTS_PROC_LOCK_STATUS);
}
int
erts_resume_processes(ErtsProcList *plp)
{
int nresumed = 0;
while (plp) {
Process *proc;
ErtsProcList *fplp;
ASSERT(is_internal_pid(plp->pid));
proc = erts_pid2proc(NULL, 0, plp->pid, ERTS_PROC_LOCK_STATUS);
if (proc) {
if (proclist_same(plp, proc)) {
resume_process(proc);
nresumed++;
}
erts_smp_proc_unlock(proc, ERTS_PROC_LOCK_STATUS);
}
fplp = plp;
plp = plp->next;
proclist_destroy(fplp);
}
return nresumed;
}
Eterm
erts_get_process_priority(Process *p)
{
ErtsRunQueue *rq;
Eterm value;
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS & erts_proc_lc_my_proc_locks(p));
rq = erts_get_runq_proc(p);
erts_smp_runq_lock(rq);
switch(p->prio) {
case PRIORITY_MAX: value = am_max; break;
case PRIORITY_HIGH: value = am_high; break;
case PRIORITY_NORMAL: value = am_normal; break;
case PRIORITY_LOW: value = am_low; break;
default: ASSERT(0); value = am_undefined; break;
}
erts_smp_runq_unlock(rq);
return value;
}
Eterm
erts_set_process_priority(Process *p, Eterm new_value)
{
ErtsRunQueue *rq;
Eterm old_value;
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS & erts_proc_lc_my_proc_locks(p));
rq = erts_get_runq_proc(p);
#ifdef ERTS_SMP
ASSERT(!(p->status_flags & ERTS_PROC_SFLG_INRUNQ));
#endif
erts_smp_runq_lock(rq);
switch(p->prio) {
case PRIORITY_MAX: old_value = am_max; break;
case PRIORITY_HIGH: old_value = am_high; break;
case PRIORITY_NORMAL: old_value = am_normal; break;
case PRIORITY_LOW: old_value = am_low; break;
default: ASSERT(0); old_value = am_undefined; break;
}
switch (new_value) {
case am_max: p->prio = PRIORITY_MAX; break;
case am_high: p->prio = PRIORITY_HIGH; break;
case am_normal: p->prio = PRIORITY_NORMAL; break;
case am_low: p->prio = PRIORITY_LOW; break;
default: old_value = THE_NON_VALUE; break;
}
erts_smp_runq_unlock(rq);
return old_value;
}
/* note that P_RUNNING is only set so that we don't try to remove
** running processes from the schedule queue if they exit - a running
** process not being in the schedule queue!!
** Schedule for up to INPUT_REDUCTIONS context switches,
** return 1 if more to do.
*/
/*
* schedule() is called from BEAM (process_main()) or HiPE
* (hipe_mode_switch()) when the current process is to be
* replaced by a new process. 'calls' is the number of reduction
* steps the current process consumed.
* schedule() returns the new process, and the new process'
* ->fcalls field is initialised with its allowable number of
* reduction steps.
*
* When no process is runnable, or when sufficiently many reduction
* steps have been made, schedule() calls erl_sys_schedule() to
* schedule system-level activities.
*
* We use the same queue for normal and low prio processes.
* We reschedule low prio processes a certain number of times
* so that normal processes get to run more frequently.
*/
Process *schedule(Process *p, int calls)
{
ErtsRunQueue *rq;
ErtsRunPrioQueue *rpq;
long dt;
ErtsSchedulerData *esdp;
int context_reds;
long fcalls;
int input_reductions;
int actual_reds;
int reds;
if (ERTS_USE_MODIFIED_TIMING()) {
context_reds = ERTS_MODIFIED_TIMING_CONTEXT_REDS;
input_reductions = ERTS_MODIFIED_TIMING_INPUT_REDS;
}
else {
context_reds = CONTEXT_REDS;
input_reductions = INPUT_REDUCTIONS;
}
ERTS_SMP_LC_ASSERT(!ERTS_LC_IS_BLOCKING);
/*
* Clean up after the process being scheduled out.
*/
if (!p) { /* NULL in the very first schedule() call */
esdp = erts_get_scheduler_data();
rq = erts_get_runq_current(esdp);
ASSERT(esdp);
fcalls = erts_smp_atomic_read(&function_calls);
actual_reds = reds = 0;
erts_smp_runq_lock(rq);
} else {
#ifdef ERTS_SMP
ERTS_SMP_CHK_HAVE_ONLY_MAIN_PROC_LOCK(p);
esdp = p->scheduler_data;
ASSERT(esdp->current_process == p
|| esdp->free_process == p);
#else
esdp = erts_scheduler_data;
ASSERT(esdp->current_process == p);
#endif
reds = actual_reds = calls - esdp->virtual_reds;
if (reds < ERTS_PROC_MIN_CONTEXT_SWITCH_REDS_COST)
reds = ERTS_PROC_MIN_CONTEXT_SWITCH_REDS_COST;
esdp->virtual_reds = 0;
fcalls = erts_smp_atomic_addtest(&function_calls, reds);
ASSERT(esdp && esdp == erts_get_scheduler_data());
rq = erts_get_runq_current(esdp);
p->reds += actual_reds;
erts_smp_proc_lock(p, ERTS_PROC_LOCK_STATUS);
if ((erts_system_profile_flags.runnable_procs)
&& (p->status == P_WAITING)) {
profile_runnable_proc(p, am_inactive);
}
if (IS_TRACED(p)) {
if (IS_TRACED_FL(p, F_TRACE_CALLS) && p->status != P_FREE) {
erts_schedule_time_break(p, ERTS_BP_CALL_TIME_SCHEDULE_OUT);
}
switch (p->status) {
case P_EXITING:
if (ARE_TRACE_FLAGS_ON(p, F_TRACE_SCHED_EXIT))
trace_sched(p, am_out_exiting);
break;
case P_FREE:
if (ARE_TRACE_FLAGS_ON(p, F_TRACE_SCHED_EXIT))
trace_sched(p, am_out_exited);
break;
default:
if (ARE_TRACE_FLAGS_ON(p, F_TRACE_SCHED))
trace_sched(p, am_out);
else if (ARE_TRACE_FLAGS_ON(p, F_TRACE_SCHED_PROCS))
trace_virtual_sched(p, am_out);
break;
}
}
#ifdef ERTS_SMP
if (ERTS_PROC_PENDING_EXIT(p)) {
erts_handle_pending_exit(p,
ERTS_PROC_LOCK_MAIN|ERTS_PROC_LOCK_STATUS);
p->status_flags |= ERTS_PROC_SFLG_PENDADD2SCHEDQ;
}
if (p->pending_suspenders) {
handle_pending_suspend(p,
ERTS_PROC_LOCK_MAIN|ERTS_PROC_LOCK_STATUS);
ASSERT(!(p->status_flags & ERTS_PROC_SFLG_PENDADD2SCHEDQ)
|| p->status != P_SUSPENDED);
}
#endif
erts_smp_runq_lock(rq);
ERTS_PROC_REDUCTIONS_EXECUTED(rq, p->prio, reds, actual_reds);
esdp->current_process = NULL;
#ifdef ERTS_SMP
p->scheduler_data = NULL;
p->runq_flags &= ~ERTS_PROC_RUNQ_FLG_RUNNING;
p->status_flags &= ~ERTS_PROC_SFLG_RUNNING;
if (p->status_flags & ERTS_PROC_SFLG_PENDADD2SCHEDQ) {
ErtsRunQueue *notify_runq;
p->status_flags &= ~ERTS_PROC_SFLG_PENDADD2SCHEDQ;
notify_runq = internal_add_to_runq(rq, p);
if (notify_runq != rq)
smp_notify_inc_runq(notify_runq);
}
#endif
if (p->status == P_FREE) {
#ifdef ERTS_SMP
ASSERT(esdp->free_process == p);
esdp->free_process = NULL;
erts_smp_proc_unlock(p, ERTS_PROC_LOCK_MAIN|ERTS_PROC_LOCK_STATUS);
erts_smp_proc_dec_refc(p);
#else
erts_free_proc(p);
#endif
} else {
erts_smp_proc_unlock(p, ERTS_PROC_LOCK_MAIN|ERTS_PROC_LOCK_STATUS);
}
#ifdef ERTS_SMP
{
ErtsProcList *pnd_xtrs = rq->procs.pending_exiters;
rq->procs.pending_exiters = NULL;
if (pnd_xtrs) {
erts_smp_runq_unlock(rq);
handle_pending_exiters(pnd_xtrs);
erts_smp_runq_lock(rq);
}
}
ASSERT(!esdp->free_process);
#endif
ASSERT(!esdp->current_process);
ERTS_SMP_CHK_NO_PROC_LOCKS;
dt = do_time_read_and_reset();
if (dt) {
erts_smp_runq_unlock(rq);
bump_timer(dt);
erts_smp_runq_lock(rq);
}
BM_STOP_TIMER(system);
}
ERTS_SMP_LC_ASSERT(!ERTS_LC_IS_BLOCKING);
check_activities_to_run: {
#ifdef ERTS_SMP
if (!(rq->flags & ERTS_RUNQ_FLG_SHARED_RUNQ)
&& rq->check_balance_reds <= 0) {
check_balance(rq);
}
ERTS_SMP_LC_ASSERT(!ERTS_LC_IS_BLOCKING);
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
if (rq->flags & ERTS_RUNQ_FLGS_IMMIGRATE_QMASK)
immigrate(rq);
continue_check_activities_to_run:
if (rq->flags & (ERTS_RUNQ_FLG_SHARED_RUNQ
| ERTS_RUNQ_FLG_CHK_CPU_BIND
| ERTS_RUNQ_FLG_SUSPENDED)) {
if ((rq->flags & ERTS_RUNQ_FLG_SUSPENDED)
|| (erts_smp_atomic_read(&esdp->ssi->flags)
& ERTS_SSI_FLG_SUSPENDED)) {
ASSERT(erts_smp_atomic_read(&esdp->ssi->flags)
& ERTS_SSI_FLG_SUSPENDED);
suspend_scheduler(esdp);
}
if ((rq->flags & ERTS_RUNQ_FLG_CHK_CPU_BIND)
|| erts_smp_atomic_read(&esdp->chk_cpu_bind)) {
check_cpu_bind(esdp);
}
}
#if defined(ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK) \
|| defined(ERTS_SCHED_NEED_NONBLOCKABLE_AUX_WORK)
{
ErtsSchedulerSleepInfo *ssi = esdp->ssi;
long aux_work = erts_smp_atomic_read(&ssi->aux_work);
if (aux_work) {
erts_smp_runq_unlock(rq);
#ifdef ERTS_SCHED_NEED_BLOCKABLE_AUX_WORK
aux_work = blockable_aux_work(esdp, ssi, aux_work);
#endif
#ifdef ERTS_SCHED_NEED_NONBLOCKABLE_AUX_WORK
nonblockable_aux_work(esdp, ssi, aux_work);
#endif
erts_smp_runq_lock(rq);
}
}
#endif
erts_smp_chk_system_block(prepare_for_block,
resume_after_block,
(void *) rq);
ERTS_SMP_LC_ASSERT(!ERTS_LC_IS_BLOCKING);
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
#endif
ASSERT(rq->len == rq->procs.len + rq->ports.info.len);
#ifndef ERTS_SMP
if (rq->len == 0 && !rq->misc.start)
goto do_sys_schedule;
#else /* ERTS_SMP */
if (rq->len == 0 && !rq->misc.start) {
ERTS_SMP_LC_ASSERT(erts_smp_lc_runq_is_locked(rq));
rq->wakeup_other = 0;
rq->wakeup_other_reds = 0;
empty_runq(rq);
if (rq->flags & (ERTS_RUNQ_FLG_SHARED_RUNQ
| ERTS_RUNQ_FLG_SUSPENDED)) {
if ((rq->flags & ERTS_RUNQ_FLG_SUSPENDED)
|| (erts_smp_atomic_read(&esdp->ssi->flags)
& ERTS_SSI_FLG_SUSPENDED)) {
ASSERT(erts_smp_atomic_read(&esdp->ssi->flags)
& ERTS_SSI_FLG_SUSPENDED);
non_empty_runq(rq);
goto continue_check_activities_to_run;
}
}
else if (!(rq->flags & ERTS_RUNQ_FLG_INACTIVE)) {
/*
* Check for ERTS_RUNQ_FLG_SUSPENDED has to be done
* after trying to steal a task.
*/
if (try_steal_task(rq)
|| (rq->flags & ERTS_RUNQ_FLG_SUSPENDED)) {
non_empty_runq(rq);
goto continue_check_activities_to_run;
}
}
scheduler_wait(&fcalls, esdp, rq);
non_empty_runq(rq);
goto check_activities_to_run;
}
else
#endif /* ERTS_SMP */
if (fcalls > input_reductions && prepare_for_sys_schedule()) {
int runnable;
#ifdef ERTS_SMP
runnable = 1;
#else
do_sys_schedule:
runnable = rq->len != 0;
if (!runnable)
sched_waiting_sys(esdp->no, rq);
#endif
/*
* Schedule system-level activities.
*/
erts_smp_atomic_set(&function_calls, 0);
fcalls = 0;
ASSERT(!erts_port_task_have_outstanding_io_tasks());
#ifdef ERTS_SMP
/* erts_sys_schedule_interrupt(0); */
#endif
erts_smp_runq_unlock(rq);
erl_sys_schedule(runnable);
dt = do_time_read_and_reset();
if (dt) bump_timer(dt);
#ifdef ERTS_SMP
erts_smp_runq_lock(rq);
erts_smp_atomic_set(&doing_sys_schedule, 0);
goto continue_check_activities_to_run;
#else
if (!runnable)
sched_active_sys(esdp->no, rq);
goto check_activities_to_run;
#endif
}
if (rq->misc.start)
exec_misc_ops(rq);
#ifdef ERTS_SMP
{
int wo_reds = rq->wakeup_other_reds;
if (wo_reds) {
if (rq->len < 2) {
rq->wakeup_other -= ERTS_WAKEUP_OTHER_DEC*wo_reds;
if (rq->wakeup_other < 0)
rq->wakeup_other = 0;
}
else if (rq->wakeup_other < ERTS_WAKEUP_OTHER_LIMIT)
rq->wakeup_other += rq->len*wo_reds + ERTS_WAKEUP_OTHER_FIXED_INC;
else {
if (erts_common_run_queue) {
if (erts_common_run_queue->waiting)
wake_scheduler(erts_common_run_queue, 0, 1);
}
else if (erts_smp_atomic_read(&no_empty_run_queues) != 0) {
wake_scheduler_on_empty_runq(rq);
rq->wakeup_other = 0;
}
rq->wakeup_other = 0;
}
}
rq->wakeup_other_reds = 0;
}
#endif
/*
* Find a new port to run.
*/
if (rq->ports.info.len) {
int have_outstanding_io;
have_outstanding_io = erts_port_task_execute(rq, &esdp->current_port);
if (have_outstanding_io && fcalls > 2*input_reductions) {
/*
* If we have performed more than 2*INPUT_REDUCTIONS since
* last call to erl_sys_schedule() and we still haven't
* handled all I/O tasks we stop running processes and
* focus completely on ports.
*
* One could argue that this is a strange behavior. The
* reason for doing it this way is that it is similar
* to the behavior before port tasks were introduced.
* We don't want to change the behavior too much, at
* least not at the time of writing. This behavior
* might change in the future.
*
* /rickard
*/
goto check_activities_to_run;
}
}
/*
* Find a new process to run.
*/
pick_next_process:
ERTS_DBG_CHK_PROCS_RUNQ(rq);
switch (rq->flags & ERTS_RUNQ_FLGS_PROCS_QMASK) {
case MAX_BIT:
case MAX_BIT|HIGH_BIT:
case MAX_BIT|NORMAL_BIT:
case MAX_BIT|LOW_BIT:
case MAX_BIT|HIGH_BIT|NORMAL_BIT:
case MAX_BIT|HIGH_BIT|LOW_BIT:
case MAX_BIT|NORMAL_BIT|LOW_BIT:
case MAX_BIT|HIGH_BIT|NORMAL_BIT|LOW_BIT:
rpq = &rq->procs.prio[PRIORITY_MAX];
break;
case HIGH_BIT:
case HIGH_BIT|NORMAL_BIT:
case HIGH_BIT|LOW_BIT:
case HIGH_BIT|NORMAL_BIT|LOW_BIT:
rpq = &rq->procs.prio[PRIORITY_HIGH];
break;
case NORMAL_BIT:
rpq = &rq->procs.prio[PRIORITY_NORMAL];
break;
case LOW_BIT:
rpq = &rq->procs.prio[PRIORITY_NORMAL];
break;
case NORMAL_BIT|LOW_BIT:
rpq = &rq->procs.prio[PRIORITY_NORMAL];
ASSERT(rpq->first != NULL);
p = rpq->first;
if (p->prio == PRIORITY_LOW) {
if (p == rpq->last || p->skipped >= RESCHEDULE_LOW-1)
p->skipped = 0;
else {
/* skip it */
p->skipped++;
rpq->first = p->next;
rpq->first->prev = NULL;
rpq->last->next = p;
p->prev = rpq->last;
p->next = NULL;
rpq->last = p;
goto pick_next_process;
}
}
break;
case 0: /* No process at all */
default:
ASSERT((rq->flags & ERTS_RUNQ_FLGS_PROCS_QMASK) == 0);
ASSERT(rq->procs.len == 0);
goto check_activities_to_run;
}
BM_START_TIMER(system);
/*
* Take the chosen process out of the queue.
*/
ASSERT(rpq->first); /* Wrong qmask in rq->flags? */
p = rpq->first;
#ifdef ERTS_SMP
ERTS_SMP_LC_ASSERT(rq == p->run_queue);
#endif
rpq->first = p->next;
if (!rpq->first)
rpq->last = NULL;
else
rpq->first->prev = NULL;
p->next = p->prev = NULL;
if (--rq->procs.prio_info[p->prio].len == 0)
rq->flags &= ~(1 << p->prio);
ASSERT(rq->procs.len > 0);
rq->procs.len--;
ASSERT(rq->len > 0);
rq->len--;
{
Uint32 ee_flgs = (ERTS_RUNQ_FLG_EVACUATE(p->prio)
| ERTS_RUNQ_FLG_EMIGRATE(p->prio));
if ((rq->flags & (ERTS_RUNQ_FLG_SUSPENDED|ee_flgs)) == ee_flgs)
ERTS_UNSET_RUNQ_FLG_EVACUATE(rq->flags, p->prio);
}
ERTS_DBG_CHK_PROCS_RUNQ_NOPROC(rq, p);
rq->procs.context_switches++;
esdp->current_process = p;
#ifdef ERTS_SMP
p->runq_flags |= ERTS_PROC_RUNQ_FLG_RUNNING;
erts_smp_runq_unlock(rq);
ERTS_SMP_CHK_NO_PROC_LOCKS;
erts_smp_proc_lock(p, ERTS_PROC_LOCK_MAIN|ERTS_PROC_LOCK_STATUS);
if (erts_sched_stat.enabled) {
UWord old = ERTS_PROC_SCHED_ID(p,
(ERTS_PROC_LOCK_MAIN
| ERTS_PROC_LOCK_STATUS),
(UWord) esdp->no);
int migrated = old && old != esdp->no;
erts_smp_spin_lock(&erts_sched_stat.lock);
erts_sched_stat.prio[p->prio].total_executed++;
erts_sched_stat.prio[p->prio].executed++;
if (migrated) {
erts_sched_stat.prio[p->prio].total_migrated++;
erts_sched_stat.prio[p->prio].migrated++;
}
erts_smp_spin_unlock(&erts_sched_stat.lock);
}
p->status_flags |= ERTS_PROC_SFLG_RUNNING;
p->status_flags &= ~ERTS_PROC_SFLG_INRUNQ;
if (ERTS_PROC_PENDING_EXIT(p)) {
erts_handle_pending_exit(p,
ERTS_PROC_LOCK_MAIN|ERTS_PROC_LOCK_STATUS);
}
ASSERT(!p->scheduler_data);
p->scheduler_data = esdp;
#endif
ASSERT(p->status != P_SUSPENDED); /* Never run a suspended process */
ACTIVATE(p);
reds = context_reds;
if (IS_TRACED(p)) {
switch (p->status) {
case P_EXITING:
if (ARE_TRACE_FLAGS_ON(p, F_TRACE_SCHED_EXIT))
trace_sched(p, am_in_exiting);
break;
default:
if (ARE_TRACE_FLAGS_ON(p, F_TRACE_SCHED))
trace_sched(p, am_in);
else if (ARE_TRACE_FLAGS_ON(p, F_TRACE_SCHED_PROCS))
trace_virtual_sched(p, am_in);
break;
}
if (IS_TRACED_FL(p, F_TRACE_CALLS)) {
erts_schedule_time_break(p, ERTS_BP_CALL_TIME_SCHEDULE_IN);
}
}
if (p->status != P_EXITING)
p->status = P_RUNNING;
erts_smp_proc_unlock(p, ERTS_PROC_LOCK_STATUS);
#ifdef ERTS_SMP
if (is_not_nil(p->tracer_proc))
erts_check_my_tracer_proc(p);
#endif
if (!ERTS_PROC_IS_EXITING(p)
&& ((FLAGS(p) & F_FORCE_GC)
|| (MSO(p).overhead > BIN_VHEAP_SZ(p)))) {
reds -= erts_garbage_collect(p, 0, p->arg_reg, p->arity);
if (reds < 0) {
reds = 1;
}
}
p->fcalls = reds;
ASSERT(IS_ACTIVE(p));
ERTS_SMP_CHK_HAVE_ONLY_MAIN_PROC_LOCK(p);
return p;
}
}
void
erts_sched_stat_modify(int what)
{
int ix;
switch (what) {
case ERTS_SCHED_STAT_MODIFY_ENABLE:
erts_smp_block_system(0);
erts_sched_stat.enabled = 1;
erts_smp_release_system();
break;
case ERTS_SCHED_STAT_MODIFY_DISABLE:
erts_smp_block_system(0);
erts_sched_stat.enabled = 1;
erts_smp_release_system();
break;
case ERTS_SCHED_STAT_MODIFY_CLEAR:
erts_smp_spin_lock(&erts_sched_stat.lock);
for (ix = 0; ix < ERTS_NO_PRIO_LEVELS; ix++) {
erts_sched_stat.prio[ix].total_executed = 0;
erts_sched_stat.prio[ix].executed = 0;
erts_sched_stat.prio[ix].total_migrated = 0;
erts_sched_stat.prio[ix].migrated = 0;
}
erts_smp_spin_unlock(&erts_sched_stat.lock);
break;
}
}
Eterm
erts_sched_stat_term(Process *p, int total)
{
Uint sz;
Uint *hp;
Eterm prio[ERTS_NO_PRIO_LEVELS];
Uint executed[ERTS_NO_PRIO_LEVELS];
Uint migrated[ERTS_NO_PRIO_LEVELS];
erts_smp_spin_lock(&erts_sched_stat.lock);
if (total) {
int i;
for (i = 0; i < ERTS_NO_PRIO_LEVELS; i++) {
prio[i] = erts_sched_stat.prio[i].name;
executed[i] = erts_sched_stat.prio[i].total_executed;
migrated[i] = erts_sched_stat.prio[i].total_migrated;
}
}
else {
int i;
for (i = 0; i < ERTS_NO_PRIO_LEVELS; i++) {
prio[i] = erts_sched_stat.prio[i].name;
executed[i] = erts_sched_stat.prio[i].executed;
erts_sched_stat.prio[i].executed = 0;
migrated[i] = erts_sched_stat.prio[i].migrated;
erts_sched_stat.prio[i].migrated = 0;
}
}
erts_smp_spin_unlock(&erts_sched_stat.lock);
sz = 0;
(void) erts_bld_atom_2uint_3tup_list(NULL, &sz, ERTS_NO_PRIO_LEVELS,
prio, executed, migrated);
hp = HAlloc(p, sz);
return erts_bld_atom_2uint_3tup_list(&hp, NULL, ERTS_NO_PRIO_LEVELS,
prio, executed, migrated);
}
/*
* Scheduling of misc stuff
*/
void
erts_schedule_misc_op(void (*func)(void *), void *arg)
{
ErtsRunQueue *rq = erts_get_runq_current(NULL);
ErtsMiscOpList *molp = misc_op_list_alloc();
erts_smp_runq_lock(rq);
while (rq->misc.evac_runq) {
ErtsRunQueue *tmp_rq = rq->misc.evac_runq;
erts_smp_runq_unlock(rq);
rq = tmp_rq;
erts_smp_runq_lock(rq);
}
ASSERT(!(rq->flags & ERTS_RUNQ_FLG_SUSPENDED));
molp->next = NULL;
molp->func = func;
molp->arg = arg;
if (rq->misc.end)
rq->misc.end->next = molp;
else
rq->misc.start = molp;
rq->misc.end = molp;
erts_smp_runq_unlock(rq);
smp_notify_inc_runq(rq);
}
static void
exec_misc_ops(ErtsRunQueue *rq)
{
int i;
ErtsMiscOpList *molp = rq->misc.start;
ErtsMiscOpList *tmp_molp = molp;
for (i = 0; i < ERTS_MAX_MISC_OPS-1; i++) {
if (!tmp_molp)
goto mtq;
tmp_molp = tmp_molp->next;
}
if (!tmp_molp) {
mtq:
rq->misc.start = NULL;
rq->misc.end = NULL;
}
else {
rq->misc.start = tmp_molp->next;
tmp_molp->next = NULL;
if (!rq->misc.start)
rq->misc.end = NULL;
}
erts_smp_runq_unlock(rq);
while (molp) {
tmp_molp = molp;
(*molp->func)(molp->arg);
molp = molp->next;
misc_op_list_free(tmp_molp);
}
erts_smp_runq_lock(rq);
}
Uint
erts_get_total_context_switches(void)
{
Uint res = 0;
ERTS_ATOMIC_FOREACH_RUNQ(rq, res += rq->procs.context_switches);
return res;
}
void
erts_get_total_reductions(Uint *redsp, Uint *diffp)
{
Uint reds = 0;
ERTS_ATOMIC_FOREACH_RUNQ_X(rq,
reds += rq->procs.reductions,
if (redsp) *redsp = reds;
if (diffp) *diffp = reds - last_reductions;
last_reductions = reds);
}
void
erts_get_exact_total_reductions(Process *c_p, Uint *redsp, Uint *diffp)
{
Uint reds = erts_current_reductions(c_p, c_p);
int ix;
erts_smp_proc_unlock(c_p, ERTS_PROC_LOCK_MAIN);
/*
* Wait for other schedulers to schedule out their processes
* and update 'reductions'.
*/
erts_smp_block_system(0);
for (reds = 0, ix = 0; ix < erts_no_run_queues; ix++)
reds += ERTS_RUNQ_IX(ix)->procs.reductions;
if (redsp)
*redsp = reds;
if (diffp)
*diffp = reds - last_exact_reductions;
last_exact_reductions = reds;
erts_smp_release_system();
erts_smp_proc_lock(c_p, ERTS_PROC_LOCK_MAIN);
}
/*
* erts_test_next_pid() is only used for testing.
*/
Sint
erts_test_next_pid(int set, Uint next)
{
Sint res;
Sint p_prev;
erts_smp_mtx_lock(&proc_tab_mtx);
if (!set) {
res = p_next < 0 ? -1 : (p_serial << p_serial_shift | p_next);
}
else {
p_serial = (Sint) ((next >> p_serial_shift) & p_serial_mask);
p_next = (Sint) (erts_process_tab_index_mask & next);
if (p_next >= erts_max_processes) {
p_next = 0;
p_serial++;
p_serial &= p_serial_mask;
}
p_prev = p_next;
do {
if (!process_tab[p_next])
break;
p_next++;
if(p_next >= erts_max_processes) {
p_next = 0;
p_serial++;
p_serial &= p_serial_mask;
}
} while (p_prev != p_next);
res = process_tab[p_next] ? -1 : (p_serial << p_serial_shift | p_next);
}
erts_smp_mtx_unlock(&proc_tab_mtx);
return res;
}
Uint erts_process_count(void)
{
long res = erts_smp_atomic_read(&process_count);
ASSERT(res >= 0);
return (Uint) res;
}
void
erts_free_proc(Process *p)
{
#if defined(ERTS_ENABLE_LOCK_COUNT) && defined(ERTS_SMP)
erts_lcnt_proc_lock_destroy(p);
#endif
erts_free(ERTS_ALC_T_PROC, (void *) p);
}
/*
** Allocate process and find out where to place next process.
*/
static Process*
alloc_process(void)
{
#ifdef ERTS_SMP
erts_pix_lock_t *pix_lock;
#endif
Process* p;
int p_prev;
erts_smp_mtx_lock(&proc_tab_mtx);
if (p_next == -1) {
p = NULL;
goto error; /* Process table full! */
}
p = (Process*) erts_alloc_fnf(ERTS_ALC_T_PROC, sizeof(Process));
if (!p)
goto error; /* ENOMEM */
p_last = p_next;
erts_get_emu_time(&p->started);
#ifdef ERTS_SMP
pix_lock = ERTS_PIX2PIXLOCK(p_next);
erts_pix_lock(pix_lock);
#endif
ASSERT(!process_tab[p_next]);
process_tab[p_next] = p;
erts_smp_atomic_inc(&process_count);
p->id = make_internal_pid(p_serial << p_serial_shift | p_next);
if (p->id == ERTS_INVALID_PID) {
/* Do not use the invalid pid; change serial */
p_serial++;
p_serial &= p_serial_mask;
p->id = make_internal_pid(p_serial << p_serial_shift | p_next);
ASSERT(p->id != ERTS_INVALID_PID);
}
ASSERT(internal_pid_serial(p->id) <= (erts_use_r9_pids_ports
? ERTS_MAX_PID_R9_SERIAL
: ERTS_MAX_PID_SERIAL));
#ifdef ERTS_SMP
erts_proc_lock_init(p); /* All locks locked */
erts_pix_unlock(pix_lock);
#endif
p->rstatus = P_FREE;
p->rcount = 0;
/*
* set p_next to the next available slot
*/
p_prev = p_next;
while (1) {
p_next++;
if(p_next >= erts_max_processes) {
p_serial++;
p_serial &= p_serial_mask;
p_next = 0;
}
if (p_prev == p_next) {
p_next = -1;
break; /* Table full! */
}
if (!process_tab[p_next])
break; /* found a free slot */
}
error:
erts_smp_mtx_unlock(&proc_tab_mtx);
return p;
}
Eterm
erl_create_process(Process* parent, /* Parent of process (default group leader). */
Eterm mod, /* Tagged atom for module. */
Eterm func, /* Tagged atom for function. */
Eterm args, /* Arguments for function (must be well-formed list). */
ErlSpawnOpts* so) /* Options for spawn. */
{
ErtsRunQueue *rq, *notify_runq;
Process *p;
Sint arity; /* Number of arguments. */
#ifndef HYBRID
Uint arg_size; /* Size of arguments. */
#endif
Uint sz; /* Needed words on heap. */
Uint heap_need; /* Size needed on heap. */
Eterm res = THE_NON_VALUE;
#ifdef ERTS_SMP
erts_smp_proc_lock(parent, ERTS_PROC_LOCKS_ALL_MINOR);
#endif
#ifdef HYBRID
/*
* Copy the arguments to the global heap
* Since global GC might occur we want to do this before adding the
* new process to the process_tab.
*/
BM_SWAP_TIMER(system,copy);
LAZY_COPY(parent,args);
BM_SWAP_TIMER(copy,system);
heap_need = 0;
#endif /* HYBRID */
/*
* Check for errors.
*/
if (is_not_atom(mod) || is_not_atom(func) || ((arity = list_length(args)) < 0)) {
so->error_code = BADARG;
goto error;
}
p = alloc_process(); /* All proc locks are locked by this thread
on success */
if (!p) {
erts_send_error_to_logger_str(parent->group_leader,
"Too many processes\n");
so->error_code = SYSTEM_LIMIT;
goto error;
}
processes_busy++;
BM_COUNT(processes_spawned);
#ifndef HYBRID
BM_SWAP_TIMER(system,size);
arg_size = size_object(args);
BM_SWAP_TIMER(size,system);
heap_need = arg_size;
#endif
p->flags = erts_default_process_flags;
/* Scheduler queue mutex should be locked when changeing
* prio. In this case we don't have to lock it, since
* noone except us has access to the process.
*/
if (so->flags & SPO_USE_ARGS) {
p->min_heap_size = so->min_heap_size;
p->min_vheap_size = so->min_vheap_size;
p->prio = so->priority;
p->max_gen_gcs = so->max_gen_gcs;
} else {
p->min_heap_size = H_MIN_SIZE;
p->min_vheap_size = BIN_VH_MIN_SIZE;
p->prio = PRIORITY_NORMAL;
p->max_gen_gcs = (Uint16) erts_smp_atomic_read(&erts_max_gen_gcs);
}
p->skipped = 0;
ASSERT(p->min_heap_size == erts_next_heap_size(p->min_heap_size, 0));
p->initial[INITIAL_MOD] = mod;
p->initial[INITIAL_FUN] = func;
p->initial[INITIAL_ARI] = (Uint) arity;
/*
* Must initialize binary lists here before copying binaries to process.
*/
p->off_heap.first = NULL;
p->off_heap.overhead = 0;
heap_need +=
IS_CONST(parent->group_leader) ? 0 : NC_HEAP_SIZE(parent->group_leader);
if (heap_need < p->min_heap_size) {
sz = heap_need = p->min_heap_size;
} else {
sz = erts_next_heap_size(heap_need, 0);
}
#ifdef HIPE
hipe_init_process(&p->hipe);
#ifdef ERTS_SMP
hipe_init_process_smp(&p->hipe_smp);
#endif
#endif
p->heap = (Eterm *) ERTS_HEAP_ALLOC(ERTS_ALC_T_HEAP, sizeof(Eterm)*sz);
p->old_hend = p->old_htop = p->old_heap = NULL;
p->high_water = p->heap;
#ifdef INCREMENTAL
p->scan_top = p->high_water;
#endif
p->gen_gcs = 0;
p->stop = p->hend = p->heap + sz;
p->htop = p->heap;
p->heap_sz = sz;
p->catches = 0;
p->bin_vheap_sz = p->min_vheap_size;
p->bin_old_vheap_sz = p->min_vheap_size;
p->bin_old_vheap = 0;
p->bin_vheap_mature = 0;
/* No need to initialize p->fcalls. */
p->current = p->initial+INITIAL_MOD;
p->i = (BeamInstr *) beam_apply;
p->cp = (BeamInstr *) beam_apply+1;
p->arg_reg = p->def_arg_reg;
p->max_arg_reg = sizeof(p->def_arg_reg)/sizeof(p->def_arg_reg[0]);
p->arg_reg[0] = mod;
p->arg_reg[1] = func;
BM_STOP_TIMER(system);
BM_MESSAGE(args,p,parent);
BM_START_TIMER(system);
#ifdef HYBRID
p->arg_reg[2] = args;
#ifdef INCREMENTAL
p->active = 0;
if (ptr_val(args) >= inc_fromspc && ptr_val(args) < inc_fromend)
INC_ACTIVATE(p);
#endif
#else
BM_SWAP_TIMER(system,copy);
p->arg_reg[2] = copy_struct(args, arg_size, &p->htop, &p->off_heap);
BM_MESSAGE_COPIED(arg_size);
BM_SWAP_TIMER(copy,system);
#endif
p->arity = 3;
p->fvalue = NIL;
p->freason = EXC_NULL;
p->ftrace = NIL;
p->reds = 0;
#ifdef ERTS_SMP
p->u.ptimer = NULL;
#else
sys_memset(&p->u.tm, 0, sizeof(ErlTimer));
#endif
p->reg = NULL;
p->nlinks = NULL;
p->monitors = NULL;
p->nodes_monitors = NULL;
p->suspend_monitors = NULL;
ASSERT(is_pid(parent->group_leader));
if (parent->group_leader == ERTS_INVALID_PID)
p->group_leader = p->id;
else {
/* Needs to be done after the heap has been set up */
p->group_leader =
IS_CONST(parent->group_leader)
? parent->group_leader
: STORE_NC(&p->htop, &p->off_heap, parent->group_leader);
}
erts_get_default_tracing(&p->trace_flags, &p->tracer_proc);
p->msg.first = NULL;
p->msg.last = &p->msg.first;
p->msg.save = &p->msg.first;
p->msg.len = 0;
#ifdef ERTS_SMP
p->msg_inq.first = NULL;
p->msg_inq.last = &p->msg_inq.first;
p->msg_inq.len = 0;
p->bound_runq = NULL;
#endif
p->bif_timers = NULL;
p->mbuf = NULL;
p->mbuf_sz = 0;
p->psd = NULL;
p->dictionary = NULL;
p->seq_trace_lastcnt = 0;
p->seq_trace_clock = 0;
SEQ_TRACE_TOKEN(p) = NIL;
p->parent = parent->id == ERTS_INVALID_PID ? NIL : parent->id;
#ifdef HYBRID
p->rrma = NULL;
p->rrsrc = NULL;
p->nrr = 0;
p->rrsz = 0;
#endif
INIT_HOLE_CHECK(p);
#ifdef DEBUG
p->last_old_htop = NULL;
#endif
if (IS_TRACED(parent)) {
if (parent->trace_flags & F_TRACE_SOS) {
p->trace_flags |= (parent->trace_flags & TRACEE_FLAGS);
p->tracer_proc = parent->tracer_proc;
}
if (ARE_TRACE_FLAGS_ON(parent, F_TRACE_PROCS)) {
trace_proc_spawn(parent, p->id, mod, func, args);
}
if (parent->trace_flags & F_TRACE_SOS1) { /* Overrides TRACE_CHILDREN */
p->trace_flags |= (parent->trace_flags & TRACEE_FLAGS);
p->tracer_proc = parent->tracer_proc;
p->trace_flags &= ~(F_TRACE_SOS1 | F_TRACE_SOS);
parent->trace_flags &= ~(F_TRACE_SOS1 | F_TRACE_SOS);
}
}
/*
* Check if this process should be initially linked to its parent.
*/
if (so->flags & SPO_LINK) {
#ifdef DEBUG
int ret;
#endif
if (IS_TRACED_FL(parent, F_TRACE_PROCS)) {
trace_proc(parent, parent, am_link, p->id);
}
#ifdef DEBUG
ret = erts_add_link(&(parent->nlinks), LINK_PID, p->id);
ASSERT(ret == 0);
ret = erts_add_link(&(p->nlinks), LINK_PID, parent->id);
ASSERT(ret == 0);
#else
erts_add_link(&(parent->nlinks), LINK_PID, p->id);
erts_add_link(&(p->nlinks), LINK_PID, parent->id);
#endif
if (IS_TRACED(parent)) {
if (parent->trace_flags & (F_TRACE_SOL|F_TRACE_SOL1)) {
p->trace_flags |= (parent->trace_flags & TRACEE_FLAGS);
p->tracer_proc = parent->tracer_proc; /* maybe steal */
if (parent->trace_flags & F_TRACE_SOL1) { /* maybe override */
p ->trace_flags &= ~(F_TRACE_SOL1 | F_TRACE_SOL);
parent->trace_flags &= ~(F_TRACE_SOL1 | F_TRACE_SOL);
}
}
}
}
/*
* Test whether this process should be initially monitored by its parent.
*/
if (so->flags & SPO_MONITOR) {
Eterm mref;
mref = erts_make_ref(parent);
erts_add_monitor(&(parent->monitors), MON_ORIGIN, mref, p->id, NIL);
erts_add_monitor(&(p->monitors), MON_TARGET, mref, parent->id, NIL);
so->mref = mref;
}
#ifdef HYBRID
/*
* Add process to the array of active processes.
*/
ACTIVATE(p);
p->active_index = erts_num_active_procs++;
erts_active_procs[p->active_index] = p;
#endif
#ifdef ERTS_SMP
p->scheduler_data = NULL;
p->is_exiting = 0;
p->status_flags = 0;
p->runq_flags = 0;
p->suspendee = NIL;
p->pending_suspenders = NULL;
p->pending_exit.reason = THE_NON_VALUE;
p->pending_exit.bp = NULL;
#endif
#if !defined(NO_FPE_SIGNALS)
p->fp_exception = 0;
#endif
/*
* Schedule process for execution.
*/
if (!((so->flags & SPO_USE_ARGS) && so->scheduler))
rq = erts_get_runq_proc(parent);
else {
int ix = so->scheduler-1;
ASSERT(0 <= ix && ix < erts_no_run_queues);
rq = ERTS_RUNQ_IX(ix);
p->bound_runq = rq;
}
erts_smp_runq_lock(rq);
#ifdef ERTS_SMP
p->run_queue = rq;
#endif
p->status = P_WAITING;
notify_runq = internal_add_to_runq(rq, p);
erts_smp_runq_unlock(rq);
smp_notify_inc_runq(notify_runq);
res = p->id;
erts_smp_proc_unlock(p, ERTS_PROC_LOCKS_ALL);
VERBOSE(DEBUG_PROCESSES, ("Created a new process: %T\n",p->id));
error:
erts_smp_proc_unlock(parent, ERTS_PROC_LOCKS_ALL_MINOR);
return res;
}
/*
* Initiates a pseudo process that can be used
* for arithmetic BIFs.
*/
void erts_init_empty_process(Process *p)
{
p->htop = NULL;
p->stop = NULL;
p->hend = NULL;
p->heap = NULL;
p->gen_gcs = 0;
p->max_gen_gcs = 0;
p->min_heap_size = 0;
p->min_vheap_size = 0;
p->status = P_RUNABLE;
p->gcstatus = P_RUNABLE;
p->rstatus = P_RUNABLE;
p->rcount = 0;
p->id = ERTS_INVALID_PID;
p->prio = PRIORITY_NORMAL;
p->reds = 0;
p->tracer_proc = NIL;
p->trace_flags = F_INITIAL_TRACE_FLAGS;
p->group_leader = ERTS_INVALID_PID;
p->flags = 0;
p->fvalue = NIL;
p->freason = EXC_NULL;
p->ftrace = NIL;
p->fcalls = 0;
p->bin_vheap_sz = BIN_VH_MIN_SIZE;
p->bin_old_vheap_sz = BIN_VH_MIN_SIZE;
p->bin_old_vheap = 0;
p->bin_vheap_mature = 0;
#ifdef ERTS_SMP
p->u.ptimer = NULL;
p->bound_runq = NULL;
#else
memset(&(p->u.tm), 0, sizeof(ErlTimer));
#endif
p->next = NULL;
p->off_heap.first = NULL;
p->off_heap.overhead = 0;
p->reg = NULL;
p->heap_sz = 0;
p->high_water = NULL;
#ifdef INCREMENTAL
p->scan_top = NULL;
#endif
p->old_hend = NULL;
p->old_htop = NULL;
p->old_heap = NULL;
p->mbuf = NULL;
p->mbuf_sz = 0;
p->psd = NULL;
p->monitors = NULL;
p->nlinks = NULL; /* List of links */
p->nodes_monitors = NULL;
p->suspend_monitors = NULL;
p->msg.first = NULL;
p->msg.last = &p->msg.first;
p->msg.save = &p->msg.first;
p->msg.len = 0;
p->bif_timers = NULL;
p->dictionary = NULL;
p->seq_trace_clock = 0;
p->seq_trace_lastcnt = 0;
p->seq_trace_token = NIL;
p->initial[0] = 0;
p->initial[1] = 0;
p->initial[2] = 0;
p->catches = 0;
p->cp = NULL;
p->i = NULL;
p->current = NULL;
/*
* Saved x registers.
*/
p->arity = 0;
p->arg_reg = NULL;
p->max_arg_reg = 0;
p->def_arg_reg[0] = 0;
p->def_arg_reg[1] = 0;
p->def_arg_reg[2] = 0;
p->def_arg_reg[3] = 0;
p->def_arg_reg[4] = 0;
p->def_arg_reg[5] = 0;
p->parent = NIL;
p->started.tv_sec = 0;
p->started.tv_usec = 0;
#ifdef HIPE
hipe_init_process(&p->hipe);
#ifdef ERTS_SMP
hipe_init_process_smp(&p->hipe_smp);
#endif
#endif
ACTIVATE(p);
#ifdef HYBRID
p->rrma = NULL;
p->rrsrc = NULL;
p->nrr = 0;
p->rrsz = 0;
#endif
INIT_HOLE_CHECK(p);
#ifdef DEBUG
p->last_old_htop = NULL;
#endif
#ifdef ERTS_SMP
p->scheduler_data = NULL;
p->is_exiting = 0;
p->status_flags = 0;
p->runq_flags = 0;
p->msg_inq.first = NULL;
p->msg_inq.last = &p->msg_inq.first;
p->msg_inq.len = 0;
p->suspendee = NIL;
p->pending_suspenders = NULL;
p->pending_exit.reason = THE_NON_VALUE;
p->pending_exit.bp = NULL;
erts_proc_lock_init(p);
erts_smp_proc_unlock(p, ERTS_PROC_LOCKS_ALL);
p->run_queue = ERTS_RUNQ_IX(0);
#endif
#if !defined(NO_FPE_SIGNALS)
p->fp_exception = 0;
#endif
}
#ifdef DEBUG
void
erts_debug_verify_clean_empty_process(Process* p)
{
/* Things that erts_cleanup_empty_process() will *not* cleanup... */
ASSERT(p->htop == NULL);
ASSERT(p->stop == NULL);
ASSERT(p->hend == NULL);
ASSERT(p->heap == NULL);
ASSERT(p->id == ERTS_INVALID_PID);
ASSERT(p->tracer_proc == NIL);
ASSERT(p->trace_flags == F_INITIAL_TRACE_FLAGS);
ASSERT(p->group_leader == ERTS_INVALID_PID);
ASSERT(p->next == NULL);
ASSERT(p->reg == NULL);
ASSERT(p->heap_sz == 0);
ASSERT(p->high_water == NULL);
#ifdef INCREMENTAL
ASSERT(p->scan_top == NULL);
#endif
ASSERT(p->old_hend == NULL);
ASSERT(p->old_htop == NULL);
ASSERT(p->old_heap == NULL);
ASSERT(p->monitors == NULL);
ASSERT(p->nlinks == NULL);
ASSERT(p->nodes_monitors == NULL);
ASSERT(p->suspend_monitors == NULL);
ASSERT(p->msg.first == NULL);
ASSERT(p->msg.len == 0);
ASSERT(p->bif_timers == NULL);
ASSERT(p->dictionary == NULL);
ASSERT(p->catches == 0);
ASSERT(p->cp == NULL);
ASSERT(p->i == NULL);
ASSERT(p->current == NULL);
ASSERT(p->parent == NIL);
#ifdef ERTS_SMP
ASSERT(p->msg_inq.first == NULL);
ASSERT(p->msg_inq.len == 0);
ASSERT(p->suspendee == NIL);
ASSERT(p->pending_suspenders == NULL);
ASSERT(p->pending_exit.reason == THE_NON_VALUE);
ASSERT(p->pending_exit.bp == NULL);
#endif
/* Thing that erts_cleanup_empty_process() cleans up */
ASSERT(p->off_heap.first == NULL);
ASSERT(p->off_heap.overhead == 0);
ASSERT(p->mbuf == NULL);
}
#endif
void
erts_cleanup_empty_process(Process* p)
{
/* We only check fields that are known to be used... */
erts_cleanup_offheap(&p->off_heap);
p->off_heap.first = NULL;
p->off_heap.overhead = 0;
if (p->mbuf != NULL) {
free_message_buffer(p->mbuf);
p->mbuf = NULL;
}
#if defined(ERTS_ENABLE_LOCK_COUNT) && defined(ERTS_SMP)
erts_lcnt_proc_lock_destroy(p);
#endif
#ifdef DEBUG
erts_debug_verify_clean_empty_process(p);
#endif
}
/*
* p must be the currently executing process.
*/
static void
delete_process(Process* p)
{
ErlMessage* mp;
VERBOSE(DEBUG_PROCESSES, ("Removing process: %T\n",p->id));
/* Cleanup psd */
if (p->psd)
erts_free(ERTS_ALC_T_PSD, p->psd);
/* Clean binaries and funs */
erts_cleanup_offheap(&p->off_heap);
/*
* The mso list should not be used anymore, but if it is, make sure that
* we'll notice.
*/
p->off_heap.first = (void *) 0x8DEFFACD;
if (p->arg_reg != p->def_arg_reg) {
erts_free(ERTS_ALC_T_ARG_REG, p->arg_reg);
}
/*
* Release heaps. Clobber contents in DEBUG build.
*/
#ifdef DEBUG
sys_memset(p->heap, DEBUG_BAD_BYTE, p->heap_sz*sizeof(Eterm));
#endif
#ifdef HIPE
hipe_delete_process(&p->hipe);
#endif
ERTS_HEAP_FREE(ERTS_ALC_T_HEAP, (void*) p->heap, p->heap_sz*sizeof(Eterm));
if (p->old_heap != NULL) {
#ifdef DEBUG
sys_memset(p->old_heap, DEBUG_BAD_BYTE,
(p->old_hend-p->old_heap)*sizeof(Eterm));
#endif
ERTS_HEAP_FREE(ERTS_ALC_T_OLD_HEAP,
p->old_heap,
(p->old_hend-p->old_heap)*sizeof(Eterm));
}
/*
* Free all pending message buffers.
*/
if (p->mbuf != NULL) {
free_message_buffer(p->mbuf);
}
erts_erase_dicts(p);
/* free all pending messages */
mp = p->msg.first;
while(mp != NULL) {
ErlMessage* next_mp = mp->next;
if (mp->data.attached) {
if (is_value(mp->m[0]))
free_message_buffer(mp->data.heap_frag);
else {
if (is_not_nil(mp->m[1])) {
ErlHeapFragment *heap_frag;
heap_frag = (ErlHeapFragment *) mp->data.dist_ext->ext_endp;
erts_cleanup_offheap(&heap_frag->off_heap);
}
erts_free_dist_ext_copy(mp->data.dist_ext);
}
}
free_message(mp);
mp = next_mp;
}
ASSERT(!p->monitors);
ASSERT(!p->nlinks);
ASSERT(!p->nodes_monitors);
ASSERT(!p->suspend_monitors);
p->fvalue = NIL;
#ifdef HYBRID
erts_active_procs[p->active_index] =
erts_active_procs[--erts_num_active_procs];
erts_active_procs[p->active_index]->active_index = p->active_index;
#ifdef INCREMENTAL
if (INC_IS_ACTIVE(p))
INC_DEACTIVATE(p);
#endif
if (p->rrma != NULL) {
erts_free(ERTS_ALC_T_ROOTSET,p->rrma);
erts_free(ERTS_ALC_T_ROOTSET,p->rrsrc);
}
#endif
}
static ERTS_INLINE void
set_proc_exiting(Process *p, Eterm reason, ErlHeapFragment *bp)
{
#ifdef ERTS_SMP
erts_pix_lock_t *pix_lock = ERTS_PID2PIXLOCK(p->id);
ERTS_SMP_LC_ASSERT(erts_proc_lc_my_proc_locks(p) == ERTS_PROC_LOCKS_ALL);
/*
* You are required to have all proc locks and the pix lock when going
* to status P_EXITING. This makes it is enough to take any lock when
* looking up a process (pid2proc()) to prevent the looked up process
* from exiting until the lock has been released.
*/
erts_pix_lock(pix_lock);
p->is_exiting = 1;
#endif
p->status = P_EXITING;
#ifdef ERTS_SMP
erts_pix_unlock(pix_lock);
#endif
p->fvalue = reason;
if (bp)
erts_link_mbuf_to_proc(p, bp);
/*
* We used to set freason to EXC_EXIT here, but there is no need to
* save the stack trace since this process irreversibly is going to
* exit.
*/
p->freason = EXTAG_EXIT;
KILL_CATCHES(p);
cancel_timer(p);
p->i = (BeamInstr *) beam_exit;
}
#ifdef ERTS_SMP
void
erts_handle_pending_exit(Process *c_p, ErtsProcLocks locks)
{
ErtsProcLocks xlocks;
ASSERT(is_value(c_p->pending_exit.reason));
ERTS_SMP_LC_ASSERT(erts_proc_lc_my_proc_locks(c_p) == locks);
ERTS_SMP_LC_ASSERT(locks & ERTS_PROC_LOCK_MAIN);
ERTS_SMP_LC_ASSERT(c_p->status != P_EXITING);
ERTS_SMP_LC_ASSERT(c_p->status != P_FREE);
/* Ensure that all locks on c_p are locked before proceeding... */
if (locks == ERTS_PROC_LOCKS_ALL)
xlocks = 0;
else {
xlocks = ~locks & ERTS_PROC_LOCKS_ALL;
if (erts_smp_proc_trylock(c_p, xlocks) == EBUSY) {
erts_smp_proc_unlock(c_p, locks & ~ERTS_PROC_LOCK_MAIN);
erts_smp_proc_lock(c_p, ERTS_PROC_LOCKS_ALL_MINOR);
}
}
set_proc_exiting(c_p, c_p->pending_exit.reason, c_p->pending_exit.bp);
c_p->pending_exit.reason = THE_NON_VALUE;
c_p->pending_exit.bp = NULL;
if (xlocks)
erts_smp_proc_unlock(c_p, xlocks);
}
static void
handle_pending_exiters(ErtsProcList *pnd_xtrs)
{
ErtsProcList *plp = pnd_xtrs;
ErtsProcList *free_plp;
while (plp) {
Process *p = erts_pid2proc(NULL, 0, plp->pid, ERTS_PROC_LOCKS_ALL);
if (p) {
if (proclist_same(plp, p)
&& !(p->status_flags & ERTS_PROC_SFLG_RUNNING)) {
ASSERT(p->status_flags & ERTS_PROC_SFLG_INRUNQ);
ASSERT(ERTS_PROC_PENDING_EXIT(p));
erts_handle_pending_exit(p, ERTS_PROC_LOCKS_ALL);
}
erts_smp_proc_unlock(p, ERTS_PROC_LOCKS_ALL);
}
free_plp = plp;
plp = plp->next;
proclist_destroy(free_plp);
}
}
static void
save_pending_exiter(Process *p)
{
ErtsProcList *plp;
ErtsRunQueue *rq;
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_STATUS & erts_proc_lc_my_proc_locks(p));
rq = erts_get_runq_current(NULL);
plp = proclist_create(p);
erts_smp_runq_lock(rq);
plp->next = rq->procs.pending_exiters;
rq->procs.pending_exiters = plp;
erts_smp_runq_unlock(rq);
}
#endif
/*
* This function delivers an EXIT message to a process
* which is trapping EXITs.
*/
static ERTS_INLINE void
send_exit_message(Process *to, ErtsProcLocks *to_locksp,
Eterm exit_term, Uint term_size, Eterm token)
{
if (token == NIL) {
Eterm* hp;
Eterm mess;
ErlHeapFragment* bp;
ErlOffHeap *ohp;
hp = erts_alloc_message_heap(term_size, &bp, &ohp, to, to_locksp);
mess = copy_struct(exit_term, term_size, &hp, ohp);
erts_queue_message(to, to_locksp, bp, mess, NIL);
} else {
ErlHeapFragment* bp;
Eterm* hp;
Eterm mess;
Eterm temp_token;
Uint sz_token;
ASSERT(is_tuple(token));
sz_token = size_object(token);
bp = new_message_buffer(term_size+sz_token);
hp = bp->mem;
mess = copy_struct(exit_term, term_size, &hp, &bp->off_heap);
/* the trace token must in this case be updated by the caller */
seq_trace_output(token, mess, SEQ_TRACE_SEND, to->id, NULL);
temp_token = copy_struct(token, sz_token, &hp, &bp->off_heap);
erts_queue_message(to, to_locksp, bp, mess, temp_token);
}
}
/*
*
* *** Exit signal behavior ***
*
* Exit signals are asynchronous (truly asynchronous in the
* SMP emulator). When the signal is received the receiver receives an
* 'EXIT' message if it is trapping exits; otherwise, it will either
* ignore the signal if the exit reason is normal, or go into an
* exiting state (status P_EXITING). When a process has gone into the
* exiting state it will not execute any more Erlang code, but it might
* take a while before it actually exits. The exit signal is being
* received when the 'EXIT' message is put in the message queue, the
* signal is dropped, or when it changes state into exiting. The time it
* is in the exiting state before actually exiting is undefined (it
* might take a really long time under certain conditions). The
* receiver of the exit signal does not break links or trigger monitors
* until it actually exits.
*
* Exit signals and other signals, e.g. messages, have to be received
* by a receiver in the same order as sent by a sender.
*
*
*
* Exit signal implementation in the SMP emulator:
*
* If the receiver is trapping exits, the signal is transformed
* into an 'EXIT' message and sent as a normal message, if the
* reason is normal the signal is dropped; otherwise, the process
* is determined to be exited. The interesting case is when the
* process is to be exited and this is what is described below.
*
* If it is possible, the receiver is set in the exiting state straight
* away and we are done; otherwise, the sender places the exit reason
* in the pending_exit field of the process struct and if necessary
* adds the receiver to the run queue. It is typically not possible
* to set a scheduled process or a process which we cannot get all locks
* on without releasing locks on it in an exiting state straight away.
*
* The receiver will poll the pending_exit field when it reach certain
* places during it's execution. When it discovers the pending exit
* it will change state into the exiting state. If the receiver wasn't
* scheduled when the pending exit was set, the first scheduler that
* schedules a new process will set the receiving process in the exiting
* state just before it schedules next process.
*
* When the exit signal is placed in the pending_exit field, the signal
* is considered as being in transit on the Erlang level. The signal is
* actually in some kind of semi transit state, since we have already
* determined how it should be received. It will exit the process no
* matter what if it is received (the process may exit by itself before
* reception of the exit signal). The signal is received when it is
* discovered in the pending_exit field by the receiver.
*
* The receiver have to poll the pending_exit field at least before:
* - moving messages from the message in queue to the private message
* queue. This in order to preserve signal order.
* - unlink. Otherwise the process might get exited on a link that
* have been removed.
* - changing the trap_exit flag to true. This in order to simplify the
* implementation; otherwise, we would have to transform the signal
* into an 'EXIT' message when setting the trap_exit flag to true. We
* would also have to maintain a queue of exit signals in transit.
* - being scheduled in or out.
*/
static ERTS_INLINE int
send_exit_signal(Process *c_p, /* current process if and only
if reason is stored on it */
Eterm from, /* Id of sender of signal */
Process *rp, /* receiving process */
ErtsProcLocks *rp_locks,/* current locks on receiver */
Eterm reason, /* exit reason */
Eterm exit_tuple, /* Prebuild exit tuple
or THE_NON_VALUE */
Uint exit_tuple_sz, /* Size of prebuilt exit tuple
(if exit_tuple != THE_NON_VALUE) */
Eterm token, /* token */
Process *token_update, /* token updater */
Uint32 flags /* flags */
)
{
Eterm rsn = reason == am_kill ? am_killed : reason;
ERTS_SMP_LC_ASSERT(*rp_locks == erts_proc_lc_my_proc_locks(rp));
ERTS_SMP_LC_ASSERT((*rp_locks & ERTS_PROC_LOCKS_XSIG_SEND)
== ERTS_PROC_LOCKS_XSIG_SEND);
ASSERT(reason != THE_NON_VALUE);
if (ERTS_PROC_IS_TRAPPING_EXITS(rp)
&& (reason != am_kill || (flags & ERTS_XSIG_FLG_IGN_KILL))) {
if (is_not_nil(token) && token_update)
seq_trace_update_send(token_update);
if (is_value(exit_tuple))
send_exit_message(rp, rp_locks, exit_tuple, exit_tuple_sz, token);
else
erts_deliver_exit_message(from, rp, rp_locks, rsn, token);
return 1; /* Receiver will get a message */
}
else if (reason != am_normal || (flags & ERTS_XSIG_FLG_NO_IGN_NORMAL)) {
#ifdef ERTS_SMP
if (!ERTS_PROC_PENDING_EXIT(rp) && !rp->is_exiting) {
ASSERT(rp->status != P_EXITING);
ASSERT(rp->status != P_FREE);
ASSERT(!rp->pending_exit.bp);
if (rp == c_p && (*rp_locks & ERTS_PROC_LOCK_MAIN)) {
/* Ensure that all locks on c_p are locked before
proceeding... */
if (*rp_locks != ERTS_PROC_LOCKS_ALL) {
ErtsProcLocks need_locks = (~(*rp_locks)
& ERTS_PROC_LOCKS_ALL);
if (erts_smp_proc_trylock(c_p, need_locks) == EBUSY) {
erts_smp_proc_unlock(c_p,
*rp_locks & ~ERTS_PROC_LOCK_MAIN);
erts_smp_proc_lock(c_p, ERTS_PROC_LOCKS_ALL_MINOR);
}
*rp_locks = ERTS_PROC_LOCKS_ALL;
}
set_proc_exiting(c_p, rsn, NULL);
}
else if (!(rp->status_flags & ERTS_PROC_SFLG_RUNNING)) {
/* Process not running ... */
ErtsProcLocks need_locks = ~(*rp_locks) & ERTS_PROC_LOCKS_ALL;
if (need_locks
&& erts_smp_proc_trylock(rp, need_locks) == EBUSY) {
/* ... but we havn't got all locks on it ... */
save_pending_exiter(rp);
/*
* The pending exit will be discovered when next
* process is scheduled in
*/
goto set_pending_exit;
}
else {
/* ...and we have all locks on it... */
*rp_locks = ERTS_PROC_LOCKS_ALL;
set_proc_exiting(rp,
(is_immed(rsn)
? rsn
: copy_object(rsn, rp)),
NULL);
}
}
else { /* Process running... */
/*
* The pending exit will be discovered when the process
* is scheduled out if not discovered earlier.
*/
set_pending_exit:
if (is_immed(rsn)) {
rp->pending_exit.reason = rsn;
}
else {
Eterm *hp;
Uint sz = size_object(rsn);
ErlHeapFragment *bp = new_message_buffer(sz);
hp = &bp->mem[0];
rp->pending_exit.reason = copy_struct(rsn,
sz,
&hp,
&bp->off_heap);
rp->pending_exit.bp = bp;
}
ASSERT(ERTS_PROC_PENDING_EXIT(rp));
}
if (!(rp->status_flags
& (ERTS_PROC_SFLG_INRUNQ|ERTS_PROC_SFLG_RUNNING)))
erts_add_to_runq(rp);
}
/* else:
*
* The receiver already has a pending exit (or is exiting)
* so we drop this signal.
*
* NOTE: dropping this exit signal is based on the assumption
* that the receiver *will* exit; either on the pending
* exit or by itself before seeing the pending exit.
*/
#else /* !ERTS_SMP */
if (c_p == rp) {
rp->status = P_EXITING;
c_p->fvalue = rsn;
}
else if (rp->status != P_EXITING) { /* No recursive process exits /PaN */
Eterm old_status = rp->status;
set_proc_exiting(rp,
is_immed(rsn) ? rsn : copy_object(rsn, rp),
NULL);
ACTIVATE(rp);
if (old_status != P_RUNABLE && old_status != P_RUNNING)
erts_add_to_runq(rp);
}
#endif
return -1; /* Receiver will exit */
}
return 0; /* Receiver unaffected */
}
int
erts_send_exit_signal(Process *c_p,
Eterm from,
Process *rp,
ErtsProcLocks *rp_locks,
Eterm reason,
Eterm token,
Process *token_update,
Uint32 flags)
{
return send_exit_signal(c_p,
from,
rp,
rp_locks,
reason,
THE_NON_VALUE,
0,
token,
token_update,
flags);
}
typedef struct {
Eterm reason;
Process *p;
} ExitMonitorContext;
static void doit_exit_monitor(ErtsMonitor *mon, void *vpcontext)
{
ExitMonitorContext *pcontext = vpcontext;
DistEntry *dep;
ErtsMonitor *rmon;
Process *rp;
if (mon->type == MON_ORIGIN) {
/* We are monitoring someone else, we need to demonitor that one.. */
if (is_atom(mon->pid)) { /* remote by name */
ASSERT(is_node_name_atom(mon->pid));
dep = erts_sysname_to_connected_dist_entry(mon->pid);
if (dep) {
erts_smp_de_links_lock(dep);
rmon = erts_remove_monitor(&(dep->monitors), mon->ref);
erts_smp_de_links_unlock(dep);
if (rmon) {
ErtsDSigData dsd;
int code = erts_dsig_prepare(&dsd, dep, NULL,
ERTS_DSP_NO_LOCK, 0);
if (code == ERTS_DSIG_PREP_CONNECTED) {
code = erts_dsig_send_demonitor(&dsd,
rmon->pid,
mon->name,
mon->ref,
1);
ASSERT(code == ERTS_DSIG_SEND_OK);
}
erts_destroy_monitor(rmon);
}
erts_deref_dist_entry(dep);
}
} else {
ASSERT(is_pid(mon->pid));
if (is_internal_pid(mon->pid)) { /* local by pid or name */
rp = erts_pid2proc(NULL, 0, mon->pid, ERTS_PROC_LOCK_LINK);
if (!rp) {
goto done;
}
rmon = erts_remove_monitor(&(rp->monitors),mon->ref);
erts_smp_proc_unlock(rp, ERTS_PROC_LOCK_LINK);
if (rmon == NULL) {
goto done;
}
erts_destroy_monitor(rmon);
} else { /* remote by pid */
ASSERT(is_external_pid(mon->pid));
dep = external_pid_dist_entry(mon->pid);
ASSERT(dep != NULL);
if (dep) {
erts_smp_de_links_lock(dep);
rmon = erts_remove_monitor(&(dep->monitors), mon->ref);
erts_smp_de_links_unlock(dep);
if (rmon) {
ErtsDSigData dsd;
int code = erts_dsig_prepare(&dsd, dep, NULL,
ERTS_DSP_NO_LOCK, 0);
if (code == ERTS_DSIG_PREP_CONNECTED) {
code = erts_dsig_send_demonitor(&dsd,
rmon->pid,
mon->pid,
mon->ref,
1);
ASSERT(code == ERTS_DSIG_SEND_OK);
}
erts_destroy_monitor(rmon);
}
}
}
}
} else { /* type == MON_TARGET */
ASSERT(mon->type == MON_TARGET);
ASSERT(is_pid(mon->pid) || is_internal_port(mon->pid));
if (is_internal_port(mon->pid)) {
Port *prt = erts_id2port(mon->pid, NULL, 0);
if (prt == NULL) {
goto done;
}
erts_fire_port_monitor(prt, mon->ref);
erts_port_release(prt);
} else if (is_internal_pid(mon->pid)) {/* local by name or pid */
Eterm watched;
DeclareTmpHeapNoproc(lhp,3);
ErtsProcLocks rp_locks = (ERTS_PROC_LOCK_LINK
| ERTS_PROC_LOCKS_MSG_SEND);
UseTmpHeapNoproc(3);
rp = erts_pid2proc(NULL, 0, mon->pid, rp_locks);
if (rp == NULL) {
goto done;
}
rmon = erts_remove_monitor(&(rp->monitors),mon->ref);
if (rmon) {
erts_destroy_monitor(rmon);
watched = (is_atom(mon->name)
? TUPLE2(lhp, mon->name,
erts_this_dist_entry->sysname)
: pcontext->p->id);
erts_queue_monitor_message(rp, &rp_locks, mon->ref, am_process,
watched, pcontext->reason);
}
UnUseTmpHeapNoproc(3);
/* else: demonitor while we exited, i.e. do nothing... */
erts_smp_proc_unlock(rp, rp_locks);
} else { /* external by pid or name */
ASSERT(is_external_pid(mon->pid));
dep = external_pid_dist_entry(mon->pid);
ASSERT(dep != NULL);
if (dep) {
erts_smp_de_links_lock(dep);
rmon = erts_remove_monitor(&(dep->monitors), mon->ref);
erts_smp_de_links_unlock(dep);
if (rmon) {
ErtsDSigData dsd;
int code = erts_dsig_prepare(&dsd, dep, NULL,
ERTS_DSP_NO_LOCK, 0);
if (code == ERTS_DSIG_PREP_CONNECTED) {
code = erts_dsig_send_m_exit(&dsd,
mon->pid,
(rmon->name != NIL
? rmon->name
: rmon->pid),
mon->ref,
pcontext->reason);
ASSERT(code == ERTS_DSIG_SEND_OK);
}
erts_destroy_monitor(rmon);
}
}
}
}
done:
/* As the monitors are previously removed from the process,
distribution operations will not cause monitors to disappear,
we can safely delete it. */
erts_destroy_monitor(mon);
}
typedef struct {
Process *p;
Eterm reason;
Eterm exit_tuple;
Uint exit_tuple_sz;
} ExitLinkContext;
static void doit_exit_link(ErtsLink *lnk, void *vpcontext)
{
ExitLinkContext *pcontext = vpcontext;
/* Unpack context, it's readonly */
Process *p = pcontext->p;
Eterm reason = pcontext->reason;
Eterm exit_tuple = pcontext->exit_tuple;
Uint exit_tuple_sz = pcontext->exit_tuple_sz;
Eterm item = lnk->pid;
ErtsLink *rlnk;
DistEntry *dep;
Process *rp;
switch(lnk->type) {
case LINK_PID:
if(is_internal_port(item)) {
Port *prt = erts_id2port(item, NULL, 0);
if (prt) {
rlnk = erts_remove_link(&prt->nlinks, p->id);
if (rlnk)
erts_destroy_link(rlnk);
erts_do_exit_port(prt, p->id, reason);
erts_port_release(prt);
}
}
else if(is_external_port(item)) {
erts_dsprintf_buf_t *dsbufp = erts_create_logger_dsbuf();
erts_dsprintf(dsbufp,
"Erroneous link between %T and external port %T "
"found\n",
p->id,
item);
erts_send_error_to_logger_nogl(dsbufp);
ASSERT(0); /* It isn't possible to setup such a link... */
}
else if (is_internal_pid(item)) {
ErtsProcLocks rp_locks = (ERTS_PROC_LOCK_LINK
| ERTS_PROC_LOCKS_XSIG_SEND);
rp = erts_pid2proc(NULL, 0, item, rp_locks);
if (rp) {
rlnk = erts_remove_link(&(rp->nlinks), p->id);
/* If rlnk == NULL, we got unlinked while exiting,
i.e., do nothing... */
if (rlnk) {
int xres;
erts_destroy_link(rlnk);
xres = send_exit_signal(NULL,
p->id,
rp,
&rp_locks,
reason,
exit_tuple,
exit_tuple_sz,
SEQ_TRACE_TOKEN(p),
p,
ERTS_XSIG_FLG_IGN_KILL);
if (xres >= 0 && IS_TRACED_FL(rp, F_TRACE_PROCS)) {
/* We didn't exit the process and it is traced */
if (IS_TRACED_FL(rp, F_TRACE_PROCS)) {
trace_proc(p, rp, am_getting_unlinked, p->id);
}
}
}
ASSERT(rp != p);
erts_smp_proc_unlock(rp, rp_locks);
}
}
else if (is_external_pid(item)) {
dep = external_pid_dist_entry(item);
if(dep != erts_this_dist_entry) {
ErtsDSigData dsd;
int code;
ErtsDistLinkData dld;
erts_remove_dist_link(&dld, p->id, item, dep);
erts_smp_proc_lock(p, ERTS_PROC_LOCK_MAIN);
code = erts_dsig_prepare(&dsd, dep, p, ERTS_DSP_NO_LOCK, 0);
if (code == ERTS_DSIG_PREP_CONNECTED) {
code = erts_dsig_send_exit_tt(&dsd, p->id, item, reason,
SEQ_TRACE_TOKEN(p));
ASSERT(code == ERTS_DSIG_SEND_OK);
}
erts_smp_proc_unlock(p, ERTS_PROC_LOCK_MAIN);
erts_destroy_dist_link(&dld);
}
}
break;
case LINK_NODE:
ASSERT(is_node_name_atom(item));
dep = erts_sysname_to_connected_dist_entry(item);
if(dep) {
/* dist entries have node links in a separate structure to
avoid confusion */
erts_smp_de_links_lock(dep);
rlnk = erts_remove_link(&(dep->node_links), p->id);
erts_smp_de_links_unlock(dep);
if (rlnk)
erts_destroy_link(rlnk);
erts_deref_dist_entry(dep);
} else {
#ifndef ERTS_SMP
/* XXX Is this possible? Shouldn't this link
previously have been removed if the node
had previously been disconnected. */
ASSERT(0);
#endif
/* This is possible when smp support has been enabled,
and dist port and process exits simultaneously. */
}
break;
default:
erl_exit(1, "bad type in link list\n");
break;
}
erts_destroy_link(lnk);
}
static void
resume_suspend_monitor(ErtsSuspendMonitor *smon, void *vc_p)
{
Process *suspendee = erts_pid2proc((Process *) vc_p, ERTS_PROC_LOCK_MAIN,
smon->pid, ERTS_PROC_LOCK_STATUS);
if (suspendee) {
if (smon->active)
resume_process(suspendee);
erts_smp_proc_unlock(suspendee, ERTS_PROC_LOCK_STATUS);
}
erts_destroy_suspend_monitor(smon);
}
static void
continue_exit_process(Process *p
#ifdef ERTS_SMP
, erts_pix_lock_t *pix_lock
#endif
);
/* this function fishishes a process and propagates exit messages - called
by process_main when a process dies */
void
erts_do_exit_process(Process* p, Eterm reason)
{
#ifdef ERTS_SMP
erts_pix_lock_t *pix_lock = ERTS_PID2PIXLOCK(p->id);
#endif
p->arity = 0; /* No live registers */
p->fvalue = reason;
#ifdef ERTS_SMP
ERTS_SMP_CHK_HAVE_ONLY_MAIN_PROC_LOCK(p);
/* By locking all locks (main lock is already locked) when going
to status P_EXITING, it is enough to take any lock when
looking up a process (erts_pid2proc()) to prevent the looked up
process from exiting until the lock has been released. */
erts_smp_proc_lock(p, ERTS_PROC_LOCKS_ALL_MINOR);
#endif
if (erts_system_profile_flags.runnable_procs && (p->status != P_WAITING)) {
profile_runnable_proc(p, am_inactive);
}
#ifdef ERTS_SMP
erts_pix_lock(pix_lock);
p->is_exiting = 1;
#endif
p->status = P_EXITING;
#ifdef ERTS_SMP
erts_pix_unlock(pix_lock);
if (ERTS_PROC_PENDING_EXIT(p)) {
/* Process exited before pending exit was received... */
p->pending_exit.reason = THE_NON_VALUE;
if (p->pending_exit.bp) {
free_message_buffer(p->pending_exit.bp);
p->pending_exit.bp = NULL;
}
}
cancel_suspend_of_suspendee(p, ERTS_PROC_LOCKS_ALL);
ERTS_SMP_MSGQ_MV_INQ2PRIVQ(p);
#endif
if (IS_TRACED(p)) {
if (IS_TRACED_FL(p, F_TRACE_CALLS))
erts_schedule_time_break(p, ERTS_BP_CALL_TIME_SCHEDULE_EXITING);
if (IS_TRACED_FL(p,F_TRACE_PROCS))
trace_proc(p, p, am_exit, reason);
}
erts_trace_check_exiting(p->id);
ASSERT((p->trace_flags & F_INITIAL_TRACE_FLAGS) == F_INITIAL_TRACE_FLAGS);
cancel_timer(p); /* Always cancel timer just in case */
/*
* The timer of this process can *not* be used anymore. The field used
* for the timer is now used for misc exiting data.
*/
p->u.exit_data = NULL;
if (p->bif_timers)
erts_cancel_bif_timers(p, ERTS_PROC_LOCKS_ALL);
erts_smp_proc_unlock(p, ERTS_PROC_LOCKS_ALL_MINOR);
#ifdef ERTS_SMP
continue_exit_process(p, pix_lock);
#else
continue_exit_process(p);
#endif
}
void
erts_continue_exit_process(Process *c_p)
{
#ifdef ERTS_SMP
continue_exit_process(c_p, ERTS_PID2PIXLOCK(c_p->id));
#else
continue_exit_process(c_p);
#endif
}
static void
continue_exit_process(Process *p
#ifdef ERTS_SMP
, erts_pix_lock_t *pix_lock
#endif
)
{
ErtsLink* lnk;
ErtsMonitor *mon;
ErtsProcLocks curr_locks = ERTS_PROC_LOCK_MAIN;
Eterm reason = p->fvalue;
DistEntry *dep;
struct saved_calls *scb;
process_breakpoint_time_t *pbt;
#ifdef DEBUG
int yield_allowed = 1;
#endif
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_MAIN == erts_proc_lc_my_proc_locks(p));
#ifdef DEBUG
erts_smp_proc_lock(p, ERTS_PROC_LOCK_STATUS);
ASSERT(p->status == P_EXITING);
erts_smp_proc_unlock(p, ERTS_PROC_LOCK_STATUS);
#endif
#ifdef ERTS_SMP
if (p->flags & F_HAVE_BLCKD_MSCHED) {
ErtsSchedSuspendResult ssr;
ssr = erts_block_multi_scheduling(p, ERTS_PROC_LOCK_MAIN, 0, 1);
switch (ssr) {
case ERTS_SCHDLR_SSPND_YIELD_RESTART:
goto yield;
case ERTS_SCHDLR_SSPND_DONE_MSCHED_BLOCKED:
case ERTS_SCHDLR_SSPND_YIELD_DONE_MSCHED_BLOCKED:
case ERTS_SCHDLR_SSPND_DONE:
case ERTS_SCHDLR_SSPND_YIELD_DONE:
p->flags &= ~F_HAVE_BLCKD_MSCHED;
break;
case ERTS_SCHDLR_SSPND_EINVAL:
default:
erl_exit(ERTS_ABORT_EXIT, "%s:%d: Internal error: %d\n",
__FILE__, __LINE__, (int) ssr);
}
}
#endif
if (p->flags & F_USING_DB) {
if (erts_db_process_exiting(p, ERTS_PROC_LOCK_MAIN))
goto yield;
p->flags &= ~F_USING_DB;
}
if (p->flags & F_USING_DDLL) {
erts_ddll_proc_dead(p, ERTS_PROC_LOCK_MAIN);
p->flags &= ~F_USING_DDLL;
}
if (p->nodes_monitors) {
erts_delete_nodes_monitors(p, ERTS_PROC_LOCK_MAIN);
p->nodes_monitors = NULL;
}
if (p->suspend_monitors) {
erts_sweep_suspend_monitors(p->suspend_monitors,
resume_suspend_monitor,
p);
p->suspend_monitors = NULL;
}
/*
* The registered name *should* be the last "erlang resource" to
* cleanup.
*/
if (p->reg) {
(void) erts_unregister_name(p, ERTS_PROC_LOCK_MAIN, NULL, THE_NON_VALUE);
ASSERT(!p->reg);
}
erts_smp_proc_lock(p, ERTS_PROC_LOCKS_ALL_MINOR);
curr_locks = ERTS_PROC_LOCKS_ALL;
/*
* From this point on we are no longer allowed to yield
* this process.
*/
#ifdef DEBUG
yield_allowed = 0;
#endif
{
int pix;
/* Do *not* use erts_get_runq_proc() */
ErtsRunQueue *rq;
rq = erts_get_runq_current(ERTS_GET_SCHEDULER_DATA_FROM_PROC(p));
ASSERT(internal_pid_index(p->id) < erts_max_processes);
pix = internal_pid_index(p->id);
erts_smp_mtx_lock(&proc_tab_mtx);
erts_smp_runq_lock(rq);
#ifdef ERTS_SMP
erts_pix_lock(pix_lock);
ASSERT(p->scheduler_data);
ASSERT(p->scheduler_data->current_process == p);
ASSERT(p->scheduler_data->free_process == NULL);
p->scheduler_data->current_process = NULL;
p->scheduler_data->free_process = p;
p->status_flags = 0;
#endif
process_tab[pix] = NULL; /* Time of death! */
ASSERT(erts_smp_atomic_read(&process_count) > 0);
erts_smp_atomic_dec(&process_count);
#ifdef ERTS_SMP
erts_pix_unlock(pix_lock);
#endif
erts_smp_runq_unlock(rq);
if (p_next < 0) {
if (p_last >= p_next) {
p_serial++;
p_serial &= p_serial_mask;
}
p_next = pix;
}
ERTS_MAYBE_SAVE_TERMINATING_PROCESS(p);
erts_smp_mtx_unlock(&proc_tab_mtx);
}
/*
* All "erlang resources" have to be deallocated before this point,
* e.g. registered name, so monitoring and linked processes can
* be sure that all interesting resources have been deallocated
* when the monitors and/or links hit.
*/
mon = p->monitors;
p->monitors = NULL; /* to avoid recursive deletion during traversal */
lnk = p->nlinks;
p->nlinks = NULL;
p->status = P_FREE;
dep = ((p->flags & F_DISTRIBUTION)
? ERTS_PROC_SET_DIST_ENTRY(p, ERTS_PROC_LOCKS_ALL, NULL)
: NULL);
scb = ERTS_PROC_SET_SAVED_CALLS_BUF(p, ERTS_PROC_LOCKS_ALL, NULL);
pbt = ERTS_PROC_SET_CALL_TIME(p, ERTS_PROC_LOCKS_ALL, NULL);
erts_smp_proc_unlock(p, ERTS_PROC_LOCKS_ALL);
processes_busy--;
if (dep) {
erts_do_net_exits(dep, reason);
if(dep)
erts_deref_dist_entry(dep);
}
/*
* Pre-build the EXIT tuple if there are any links.
*/
if (lnk) {
DeclareTmpHeap(tmp_heap,4,p);
Eterm exit_tuple;
Uint exit_tuple_sz;
Eterm* hp;
UseTmpHeap(4,p);
hp = &tmp_heap[0];
exit_tuple = TUPLE3(hp, am_EXIT, p->id, reason);
exit_tuple_sz = size_object(exit_tuple);
{
ExitLinkContext context = {p, reason, exit_tuple, exit_tuple_sz};
erts_sweep_links(lnk, &doit_exit_link, &context);
}
UnUseTmpHeap(4,p);
}
{
ExitMonitorContext context = {reason, p};
erts_sweep_monitors(mon,&doit_exit_monitor,&context); /* Allocates TmpHeap, but we
have none here */
}
if (scb)
erts_free(ERTS_ALC_T_CALLS_BUF, (void *) scb);
if (pbt)
erts_free(ERTS_ALC_T_BPD, (void *) pbt);
delete_process(p);
erts_smp_proc_lock(p, ERTS_PROC_LOCK_MAIN);
ERTS_SMP_CHK_HAVE_ONLY_MAIN_PROC_LOCK(p);
return;
yield:
#ifdef DEBUG
ASSERT(yield_allowed);
#endif
ERTS_SMP_LC_ASSERT(curr_locks == erts_proc_lc_my_proc_locks(p));
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_MAIN & curr_locks);
ASSERT(p->status == P_EXITING);
p->i = (BeamInstr *) beam_continue_exit;
if (!(curr_locks & ERTS_PROC_LOCK_STATUS)) {
erts_smp_proc_lock(p, ERTS_PROC_LOCK_STATUS);
curr_locks |= ERTS_PROC_LOCK_STATUS;
}
erts_add_to_runq(p);
if (curr_locks != ERTS_PROC_LOCK_MAIN)
erts_smp_proc_unlock(p, ~ERTS_PROC_LOCK_MAIN & curr_locks);
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_MAIN == erts_proc_lc_my_proc_locks(p));
}
/* Callback for process timeout */
static void
timeout_proc(Process* p)
{
p->i = *((BeamInstr **) (UWord) p->def_arg_reg);
p->flags |= F_TIMO;
p->flags &= ~F_INSLPQUEUE;
if (p->status == P_WAITING)
erts_add_to_runq(p);
if (p->status == P_SUSPENDED)
p->rstatus = P_RUNABLE; /* MUST set resume status to runnable */
}
void
cancel_timer(Process* p)
{
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_MAIN & erts_proc_lc_my_proc_locks(p));
p->flags &= ~(F_INSLPQUEUE|F_TIMO);
#ifdef ERTS_SMP
erts_cancel_smp_ptimer(p->u.ptimer);
#else
erl_cancel_timer(&p->u.tm);
#endif
}
/*
* Insert a process into the time queue, with a timeout 'timeout' in ms.
*/
void
set_timer(Process* p, Uint timeout)
{
ERTS_SMP_LC_ASSERT(ERTS_PROC_LOCK_MAIN & erts_proc_lc_my_proc_locks(p));
/* check for special case timeout=0 DONT ADD TO time queue */
if (timeout == 0) {
p->flags |= F_TIMO;
return;
}
p->flags |= F_INSLPQUEUE;
p->flags &= ~F_TIMO;
#ifdef ERTS_SMP
erts_create_smp_ptimer(&p->u.ptimer,
p->id,
(ErlTimeoutProc) timeout_proc,
timeout);
#else
erl_set_timer(&p->u.tm,
(ErlTimeoutProc) timeout_proc,
NULL,
(void*) p,
timeout);
#endif
}
/*
* Stack dump functions follow.
*/
void
erts_stack_dump(int to, void *to_arg, Process *p)
{
Eterm* sp;
int yreg = -1;
if (p->trace_flags & F_SENSITIVE) {
return;
}
erts_program_counter_info(to, to_arg, p);
for (sp = p->stop; sp < STACK_START(p); sp++) {
yreg = stack_element_dump(to, to_arg, p, sp, yreg);
}
}
void
erts_program_counter_info(int to, void *to_arg, Process *p)
{
int i;
erts_print(to, to_arg, "Program counter: %p (", p->i);
print_function_from_pc(to, to_arg, p->i);
erts_print(to, to_arg, ")\n");
erts_print(to, to_arg, "CP: %p (", p->cp);
print_function_from_pc(to, to_arg, p->cp);
erts_print(to, to_arg, ")\n");
if (!((p->status == P_RUNNING) || (p->status == P_GARBING))) {
erts_print(to, to_arg, "arity = %d\n",p->arity);
if (!ERTS_IS_CRASH_DUMPING) {
/*
* Only print the arguments if we are not writing a
* crash dump file. The arguments cannot be interpreted
* by the crashdump_viewer application and will therefore
* only cause problems.
*/
for (i = 0; i < p->arity; i++)
erts_print(to, to_arg, " %T\n", p->arg_reg[i]);
}
}
}
static void
print_function_from_pc(int to, void *to_arg, BeamInstr* x)
{
BeamInstr* addr = find_function_from_pc(x);
if (addr == NULL) {
if (x == beam_exit) {
erts_print(to, to_arg, "<terminate process>");
} else if (x == beam_continue_exit) {
erts_print(to, to_arg, "<continue terminate process>");
} else if (x == beam_apply+1) {
erts_print(to, to_arg, "<terminate process normally>");
} else if (x == 0) {
erts_print(to, to_arg, "invalid");
} else {
erts_print(to, to_arg, "unknown function");
}
} else {
erts_print(to, to_arg, "%T:%T/%d + %d",
addr[0], addr[1], addr[2], ((x-addr)-2) * sizeof(Eterm));
}
}
static int
stack_element_dump(int to, void *to_arg, Process* p, Eterm* sp, int yreg)
{
Eterm x = *sp;
if (yreg < 0 || is_CP(x)) {
erts_print(to, to_arg, "\n%p ", sp);
} else {
char sbuf[16];
sprintf(sbuf, "y(%d)", yreg);
erts_print(to, to_arg, "%-8s ", sbuf);
yreg++;
}
if (is_CP(x)) {
erts_print(to, to_arg, "Return addr %p (", (Eterm *) EXPAND_POINTER(x));
print_function_from_pc(to, to_arg, cp_val(x));
erts_print(to, to_arg, ")\n");
yreg = 0;
} else if is_catch(x) {
erts_print(to, to_arg, "Catch %p (", catch_pc(x));
print_function_from_pc(to, to_arg, catch_pc(x));
erts_print(to, to_arg, ")\n");
} else {
erts_print(to, to_arg, "%T\n", x);
}
return yreg;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* The processes/0 BIF implementation. *
\* */
#define ERTS_PROCESSES_BIF_TAB_INSPECT_INDICES_PER_RED 25
#define ERTS_PROCESSES_BIF_TAB_CHUNK_SIZE 1000
#define ERTS_PROCESSES_BIF_MIN_START_REDS \
(ERTS_PROCESSES_BIF_TAB_CHUNK_SIZE \
/ ERTS_PROCESSES_BIF_TAB_INSPECT_INDICES_PER_RED)
#define ERTS_PROCESSES_BIF_TAB_FREE_TERM_PROC_REDS 1
#define ERTS_PROCESSES_BIF_INSPECT_TERM_PROC_PER_RED 10
#define ERTS_PROCESSES_INSPECT_TERM_PROC_MAX_REDS \
(ERTS_PROCESSES_BIF_TAB_CHUNK_SIZE \
/ ERTS_PROCESSES_BIF_TAB_INSPECT_INDICES_PER_RED)
#define ERTS_PROCESSES_BIF_BUILD_RESULT_CONSES_PER_RED 75
#define ERTS_PROCS_DBG_DO_TRACE 0
#ifdef DEBUG
# define ERTS_PROCESSES_BIF_DEBUGLEVEL 100
#else
# define ERTS_PROCESSES_BIF_DEBUGLEVEL 0
#endif
#define ERTS_PROCS_DBGLVL_CHK_HALLOC 1
#define ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS 5
#define ERTS_PROCS_DBGLVL_CHK_PIDS 10
#define ERTS_PROCS_DBGLVL_CHK_TERM_PROC_LIST 20
#define ERTS_PROCS_DBGLVL_CHK_RESLIST 20
#if ERTS_PROCESSES_BIF_DEBUGLEVEL == 0
# define ERTS_PROCS_ASSERT(EXP)
#else
# define ERTS_PROCS_ASSERT(EXP) \
((void) ((EXP) \
? 1 \
: (debug_processes_assert_error(#EXP, __FILE__, __LINE__), 0)))
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_HALLOC
# define ERTS_PROCS_DBG_SAVE_HEAP_ALLOC(PBDP, HP, SZ) \
do { \
ERTS_PROCS_ASSERT(!(PBDP)->debug.heap); \
ERTS_PROCS_ASSERT(!(PBDP)->debug.heap_size); \
(PBDP)->debug.heap = (HP); \
(PBDP)->debug.heap_size = (SZ); \
} while (0)
# define ERTS_PROCS_DBG_VERIFY_HEAP_ALLOC_USED(PBDP, HP) \
do { \
ERTS_PROCS_ASSERT((PBDP)->debug.heap); \
ERTS_PROCS_ASSERT((PBDP)->debug.heap_size); \
ERTS_PROCS_ASSERT((PBDP)->debug.heap + (PBDP)->debug.heap_size == (HP));\
(PBDP)->debug.heap = NULL; \
(PBDP)->debug.heap_size = 0; \
} while (0)
# define ERTS_PROCS_DBG_HEAP_ALLOC_INIT(PBDP) \
do { \
(PBDP)->debug.heap = NULL; \
(PBDP)->debug.heap_size = 0; \
} while (0)
#else
# define ERTS_PROCS_DBG_SAVE_HEAP_ALLOC(PBDP, HP, SZ)
# define ERTS_PROCS_DBG_VERIFY_HEAP_ALLOC_USED(PBDP, HP)
# define ERTS_PROCS_DBG_HEAP_ALLOC_INIT(PBDP)
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_RESLIST
# define ERTS_PROCS_DBG_CHK_RESLIST(R) debug_processes_check_res_list((R))
#else
# define ERTS_PROCS_DBG_CHK_RESLIST(R)
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_PIDS
# define ERTS_PROCS_DBG_SAVE_PIDS(PBDP) debug_processes_save_all_pids((PBDP))
# define ERTS_PROCS_DBG_VERIFY_PIDS(PBDP) \
do { \
if (!(PBDP)->debug.correct_pids_verified) \
debug_processes_verify_all_pids((PBDP)); \
} while (0)
# define ERTS_PROCS_DBG_CLEANUP_CHK_PIDS(PBDP) \
do { \
if ((PBDP)->debug.correct_pids) { \
erts_free(ERTS_ALC_T_PROCS_PIDS, \
(PBDP)->debug.correct_pids); \
(PBDP)->debug.correct_pids = NULL; \
} \
} while(0)
# define ERTS_PROCS_DBG_CHK_PIDS_INIT(PBDP) \
do { \
(PBDP)->debug.correct_pids_verified = 0; \
(PBDP)->debug.correct_pids = NULL; \
} while (0)
#else
# define ERTS_PROCS_DBG_SAVE_PIDS(PBDP)
# define ERTS_PROCS_DBG_VERIFY_PIDS(PBDP)
# define ERTS_PROCS_DBG_CLEANUP_CHK_PIDS(PBDP)
# define ERTS_PROCS_DBG_CHK_PIDS_INIT(PBDP)
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS
# define ERTS_PROCS_DBG_CHK_PID_FOUND(PBDP, PID, TVP) \
debug_processes_check_found_pid((PBDP), (PID), (TVP), 1)
# define ERTS_PROCS_DBG_CHK_PID_NOT_FOUND(PBDP, PID, TVP) \
debug_processes_check_found_pid((PBDP), (PID), (TVP), 0)
#else
# define ERTS_PROCS_DBG_CHK_PID_FOUND(PBDP, PID, TVP)
# define ERTS_PROCS_DBG_CHK_PID_NOT_FOUND(PBDP, PID, TVP)
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_TERM_PROC_LIST
# define ERTS_PROCS_DBG_CHK_TPLIST() \
debug_processes_check_term_proc_list()
# define ERTS_PROCS_DBG_CHK_FREELIST(FL) \
debug_processes_check_term_proc_free_list(FL)
#else
# define ERTS_PROCS_DBG_CHK_TPLIST()
# define ERTS_PROCS_DBG_CHK_FREELIST(FL)
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL == 0
#if ERTS_PROCS_DBG_DO_TRACE
# define ERTS_PROCS_DBG_INIT(P, PBDP) (PBDP)->debug.caller = (P)->id
# else
# define ERTS_PROCS_DBG_INIT(P, PBDP)
# endif
# define ERTS_PROCS_DBG_CLEANUP(PBDP)
#else
# define ERTS_PROCS_DBG_INIT(P, PBDP) \
do { \
(PBDP)->debug.caller = (P)->id; \
ERTS_PROCS_DBG_HEAP_ALLOC_INIT((PBDP)); \
ERTS_PROCS_DBG_CHK_PIDS_INIT((PBDP)); \
} while (0)
# define ERTS_PROCS_DBG_CLEANUP(PBDP) \
do { \
ERTS_PROCS_DBG_CLEANUP_CHK_PIDS((PBDP)); \
} while (0)
#endif
#if ERTS_PROCS_DBG_DO_TRACE
# define ERTS_PROCS_DBG_TRACE(PID, FUNC, WHAT) \
erts_fprintf(stderr, "%T %s:%d:%s(): %s\n", \
(PID), __FILE__, __LINE__, #FUNC, #WHAT)
#else
# define ERTS_PROCS_DBG_TRACE(PID, FUNC, WHAT)
#endif
static Uint processes_bif_tab_chunks;
static Export processes_trap_export;
typedef struct {
SysTimeval time;
} ErtsProcessesBifChunkInfo;
typedef enum {
INITIALIZING,
INSPECTING_TABLE,
INSPECTING_TERMINATED_PROCESSES,
BUILDING_RESULT,
RETURN_RESULT
} ErtsProcessesBifState;
typedef struct {
ErtsProcessesBifState state;
Eterm caller;
ErtsProcessesBifChunkInfo *chunk;
int tix;
int pid_ix;
int pid_sz;
Eterm *pid;
ErtsTermProcElement *bif_invocation; /* Only used when > 1 chunk */
#if ERTS_PROCESSES_BIF_DEBUGLEVEL != 0 || ERTS_PROCS_DBG_DO_TRACE
struct {
Eterm caller;
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS
SysTimeval *pid_started;
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_HALLOC
Eterm *heap;
Uint heap_size;
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_PIDS
int correct_pids_verified;
Eterm *correct_pids;
#endif
} debug;
#endif
} ErtsProcessesBifData;
#if ERTS_PROCESSES_BIF_DEBUGLEVEL != 0
static void debug_processes_assert_error(char* expr, char* file, int line);
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_RESLIST
static void debug_processes_check_res_list(Eterm list);
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_PIDS
static void debug_processes_save_all_pids(ErtsProcessesBifData *pbdp);
static void debug_processes_verify_all_pids(ErtsProcessesBifData *pbdp);
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS
static void debug_processes_check_found_pid(ErtsProcessesBifData *pbdp,
Eterm pid,
SysTimeval *started,
int pid_should_be_found);
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_TERM_PROC_LIST
static SysTimeval debug_tv_start;
static void debug_processes_check_term_proc_list(void);
static void debug_processes_check_term_proc_free_list(ErtsTermProcElement *tpep);
#endif
static void
save_terminating_process(Process *p)
{
ErtsTermProcElement *tpep = erts_alloc(ERTS_ALC_T_PROCS_TPROC_EL,
sizeof(ErtsTermProcElement));
ERTS_PROCS_ASSERT(saved_term_procs.start && saved_term_procs.end);
ERTS_SMP_LC_ASSERT(erts_lc_mtx_is_locked(&proc_tab_mtx));
ERTS_PROCS_DBG_CHK_TPLIST();
tpep->prev = saved_term_procs.end;
tpep->next = NULL;
tpep->ix = internal_pid_index(p->id);
tpep->u.process.pid = p->id;
tpep->u.process.spawned = p->started;
erts_get_emu_time(&tpep->u.process.exited);
saved_term_procs.end->next = tpep;
saved_term_procs.end = tpep;
ERTS_PROCS_DBG_CHK_TPLIST();
ERTS_PROCS_ASSERT((tpep->prev->ix >= 0
? erts_cmp_timeval(&tpep->u.process.exited,
&tpep->prev->u.process.exited)
: erts_cmp_timeval(&tpep->u.process.exited,
&tpep->prev->u.bif_invocation.time)) > 0);
}
static void
cleanup_processes_bif_data(Binary *bp)
{
ErtsProcessesBifData *pbdp = ERTS_MAGIC_BIN_DATA(bp);
ERTS_PROCS_DBG_TRACE(pbdp->debug.caller, cleanup_processes_bif_data, call);
if (pbdp->state != INITIALIZING) {
if (pbdp->chunk) {
erts_free(ERTS_ALC_T_PROCS_CNKINF, pbdp->chunk);
pbdp->chunk = NULL;
}
if (pbdp->pid) {
erts_free(ERTS_ALC_T_PROCS_PIDS, pbdp->pid);
pbdp->pid = NULL;
}
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS
if (pbdp->debug.pid_started) {
erts_free(ERTS_ALC_T_PROCS_PIDS, pbdp->debug.pid_started);
pbdp->debug.pid_started = NULL;
}
#endif
if (pbdp->bif_invocation) {
ErtsTermProcElement *tpep;
erts_smp_mtx_lock(&proc_tab_mtx);
ERTS_PROCS_DBG_TRACE(pbdp->debug.caller,
cleanup_processes_bif_data,
term_proc_cleanup);
tpep = pbdp->bif_invocation;
pbdp->bif_invocation = NULL;
ERTS_PROCS_DBG_CHK_TPLIST();
if (tpep->prev) {
/*
* Only remove this bif invokation when we
* have preceding invokations.
*/
tpep->prev->next = tpep->next;
if (tpep->next)
tpep->next->prev = tpep->prev;
else {
/*
* At the time of writing this branch cannot be
* reached. I don't want to remove this code though
* since it may be possible to reach this line
* in the future if the cleanup order in
* erts_do_exit_process() is changed. The ASSERT(0)
* is only here to make us aware that the reorder
* has happened. /rickard
*/
ASSERT(0);
saved_term_procs.end = tpep->prev;
}
erts_free(ERTS_ALC_T_PROCS_TPROC_EL, tpep);
}
else {
/*
* Free all elements until next bif invokation
* is found.
*/
ERTS_PROCS_ASSERT(saved_term_procs.start == tpep);
do {
ErtsTermProcElement *ftpep = tpep;
tpep = tpep->next;
erts_free(ERTS_ALC_T_PROCS_TPROC_EL, ftpep);
} while (tpep && tpep->ix >= 0);
saved_term_procs.start = tpep;
if (tpep)
tpep->prev = NULL;
else
saved_term_procs.end = NULL;
}
ERTS_PROCS_DBG_CHK_TPLIST();
erts_smp_mtx_unlock(&proc_tab_mtx);
}
}
ERTS_PROCS_DBG_TRACE(pbdp->debug.caller,
cleanup_processes_bif_data,
return);
ERTS_PROCS_DBG_CLEANUP(pbdp);
}
static int
processes_bif_engine(Process *p, Eterm *res_accp, Binary *mbp)
{
ErtsProcessesBifData *pbdp = ERTS_MAGIC_BIN_DATA(mbp);
int have_reds;
int reds;
int locked = 0;
do {
switch (pbdp->state) {
case INITIALIZING:
pbdp->chunk = erts_alloc(ERTS_ALC_T_PROCS_CNKINF,
(sizeof(ErtsProcessesBifChunkInfo)
* processes_bif_tab_chunks));
pbdp->tix = 0;
pbdp->pid_ix = 0;
erts_smp_mtx_lock(&proc_tab_mtx);
locked = 1;
ERTS_PROCS_DBG_TRACE(p->id, processes_bif_engine, init);
pbdp->pid_sz = erts_process_count();
pbdp->pid = erts_alloc(ERTS_ALC_T_PROCS_PIDS,
sizeof(Eterm)*pbdp->pid_sz);
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS
pbdp->debug.pid_started = erts_alloc(ERTS_ALC_T_PROCS_PIDS,
sizeof(SysTimeval)*pbdp->pid_sz);
#endif
ERTS_PROCS_DBG_SAVE_PIDS(pbdp);
if (processes_bif_tab_chunks == 1)
pbdp->bif_invocation = NULL;
else {
/*
* We will have to access the table multiple times
* releasing the table lock in between chunks.
*/
pbdp->bif_invocation = erts_alloc(ERTS_ALC_T_PROCS_TPROC_EL,
sizeof(ErtsTermProcElement));
pbdp->bif_invocation->ix = -1;
erts_get_emu_time(&pbdp->bif_invocation->u.bif_invocation.time);
ERTS_PROCS_DBG_CHK_TPLIST();
pbdp->bif_invocation->next = NULL;
if (saved_term_procs.end) {
pbdp->bif_invocation->prev = saved_term_procs.end;
saved_term_procs.end->next = pbdp->bif_invocation;
ERTS_PROCS_ASSERT(saved_term_procs.start);
}
else {
pbdp->bif_invocation->prev = NULL;
saved_term_procs.start = pbdp->bif_invocation;
}
saved_term_procs.end = pbdp->bif_invocation;
ERTS_PROCS_DBG_CHK_TPLIST();
}
pbdp->state = INSPECTING_TABLE;
/* Fall through */
case INSPECTING_TABLE: {
int ix = pbdp->tix;
int indices = ERTS_PROCESSES_BIF_TAB_CHUNK_SIZE;
int cix = ix / ERTS_PROCESSES_BIF_TAB_CHUNK_SIZE;
int end_ix = ix + indices;
SysTimeval *invocation_timep;
invocation_timep = (pbdp->bif_invocation
? &pbdp->bif_invocation->u.bif_invocation.time
: NULL);
ERTS_PROCS_ASSERT(is_nil(*res_accp));
if (!locked) {
erts_smp_mtx_lock(&proc_tab_mtx);
locked = 1;
}
ERTS_SMP_LC_ASSERT(erts_lc_mtx_is_locked(&proc_tab_mtx));
ERTS_PROCS_DBG_TRACE(p->id, processes_bif_engine, insp_table);
if (cix != 0)
erts_get_emu_time(&pbdp->chunk[cix].time);
else if (pbdp->bif_invocation)
pbdp->chunk[0].time = *invocation_timep;
/* else: Time is irrelevant */
if (end_ix >= erts_max_processes) {
ERTS_PROCS_ASSERT(cix+1 == processes_bif_tab_chunks);
end_ix = erts_max_processes;
indices = end_ix - ix;
/* What to do when done with this chunk */
pbdp->state = (processes_bif_tab_chunks == 1
? BUILDING_RESULT
: INSPECTING_TERMINATED_PROCESSES);
}
for (; ix < end_ix; ix++) {
Process *rp = process_tab[ix];
if (rp
&& (!invocation_timep
|| erts_cmp_timeval(&rp->started,
invocation_timep) < 0)) {
ERTS_PROCS_ASSERT(is_internal_pid(rp->id));
pbdp->pid[pbdp->pid_ix] = rp->id;
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS
pbdp->debug.pid_started[pbdp->pid_ix] = rp->started;
#endif
pbdp->pid_ix++;
ERTS_PROCS_ASSERT(pbdp->pid_ix <= pbdp->pid_sz);
}
}
pbdp->tix = end_ix;
erts_smp_mtx_unlock(&proc_tab_mtx);
locked = 0;
reds = indices/ERTS_PROCESSES_BIF_TAB_INSPECT_INDICES_PER_RED;
BUMP_REDS(p, reds);
have_reds = ERTS_BIF_REDS_LEFT(p);
if (have_reds && pbdp->state == INSPECTING_TABLE) {
ix = pbdp->tix;
indices = ERTS_PROCESSES_BIF_TAB_CHUNK_SIZE;
end_ix = ix + indices;
if (end_ix > erts_max_processes) {
end_ix = erts_max_processes;
indices = end_ix - ix;
}
reds = indices/ERTS_PROCESSES_BIF_TAB_INSPECT_INDICES_PER_RED;
/* Pretend we have no reds left if we haven't got enough
reductions to complete next chunk */
if (reds > have_reds)
have_reds = 0;
}
break;
}
case INSPECTING_TERMINATED_PROCESSES: {
int i;
int max_reds;
int free_term_procs = 0;
SysTimeval *invocation_timep;
ErtsTermProcElement *tpep;
ErtsTermProcElement *free_list = NULL;
tpep = pbdp->bif_invocation;
ERTS_PROCS_ASSERT(tpep);
invocation_timep = &tpep->u.bif_invocation.time;
max_reds = have_reds = ERTS_BIF_REDS_LEFT(p);
if (max_reds > ERTS_PROCESSES_INSPECT_TERM_PROC_MAX_REDS)
max_reds = ERTS_PROCESSES_INSPECT_TERM_PROC_MAX_REDS;
reds = 0;
erts_smp_mtx_lock(&proc_tab_mtx);
ERTS_PROCS_DBG_TRACE(p->id, processes_bif_engine, insp_term_procs);
ERTS_PROCS_DBG_CHK_TPLIST();
if (tpep->prev)
tpep->prev->next = tpep->next;
else {
ERTS_PROCS_ASSERT(saved_term_procs.start == tpep);
saved_term_procs.start = tpep->next;
if (saved_term_procs.start && saved_term_procs.start->ix >= 0) {
free_list = saved_term_procs.start;
free_term_procs = 1;
}
}
if (tpep->next)
tpep->next->prev = tpep->prev;
else
saved_term_procs.end = tpep->prev;
tpep = tpep->next;
i = 0;
while (reds < max_reds && tpep) {
if (tpep->ix < 0) {
if (free_term_procs) {
ERTS_PROCS_ASSERT(free_list);
ERTS_PROCS_ASSERT(tpep->prev);
tpep->prev->next = NULL; /* end of free_list */
saved_term_procs.start = tpep;
tpep->prev = NULL;
free_term_procs = 0;
}
}
else {
int cix = tpep->ix/ERTS_PROCESSES_BIF_TAB_CHUNK_SIZE;
SysTimeval *chunk_timep = &pbdp->chunk[cix].time;
Eterm pid = tpep->u.process.pid;
ERTS_PROCS_ASSERT(is_internal_pid(pid));
if (erts_cmp_timeval(&tpep->u.process.spawned,
invocation_timep) < 0) {
if (erts_cmp_timeval(&tpep->u.process.exited,
chunk_timep) < 0) {
ERTS_PROCS_DBG_CHK_PID_NOT_FOUND(pbdp,
pid,
&tpep->u.process.spawned);
pbdp->pid[pbdp->pid_ix] = pid;
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS
pbdp->debug.pid_started[pbdp->pid_ix] = tpep->u.process.spawned;
#endif
pbdp->pid_ix++;
ERTS_PROCS_ASSERT(pbdp->pid_ix <= pbdp->pid_sz);
}
else {
ERTS_PROCS_DBG_CHK_PID_FOUND(pbdp,
pid,
&tpep->u.process.spawned);
}
}
else {
ERTS_PROCS_DBG_CHK_PID_NOT_FOUND(pbdp,
pid,
&tpep->u.process.spawned);
}
i++;
if (i == ERTS_PROCESSES_BIF_INSPECT_TERM_PROC_PER_RED) {
reds++;
i = 0;
}
if (free_term_procs)
reds += ERTS_PROCESSES_BIF_TAB_FREE_TERM_PROC_REDS;
}
tpep = tpep->next;
}
if (free_term_procs) {
ERTS_PROCS_ASSERT(free_list);
saved_term_procs.start = tpep;
if (!tpep)
saved_term_procs.end = NULL;
else {
ERTS_PROCS_ASSERT(tpep->prev);
tpep->prev->next = NULL; /* end of free_list */
tpep->prev = NULL;
}
}
if (!tpep) {
/* Done */
ERTS_PROCS_ASSERT(pbdp->pid_ix == pbdp->pid_sz);
pbdp->state = BUILDING_RESULT;
pbdp->bif_invocation->next = free_list;
free_list = pbdp->bif_invocation;
pbdp->bif_invocation = NULL;
}
else {
/* Link in bif_invocation again where we left off */
pbdp->bif_invocation->prev = tpep->prev;
pbdp->bif_invocation->next = tpep;
tpep->prev = pbdp->bif_invocation;
if (pbdp->bif_invocation->prev)
pbdp->bif_invocation->prev->next = pbdp->bif_invocation;
else {
ERTS_PROCS_ASSERT(saved_term_procs.start == tpep);
saved_term_procs.start = pbdp->bif_invocation;
}
}
ERTS_PROCS_DBG_CHK_TPLIST();
ERTS_PROCS_DBG_CHK_FREELIST(free_list);
erts_smp_mtx_unlock(&proc_tab_mtx);
/*
* We do the actual free of term proc structures now when we
* have released the table lock instead of when we encountered
* them. This since free() isn't for free and we don't want to
* unnecessarily block other schedulers.
*/
while (free_list) {
tpep = free_list;
free_list = tpep->next;
erts_free(ERTS_ALC_T_PROCS_TPROC_EL, tpep);
}
have_reds -= reds;
if (have_reds < 0)
have_reds = 0;
BUMP_REDS(p, reds);
break;
}
case BUILDING_RESULT: {
int conses, ix, min_ix;
Eterm *hp;
Eterm res = *res_accp;
ERTS_PROCS_DBG_VERIFY_PIDS(pbdp);
ERTS_PROCS_DBG_CHK_RESLIST(res);
ERTS_PROCS_DBG_TRACE(p->id, processes_bif_engine, begin_build_res);
have_reds = ERTS_BIF_REDS_LEFT(p);
conses = ERTS_PROCESSES_BIF_BUILD_RESULT_CONSES_PER_RED*have_reds;
min_ix = pbdp->pid_ix - conses;
if (min_ix < 0) {
min_ix = 0;
conses = pbdp->pid_ix;
}
hp = HAlloc(p, conses*2);
ERTS_PROCS_DBG_SAVE_HEAP_ALLOC(pbdp, hp, conses*2);
for (ix = pbdp->pid_ix - 1; ix >= min_ix; ix--) {
ERTS_PROCS_ASSERT(is_internal_pid(pbdp->pid[ix]));
res = CONS(hp, pbdp->pid[ix], res);
hp += 2;
}
ERTS_PROCS_DBG_VERIFY_HEAP_ALLOC_USED(pbdp, hp);
pbdp->pid_ix = min_ix;
if (min_ix == 0)
pbdp->state = RETURN_RESULT;
else {
pbdp->pid_sz = min_ix;
pbdp->pid = erts_realloc(ERTS_ALC_T_PROCS_PIDS,
pbdp->pid,
sizeof(Eterm)*pbdp->pid_sz);
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS
pbdp->debug.pid_started = erts_realloc(ERTS_ALC_T_PROCS_PIDS,
pbdp->debug.pid_started,
sizeof(SysTimeval)*pbdp->pid_sz);
#endif
}
reds = conses/ERTS_PROCESSES_BIF_BUILD_RESULT_CONSES_PER_RED;
BUMP_REDS(p, reds);
have_reds -= reds;
ERTS_PROCS_DBG_CHK_RESLIST(res);
ERTS_PROCS_DBG_TRACE(p->id, processes_bif_engine, end_build_res);
*res_accp = res;
break;
}
case RETURN_RESULT:
cleanup_processes_bif_data(mbp);
return 1;
default:
erl_exit(ERTS_ABORT_EXIT,
"erlang:processes/0: Invalid state: %d\n",
(int) pbdp->state);
}
} while (have_reds || pbdp->state == RETURN_RESULT);
return 0;
}
/*
* processes_trap/2 is a hidden BIF that processes/0 traps to.
*/
static BIF_RETTYPE processes_trap(BIF_ALIST_2)
{
Eterm res_acc;
Binary *mbp;
/*
* This bif cannot be called from erlang code. It can only be
* trapped to from processes/0; therefore, a bad argument
* is a processes/0 internal error.
*/
ERTS_PROCS_DBG_TRACE(BIF_P->id, processes_trap, call);
ERTS_PROCS_ASSERT(is_nil(BIF_ARG_1) || is_list(BIF_ARG_1));
res_acc = BIF_ARG_1;
ERTS_PROCS_ASSERT(ERTS_TERM_IS_MAGIC_BINARY(BIF_ARG_2));
mbp = ((ProcBin *) binary_val(BIF_ARG_2))->val;
ERTS_PROCS_ASSERT(ERTS_MAGIC_BIN_DESTRUCTOR(mbp)
== cleanup_processes_bif_data);
ERTS_PROCS_ASSERT(
((ErtsProcessesBifData *) ERTS_MAGIC_BIN_DATA(mbp))->debug.caller
== BIF_P->id);
if (processes_bif_engine(BIF_P, &res_acc, mbp)) {
ERTS_PROCS_DBG_TRACE(BIF_P->id, processes_trap, return);
BIF_RET(res_acc);
}
else {
ERTS_PROCS_DBG_TRACE(BIF_P->id, processes_trap, trap);
ERTS_BIF_YIELD2(&processes_trap_export, BIF_P, res_acc, BIF_ARG_2);
}
}
/*
* The actual processes/0 BIF.
*/
BIF_RETTYPE processes_0(BIF_ALIST_0)
{
/*
* A requirement: The list of pids returned should be a consistent
* snapshot of all processes existing at some point
* in time during the execution of processes/0. Since
* processes might terminate while processes/0 is
* executing, we have to keep track of terminated
* processes and add them to the result. We also
* ignore processes created after processes/0 has
* begun executing.
*/
Eterm res_acc = NIL;
Binary *mbp = erts_create_magic_binary(sizeof(ErtsProcessesBifData),
cleanup_processes_bif_data);
ErtsProcessesBifData *pbdp = ERTS_MAGIC_BIN_DATA(mbp);
ERTS_PROCS_DBG_TRACE(BIF_P->id, processes_0, call);
pbdp->state = INITIALIZING;
ERTS_PROCS_DBG_INIT(BIF_P, pbdp);
if (ERTS_BIF_REDS_LEFT(BIF_P) >= ERTS_PROCESSES_BIF_MIN_START_REDS
&& processes_bif_engine(BIF_P, &res_acc, mbp)) {
erts_bin_free(mbp);
ERTS_PROCS_DBG_CHK_RESLIST(res_acc);
ERTS_PROCS_DBG_TRACE(BIF_P->id, processes_0, return);
BIF_RET(res_acc);
}
else {
Eterm *hp;
Eterm magic_bin;
ERTS_PROCS_DBG_CHK_RESLIST(res_acc);
hp = HAlloc(BIF_P, PROC_BIN_SIZE);
ERTS_PROCS_DBG_SAVE_HEAP_ALLOC(pbdp, hp, PROC_BIN_SIZE);
magic_bin = erts_mk_magic_binary_term(&hp, &MSO(BIF_P), mbp);
ERTS_PROCS_DBG_VERIFY_HEAP_ALLOC_USED(pbdp, hp);
ERTS_PROCS_DBG_TRACE(BIF_P->id, processes_0, trap);
ERTS_BIF_YIELD2(&processes_trap_export, BIF_P, res_acc, magic_bin);
}
}
static void
init_processes_bif(void)
{
saved_term_procs.start = NULL;
saved_term_procs.end = NULL;
processes_bif_tab_chunks = (((erts_max_processes - 1)
/ ERTS_PROCESSES_BIF_TAB_CHUNK_SIZE)
+ 1);
/* processes_trap/2 is a hidden BIF that the processes/0 BIF traps to. */
sys_memset((void *) &processes_trap_export, 0, sizeof(Export));
processes_trap_export.address = &processes_trap_export.code[3];
processes_trap_export.code[0] = am_erlang;
processes_trap_export.code[1] = am_processes_trap;
processes_trap_export.code[2] = 2;
processes_trap_export.code[3] = (BeamInstr) em_apply_bif;
processes_trap_export.code[4] = (BeamInstr) &processes_trap;
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_TERM_PROC_LIST
erts_get_emu_time(&debug_tv_start);
#endif
}
/*
* Debug stuff
*/
Eterm
erts_debug_processes(Process *c_p)
{
/* This is the old processes/0 BIF. */
int i;
Uint need;
Eterm res;
Eterm* hp;
Process *p;
#ifdef DEBUG
Eterm *hp_end;
#endif
erts_smp_mtx_lock(&proc_tab_mtx);
res = NIL;
need = erts_process_count() * 2;
hp = HAlloc(c_p, need); /* we need two heap words for each pid */
#ifdef DEBUG
hp_end = hp + need;
#endif
/* make the list by scanning bakward */
for (i = erts_max_processes-1; i >= 0; i--) {
if ((p = process_tab[i]) != NULL) {
res = CONS(hp, process_tab[i]->id, res);
hp += 2;
}
}
ASSERT(hp == hp_end);
erts_smp_mtx_unlock(&proc_tab_mtx);
return res;
}
Eterm
erts_debug_processes_bif_info(Process *c_p)
{
ERTS_DECL_AM(processes_bif_info);
Eterm elements[] = {
AM_processes_bif_info,
make_small((Uint) ERTS_PROCESSES_BIF_MIN_START_REDS),
make_small((Uint) processes_bif_tab_chunks),
make_small((Uint) ERTS_PROCESSES_BIF_TAB_CHUNK_SIZE),
make_small((Uint) ERTS_PROCESSES_BIF_TAB_INSPECT_INDICES_PER_RED),
make_small((Uint) ERTS_PROCESSES_BIF_TAB_FREE_TERM_PROC_REDS),
make_small((Uint) ERTS_PROCESSES_BIF_INSPECT_TERM_PROC_PER_RED),
make_small((Uint) ERTS_PROCESSES_INSPECT_TERM_PROC_MAX_REDS),
make_small((Uint) ERTS_PROCESSES_BIF_BUILD_RESULT_CONSES_PER_RED),
make_small((Uint) ERTS_PROCESSES_BIF_DEBUGLEVEL)
};
Uint sz = 0;
Eterm *hp;
(void) erts_bld_tuplev(NULL, &sz, sizeof(elements)/sizeof(Eterm), elements);
hp = HAlloc(c_p, sz);
return erts_bld_tuplev(&hp, NULL, sizeof(elements)/sizeof(Eterm), elements);
}
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_FOUND_PIDS
static void
debug_processes_check_found_pid(ErtsProcessesBifData *pbdp,
Eterm pid,
SysTimeval *tvp,
int pid_should_be_found)
{
int i;
for (i = 0; i < pbdp->pid_ix; i++) {
if (pbdp->pid[i] == pid
&& pbdp->debug.pid_started[i].tv_sec == tvp->tv_sec
&& pbdp->debug.pid_started[i].tv_usec == tvp->tv_usec) {
ERTS_PROCS_ASSERT(pid_should_be_found);
return;
}
}
ERTS_PROCS_ASSERT(!pid_should_be_found);
}
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_RESLIST
static void
debug_processes_check_res_list(Eterm list)
{
while (is_list(list)) {
Eterm* consp = list_val(list);
Eterm hd = CAR(consp);
ERTS_PROCS_ASSERT(is_internal_pid(hd));
list = CDR(consp);
}
ERTS_PROCS_ASSERT(is_nil(list));
}
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_PIDS
static void
debug_processes_save_all_pids(ErtsProcessesBifData *pbdp)
{
int ix, tix, cpix;
pbdp->debug.correct_pids_verified = 0;
pbdp->debug.correct_pids = erts_alloc(ERTS_ALC_T_PROCS_PIDS,
sizeof(Eterm)*pbdp->pid_sz);
for (tix = 0, cpix = 0; tix < erts_max_processes; tix++) {
Process *rp = process_tab[tix];
if (rp) {
ERTS_PROCS_ASSERT(is_internal_pid(rp->id));
pbdp->debug.correct_pids[cpix++] = rp->id;
ERTS_PROCS_ASSERT(cpix <= pbdp->pid_sz);
}
}
ERTS_PROCS_ASSERT(cpix == pbdp->pid_sz);
for (ix = 0; ix < pbdp->pid_sz; ix++)
pbdp->pid[ix] = make_small(ix);
}
static void
debug_processes_verify_all_pids(ErtsProcessesBifData *pbdp)
{
int ix, cpix;
ERTS_PROCS_ASSERT(pbdp->pid_ix == pbdp->pid_sz);
for (ix = 0; ix < pbdp->pid_sz; ix++) {
int found = 0;
Eterm pid = pbdp->pid[ix];
ERTS_PROCS_ASSERT(is_internal_pid(pid));
for (cpix = ix; cpix < pbdp->pid_sz; cpix++) {
if (pbdp->debug.correct_pids[cpix] == pid) {
pbdp->debug.correct_pids[cpix] = NIL;
found = 1;
break;
}
}
if (!found) {
for (cpix = 0; cpix < ix; cpix++) {
if (pbdp->debug.correct_pids[cpix] == pid) {
pbdp->debug.correct_pids[cpix] = NIL;
found = 1;
break;
}
}
}
ERTS_PROCS_ASSERT(found);
}
pbdp->debug.correct_pids_verified = 1;
erts_free(ERTS_ALC_T_PROCS_PIDS, pbdp->debug.correct_pids);
pbdp->debug.correct_pids = NULL;
}
#endif /* ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_PIDS */
#if ERTS_PROCESSES_BIF_DEBUGLEVEL >= ERTS_PROCS_DBGLVL_CHK_TERM_PROC_LIST
static void
debug_processes_check_term_proc_list(void)
{
ERTS_SMP_LC_ASSERT(erts_lc_mtx_is_locked(&proc_tab_mtx));
if (!saved_term_procs.start)
ERTS_PROCS_ASSERT(!saved_term_procs.end);
else {
SysTimeval tv_now;
SysTimeval *prev_xtvp = NULL;
ErtsTermProcElement *tpep;
erts_get_emu_time(&tv_now);
for (tpep = saved_term_procs.start; tpep; tpep = tpep->next) {
if (!tpep->prev)
ERTS_PROCS_ASSERT(saved_term_procs.start == tpep);
else
ERTS_PROCS_ASSERT(tpep->prev->next == tpep);
if (!tpep->next)
ERTS_PROCS_ASSERT(saved_term_procs.end == tpep);
else
ERTS_PROCS_ASSERT(tpep->next->prev == tpep);
if (tpep->ix < 0) {
SysTimeval *tvp = &tpep->u.bif_invocation.time;
ERTS_PROCS_ASSERT(erts_cmp_timeval(&debug_tv_start, tvp) < 0
&& erts_cmp_timeval(tvp, &tv_now) < 0);
}
else {
SysTimeval *stvp = &tpep->u.process.spawned;
SysTimeval *xtvp = &tpep->u.process.exited;
ERTS_PROCS_ASSERT(erts_cmp_timeval(&debug_tv_start,
stvp) < 0);
ERTS_PROCS_ASSERT(erts_cmp_timeval(stvp, xtvp) < 0);
if (prev_xtvp)
ERTS_PROCS_ASSERT(erts_cmp_timeval(prev_xtvp, xtvp) < 0);
prev_xtvp = xtvp;
ERTS_PROCS_ASSERT(is_internal_pid(tpep->u.process.pid));
ERTS_PROCS_ASSERT(tpep->ix
== internal_pid_index(tpep->u.process.pid));
}
}
}
}
static void
debug_processes_check_term_proc_free_list(ErtsTermProcElement *free_list)
{
if (saved_term_procs.start) {
ErtsTermProcElement *ftpep;
ErtsTermProcElement *tpep;
for (ftpep = free_list; ftpep; ftpep = ftpep->next) {
for (tpep = saved_term_procs.start; tpep; tpep = tpep->next)
ERTS_PROCS_ASSERT(ftpep != tpep);
}
}
}
#endif
#if ERTS_PROCESSES_BIF_DEBUGLEVEL != 0
static void
debug_processes_assert_error(char* expr, char* file, int line)
{
fflush(stdout);
erts_fprintf(stderr, "%s:%d: Assertion failed: %s\n", file, line, expr);
fflush(stderr);
abort();
}
#endif
/* *\
* End of the processes/0 BIF implementation. *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */