/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 1996-2011. All Rights Reserved.
*
* The contents of this file are subject to the Erlang Public License,
* Version 1.1, (the "License"); you may not use this file except in
* compliance with the License. You should have received a copy of the
* Erlang Public License along with this software. If not, it can be
* retrieved online at http://www.erlang.org/.
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* %CopyrightEnd%
*/
#ifndef __GLOBAL_H__
#define __GLOBAL_H__
#include "sys.h"
#include <stddef.h> /* offsetof() */
#include "erl_alloc.h"
#include "erl_vm.h"
#include "erl_node_container_utils.h"
#include "hash.h"
#include "index.h"
#include "atom.h"
#include "export.h"
#include "module.h"
#include "register.h"
#include "erl_fun.h"
#include "erl_node_tables.h"
#include "benchmark.h"
#include "erl_process.h"
#include "erl_sys_driver.h"
#include "erl_debug.h"
typedef struct port Port;
#include "erl_port_task.h"
#define ERTS_MAX_NO_OF_ASYNC_THREADS 1024
extern int erts_async_max_threads;
#define ERTS_ASYNC_THREAD_MIN_STACK_SIZE 16 /* Kilo words */
#define ERTS_ASYNC_THREAD_MAX_STACK_SIZE 8192 /* Kilo words */
extern int erts_async_thread_suggested_stack_size;
typedef struct erts_driver_t_ erts_driver_t;
#define SMALL_IO_QUEUE 5 /* Number of fixed elements */
typedef struct {
int size; /* total size in bytes */
SysIOVec* v_start;
SysIOVec* v_end;
SysIOVec* v_head;
SysIOVec* v_tail;
SysIOVec v_small[SMALL_IO_QUEUE];
ErlDrvBinary** b_start;
ErlDrvBinary** b_end;
ErlDrvBinary** b_head;
ErlDrvBinary** b_tail;
ErlDrvBinary* b_small[SMALL_IO_QUEUE];
} ErlIOQueue;
typedef struct line_buf { /* Buffer used in line oriented I/O */
int bufsiz; /* Size of character buffer */
int ovlen; /* Length of overflow data */
int ovsiz; /* Actual size of overflow buffer */
char data[1]; /* Starting point of buffer data,
data[0] is a flag indicating an unprocess CR,
The rest is the overflow buffer. */
} LineBuf;
struct enif_environment_t /* ErlNifEnv */
{
struct erl_module_nif* mod_nif;
Process* proc;
Eterm* hp;
Eterm* hp_end;
ErlHeapFragment* heap_frag;
int fpe_was_unmasked;
struct enif_tmp_obj_t* tmp_obj_list;
};
extern void erts_pre_nif(struct enif_environment_t*, Process*,
struct erl_module_nif*);
extern void erts_post_nif(struct enif_environment_t* env);
extern Eterm erts_nif_taints(Process* p);
extern void erts_print_nif_taints(int to, void* to_arg);
void erts_unload_nif(struct erl_module_nif* nif);
extern void erl_nif_init(void);
/*
* Port Specific Data.
*
* Only use PrtSD for very rarely used data.
*/
#define ERTS_PRTSD_SCHED_ID 0
#define ERTS_PRTSD_SIZE 1
typedef struct {
void *data[ERTS_PRTSD_SIZE];
} ErtsPrtSD;
#ifdef ERTS_SMP
typedef struct ErtsXPortsList_ ErtsXPortsList;
#endif
/*
* Port locking:
*
* Locking is done either driver specific or port specific. When
* driver specific locking is used, all instances of the driver,
* i.e. ports running the driver, share the same lock. When port
* specific locking is used each instance have its own lock.
*
* Most fields in the Port structure are protected by the lock
* referred to by the lock field. I'v called it the port lock.
* This lock is shared between all ports running the same driver
* when driver specific locking is used.
*
* The 'sched' field is protected by the port tasks lock
* (see erl_port_tasks.c)
*
* The 'status' field is protected by a combination of the port lock,
* the port tasks lock, and the state_lck. It may be read if
* the state_lck, or the port lock is held. It may only be
* modified if both the port lock and the state_lck is held
* (with one exception; see below). When changeing status from alive
* to dead or vice versa, also the port task lock has to be held.
* This in order to guarantee that tasks are scheduled only for
* ports that are alive.
*
* The status field may be modified with only the state_lck
* held when status is changed from dead to alive. This since no
* threads can have any references to the port other than via the
* port table.
*
* /rickard
*/
struct port {
ErtsPortTaskSched sched;
ErtsPortTaskHandle timeout_task;
#ifdef ERTS_SMP
erts_smp_atomic_t refc;
erts_smp_mtx_t *lock;
ErtsXPortsList *xports;
erts_smp_atomic_t run_queue;
erts_smp_spinlock_t state_lck; /* protects: id, status, snapshot */
#endif
Eterm id; /* The Port id of this port */
Eterm connected; /* A connected process */
Eterm caller; /* Current caller. */
Eterm data; /* Data associated with port. */
ErlHeapFragment* bp; /* Heap fragment holding data (NULL if imm data). */
ErtsLink *nlinks;
ErtsMonitor *monitors; /* Only MON_ORIGIN monitors of pid's */
Uint bytes_in; /* Number of bytes read */
Uint bytes_out; /* Number of bytes written */
#ifdef ERTS_SMP
ErtsSmpPTimer *ptimer;
#else
ErlTimer tm; /* Timer entry */
#endif
Eterm tracer_proc; /* If the port is traced, this is the tracer */
Uint trace_flags; /* Trace flags */
ErlIOQueue ioq; /* driver accessible i/o queue */
DistEntry *dist_entry; /* Dist entry used in DISTRIBUTION */
char *name; /* String used in the open */
erts_driver_t* drv_ptr;
long drv_data;
ErtsProcList *suspended; /* List of suspended processes. */
LineBuf *linebuf; /* Buffer to hold data not ready for
process to get (line oriented I/O)*/
Uint32 status; /* Status and type flags */
int control_flags; /* Flags for port_control() */
Uint32 snapshot; /* Next snapshot that port should be part of */
struct reg_proc *reg;
ErlDrvPDL port_data_lock;
ErtsPrtSD *psd; /* Port specific data */
};
ERTS_GLB_INLINE ErtsRunQueue *erts_port_runq(Port *prt);
#if ERTS_GLB_INLINE_INCL_FUNC_DEF
ERTS_GLB_INLINE ErtsRunQueue *
erts_port_runq(Port *prt)
{
#ifdef ERTS_SMP
ErtsRunQueue *rq1, *rq2;
rq1 = (ErtsRunQueue *) erts_smp_atomic_read(&prt->run_queue);
while (1) {
erts_smp_runq_lock(rq1);
rq2 = (ErtsRunQueue *) erts_smp_atomic_read(&prt->run_queue);
if (rq1 == rq2)
return rq1;
erts_smp_runq_unlock(rq1);
rq1 = rq2;
}
#else
return erts_common_run_queue;
#endif
}
#endif
ERTS_GLB_INLINE void *erts_prtsd_get(Port *p, int ix);
ERTS_GLB_INLINE void *erts_prtsd_set(Port *p, int ix, void *new);
#if ERTS_GLB_INLINE_INCL_FUNC_DEF
ERTS_GLB_INLINE void *
erts_prtsd_get(Port *prt, int ix)
{
return prt->psd ? prt->psd->data[ix] : NULL;
}
ERTS_GLB_INLINE void *
erts_prtsd_set(Port *prt, int ix, void *data)
{
if (prt->psd) {
void *old = prt->psd->data[ix];
prt->psd->data[ix] = data;
return old;
}
else {
prt->psd = erts_alloc(ERTS_ALC_T_PRTSD, sizeof(ErtsPrtSD));
prt->psd->data[ix] = data;
return NULL;
}
}
#endif
/* Driver handle (wrapper for old plain handle) */
#define ERL_DE_OK 0
#define ERL_DE_UNLOAD 1
#define ERL_DE_FORCE_UNLOAD 2
#define ERL_DE_RELOAD 3
#define ERL_DE_FORCE_RELOAD 4
#define ERL_DE_PERMANENT 5
#define ERL_DE_PROC_LOADED 0
#define ERL_DE_PROC_AWAIT_UNLOAD 1
#define ERL_DE_PROC_AWAIT_UNLOAD_ONLY 2
#define ERL_DE_PROC_AWAIT_LOAD 3
/* Flags for process entries */
#define ERL_DE_FL_DEREFERENCED 1
/* Flags for drivers, put locking policy here /PaN */
#define ERL_DE_FL_KILL_PORTS 1
#define ERL_FL_CONSISTENT_MASK ( ERL_DE_FL_KILL_PORTS )
/* System specific load errors are returned as positive values */
#define ERL_DE_NO_ERROR 0
#define ERL_DE_LOAD_ERROR_NO_INIT -1
#define ERL_DE_LOAD_ERROR_FAILED_INIT -2
#define ERL_DE_LOAD_ERROR_BAD_NAME -3
#define ERL_DE_LOAD_ERROR_NAME_TO_LONG -4
#define ERL_DE_LOAD_ERROR_INCORRECT_VERSION -5
#define ERL_DE_ERROR_NO_DDLL_FUNCTIONALITY -6
#define ERL_DE_ERROR_UNSPECIFIED -7
#define ERL_DE_LOOKUP_ERROR_NOT_FOUND -8
#define ERL_DE_DYNAMIC_ERROR_OFFSET -10
typedef struct de_proc_entry {
Process *proc; /* The process... */
Uint awaiting_status; /* PROC_LOADED == Have loaded the driver
PROC_AWAIT_UNLOAD == Wants to be notified
when we have unloaded the driver (was locked)
PROC_AWAIT_LOAD == Wants to be notified when we
reloaded the driver (old was locked) */
Uint flags; /* ERL_FL_DE_DEREFERENCED when reload in progress */
Eterm heap[REF_THING_SIZE]; /* "ref heap" */
struct de_proc_entry *next;
} DE_ProcEntry;
typedef struct {
void *handle; /* Handle for DLL or SO (for dyn. drivers). */
DE_ProcEntry *procs; /* List of pids that have loaded this driver,
or that wait for it to change state */
erts_refc_t refc; /* Number of ports/processes having
references to the driver */
Uint port_count; /* Number of ports using the driver */
Uint flags; /* ERL_DE_FL_KILL_PORTS */
int status; /* ERL_DE_xxx */
char *full_path; /* Full path of the driver */
char *reload_full_path; /* If status == ERL_DE_RELOAD, this contains
full name of driver (path) */
char *reload_driver_name; /* ... and this contains the driver name */
Uint reload_flags; /* flags for reloaded driver */
} DE_Handle;
/*
* This structure represents a link to the next driver.
*/
struct erts_driver_t_ {
erts_driver_t *next;
erts_driver_t *prev;
char *name;
struct {
int major;
int minor;
} version;
int flags;
DE_Handle *handle;
#ifdef ERTS_SMP
erts_smp_mtx_t *lock;
#endif
ErlDrvEntry *entry;
ErlDrvData (*start)(ErlDrvPort port, char *command, SysDriverOpts* opts);
void (*stop)(ErlDrvData drv_data);
void (*finish)(void);
void (*flush)(ErlDrvData drv_data);
void (*output)(ErlDrvData drv_data, char *buf, int len);
void (*outputv)(ErlDrvData drv_data, ErlIOVec *ev); /* Might be NULL */
int (*control)(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen); /* Might be NULL */
int (*call)(ErlDrvData drv_data, unsigned int command, char *buf,
int len, char **rbuf, int rlen, unsigned int *flags); /* Might be NULL */
void (*event)(ErlDrvData drv_data, ErlDrvEvent event,
ErlDrvEventData event_data);
void (*ready_input)(ErlDrvData drv_data, ErlDrvEvent event);
void (*ready_output)(ErlDrvData drv_data, ErlDrvEvent event);
void (*timeout)(ErlDrvData drv_data);
void (*ready_async)(ErlDrvData drv_data, ErlDrvThreadData thread_data); /* Might be NULL */
void (*process_exit)(ErlDrvData drv_data, ErlDrvMonitor *monitor);
void (*stop_select)(ErlDrvEvent event, void*); /* Might be NULL */
};
extern erts_driver_t *driver_list;
extern erts_smp_mtx_t erts_driver_list_lock;
extern void erts_ddll_init(void);
extern void erts_ddll_lock_driver(DE_Handle *dh, char *name);
/* These are for bookkeeping */
extern void erts_ddll_increment_port_count(DE_Handle *dh);
extern void erts_ddll_decrement_port_count(DE_Handle *dh);
/* These makes things happen, drivers may be scheduled for unload etc */
extern void erts_ddll_reference_driver(DE_Handle *dh);
extern void erts_ddll_reference_referenced_driver(DE_Handle *dh);
extern void erts_ddll_dereference_driver(DE_Handle *dh);
extern char *erts_ddll_error(int code);
extern void erts_ddll_proc_dead(Process *p, ErtsProcLocks plocks);
extern int erts_ddll_driver_ok(DE_Handle *dh);
extern void erts_ddll_remove_monitor(Process *p,
Eterm ref,
ErtsProcLocks plocks);
extern Eterm erts_ddll_monitor_driver(Process *p,
Eterm description,
ErtsProcLocks plocks);
/*
* Max no. of drivers (linked in and dynamically loaded). Each table
* entry uses 4 bytes.
*/
#define DRIVER_TAB_SIZE 32
/*
** Just like the driver binary but with initial flags
** Note that the two structures Binary and ErlDrvBinary HAVE to
** be equal except for extra fields in the beginning of the struct.
** ErlDrvBinary is defined in erl_driver.h.
** When driver_alloc_binary is called, a Binary is allocated, but
** the pointer returned is to the address of the first element that
** also occurs in the ErlDrvBinary struct (driver.*binary takes care if this).
** The driver need never know about additions to the internal Binary of the
** emulator. One should however NEVER be sloppy when mixing ErlDrvBinary
** and Binary, the macros below can convert one type to the other, as they both
** in reality are equal.
*/
#ifdef ARCH_32
/* *DO NOT USE* only for alignment. */
#define ERTS_BINARY_STRUCT_ALIGNMENT Uint32 align__;
#else
#define ERTS_BINARY_STRUCT_ALIGNMENT
#endif
/* Add fields in ERTS_INTERNAL_BINARY_FIELDS, otherwise the drivers crash */
#define ERTS_INTERNAL_BINARY_FIELDS \
UWord flags; \
erts_refc_t refc; \
ERTS_BINARY_STRUCT_ALIGNMENT
typedef struct binary {
ERTS_INTERNAL_BINARY_FIELDS
long orig_size;
char orig_bytes[1]; /* to be continued */
} Binary;
#define ERTS_SIZEOF_Binary(Sz) \
(offsetof(Binary,orig_bytes) + (Sz))
typedef struct {
ERTS_INTERNAL_BINARY_FIELDS
long orig_size;
void (*destructor)(Binary *);
char magic_bin_data[1];
} ErtsMagicBinary;
typedef union {
Binary binary;
ErtsMagicBinary magic_binary;
struct {
ERTS_INTERNAL_BINARY_FIELDS
ErlDrvBinary binary;
} driver;
} ErtsBinary;
/*
* 'Binary' alignment:
* Address of orig_bytes[0] of a Binary should always be 8-byte aligned.
* It is assumed that the flags, refc, and orig_size fields are 4 bytes on
* 32-bits architectures and 8 bytes on 64-bits architectures.
*/
#define ERTS_MAGIC_BIN_DESTRUCTOR(BP) \
((ErtsBinary *) (BP))->magic_binary.destructor
#define ERTS_MAGIC_BIN_DATA(BP) \
((void *) ((ErtsBinary *) (BP))->magic_binary.magic_bin_data)
#define ERTS_MAGIC_BIN_DATA_SIZE(BP) \
((BP)->orig_size - sizeof(void (*)(Binary *)))
#define ERTS_MAGIC_BIN_ORIG_SIZE(Sz) \
(sizeof(void (*)(Binary *)) + (Sz))
#define ERTS_MAGIC_BIN_SIZE(Sz) \
(offsetof(ErtsMagicBinary,magic_bin_data) + (Sz))
#define ERTS_MAGIC_BIN_FROM_DATA(DATA) \
((ErtsBinary*)((char*)(DATA) - offsetof(ErtsMagicBinary,magic_bin_data)))
#define Binary2ErlDrvBinary(B) (&((ErtsBinary *) (B))->driver.binary)
#define ErlDrvBinary2Binary(D) ((Binary *) \
(((char *) (D)) \
- offsetof(ErtsBinary, driver.binary)))
/* A "magic" binary flag */
#define BIN_FLAG_MAGIC 1
#define BIN_FLAG_USR1 2 /* Reserved for use by different modules too mark */
#define BIN_FLAG_USR2 4 /* certain binaries as special (used by ets) */
#define BIN_FLAG_DRV 8
/*
* This structure represents one type of a binary in a process.
*/
typedef struct proc_bin {
Eterm thing_word; /* Subtag REFC_BINARY_SUBTAG. */
Uint size; /* Binary size in bytes. */
#if HALFWORD_HEAP
void* dummy_ptr_padding__;
#endif
struct erl_off_heap_header *next;
Binary *val; /* Pointer to Binary structure. */
byte *bytes; /* Pointer to the actual data bytes. */
Uint flags; /* Flag word. */
} ProcBin;
#define PB_IS_WRITABLE 1 /* Writable (only one reference to ProcBin) */
#define PB_ACTIVE_WRITER 2 /* There is an active writer */
/*
* ProcBin size in Eterm words.
*/
#define PROC_BIN_SIZE (sizeof(ProcBin)/sizeof(Eterm))
ERTS_GLB_INLINE Eterm erts_mk_magic_binary_term(Eterm **hpp,
ErlOffHeap *ohp,
Binary *mbp);
#if ERTS_GLB_INLINE_INCL_FUNC_DEF
ERTS_GLB_INLINE Eterm
erts_mk_magic_binary_term(Eterm **hpp, ErlOffHeap *ohp, Binary *mbp)
{
ProcBin *pb = (ProcBin *) *hpp;
*hpp += PROC_BIN_SIZE;
ASSERT(mbp->flags & BIN_FLAG_MAGIC);
pb->thing_word = HEADER_PROC_BIN;
pb->size = 0;
pb->next = ohp->first;
ohp->first = (struct erl_off_heap_header*) pb;
pb->val = mbp;
pb->bytes = (byte *) mbp->orig_bytes;
pb->flags = 0;
erts_refc_inc(&mbp->refc, 1);
return make_binary(pb);
}
#endif
#define ERTS_TERM_IS_MAGIC_BINARY(T) \
(is_binary((T)) \
&& (thing_subtag(*binary_val((T))) == REFC_BINARY_SUBTAG) \
&& (((ProcBin *) binary_val((T)))->val->flags & BIN_FLAG_MAGIC))
union erl_off_heap_ptr {
struct erl_off_heap_header* hdr;
ProcBin *pb;
struct erl_fun_thing* fun;
struct external_thing_* ext;
Eterm* ep;
void* voidp;
};
/* arrays that get malloced at startup */
extern Port* erts_port;
extern erts_smp_atomic_t erts_ports_alive;
extern Uint erts_max_ports;
extern Uint erts_port_tab_index_mask;
extern erts_smp_atomic_t erts_ports_snapshot;
extern erts_smp_atomic_t erts_dead_ports_ptr;
ERTS_GLB_INLINE void erts_may_save_closed_port(Port *prt);
#if ERTS_GLB_INLINE_INCL_FUNC_DEF
ERTS_GLB_INLINE void erts_may_save_closed_port(Port *prt)
{
ERTS_SMP_LC_ASSERT(erts_smp_lc_spinlock_is_locked(&prt->state_lck));
if (prt->snapshot != erts_smp_atomic_read(&erts_ports_snapshot)) {
/* Dead ports are added from the end of the snapshot buffer */
Eterm* tombstone = (Eterm*) erts_smp_atomic_addtest(&erts_dead_ports_ptr,
-(erts_aint_t)sizeof(Eterm));
ASSERT(tombstone+1 != NULL);
ASSERT(prt->snapshot == (Uint32) erts_smp_atomic_read(&erts_ports_snapshot) - 1);
*tombstone = prt->id;
}
/*else no ongoing snapshot or port was already included or created after snapshot */
}
#endif
/* controls warning mapping in error_logger */
extern Eterm node_cookie;
extern erts_smp_atomic_t erts_bytes_out; /* no bytes written out */
extern erts_smp_atomic_t erts_bytes_in; /* no bytes sent into the system */
extern Uint display_items; /* no of items to display in traces etc */
extern Uint display_loads; /* print info about loaded modules */
extern int erts_backtrace_depth;
extern erts_smp_atomic32_t erts_max_gen_gcs;
extern int erts_disable_tolerant_timeofday;
#ifdef HYBRID
/* Message Area heap pointers */
extern Eterm *global_heap; /* Heap start */
extern Eterm *global_hend; /* Heap end */
extern Eterm *global_htop; /* Heap top (heap pointer) */
extern Eterm *global_saved_htop; /* Saved heap top (heap pointer) */
extern Uint global_heap_sz; /* Heap size, in words */
extern Eterm *global_old_heap; /* Old generation */
extern Eterm *global_old_hend;
extern ErlOffHeap erts_global_offheap; /* Global MSO (OffHeap) list */
extern Uint16 global_gen_gcs;
extern Uint16 global_max_gen_gcs;
extern Uint global_gc_flags;
#ifdef INCREMENTAL
#define ACTIVATE(p)
#define DEACTIVATE(p)
#define IS_ACTIVE(p) 1
#define INC_ACTIVATE(p) do { \
if ((p)->active) { \
if ((p)->active_next != NULL) { \
(p)->active_next->active_prev = (p)->active_prev; \
if ((p)->active_prev) { \
(p)->active_prev->active_next = (p)->active_next; \
} else { \
inc_active_proc = (p)->active_next; \
} \
inc_active_last->active_next = (p); \
(p)->active_next = NULL; \
(p)->active_prev = inc_active_last; \
inc_active_last = (p); \
} \
} else { \
(p)->active_next = NULL; \
(p)->active_prev = inc_active_last; \
if (inc_active_last) { \
inc_active_last->active_next = (p); \
} else { \
inc_active_proc = (p); \
} \
inc_active_last = (p); \
(p)->active = 1; \
} \
} while(0);
#define INC_DEACTIVATE(p) do { \
ASSERT((p)->active == 1); \
if ((p)->active_next == NULL) { \
inc_active_last = (p)->active_prev; \
} else { \
(p)->active_next->active_prev = (p)->active_prev; \
} \
if ((p)->active_prev == NULL) { \
inc_active_proc = (p)->active_next; \
} else { \
(p)->active_prev->active_next = (p)->active_next; \
} \
(p)->active = 0; \
} while(0);
#define INC_IS_ACTIVE(p) ((p)->active != 0)
#else
extern Eterm *global_old_htop;
extern Eterm *global_high_water;
#define ACTIVATE(p) (p)->active = 1;
#define DEACTIVATE(p) (p)->active = 0;
#define IS_ACTIVE(p) ((p)->active != 0)
#define INC_ACTIVATE(p)
#define INC_IS_ACTIVE(p) 1
#endif /* INCREMENTAL */
#else
# define ACTIVATE(p)
# define DEACTIVATE(p)
# define IS_ACTIVE(p) 1
# define INC_ACTIVATE(p)
#endif /* HYBRID */
#ifdef HYBRID
extern Uint global_heap_min_sz;
#endif
extern int bif_reductions; /* reductions + fcalls (when doing call_bif) */
extern int stackdump_on_exit;
/*
* Here is an implementation of a lightweiht stack.
*
* Use it like this:
*
* DECLARE_ESTACK(Stack) (At the start of a block)
* ...
* ESTACK_PUSH(Stack, Term)
* ...
* if (ESTACK_ISEMPTY(Stack)) {
* Stack is empty
* } else {
* Term = ESTACK_POP(Stack);
* Process popped Term here
* }
* ...
* DESTROY_ESTACK(Stack)
*/
void erl_grow_stack(Eterm** start, Eterm** sp, Eterm** end);
#define ESTK_CONCAT(a,b) a##b
#define ESTK_SUBSCRIPT(s,i) *((Eterm *)((byte *)ESTK_CONCAT(s,_start) + (i)))
#define DEF_ESTACK_SIZE (16)
#define DECLARE_ESTACK(s) \
Eterm ESTK_CONCAT(s,_default_stack)[DEF_ESTACK_SIZE]; \
Eterm* ESTK_CONCAT(s,_start) = ESTK_CONCAT(s,_default_stack); \
Eterm* ESTK_CONCAT(s,_sp) = ESTK_CONCAT(s,_start); \
Eterm* ESTK_CONCAT(s,_end) = ESTK_CONCAT(s,_start) + DEF_ESTACK_SIZE
#define DESTROY_ESTACK(s) \
do { \
if (ESTK_CONCAT(s,_start) != ESTK_CONCAT(s,_default_stack)) { \
erts_free(ERTS_ALC_T_ESTACK, ESTK_CONCAT(s,_start)); \
} \
} while(0)
#define ESTACK_PUSH(s, x) \
do { \
if (ESTK_CONCAT(s,_sp) == ESTK_CONCAT(s,_end)) { \
erl_grow_stack(&ESTK_CONCAT(s,_start), &ESTK_CONCAT(s,_sp), \
&ESTK_CONCAT(s,_end)); \
} \
*ESTK_CONCAT(s,_sp)++ = (x); \
} while(0)
#define ESTACK_PUSH2(s, x, y) \
do { \
if (ESTK_CONCAT(s,_sp) > ESTK_CONCAT(s,_end) - 2) { \
erl_grow_stack(&ESTK_CONCAT(s,_start), &ESTK_CONCAT(s,_sp), \
&ESTK_CONCAT(s,_end)); \
} \
*ESTK_CONCAT(s,_sp)++ = (x); \
*ESTK_CONCAT(s,_sp)++ = (y); \
} while(0)
#define ESTACK_PUSH3(s, x, y, z) \
do { \
if (ESTK_CONCAT(s,_sp) > ESTK_CONCAT(s,_end) - 3) { \
erl_grow_stack(&ESTK_CONCAT(s,_start), &ESTK_CONCAT(s,_sp), \
&ESTK_CONCAT(s,_end)); \
} \
*ESTK_CONCAT(s,_sp)++ = (x); \
*ESTK_CONCAT(s,_sp)++ = (y); \
*ESTK_CONCAT(s,_sp)++ = (z); \
} while(0)
#define ESTACK_COUNT(s) (ESTK_CONCAT(s,_sp) - ESTK_CONCAT(s,_start))
#define ESTACK_ISEMPTY(s) (ESTK_CONCAT(s,_sp) == ESTK_CONCAT(s,_start))
#define ESTACK_POP(s) (*(--ESTK_CONCAT(s,_sp)))
void erl_grow_wstack(UWord** start, UWord** sp, UWord** end);
#define WSTK_CONCAT(a,b) a##b
#define WSTK_SUBSCRIPT(s,i) *((UWord *)((byte *)WSTK_CONCAT(s,_start) + (i)))
#define DEF_WSTACK_SIZE (16)
#define DECLARE_WSTACK(s) \
UWord WSTK_CONCAT(s,_default_stack)[DEF_WSTACK_SIZE]; \
UWord* WSTK_CONCAT(s,_start) = WSTK_CONCAT(s,_default_stack); \
UWord* WSTK_CONCAT(s,_sp) = WSTK_CONCAT(s,_start); \
UWord* WSTK_CONCAT(s,_end) = WSTK_CONCAT(s,_start) + DEF_WSTACK_SIZE
#define DESTROY_WSTACK(s) \
do { \
if (WSTK_CONCAT(s,_start) != WSTK_CONCAT(s,_default_stack)) { \
erts_free(ERTS_ALC_T_ESTACK, WSTK_CONCAT(s,_start)); \
} \
} while(0)
#define WSTACK_PUSH(s, x) \
do { \
if (WSTK_CONCAT(s,_sp) == WSTK_CONCAT(s,_end)) { \
erl_grow_wstack(&WSTK_CONCAT(s,_start), &WSTK_CONCAT(s,_sp), \
&WSTK_CONCAT(s,_end)); \
} \
*WSTK_CONCAT(s,_sp)++ = (x); \
} while(0)
#define WSTACK_PUSH2(s, x, y) \
do { \
if (WSTK_CONCAT(s,_sp) > WSTK_CONCAT(s,_end) - 2) { \
erl_grow_wstack(&WSTK_CONCAT(s,_start), &WSTK_CONCAT(s,_sp), \
&WSTK_CONCAT(s,_end)); \
} \
*WSTK_CONCAT(s,_sp)++ = (x); \
*WSTK_CONCAT(s,_sp)++ = (y); \
} while(0)
#define WSTACK_PUSH3(s, x, y, z) \
do { \
if (WSTK_CONCAT(s,_sp) > WSTK_CONCAT(s,_end) - 3) { \
erl_grow_wstack(&WSTK_CONCAT(s,_start), &WSTK_CONCAT(s,_sp), \
&WSTK_CONCAT(s,_end)); \
} \
*WSTK_CONCAT(s,_sp)++ = (x); \
*WSTK_CONCAT(s,_sp)++ = (y); \
*WSTK_CONCAT(s,_sp)++ = (z); \
} while(0)
#define WSTACK_COUNT(s) (WSTK_CONCAT(s,_sp) - WSTK_CONCAT(s,_start))
#define WSTACK_ISEMPTY(s) (WSTK_CONCAT(s,_sp) == WSTK_CONCAT(s,_start))
#define WSTACK_POP(s) (*(--WSTK_CONCAT(s,_sp)))
/* port status flags */
#define ERTS_PORT_SFLG_CONNECTED ((Uint32) (1 << 0))
/* Port have begun exiting */
#define ERTS_PORT_SFLG_EXITING ((Uint32) (1 << 1))
/* Distribution port */
#define ERTS_PORT_SFLG_DISTRIBUTION ((Uint32) (1 << 2))
#define ERTS_PORT_SFLG_BINARY_IO ((Uint32) (1 << 3))
#define ERTS_PORT_SFLG_SOFT_EOF ((Uint32) (1 << 4))
/* Flow control */
#define ERTS_PORT_SFLG_PORT_BUSY ((Uint32) (1 << 5))
/* Port is closing (no i/o accepted) */
#define ERTS_PORT_SFLG_CLOSING ((Uint32) (1 << 6))
/* Send a closed message when terminating */
#define ERTS_PORT_SFLG_SEND_CLOSED ((Uint32) (1 << 7))
/* Line orinted io on port */
#define ERTS_PORT_SFLG_LINEBUF_IO ((Uint32) (1 << 8))
/* Immortal port (only certain system ports) */
#define ERTS_PORT_SFLG_IMMORTAL ((Uint32) (1 << 9))
#define ERTS_PORT_SFLG_FREE ((Uint32) (1 << 10))
#define ERTS_PORT_SFLG_FREE_SCHEDULED ((Uint32) (1 << 11))
#define ERTS_PORT_SFLG_INITIALIZING ((Uint32) (1 << 12))
/* Port uses port specific locking (opposed to driver specific locking) */
#define ERTS_PORT_SFLG_PORT_SPECIFIC_LOCK ((Uint32) (1 << 13))
#define ERTS_PORT_SFLG_INVALID ((Uint32) (1 << 14))
#ifdef DEBUG
/* Only debug: make sure all flags aren't cleared unintentionally */
#define ERTS_PORT_SFLG_PORT_DEBUG ((Uint32) (1 << 31))
#endif
/* Combinations of port status flags */
#define ERTS_PORT_SFLGS_DEAD \
(ERTS_PORT_SFLG_FREE \
| ERTS_PORT_SFLG_FREE_SCHEDULED \
| ERTS_PORT_SFLG_INITIALIZING)
#define ERTS_PORT_SFLGS_INVALID_DRIVER_LOOKUP \
(ERTS_PORT_SFLGS_DEAD | ERTS_PORT_SFLG_INVALID)
#define ERTS_PORT_SFLGS_INVALID_LOOKUP \
(ERTS_PORT_SFLGS_INVALID_DRIVER_LOOKUP \
| ERTS_PORT_SFLG_CLOSING)
#define ERTS_PORT_SFLGS_INVALID_TRACER_LOOKUP \
(ERTS_PORT_SFLGS_INVALID_LOOKUP \
| ERTS_PORT_SFLG_PORT_BUSY \
| ERTS_PORT_SFLG_DISTRIBUTION)
/* binary.c */
void erts_emasculate_writable_binary(ProcBin* pb);
Eterm erts_new_heap_binary(Process *p, byte *buf, int len, byte** datap);
Eterm erts_new_mso_binary(Process*, byte*, int);
Eterm new_binary(Process*, byte*, int);
Eterm erts_realloc_binary(Eterm bin, size_t size);
/* erl_bif_info.c */
void erts_bif_info_init(void);
/* bif.c */
Eterm erts_make_ref(Process *);
Eterm erts_make_ref_in_buffer(Eterm buffer[REF_THING_SIZE]);
void erts_queue_monitor_message(Process *,
ErtsProcLocks*,
Eterm,
Eterm,
Eterm,
Eterm);
void erts_init_bif(void);
/* erl_bif_port.c */
/* erl_bif_trace.c */
void erts_system_monitor_clear(Process *c_p);
void erts_system_profile_clear(Process *c_p);
/* beam_load.c */
int erts_load_module(Process *c_p, ErtsProcLocks c_p_locks,
Eterm group_leader, Eterm* mod, byte* code, int size);
void init_load(void);
BeamInstr* find_function_from_pc(BeamInstr* pc);
Eterm erts_module_info_0(Process* p, Eterm module);
Eterm erts_module_info_1(Process* p, Eterm module, Eterm what);
Eterm erts_make_stub_module(Process* p, Eterm Mod, Eterm Beam, Eterm Info);
/* break.c */
void init_break_handler(void);
void erts_set_ignore_break(void);
void erts_replace_intr(void);
void process_info(int, void *);
void print_process_info(int, void *, Process*);
void info(int, void *);
void loaded(int, void *);
/* config.c */
__decl_noreturn void __noreturn erl_exit(int n, char*, ...);
__decl_noreturn void __noreturn erl_exit0(char *, int, int n, char*, ...);
void erl_error(char*, va_list);
#define ERL_EXIT0(n,f) erl_exit0(__FILE__, __LINE__, n, f)
#define ERL_EXIT1(n,f,a) erl_exit0(__FILE__, __LINE__, n, f, a)
#define ERL_EXIT2(n,f,a,b) erl_exit0(__FILE__, __LINE__, n, f, a, b)
#define ERL_EXIT3(n,f,a,b,c) erl_exit0(__FILE__, __LINE__, n, f, a, b, c)
/* copy.c */
void init_copy(void);
Eterm copy_object(Eterm, Process*);
#if HALFWORD_HEAP
Uint size_object_rel(Eterm, Eterm*);
# define size_object(A) size_object_rel(A,NULL)
Eterm copy_struct_rel(Eterm, Uint, Eterm**, ErlOffHeap*, Eterm* src_base, Eterm* dst_base);
# define copy_struct(OBJ,SZ,HPP,OH) copy_struct_rel(OBJ,SZ,HPP,OH, NULL,NULL)
Eterm copy_shallow_rel(Eterm*, Uint, Eterm**, ErlOffHeap*, Eterm* src_base);
# define copy_shallow(A,B,C,D) copy_shallow_rel(A,B,C,D,NULL)
#else /* !HALFWORD_HEAP */
Uint size_object(Eterm);
# define size_object_rel(A,B) size_object(A)
Eterm copy_struct(Eterm, Uint, Eterm**, ErlOffHeap*);
# define copy_struct_rel(OBJ,SZ,HPP,OH, SB,DB) copy_struct(OBJ,SZ,HPP,OH)
Eterm copy_shallow(Eterm*, Uint, Eterm**, ErlOffHeap*);
# define copy_shallow_rel(A,B,C,D, BASE) copy_shallow(A,B,C,D)
#endif
void move_multi_frags(Eterm** hpp, ErlOffHeap*, ErlHeapFragment* first,
Eterm* refs, unsigned nrefs);
#ifdef HYBRID
#define RRMA_DEFAULT_SIZE 256
#define RRMA_STORE(p,ptr,src) do { \
ASSERT((p)->rrma != NULL); \
ASSERT((p)->rrsrc != NULL); \
(p)->rrma[(p)->nrr] = (ptr); \
(p)->rrsrc[(p)->nrr++] = (src); \
if ((p)->nrr == (p)->rrsz) \
{ \
(p)->rrsz *= 2; \
(p)->rrma = (Eterm *) erts_realloc(ERTS_ALC_T_ROOTSET, \
(void*)(p)->rrma, \
sizeof(Eterm) * (p)->rrsz); \
(p)->rrsrc = (Eterm **) erts_realloc(ERTS_ALC_T_ROOTSET, \
(void*)(p)->rrsrc, \
sizeof(Eterm) * (p)->rrsz); \
} \
} while(0)
/* Note that RRMA_REMOVE decreases the given index after deletion.
* This is done so that a loop with an increasing index can call
* remove without having to decrease the index to see the element
* placed in the hole after the deleted element.
*/
#define RRMA_REMOVE(p,index) do { \
p->rrsrc[index] = p->rrsrc[--p->nrr]; \
p->rrma[index--] = p->rrma[p->nrr]; \
} while(0);
/* The MessageArea STACKs are used while copying messages to the
* message area.
*/
#define MA_STACK_EXTERNAL_DECLARE(type,_s_) \
typedef type ma_##_s_##_type; \
extern ma_##_s_##_type *ma_##_s_##_stack; \
extern Uint ma_##_s_##_top; \
extern Uint ma_##_s_##_size;
#define MA_STACK_DECLARE(_s_) \
ma_##_s_##_type *ma_##_s_##_stack; Uint ma_##_s_##_top; Uint ma_##_s_##_size;
#define MA_STACK_ALLOC(_s_) do { \
ma_##_s_##_top = 0; \
ma_##_s_##_size = 512; \
ma_##_s_##_stack = (ma_##_s_##_type*)erts_alloc(ERTS_ALC_T_OBJECT_STACK, \
sizeof(ma_##_s_##_type) * ma_##_s_##_size); \
} while(0)
#define MA_STACK_PUSH(_s_,val) do { \
ma_##_s_##_stack[ma_##_s_##_top++] = (val); \
if (ma_##_s_##_top == ma_##_s_##_size) \
{ \
ma_##_s_##_size *= 2; \
ma_##_s_##_stack = \
(ma_##_s_##_type*) erts_realloc(ERTS_ALC_T_OBJECT_STACK, \
(void*)ma_##_s_##_stack, \
sizeof(ma_##_s_##_type) * ma_##_s_##_size); \
} \
} while(0)
#define MA_STACK_POP(_s_) (ma_##_s_##_top != 0 ? ma_##_s_##_stack[--ma_##_s_##_top] : 0)
#define MA_STACK_TOP(_s_) (ma_##_s_##_stack[ma_##_s_##_top - 1])
#define MA_STACK_UPDATE(_s_,offset,value) \
*(ma_##_s_##_stack[ma_##_s_##_top - 1] + (offset)) = (value)
#define MA_STACK_SIZE(_s_) (ma_##_s_##_top)
#define MA_STACK_ELM(_s_,i) ma_##_s_##_stack[i]
MA_STACK_EXTERNAL_DECLARE(Eterm,src);
MA_STACK_EXTERNAL_DECLARE(Eterm*,dst);
MA_STACK_EXTERNAL_DECLARE(Uint,offset);
#ifdef INCREMENTAL
extern Eterm *ma_pending_stack;
extern Uint ma_pending_top;
extern Uint ma_pending_size;
#define NO_COPY(obj) (IS_CONST(obj) || \
(((ptr_val(obj) >= global_heap) && \
(ptr_val(obj) < global_htop)) || \
((ptr_val(obj) >= inc_fromspc) && \
(ptr_val(obj) < inc_fromend)) || \
((ptr_val(obj) >= global_old_heap) && \
(ptr_val(obj) < global_old_hend))))
#else
#define NO_COPY(obj) (IS_CONST(obj) || \
(((ptr_val(obj) >= global_heap) && \
(ptr_val(obj) < global_htop)) || \
((ptr_val(obj) >= global_old_heap) && \
(ptr_val(obj) < global_old_hend))))
#endif /* INCREMENTAL */
#define LAZY_COPY(from,obj) do { \
if (!NO_COPY(obj)) { \
BM_LAZY_COPY_START; \
BM_COUNT(messages_copied); \
obj = copy_struct_lazy(from,obj,0); \
BM_LAZY_COPY_STOP; \
} \
} while(0)
Eterm copy_struct_lazy(Process*, Eterm, Uint);
#endif /* HYBRID */
/* Utilities */
extern void erts_delete_nodes_monitors(Process *, ErtsProcLocks);
extern Eterm erts_monitor_nodes(Process *, Eterm, Eterm);
extern Eterm erts_processes_monitoring_nodes(Process *);
extern int erts_do_net_exits(DistEntry*, Eterm);
extern int distribution_info(int, void *);
extern int is_node_name_atom(Eterm a);
extern int erts_net_message(Port *, DistEntry *, byte *, int, byte *, int);
extern void init_dist(void);
extern int stop_dist(void);
void erl_progressf(char* format, ...);
#ifdef MESS_DEBUG
void print_pass_through(int, byte*, int);
#endif
/* beam_emu.c */
int catchlevel(Process*);
void init_emulator(void);
void process_main(void);
Eterm build_stacktrace(Process* c_p, Eterm exc);
Eterm expand_error_value(Process* c_p, Uint freason, Eterm Value);
/* erl_init.c */
typedef struct {
Eterm delay_time;
int context_reds;
int input_reds;
} ErtsModifiedTimings;
extern Export *erts_delay_trap;
extern int erts_modified_timing_level;
extern ErtsModifiedTimings erts_modified_timings[];
#define ERTS_USE_MODIFIED_TIMING() \
(erts_modified_timing_level >= 0)
#define ERTS_MODIFIED_TIMING_DELAY \
(erts_modified_timings[erts_modified_timing_level].delay_time)
#define ERTS_MODIFIED_TIMING_CONTEXT_REDS \
(erts_modified_timings[erts_modified_timing_level].context_reds)
#define ERTS_MODIFIED_TIMING_INPUT_REDS \
(erts_modified_timings[erts_modified_timing_level].input_reds)
extern Eterm erts_error_logger_warnings;
extern int erts_initialized;
extern int erts_compat_rel;
extern int erts_use_sender_punish;
void erts_short_init(void);
void erl_start(int, char**);
void erts_usage(void);
Eterm erts_preloaded(Process* p);
/* erl_md5.c */
typedef struct {
Uint32 state[4]; /* state (ABCD) */
Uint32 count[2]; /* number of bits, modulo 2^64 (lsb first) */
unsigned char buffer[64]; /* input buffer */
} MD5_CTX;
void MD5Init(MD5_CTX *);
void MD5Update(MD5_CTX *, unsigned char *, unsigned int);
void MD5Final(unsigned char [16], MD5_CTX *);
/* ggc.c */
typedef struct {
Uint garbage_collections;
Uint reclaimed;
} ErtsGCInfo;
void erts_gc_info(ErtsGCInfo *gcip);
void erts_init_gc(void);
int erts_garbage_collect(Process*, int, Eterm*, int);
void erts_garbage_collect_hibernate(Process* p);
Eterm erts_gc_after_bif_call(Process* p, Eterm result, Eterm* regs, Uint arity);
void erts_garbage_collect_literals(Process* p, Eterm* literals, Uint lit_size);
Uint erts_next_heap_size(Uint, Uint);
Eterm erts_heap_sizes(Process* p);
void erts_offset_off_heap(ErlOffHeap *, Sint, Eterm*, Eterm*);
void erts_offset_heap_ptr(Eterm*, Uint, Sint, Eterm*, Eterm*);
void erts_offset_heap(Eterm*, Uint, Sint, Eterm*, Eterm*);
void erts_free_heap_frags(Process* p);
#ifdef HYBRID
int erts_global_garbage_collect(Process*, int, Eterm*, int);
#endif
/* io.c */
struct erl_drv_port_data_lock {
erts_mtx_t mtx;
erts_atomic_t refc;
};
typedef struct {
char *name;
char *driver_name;
} ErtsPortNames;
#define ERTS_SPAWN_DRIVER 1
#define ERTS_SPAWN_EXECUTABLE 2
#define ERTS_SPAWN_ANY (ERTS_SPAWN_DRIVER | ERTS_SPAWN_EXECUTABLE)
int erts_add_driver_entry(ErlDrvEntry *drv, DE_Handle *handle, int driver_list_locked);
void erts_destroy_driver(erts_driver_t *drv);
void erts_wake_process_later(Port*, Process*);
int erts_open_driver(erts_driver_t*, Eterm, char*, SysDriverOpts*, int *);
int erts_is_port_ioq_empty(Port *);
void erts_terminate_port(Port *);
void close_port(Eterm);
void init_io(void);
void cleanup_io(void);
void erts_do_exit_port(Port *, Eterm, Eterm);
void erts_port_command(Process *, Eterm, Port *, Eterm);
Eterm erts_port_control(Process*, Port*, Uint, Eterm);
int erts_write_to_port(Eterm caller_id, Port *p, Eterm list);
void print_port_info(int, void *, int);
void erts_raw_port_command(Port*, byte*, Uint);
void driver_report_exit(int, int);
LineBuf* allocate_linebuf(int);
int async_ready(Port *, void*);
Sint erts_test_next_port(int, Uint);
ErtsPortNames *erts_get_port_names(Eterm);
void erts_free_port_names(ErtsPortNames *);
Uint erts_port_ioq_size(Port *pp);
void erts_stale_drv_select(Eterm, ErlDrvEvent, int, int);
void erts_port_cleanup(Port *);
void erts_fire_port_monitor(Port *prt, Eterm ref);
#ifdef ERTS_SMP
void erts_smp_xports_unlock(Port *);
#endif
#if defined(ERTS_SMP) && defined(ERTS_ENABLE_LOCK_CHECK)
int erts_lc_is_port_locked(Port *);
#endif
ERTS_GLB_INLINE void erts_smp_port_state_lock(Port*);
ERTS_GLB_INLINE void erts_smp_port_state_unlock(Port*);
ERTS_GLB_INLINE int erts_smp_port_trylock(Port *prt);
ERTS_GLB_INLINE void erts_smp_port_lock(Port *prt);
ERTS_GLB_INLINE void erts_smp_port_unlock(Port *prt);
#if ERTS_GLB_INLINE_INCL_FUNC_DEF
ERTS_GLB_INLINE void
erts_smp_port_state_lock(Port* prt)
{
#ifdef ERTS_SMP
erts_smp_spin_lock(&prt->state_lck);
#endif
}
ERTS_GLB_INLINE void
erts_smp_port_state_unlock(Port *prt)
{
#ifdef ERTS_SMP
erts_smp_spin_unlock(&prt->state_lck);
#endif
}
ERTS_GLB_INLINE int
erts_smp_port_trylock(Port *prt)
{
#ifdef ERTS_SMP
int res;
ASSERT(erts_smp_atomic_read(&prt->refc) > 0);
erts_smp_atomic_inc(&prt->refc);
res = erts_smp_mtx_trylock(prt->lock);
if (res == EBUSY) {
erts_smp_atomic_dec(&prt->refc);
}
return res;
#else /* !ERTS_SMP */
return 0;
#endif
}
ERTS_GLB_INLINE void
erts_smp_port_lock(Port *prt)
{
#ifdef ERTS_SMP
ASSERT(erts_smp_atomic_read(&prt->refc) > 0);
erts_smp_atomic_inc(&prt->refc);
erts_smp_mtx_lock(prt->lock);
#endif
}
ERTS_GLB_INLINE void
erts_smp_port_unlock(Port *prt)
{
#ifdef ERTS_SMP
erts_aint_t refc;
erts_smp_mtx_unlock(prt->lock);
refc = erts_smp_atomic_dectest(&prt->refc);
ASSERT(refc >= 0);
if (refc == 0)
erts_port_cleanup(prt);
#endif
}
#endif /* #if ERTS_GLB_INLINE_INCL_FUNC_DEF */
#define ERTS_INVALID_PORT_OPT(PP, ID, FLGS) \
(!(PP) || ((PP)->status & (FLGS)) || (PP)->id != (ID))
/* port lookup */
#define INVALID_PORT(PP, ID) \
ERTS_INVALID_PORT_OPT((PP), (ID), ERTS_PORT_SFLGS_INVALID_LOOKUP)
/* Invalidate trace port if anything suspicious, for instance
* that the port is a distribution port or it is busy.
*/
#define INVALID_TRACER_PORT(PP, ID) \
ERTS_INVALID_PORT_OPT((PP), (ID), ERTS_PORT_SFLGS_INVALID_TRACER_LOOKUP)
#define ERTS_PORT_SCHED_ID(P, ID) \
((Uint) (UWord) erts_prtsd_set((P), ERTS_PSD_SCHED_ID, (void *) (UWord) (ID)))
#ifdef ERTS_SMP
Port *erts_de2port(DistEntry *, Process *, ErtsProcLocks);
#endif
#define erts_id2port(ID, P, PL) \
erts_id2port_sflgs((ID), (P), (PL), ERTS_PORT_SFLGS_INVALID_LOOKUP)
ERTS_GLB_INLINE Port*erts_id2port_sflgs(Eterm, Process *, ErtsProcLocks, Uint32);
ERTS_GLB_INLINE void erts_port_release(Port *);
ERTS_GLB_INLINE Port*erts_drvport2port(ErlDrvPort);
ERTS_GLB_INLINE Port*erts_drvportid2port(Eterm);
ERTS_GLB_INLINE Uint32 erts_portid2status(Eterm id);
ERTS_GLB_INLINE int erts_is_port_alive(Eterm id);
ERTS_GLB_INLINE int erts_is_valid_tracer_port(Eterm id);
ERTS_GLB_INLINE void erts_port_status_bandor_set(Port *, Uint32, Uint32);
ERTS_GLB_INLINE void erts_port_status_band_set(Port *, Uint32);
ERTS_GLB_INLINE void erts_port_status_bor_set(Port *, Uint32);
ERTS_GLB_INLINE void erts_port_status_set(Port *, Uint32);
ERTS_GLB_INLINE Uint32 erts_port_status_get(Port *);
#if ERTS_GLB_INLINE_INCL_FUNC_DEF
ERTS_GLB_INLINE Port*
erts_id2port_sflgs(Eterm id, Process *c_p, ErtsProcLocks c_p_locks, Uint32 sflgs)
{
#ifdef ERTS_SMP
int no_proc_locks = !c_p || !c_p_locks;
#endif
Port *prt;
if (is_not_internal_port(id))
return NULL;
prt = &erts_port[internal_port_index(id)];
erts_smp_port_state_lock(prt);
if (ERTS_INVALID_PORT_OPT(prt, id, sflgs)) {
erts_smp_port_state_unlock(prt);
prt = NULL;
}
#ifdef ERTS_SMP
else {
erts_smp_atomic_inc(&prt->refc);
erts_smp_port_state_unlock(prt);
if (no_proc_locks)
erts_smp_mtx_lock(prt->lock);
else if (erts_smp_mtx_trylock(prt->lock) == EBUSY) {
/* Unlock process locks, and acquire locks in lock order... */
erts_smp_proc_unlock(c_p, c_p_locks);
erts_smp_mtx_lock(prt->lock);
erts_smp_proc_lock(c_p, c_p_locks);
}
/* The id may not have changed... */
ERTS_SMP_LC_ASSERT(prt->id == id);
/* ... but status may have... */
if (prt->status & sflgs) {
erts_smp_port_unlock(prt); /* Also decrements refc... */
prt = NULL;
}
}
#endif
return prt;
}
ERTS_GLB_INLINE void
erts_port_release(Port *prt)
{
#ifdef ERTS_SMP
erts_smp_port_unlock(prt);
#else
if (prt->status & ERTS_PORT_SFLGS_DEAD)
erts_port_cleanup(prt);
#endif
}
ERTS_GLB_INLINE Port*
erts_drvport2port(ErlDrvPort drvport)
{
int ix = (int) drvport;
if (ix < 0 || erts_max_ports <= ix)
return NULL;
if (erts_port[ix].status & ERTS_PORT_SFLGS_INVALID_DRIVER_LOOKUP)
return NULL;
ERTS_SMP_LC_ASSERT(erts_lc_is_port_locked(&erts_port[ix]));
return &erts_port[ix];
}
ERTS_GLB_INLINE Port*
erts_drvportid2port(Eterm id)
{
int ix;
if (is_not_internal_port(id))
return NULL;
ix = (int) internal_port_index(id);
if (erts_max_ports <= ix)
return NULL;
if (erts_port[ix].status & ERTS_PORT_SFLGS_INVALID_DRIVER_LOOKUP)
return NULL;
if (erts_port[ix].id != id)
return NULL;
ERTS_SMP_LC_ASSERT(erts_lc_is_port_locked(&erts_port[ix]));
return &erts_port[ix];
}
ERTS_GLB_INLINE Uint32
erts_portid2status(Eterm id)
{
if (is_not_internal_port(id))
return ERTS_PORT_SFLG_INVALID;
else {
Uint32 status;
int ix = internal_port_index(id);
if (erts_max_ports <= ix)
return ERTS_PORT_SFLG_INVALID;
erts_smp_port_state_lock(&erts_port[ix]);
if (erts_port[ix].id == id)
status = erts_port[ix].status;
else
status = ERTS_PORT_SFLG_INVALID;
erts_smp_port_state_unlock(&erts_port[ix]);
return status;
}
}
ERTS_GLB_INLINE int
erts_is_port_alive(Eterm id)
{
return !(erts_portid2status(id) & (ERTS_PORT_SFLG_INVALID
| ERTS_PORT_SFLGS_DEAD));
}
ERTS_GLB_INLINE int
erts_is_valid_tracer_port(Eterm id)
{
return !(erts_portid2status(id) & ERTS_PORT_SFLGS_INVALID_TRACER_LOOKUP);
}
ERTS_GLB_INLINE void erts_port_status_bandor_set(Port *prt,
Uint32 band_status,
Uint32 bor_status)
{
ERTS_SMP_LC_ASSERT(erts_lc_is_port_locked(prt));
erts_smp_port_state_lock(prt);
prt->status &= band_status;
prt->status |= bor_status;
erts_smp_port_state_unlock(prt);
}
ERTS_GLB_INLINE void erts_port_status_band_set(Port *prt, Uint32 status)
{
ERTS_SMP_LC_ASSERT(erts_lc_is_port_locked(prt));
erts_smp_port_state_lock(prt);
prt->status &= status;
erts_smp_port_state_unlock(prt);
}
ERTS_GLB_INLINE void erts_port_status_bor_set(Port *prt, Uint32 status)
{
ERTS_SMP_LC_ASSERT(erts_lc_is_port_locked(prt));
erts_smp_port_state_lock(prt);
prt->status |= status;
erts_smp_port_state_unlock(prt);
}
ERTS_GLB_INLINE void erts_port_status_set(Port *prt, Uint32 status)
{
ERTS_SMP_LC_ASSERT(erts_lc_is_port_locked(prt));
erts_smp_port_state_lock(prt);
prt->status = status;
erts_smp_port_state_unlock(prt);
}
ERTS_GLB_INLINE Uint32 erts_port_status_get(Port *prt)
{
Uint32 res;
erts_smp_port_state_lock(prt);
res = prt->status;
erts_smp_port_state_unlock(prt);
return res;
}
#endif /* #if ERTS_GLB_INLINE_INCL_FUNC_DEF */
/* erl_drv_thread.c */
void erl_drv_thr_init(void);
/* time.c */
/* utils.c */
/*
* To be used to silence unused result warnings, but do not abuse it.
*/
void erts_silence_warn_unused_result(long unused);
void erts_cleanup_offheap(ErlOffHeap *offheap);
Uint erts_fit_in_bits(Uint);
int list_length(Eterm);
Export* erts_find_function(Eterm, Eterm, unsigned int);
int erts_is_builtin(Eterm, Eterm, int);
Uint32 make_broken_hash(Eterm);
Uint32 block_hash(byte *, unsigned, Uint32);
Uint32 make_hash2(Eterm);
Uint32 make_hash(Eterm);
Eterm erts_bld_atom(Uint **hpp, Uint *szp, char *str);
Eterm erts_bld_uint(Uint **hpp, Uint *szp, Uint ui);
Eterm erts_bld_uword(Uint **hpp, Uint *szp, UWord uw);
Eterm erts_bld_uint64(Uint **hpp, Uint *szp, Uint64 ui64);
Eterm erts_bld_sint64(Uint **hpp, Uint *szp, Sint64 si64);
Eterm erts_bld_cons(Uint **hpp, Uint *szp, Eterm car, Eterm cdr);
Eterm erts_bld_tuple(Uint **hpp, Uint *szp, Uint arity, ...);
Eterm erts_bld_tuplev(Uint **hpp, Uint *szp, Uint arity, Eterm terms[]);
Eterm erts_bld_string_n(Uint **hpp, Uint *szp, const char *str, Sint len);
#define erts_bld_string(hpp,szp,str) erts_bld_string_n(hpp,szp,str,strlen(str))
Eterm erts_bld_list(Uint **hpp, Uint *szp, Sint length, Eterm terms[]);
Eterm erts_bld_2tup_list(Uint **hpp, Uint *szp,
Sint length, Eterm terms1[], Uint terms2[]);
Eterm
erts_bld_atom_uint_2tup_list(Uint **hpp, Uint *szp,
Sint length, Eterm atoms[], Uint uints[]);
Eterm
erts_bld_atom_2uint_3tup_list(Uint **hpp, Uint *szp, Sint length,
Eterm atoms[], Uint uints1[], Uint uints2[]);
Eterm store_external_or_ref_in_proc_(Process *, Eterm);
Eterm store_external_or_ref_(Uint **, ErlOffHeap*, Eterm);
#define NC_HEAP_SIZE(NC) \
(ASSERT_EXPR(is_node_container((NC))), \
IS_CONST((NC)) ? 0 : (thing_arityval(*boxed_val((NC))) + 1))
#define STORE_NC(Hpp, ETpp, NC) \
(ASSERT_EXPR(is_node_container((NC))), \
IS_CONST((NC)) ? (NC) : store_external_or_ref_((Hpp), (ETpp), (NC)))
#define STORE_NC_IN_PROC(Pp, NC) \
(ASSERT_EXPR(is_node_container((NC))), \
IS_CONST((NC)) ? (NC) : store_external_or_ref_in_proc_((Pp), (NC)))
void erts_init_utils(void);
void erts_init_utils_mem(void);
erts_dsprintf_buf_t *erts_create_tmp_dsbuf(Uint);
void erts_destroy_tmp_dsbuf(erts_dsprintf_buf_t *);
#if HALFWORD_HEAP
int eq_rel(Eterm a, Eterm* a_base, Eterm b, Eterm* b_base);
# define eq(A,B) eq_rel(A,NULL,B,NULL)
#else
int eq(Eterm, Eterm);
# define eq_rel(A,A_BASE,B,B_BASE) eq(A,B)
#endif
#define EQ(x,y) (((x) == (y)) || (is_not_both_immed((x),(y)) && eq((x),(y))))
#if HALFWORD_HEAP
Sint cmp_rel(Eterm, Eterm*, Eterm, Eterm*);
#define CMP(A,B) cmp_rel(A,NULL,B,NULL)
#else
Sint cmp(Eterm, Eterm);
#define cmp_rel(A,A_BASE,B,B_BASE) cmp(A,B)
#define CMP(A,B) cmp(A,B)
#endif
#define cmp_lt(a,b) (CMP((a),(b)) < 0)
#define cmp_le(a,b) (CMP((a),(b)) <= 0)
#define cmp_eq(a,b) (CMP((a),(b)) == 0)
#define cmp_ne(a,b) (CMP((a),(b)) != 0)
#define cmp_ge(a,b) (CMP((a),(b)) >= 0)
#define cmp_gt(a,b) (CMP((a),(b)) > 0)
#define CMP_LT(a,b) ((a) != (b) && cmp_lt((a),(b)))
#define CMP_GE(a,b) ((a) == (b) || cmp_ge((a),(b)))
#define CMP_EQ(a,b) ((a) == (b) || cmp_eq((a),(b)))
#define CMP_NE(a,b) ((a) != (b) && cmp_ne((a),(b)))
/* duplicates from big.h */
int term_to_Uint(Eterm term, Uint *up);
int term_to_UWord(Eterm, UWord*);
#ifdef HAVE_ERTS_NOW_CPU
extern int erts_cpu_timestamp;
#endif
/* erl_bif_chksum.c */
void erts_init_bif_chksum(void);
/* erl_bif_re.c */
void erts_init_bif_re(void);
Sint erts_re_set_loop_limit(Sint limit);
/* erl_bif_binary.c */
void erts_init_bif_binary(void);
Sint erts_binary_set_loop_limit(Sint limit);
/* erl_unicode.c */
void erts_init_unicode(void);
Sint erts_unicode_set_loop_limit(Sint limit);
void erts_native_filename_put(Eterm ioterm, int encoding, byte *p) ;
Sint erts_native_filename_need(Eterm ioterm, int encoding);
void erts_copy_utf8_to_utf16_little(byte *target, byte *bytes, int num_chars);
int erts_analyze_utf8(byte *source, Uint size,
byte **err_pos, Uint *num_chars, int *left);
char *erts_convert_filename_to_native(Eterm name, ErtsAlcType_t alloc_type, int allow_empty);
#define ERTS_UTF8_OK 0
#define ERTS_UTF8_INCOMPLETE 1
#define ERTS_UTF8_ERROR 2
#define ERTS_UTF8_ANALYZE_MORE 3
/* erl_trace.c */
void erts_init_trace(void);
void erts_trace_check_exiting(Eterm exiting);
Eterm erts_set_system_seq_tracer(Process *c_p,
ErtsProcLocks c_p_locks,
Eterm new);
Eterm erts_get_system_seq_tracer(void);
void erts_change_default_tracing(int setflags, Uint *flagsp, Eterm *tracerp);
void erts_get_default_tracing(Uint *flagsp, Eterm *tracerp);
void erts_set_system_monitor(Eterm monitor);
Eterm erts_get_system_monitor(void);
#ifdef ERTS_SMP
void erts_check_my_tracer_proc(Process *);
void erts_block_sys_msg_dispatcher(void);
void erts_release_sys_msg_dispatcher(void);
void erts_foreach_sys_msg_in_q(void (*func)(Eterm,
Eterm,
Eterm,
ErlHeapFragment *));
void erts_queue_error_logger_message(Eterm, Eterm, ErlHeapFragment *);
#endif
void erts_send_sys_msg_proc(Eterm, Eterm, Eterm, ErlHeapFragment *);
void trace_send(Process*, Eterm, Eterm);
void trace_receive(Process*, Eterm);
Uint32 erts_call_trace(Process *p, BeamInstr mfa[], Binary *match_spec, Eterm* args,
int local, Eterm *tracer_pid);
void erts_trace_return(Process* p, BeamInstr* fi, Eterm retval, Eterm *tracer_pid);
void erts_trace_exception(Process* p, BeamInstr mfa[], Eterm class, Eterm value,
Eterm *tracer);
void erts_trace_return_to(Process *p, BeamInstr *pc);
void trace_sched(Process*, Eterm);
void trace_proc(Process*, Process*, Eterm, Eterm);
void trace_proc_spawn(Process*, Eterm pid, Eterm mod, Eterm func, Eterm args);
void save_calls(Process *p, Export *);
void trace_gc(Process *p, Eterm what);
/* port tracing */
void trace_virtual_sched(Process*, Eterm);
void trace_sched_ports(Port *pp, Eterm);
void trace_sched_ports_where(Port *pp, Eterm, Eterm);
void trace_port(Port *, Eterm what, Eterm data);
void trace_port_open(Port *, Eterm calling_pid, Eterm drv_name);
/* system_profile */
void erts_set_system_profile(Eterm profile);
Eterm erts_get_system_profile(void);
void profile_scheduler(Eterm scheduler_id, Eterm);
void profile_scheduler_q(Eterm scheduler_id, Eterm state, Eterm no_schedulers, Uint Ms, Uint s, Uint us);
void profile_runnable_proc(Process* p, Eterm status);
void profile_runnable_port(Port* p, Eterm status);
void erts_system_profile_setup_active_schedulers(void);
/* system_monitor */
void monitor_long_gc(Process *p, Uint time);
void monitor_large_heap(Process *p);
void monitor_generic(Process *p, Eterm type, Eterm spec);
Uint erts_trace_flag2bit(Eterm flag);
int erts_trace_flags(Eterm List,
Uint *pMask, Eterm *pTracer, int *pCpuTimestamp);
Eterm erts_bif_trace(int bif_index, Process* p,
Eterm arg1, Eterm arg2, Eterm arg3, BeamInstr *I);
#ifdef ERTS_SMP
void erts_send_pending_trace_msgs(ErtsSchedulerData *esdp);
#define ERTS_SMP_CHK_PEND_TRACE_MSGS(ESDP) \
do { \
if ((ESDP)->pending_trace_msgs) \
erts_send_pending_trace_msgs((ESDP)); \
} while (0)
#else
#define ERTS_SMP_CHK_PEND_TRACE_MSGS(ESDP)
#endif
void bin_write(int, void*, byte*, int);
int intlist_to_buf(Eterm, char*, int); /* most callers pass plain char*'s */
struct Sint_buf {
#if defined(ARCH_64) && !HALFWORD_HEAP
char s[22];
#else
char s[12];
#endif
};
char* Sint_to_buf(Sint, struct Sint_buf*);
Eterm buf_to_intlist(Eterm**, char*, int, Eterm); /* most callers pass plain char*'s */
int io_list_to_buf(Eterm, char*, int);
int io_list_to_buf2(Eterm, char*, int);
int io_list_len(Eterm);
int is_string(Eterm);
void erl_at_exit(void (*) (void*), void*);
Eterm collect_memory(Process *);
void dump_memory_to_fd(int);
int dump_memory_data(const char *);
Eterm erts_mixed_plus(Process* p, Eterm arg1, Eterm arg2);
Eterm erts_mixed_minus(Process* p, Eterm arg1, Eterm arg2);
Eterm erts_mixed_times(Process* p, Eterm arg1, Eterm arg2);
Eterm erts_mixed_div(Process* p, Eterm arg1, Eterm arg2);
Eterm erts_int_div(Process* p, Eterm arg1, Eterm arg2);
Eterm erts_int_rem(Process* p, Eterm arg1, Eterm arg2);
Eterm erts_band(Process* p, Eterm arg1, Eterm arg2);
Eterm erts_bor(Process* p, Eterm arg1, Eterm arg2);
Eterm erts_bxor(Process* p, Eterm arg1, Eterm arg2);
Eterm erts_bnot(Process* p, Eterm arg);
Eterm erts_gc_mixed_plus(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_mixed_minus(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_mixed_times(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_mixed_div(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_int_div(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_int_rem(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_band(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_bor(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_bxor(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_bnot(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_length_1(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_size_1(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_bit_size_1(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_byte_size_1(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_abs_1(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_float_1(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_round_1(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_trunc_1(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_binary_part_3(Process* p, Eterm* reg, Uint live);
Eterm erts_gc_binary_part_2(Process* p, Eterm* reg, Uint live);
Uint erts_current_reductions(Process* current, Process *p);
int erts_print_system_version(int to, void *arg, Process *c_p);
int erts_hibernate(Process* c_p, Eterm module, Eterm function, Eterm args, Eterm* reg);
#define seq_trace_output(token, msg, type, receiver, process) \
seq_trace_output_generic((token), (msg), (type), (receiver), (process), NIL)
#define seq_trace_output_exit(token, msg, type, receiver, exitfrom) \
seq_trace_output_generic((token), (msg), (type), (receiver), NULL, (exitfrom))
void seq_trace_output_generic(Eterm token, Eterm msg, Uint type,
Eterm receiver, Process *process, Eterm exitfrom);
int seq_trace_update_send(Process *process);
Eterm erts_seq_trace(Process *process,
Eterm atom_type, Eterm atom_true_or_false,
int build_result);
struct trace_pattern_flags {
unsigned int breakpoint : 1; /* Set if any other is set */
unsigned int local : 1; /* Local call trace breakpoint */
unsigned int meta : 1; /* Metadata trace breakpoint */
unsigned int call_count : 1; /* Fast call count breakpoint */
unsigned int call_time : 1; /* Fast call time breakpoint */
};
extern const struct trace_pattern_flags erts_trace_pattern_flags_off;
extern int erts_call_time_breakpoint_tracing;
int erts_set_trace_pattern(Eterm* mfa, int specified,
Binary* match_prog_set, Binary *meta_match_prog_set,
int on, struct trace_pattern_flags,
Eterm meta_tracer_pid);
void
erts_get_default_trace_pattern(int *trace_pattern_is_on,
Binary **match_spec,
Binary **meta_match_spec,
struct trace_pattern_flags *trace_pattern_flags,
Eterm *meta_tracer_pid);
void erts_bif_trace_init(void);
/*
** Call_trace uses this API for the parameter matching functions
*/
#define MatchSetRef(MPSP) \
do { \
if ((MPSP) != NULL) { \
erts_refc_inc(&(MPSP)->refc, 1); \
} \
} while (0)
#define MatchSetUnref(MPSP) \
do { \
if (((MPSP) != NULL) && erts_refc_dectest(&(MPSP)->refc, 0) <= 0) { \
erts_bin_free(MPSP); \
} \
} while(0)
#define MatchSetGetSource(MPSP) erts_match_set_get_source(MPSP)
extern Binary *erts_match_set_compile(Process *p, Eterm matchexpr);
Eterm erts_match_set_lint(Process *p, Eterm matchexpr);
extern void erts_match_set_release_result(Process* p);
enum erts_pam_run_flags {
ERTS_PAM_TMP_RESULT=0,
ERTS_PAM_COPY_RESULT=1,
ERTS_PAM_CONTIGUOUS_TUPLE=2
};
extern Eterm erts_match_set_run(Process *p, Binary *mpsp,
Eterm *args, int num_args,
enum erts_pam_run_flags in_flags,
Uint32 *return_flags);
extern Eterm erts_match_set_get_source(Binary *mpsp);
extern void erts_match_prog_foreach_offheap(Binary *b,
void (*)(ErlOffHeap *, void *),
void *);
#define MATCH_SET_RETURN_TRACE (0x1) /* return trace requested */
#define MATCH_SET_RETURN_TO_TRACE (0x2) /* Misleading name, it is not actually
set by the match program, but by the
breakpoint functions */
#define MATCH_SET_EXCEPTION_TRACE (0x4) /* exception trace requested */
#define MATCH_SET_RX_TRACE (MATCH_SET_RETURN_TRACE|MATCH_SET_EXCEPTION_TRACE)
/*
* Flag values when tracing bif
* Future note: flag field is 8 bits
*/
#define BIF_TRACE_AS_LOCAL (0x1)
#define BIF_TRACE_AS_GLOBAL (0x2)
#define BIF_TRACE_AS_META (0x4)
#define BIF_TRACE_AS_CALL_TIME (0x8)
extern erts_driver_t vanilla_driver;
extern erts_driver_t spawn_driver;
extern erts_driver_t fd_driver;
/* Should maybe be placed in erl_message.h, but then we get an include mess. */
ERTS_GLB_INLINE Eterm *
erts_alloc_message_heap(Uint size,
ErlHeapFragment **bpp,
ErlOffHeap **ohpp,
Process *receiver,
ErtsProcLocks *receiver_locks);
#if ERTS_GLB_INLINE_INCL_FUNC_DEF
/*
* NOTE: erts_alloc_message_heap() releases msg q and status
* lock on receiver without ensuring that other locks are
* held. User is responsible to ensure that the receiver
* pointer cannot become invalid until after message has
* been passed. This is normal done either by increasing
* reference count on process (preferred) or by holding
* main or link lock over the whole message passing
* operation.
*/
ERTS_GLB_INLINE Eterm *
erts_alloc_message_heap(Uint size,
ErlHeapFragment **bpp,
ErlOffHeap **ohpp,
Process *receiver,
ErtsProcLocks *receiver_locks)
{
Eterm *hp;
#ifdef ERTS_SMP
int locked_main = 0;
ErtsProcLocks ulocks = *receiver_locks & ERTS_PROC_LOCKS_MSG_SEND;
#endif
if (size > (Uint) INT_MAX)
erl_exit(ERTS_ABORT_EXIT, "HUGE size (%bpu)\n", size);
if (
#if defined(ERTS_SMP)
*receiver_locks & ERTS_PROC_LOCK_MAIN
#else
1
#endif
) {
#ifdef ERTS_SMP
try_allocate_on_heap:
#endif
if (ERTS_PROC_IS_EXITING(receiver)
|| HEAP_LIMIT(receiver) - HEAP_TOP(receiver) <= size) {
#ifdef ERTS_SMP
if (locked_main)
ulocks |= ERTS_PROC_LOCK_MAIN;
#endif
goto allocate_in_mbuf;
}
#ifdef ERTS_SMP
if (ulocks) {
erts_smp_proc_unlock(receiver, ulocks);
*receiver_locks &= ~ulocks;
}
#endif
hp = HEAP_TOP(receiver);
HEAP_TOP(receiver) = hp + size;
*bpp = NULL;
*ohpp = &MSO(receiver);
}
#ifdef ERTS_SMP
else if (erts_smp_proc_trylock(receiver, ERTS_PROC_LOCK_MAIN) == 0) {
locked_main = 1;
*receiver_locks |= ERTS_PROC_LOCK_MAIN;
goto try_allocate_on_heap;
}
#endif
else {
ErlHeapFragment *bp;
allocate_in_mbuf:
#ifdef ERTS_SMP
if (ulocks) {
*receiver_locks &= ~ulocks;
erts_smp_proc_unlock(receiver, ulocks);
}
#endif
bp = new_message_buffer(size);
hp = bp->mem;
*bpp = bp;
*ohpp = &bp->off_heap;
}
return hp;
}
#endif /* #if ERTS_GLB_INLINE_INCL_FUNC_DEF */
#if !HEAP_ON_C_STACK
# if defined(DEBUG)
# define DeclareTmpHeap(VariableName,Size,Process) \
Eterm *VariableName = erts_debug_allocate_tmp_heap(Size,Process)
# define DeclareTmpHeapNoproc(VariableName,Size) \
Eterm *VariableName = erts_debug_allocate_tmp_heap(Size,NULL)
# define UseTmpHeap(Size,Proc) \
do { \
erts_debug_use_tmp_heap((Size),(Proc)); \
} while (0)
# define UnUseTmpHeap(Size,Proc) \
do { \
erts_debug_unuse_tmp_heap((Size),(Proc)); \
} while (0)
# define UseTmpHeapNoproc(Size) \
do { \
erts_debug_use_tmp_heap(Size,NULL); \
} while (0)
# define UnUseTmpHeapNoproc(Size) \
do { \
erts_debug_unuse_tmp_heap(Size,NULL); \
} while (0)
# else
# define DeclareTmpHeap(VariableName,Size,Process) \
Eterm *VariableName = (ERTS_PROC_GET_SCHDATA(Process)->tmp_heap)+(ERTS_PROC_GET_SCHDATA(Process)->num_tmp_heap_used)
# define DeclareTmpHeapNoproc(VariableName,Size) \
Eterm *VariableName = (erts_get_scheduler_data()->tmp_heap)+(erts_get_scheduler_data()->num_tmp_heap_used)
# define UseTmpHeap(Size,Proc) \
do { \
ERTS_PROC_GET_SCHDATA(Proc)->num_tmp_heap_used += (Size); \
} while (0)
# define UnUseTmpHeap(Size,Proc) \
do { \
ERTS_PROC_GET_SCHDATA(Proc)->num_tmp_heap_used -= (Size); \
} while (0)
# define UseTmpHeapNoproc(Size) \
do { \
erts_get_scheduler_data()->num_tmp_heap_used += (Size); \
} while (0)
# define UnUseTmpHeapNoproc(Size) \
do { \
erts_get_scheduler_data()->num_tmp_heap_used -= (Size); \
} while (0)
# endif
#else
# define DeclareTmpHeap(VariableName,Size,Process) \
Eterm VariableName[Size]
# define DeclareTmpHeapNoproc(VariableName,Size) \
Eterm VariableName[Size]
# define UseTmpHeap(Size,Proc) /* Nothing */
# define UnUseTmpHeap(Size,Proc) /* Nothing */
# define UseTmpHeapNoproc(Size) /* Nothing */
# define UnUseTmpHeapNoproc(Size) /* Nothing */
#endif /* HEAP_ON_C_STACK */
#endif /* !__GLOBAL_H__ */