/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 2002-2013. All Rights Reserved.
*
* The contents of this file are subject to the Erlang Public License,
* Version 1.1, (the "License"); you may not use this file except in
* compliance with the License. You should have received a copy of the
* Erlang Public License along with this software. If not, it can be
* retrieved online at http://www.erlang.org/.
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* %CopyrightEnd%
*/
/*
* Description: A memory segment allocator. Segments that are deallocated
* are kept for a while in a segment "cache" before they are
* destroyed. When segments are allocated, cached segments
* are used if possible instead of creating new segments.
*
* Author: Rickard Green
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "sys.h"
#include "erl_mseg.h"
#include "global.h"
#include "erl_threads.h"
#include "erl_mtrace.h"
#include "erl_time.h"
#include "erl_alloc.h"
#include "big.h"
#include "erl_thr_progress.h"
#include "erl_util_queue.h"
#if HAVE_ERTS_MSEG
#define SEGTYPE ERTS_MTRACE_SEGMENT_ID
#ifndef HAVE_GETPAGESIZE
#define HAVE_GETPAGESIZE 0
#endif
#ifdef _SC_PAGESIZE
# define GET_PAGE_SIZE sysconf(_SC_PAGESIZE)
#elif HAVE_GETPAGESIZE
# define GET_PAGE_SIZE getpagesize()
#else
# error "Page size unknown"
/* Implement some other way to get the real page size if needed! */
#endif
#undef MIN
#define MIN(X, Y) ((X) < (Y) ? (X) : (Y))
#undef MAX
#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
#define INV_ALIGNED_MASK ((UWord) ((MSEG_ALIGNED_SIZE) - 1))
#define ALIGNED_MASK (~INV_ALIGNED_MASK)
#define ALIGNED_FLOOR(X) (((UWord)(X)) & ALIGNED_MASK)
#define ALIGNED_CEILING(X) ALIGNED_FLOOR((X) + INV_ALIGNED_MASK)
#define MAP_IS_ALIGNED(X) (((UWord)(X) & (MSEG_ALIGNED_SIZE - 1)) == 0)
#define IS_2POW(X) ((X) && !((X) & ((X) - 1)))
static ERTS_INLINE Uint ceil_2pow(Uint x) {
int i = 1 << (4 + (sizeof(Uint) != 4 ? 1 : 0));
x--;
do { x |= x >> i; } while(i >>= 1);
return x + 1;
}
static const int debruijn[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
};
#define LOG2(X) (debruijn[((Uint32)(((X) & -(X)) * 0x077CB531U)) >> 27])
#define CACHE_AREAS (32 - MSEG_ALIGN_BITS)
#define SIZE_TO_CACHE_AREA_IDX(S) (LOG2((S)) - MSEG_ALIGN_BITS)
#define MAX_CACHE_SIZE (30)
#define MSEG_FLG_IS_2POW(X) ((X) & ERTS_MSEG_FLG_2POW)
#ifdef DEBUG
#define DBG(F,...) fprintf(stderr, (F), __VA_ARGS__ )
#else
#define DBG(F,...) do{}while(0)
#endif
static int atoms_initialized;
typedef struct mem_kind_t MemKind;
#if HALFWORD_HEAP
static int initialize_pmmap(void);
static void *pmmap(size_t size);
static int pmunmap(void *p, size_t size);
static void *pmremap(void *old_address, size_t old_size,
size_t new_size);
#endif
#if HAVE_MMAP
/* Mmap ... */
#define MMAP_PROT (PROT_READ|PROT_WRITE)
#ifdef MAP_ANON
# define MMAP_FLAGS (MAP_ANON|MAP_PRIVATE)
# define MMAP_FD (-1)
#else
# define MMAP_FLAGS (MAP_PRIVATE)
# define MMAP_FD mmap_fd
static int mmap_fd;
#endif
#if HAVE_MREMAP
# define HAVE_MSEG_RECREATE 1
#else
# define HAVE_MSEG_RECREATE 0
#endif
#if HALFWORD_HEAP
#define CAN_PARTLY_DESTROY 0
#else
#define CAN_PARTLY_DESTROY 1
#endif
#else /* #if HAVE_MMAP */
#define CAN_PARTLY_DESTROY 0
#error "Not supported"
#endif /* #if HAVE_MMAP */
const ErtsMsegOpt_t erts_mseg_default_opt = {
1, /* Use cache */
1, /* Preserv data */
0, /* Absolute shrink threshold */
0, /* Relative shrink threshold */
0 /* Scheduler specific */
#if HALFWORD_HEAP
,0 /* need low memory */
#endif
};
typedef struct {
Uint32 giga_no;
Uint32 no;
} CallCounter;
typedef struct {
CallCounter alloc;
CallCounter dealloc;
CallCounter realloc;
CallCounter create;
CallCounter create_resize;
CallCounter destroy;
#if HAVE_MSEG_RECREATE
CallCounter recreate;
#endif
CallCounter clear_cache;
CallCounter check_cache;
} ErtsMsegCalls;
typedef struct cache_t_ cache_t;
struct cache_t_ {
Uint size;
void *seg;
cache_t *next;
cache_t *prev;
};
typedef struct ErtsMsegAllctr_t_ ErtsMsegAllctr_t;
struct mem_kind_t {
cache_t cache[MAX_CACHE_SIZE];
cache_t cache_unpowered_node;
cache_t cache_powered_node[CACHE_AREAS];
cache_t cache_free;
Sint cache_size;
Uint cache_hits;
struct {
struct {
Uint watermark;
Uint no;
Uint sz;
} current;
struct {
Uint no;
Uint sz;
} max;
struct {
Uint no;
Uint sz;
} max_ever;
} segments;
ErtsMsegAllctr_t *ma;
const char* name;
MemKind* next;
};/*MemKind*/
struct ErtsMsegAllctr_t_ {
int ix;
int is_init_done;
int is_thread_safe;
erts_mtx_t mtx;
int is_cache_check_scheduled;
MemKind* mk_list;
#if HALFWORD_HEAP
MemKind low_mem;
MemKind hi_mem;
#else
MemKind the_mem;
#endif
Uint max_cache_size;
Uint abs_max_cache_bad_fit;
Uint rel_max_cache_bad_fit;
ErtsMsegCalls calls;
#if CAN_PARTLY_DESTROY
Uint min_seg_size;
#endif
};
typedef union {
ErtsMsegAllctr_t mseg_alloc;
char align__[ERTS_ALC_CACHE_LINE_ALIGN_SIZE(sizeof(ErtsMsegAllctr_t))];
} ErtsAlgndMsegAllctr_t;
static int no_mseg_allocators;
static ErtsAlgndMsegAllctr_t *aligned_mseg_allctr;
#ifdef ERTS_SMP
#define ERTS_MSEG_ALLCTR_IX(IX) \
(&aligned_mseg_allctr[(IX)].mseg_alloc)
#define ERTS_MSEG_ALLCTR_SS() \
ERTS_MSEG_ALLCTR_IX((int) erts_get_scheduler_id())
#define ERTS_MSEG_ALLCTR_OPT(OPT) \
((OPT)->sched_spec ? ERTS_MSEG_ALLCTR_SS() : ERTS_MSEG_ALLCTR_IX(0))
#else
#define ERTS_MSEG_ALLCTR_IX(IX) \
(&aligned_mseg_allctr[0].mseg_alloc)
#define ERTS_MSEG_ALLCTR_SS() \
(&aligned_mseg_allctr[0].mseg_alloc)
#define ERTS_MSEG_ALLCTR_OPT(OPT) \
(&aligned_mseg_allctr[0].mseg_alloc)
#endif
#define ERTS_MSEG_LOCK(MA) \
do { \
if ((MA)->is_thread_safe) \
erts_mtx_lock(&(MA)->mtx); \
} while (0)
#define ERTS_MSEG_UNLOCK(MA) \
do { \
if ((MA)->is_thread_safe) \
erts_mtx_unlock(&(MA)->mtx); \
} while (0)
#define ERTS_MSEG_ALLOC_STAT(C,SZ) \
do { \
C->segments.current.no++; \
if (C->segments.max.no < C->segments.current.no) \
C->segments.max.no = C->segments.current.no; \
if (C->segments.current.watermark < C->segments.current.no) \
C->segments.current.watermark = C->segments.current.no; \
C->segments.current.sz += (SZ); \
if (C->segments.max.sz < C->segments.current.sz) \
C->segments.max.sz = C->segments.current.sz; \
} while (0)
#define ERTS_MSEG_DEALLOC_STAT(C,SZ) \
do { \
ASSERT(C->segments.current.no > 0); \
C->segments.current.no--; \
ASSERT(C->segments.current.sz >= (SZ)); \
C->segments.current.sz -= (SZ); \
} while (0)
#define ERTS_MSEG_REALLOC_STAT(C,OSZ, NSZ) \
do { \
ASSERT(C->segments.current.sz >= (OSZ)); \
C->segments.current.sz -= (OSZ); \
C->segments.current.sz += (NSZ); \
} while (0)
#define ONE_GIGA (1000000000)
#define ZERO_CC(MA, CC) ((MA)->calls.CC.no = 0, \
(MA)->calls.CC.giga_no = 0)
#define INC_CC(MA, CC) ((MA)->calls.CC.no == ONE_GIGA - 1 \
? ((MA)->calls.CC.giga_no++, \
(MA)->calls.CC.no = 0) \
: (MA)->calls.CC.no++)
#define DEC_CC(MA, CC) ((MA)->calls.CC.no == 0 \
? ((MA)->calls.CC.giga_no--, \
(MA)->calls.CC.no = ONE_GIGA - 1) \
: (MA)->calls.CC.no--)
static erts_mtx_t init_atoms_mutex; /* Also needed when !USE_THREADS */
static ERTS_INLINE void
schedule_cache_check(ErtsMsegAllctr_t *ma) {
if (!ma->is_cache_check_scheduled && ma->is_init_done) {
erts_set_aux_work_timeout(ma->ix,
ERTS_SSI_AUX_WORK_MSEG_CACHE_CHECK,
1);
ma->is_cache_check_scheduled = 1;
}
}
/* remove ErtsMsegAllctr_t from arguments?
* only used for statistics
*/
static ERTS_INLINE void *
mmap_align(ErtsMsegAllctr_t *ma, void *addr, size_t length, int prot, int flags, int fd, off_t offset) {
void *p, *q;
UWord d;
p = mmap(addr, length, prot, flags, fd, offset);
if (MAP_IS_ALIGNED(p) || p == MAP_FAILED)
return p;
if (ma)
INC_CC(ma, create_resize);
munmap(p, length);
if ((p = mmap(addr, length + MSEG_ALIGNED_SIZE, prot, flags, fd, offset)) == MAP_FAILED)
return MAP_FAILED;
q = (void *)ALIGNED_CEILING(p);
d = q - p;
if (d > 0)
munmap(p, d);
if (MSEG_ALIGNED_SIZE - d > 0)
munmap((void *) (q + length), MSEG_ALIGNED_SIZE - d);
return q;
}
static ERTS_INLINE void *
mseg_create(ErtsMsegAllctr_t *ma, MemKind* mk, Uint size)
{
void *seg;
ASSERT(size % MSEG_ALIGNED_SIZE == 0);
#if HALFWORD_HEAP
if (mk == &ma->low_mem) {
seg = pmmap(size);
if ((unsigned long) seg & CHECK_POINTER_MASK) {
erts_fprintf(stderr,"Pointer mask failure (0x%08lx)\n",(unsigned long) seg);
return NULL;
}
} else
#endif
{
#if HAVE_MMAP
{
seg = (void *) mmap_align(ma, (void *) 0, (size_t) size,
MMAP_PROT, MMAP_FLAGS, MMAP_FD, 0);
if (seg == (void *) MAP_FAILED)
seg = NULL;
ASSERT(MAP_IS_ALIGNED(seg) || !seg);
}
#else
# error "Missing mseg_create() implementation"
#endif
}
INC_CC(ma, create);
return seg;
}
static ERTS_INLINE void
mseg_destroy(ErtsMsegAllctr_t *ma, MemKind* mk, void *seg, Uint size) {
ERTS_DECLARE_DUMMY(int res);
#if HALFWORD_HEAP
if (mk == &ma->low_mem) {
res = pmunmap((void *) seg, size);
}
else
#endif
{
#ifdef HAVE_MMAP
res = munmap((void *) seg, size);
#else
# error "Missing mseg_destroy() implementation"
#endif
}
ASSERT(size % MSEG_ALIGNED_SIZE == 0);
ASSERT(res == 0);
INC_CC(ma, destroy);
}
#if HAVE_MSEG_RECREATE
#if defined(__NetBsd__)
#define MREMAP_FLAGS (0)
#else
#define MREMAP_FLAGS (MREMAP_MAYMOVE)
#endif
/* mseg_recreate
* May return *unaligned* segments as in address not aligned to MSEG_ALIGNMENT
* it is still page aligned
*
* This is fine for single block carriers as long as we don't cache misaligned
* segments (since multiblock carriers may use them)
*
* For multiblock carriers we *need* MSEG_ALIGNMENT but mbc's will never be
* reallocated.
*
* This should probably be fixed the following way:
* 1) Use an option to segment allocation - NEED_ALIGNMENT
* 2) Add mremap_align which takes care of aligning a new a mremaped area
* 3) Fix the cache to handle of aligned and unaligned segments
*/
static ERTS_INLINE void *
mseg_recreate(ErtsMsegAllctr_t *ma, MemKind* mk, void *old_seg, Uint old_size, Uint new_size)
{
void *new_seg;
ASSERT(old_size % MSEG_ALIGNED_SIZE == 0);
ASSERT(new_size % MSEG_ALIGNED_SIZE == 0);
#if HALFWORD_HEAP
if (mk == &ma->low_mem) {
new_seg = (void *) pmremap((void *) old_seg,
(size_t) old_size,
(size_t) new_size);
}
else
#endif
{
#if HAVE_MREMAP
#if defined(__NetBSD__)
new_seg = mremap(old_seg, (size_t)old_size, NULL, new_size, MREMAP_FLAGS);
#else
new_seg = mremap(old_seg, (size_t)old_size, (size_t)new_size, MREMAP_FLAGS);
#endif
if (new_seg == (void *) MAP_FAILED)
new_seg = NULL;
#else
#error "Missing mseg_recreate() implementation"
#endif
}
INC_CC(ma, recreate);
return new_seg;
}
#endif /* #if HAVE_MSEG_RECREATE */
#ifdef DEBUG
#define ERTS_DBG_MA_CHK_THR_ACCESS(MA) \
do { \
if ((MA)->is_thread_safe) \
ERTS_LC_ASSERT(erts_lc_mtx_is_locked(&(MA)->mtx) \
|| erts_smp_thr_progress_is_blocking() \
|| ERTS_IS_CRASH_DUMPING); \
else \
ERTS_LC_ASSERT((MA)->ix == (int) erts_get_scheduler_id() \
|| erts_smp_thr_progress_is_blocking() \
|| ERTS_IS_CRASH_DUMPING); \
} while (0)
#define ERTS_DBG_MK_CHK_THR_ACCESS(MK) \
ERTS_DBG_MA_CHK_THR_ACCESS((MK)->ma)
#else
#define ERTS_DBG_MA_CHK_THR_ACCESS(MA)
#define ERTS_DBG_MK_CHK_THR_ACCESS(MK)
#endif
/* Cache interface */
static ERTS_INLINE void mseg_cache_clear_node(cache_t *c) {
c->seg = NULL;
c->size = 0;
c->next = c;
c->prev = c;
}
static ERTS_INLINE int cache_bless_segment(MemKind *mk, void *seg, Uint size, Uint flags) {
cache_t *c;
ERTS_DBG_MK_CHK_THR_ACCESS(mk);
ASSERT(!MSEG_FLG_IS_2POW(flags) || (MSEG_FLG_IS_2POW(flags) && MAP_IS_ALIGNED(seg) && IS_2POW(size)));
/* The idea is that sbc caching is prefered over mbc caching.
* Blocks are normally allocated in mb carriers and thus cached there.
* Large blocks has no such cache and it is up to mseg to cache them to speed things up.
*/
if (!erts_circleq_is_empty(&(mk->cache_free))) {
/* We have free slots, use one to cache the segment */
c = erts_circleq_head(&(mk->cache_free));
erts_circleq_remove(c);
c->seg = seg;
c->size = size;
if (MSEG_FLG_IS_2POW(flags)) {
int ix = SIZE_TO_CACHE_AREA_IDX(size);
ASSERT(ix < CACHE_AREAS);
ASSERT((1 << (ix + MSEG_ALIGN_BITS)) == size);
erts_circleq_push_head(&(mk->cache_powered_node[ix]), c);
} else
erts_circleq_push_head(&(mk->cache_unpowered_node), c);
mk->cache_size++;
ASSERT(mk->cache_size <= mk->ma->max_cache_size);
return 1;
} else if (!MSEG_FLG_IS_2POW(flags) && !erts_circleq_is_empty(&(mk->cache_unpowered_node))) {
/* No free slots.
* Evict oldest slot from unpowered cache so we can cache an unpowered (sbc) segment */
c = erts_circleq_tail(&(mk->cache_unpowered_node));
erts_circleq_remove(c);
mseg_destroy(mk->ma, mk, c->seg, c->size);
mseg_cache_clear_node(c);
c->seg = seg;
c->size = size;
erts_circleq_push_head(&(mk->cache_unpowered_node), c);
return 1;
} else if (!MSEG_FLG_IS_2POW(flags)) {
/* No free slots and no unpowered (sbc) slots.
* Evict smallest slot from powered cache so we can cache an unpowered (sbc) segment.
* Note: Though this is the wanted policy I don't think it is used significantly.
* This branch could probably be removed without serious impact.
*/
int i;
for( i = 0; i < CACHE_AREAS; i++) {
if (erts_circleq_is_empty(&(mk->cache_powered_node[i])))
continue;
c = erts_circleq_tail(&(mk->cache_powered_node[i]));
erts_circleq_remove(c);
mseg_destroy(mk->ma, mk, c->seg, c->size);
mseg_cache_clear_node(c);
c->seg = seg;
c->size = size;
erts_circleq_push_head(&(mk->cache_unpowered_node), c);
return 1;
}
}
return 0;
}
static ERTS_INLINE void *cache_get_segment(MemKind *mk, Uint *size_p, Uint flags) {
Uint size = *size_p;
ERTS_DBG_MK_CHK_THR_ACCESS(mk);
if (MSEG_FLG_IS_2POW(flags)) {
int i, ix = SIZE_TO_CACHE_AREA_IDX(size);
void *seg;
cache_t *c;
Uint csize;
ASSERT(IS_2POW(size));
for( i = ix; i < CACHE_AREAS; i++) {
if (erts_circleq_is_empty(&(mk->cache_powered_node[i])))
continue;
c = erts_circleq_head(&(mk->cache_powered_node[i]));
erts_circleq_remove(c);
ASSERT(IS_2POW(c->size));
ASSERT(MAP_IS_ALIGNED(c->seg));
csize = c->size;
seg = c->seg;
mk->cache_size--;
mk->cache_hits++;
/* link to free cache list */
mseg_cache_clear_node(c);
erts_circleq_push_head(&(mk->cache_free), c);
ASSERT(!(mk->cache_size < 0));
if (csize != size) {
mseg_destroy(mk->ma, mk, (char *)seg + size, csize - size);
}
return seg;
}
}
else if (!erts_circleq_is_empty(&(mk->cache_unpowered_node))) {
void *seg;
cache_t *c;
cache_t *best = NULL;
Uint bdiff = 0;
Uint csize;
Uint bad_max_abs = mk->ma->abs_max_cache_bad_fit;
Uint bad_max_rel = mk->ma->rel_max_cache_bad_fit;
erts_circleq_foreach(c, &(mk->cache_unpowered_node)) {
csize = c->size;
if (csize >= size) {
if (((csize - size)*100 < bad_max_rel*size) && (csize - size) < bad_max_abs ) {
seg = c->seg;
erts_circleq_remove(c);
mk->cache_size--;
mk->cache_hits++;
mseg_cache_clear_node(c);
erts_circleq_push_head(&(mk->cache_free), c);
*size_p = csize;
return seg;
} else if (!best || (csize - size) < bdiff) {
best = c;
bdiff = csize - size;
}
}
}
/* No cached segment met our criteria, use the best one found and trim it */
if (best) {
seg = best->seg;
csize = best->size;
ASSERT(best->seg);
ASSERT(best->size > 0);
mk->cache_hits++;
/* Use current cache placement for remaining segment space */
best->seg = seg + size;
best->size = csize - size;
ASSERT((size % GET_PAGE_SIZE) == 0);
ASSERT((best->size % GET_PAGE_SIZE) == 0);
*size_p = size;
return seg;
}
}
return NULL;
}
/* *_mseg_check_*_cache
* Slowly remove segments cached in the allocator by
* using callbacks from aux-work in the scheduler.
*/
static ERTS_INLINE Uint mseg_drop_one_memkind_cache_size(MemKind *mk, cache_t *head) {
cache_t *c = NULL;
c = erts_circleq_tail(head);
erts_circleq_remove(c);
if (erts_mtrace_enabled)
erts_mtrace_crr_free(SEGTYPE, SEGTYPE, c->seg);
mseg_destroy(mk->ma, mk, c->seg, c->size);
mseg_cache_clear_node(c);
erts_circleq_push_head(&(mk->cache_free), c);
mk->segments.current.watermark--;
mk->cache_size--;
ASSERT( mk->cache_size >= 0 );
return mk->cache_size;
}
static ERTS_INLINE Uint mseg_drop_memkind_cache_size(MemKind *mk, cache_t *head) {
cache_t *c = NULL;
while (!erts_circleq_is_empty(head)) {
c = erts_circleq_tail(head);
erts_circleq_remove(c);
if (erts_mtrace_enabled)
erts_mtrace_crr_free(SEGTYPE, SEGTYPE, c->seg);
mseg_destroy(mk->ma, mk, c->seg, c->size);
mseg_cache_clear_node(c);
erts_circleq_push_head(&(mk->cache_free), c);
mk->segments.current.watermark--;
mk->cache_size--;
}
ASSERT( mk->cache_size >= 0 );
return mk->cache_size;
}
/* mseg_check_memkind_cache
* - Check if we can empty some cached segments in this
* MemKind.
*/
static Uint mseg_check_memkind_cache(MemKind *mk) {
int i;
ERTS_DBG_MK_CHK_THR_ACCESS(mk);
for (i = 0; i < CACHE_AREAS; i++) {
if (!erts_circleq_is_empty(&(mk->cache_powered_node[i])))
return mseg_drop_one_memkind_cache_size(mk, &(mk->cache_powered_node[i]));
}
if (!erts_circleq_is_empty(&(mk->cache_unpowered_node)))
return mseg_drop_one_memkind_cache_size(mk, &(mk->cache_unpowered_node));
return 0;
}
/* mseg_cache_check
* - Check if we have some cache we can purge
* in any of the memkinds.
*/
static void mseg_cache_check(ErtsMsegAllctr_t *ma) {
MemKind* mk;
Uint empty_cache = 1;
ERTS_MSEG_LOCK(ma);
for (mk = ma->mk_list; mk; mk = mk->next) {
if (mseg_check_memkind_cache(mk))
empty_cache = 0;
}
/* If all MemKinds caches are empty,
* remove aux-work callback
*/
if (empty_cache) {
ma->is_cache_check_scheduled = 0;
erts_set_aux_work_timeout(ma->ix, ERTS_SSI_AUX_WORK_MSEG_CACHE_CHECK, 0);
}
INC_CC(ma, check_cache);
ERTS_MSEG_UNLOCK(ma);
}
/* erts_mseg_cache_check
* - This is a callback that is scheduled as aux-work from
* schedulers and is called at some interval if we have a cache
* on this mseg-allocator and memkind.
* - Purpose: Empty cache slowly so we don't collect mapped areas
* and bloat memory.
*/
void erts_mseg_cache_check(void) {
mseg_cache_check(ERTS_MSEG_ALLCTR_SS());
}
/* *_mseg_clear_*_cache
* Remove cached segments from the allocator completely
*/
static void mseg_clear_memkind_cache(MemKind *mk) {
int i;
/* drop pow2 caches */
for (i = 0; i < CACHE_AREAS; i++) {
if (erts_circleq_is_empty(&(mk->cache_powered_node[i])))
continue;
mseg_drop_memkind_cache_size(mk, &(mk->cache_powered_node[i]));
ASSERT(erts_circleq_is_empty(&(mk->cache_powered_node[i])));
}
/* drop varied caches */
if (!erts_circleq_is_empty(&(mk->cache_unpowered_node)))
mseg_drop_memkind_cache_size(mk, &(mk->cache_unpowered_node));
ASSERT(erts_circleq_is_empty(&(mk->cache_unpowered_node)));
ASSERT(mk->cache_size == 0);
}
static void mseg_clear_cache(ErtsMsegAllctr_t *ma) {
MemKind* mk;
ERTS_MSEG_LOCK(ma);
ERTS_DBG_MA_CHK_THR_ACCESS(ma);
for (mk = ma->mk_list; mk; mk = mk->next) {
mseg_clear_memkind_cache(mk);
}
INC_CC(ma, clear_cache);
ERTS_MSEG_UNLOCK(ma);
}
void erts_mseg_clear_cache(void) {
mseg_clear_cache(ERTS_MSEG_ALLCTR_SS());
mseg_clear_cache(ERTS_MSEG_ALLCTR_IX(0));
}
static ERTS_INLINE MemKind* memkind(ErtsMsegAllctr_t *ma,
const ErtsMsegOpt_t *opt)
{
#if HALFWORD_HEAP
return opt->low_mem ? &ma->low_mem : &ma->hi_mem;
#else
return &ma->the_mem;
#endif
}
static void *
mseg_alloc(ErtsMsegAllctr_t *ma, ErtsAlcType_t atype, Uint *size_p,
Uint flags, const ErtsMsegOpt_t *opt)
{
Uint size;
void *seg;
MemKind* mk = memkind(ma, opt);
INC_CC(ma, alloc);
/* Carrier align */
size = ALIGNED_CEILING(*size_p);
/* Cache optim (if applicable) */
if (MSEG_FLG_IS_2POW(flags) && !IS_2POW(size))
size = ceil_2pow(size);
#if CAN_PARTLY_DESTROY
if (size < ma->min_seg_size)
ma->min_seg_size = size;
#endif
if (opt->cache && mk->cache_size > 0 && (seg = cache_get_segment(mk, &size, flags)) != NULL)
goto done;
if ((seg = mseg_create(ma, mk, size)) == NULL)
size = 0;
done:
*size_p = size;
if (seg) {
if (erts_mtrace_enabled)
erts_mtrace_crr_alloc(seg, atype, ERTS_MTRACE_SEGMENT_ID, size);
ERTS_MSEG_ALLOC_STAT(mk,size);
}
return seg;
}
static void
mseg_dealloc(ErtsMsegAllctr_t *ma, ErtsAlcType_t atype, void *seg, Uint size,
Uint flags, const ErtsMsegOpt_t *opt)
{
MemKind* mk = memkind(ma, opt);
ERTS_MSEG_DEALLOC_STAT(mk,size);
if (opt->cache && cache_bless_segment(mk, seg, size, flags)) {
schedule_cache_check(ma);
goto done;
}
if (erts_mtrace_enabled)
erts_mtrace_crr_free(atype, SEGTYPE, seg);
mseg_destroy(ma, mk, seg, size);
done:
INC_CC(ma, dealloc);
}
static void *
mseg_realloc(ErtsMsegAllctr_t *ma, ErtsAlcType_t atype, void *seg,
Uint old_size, Uint *new_size_p, Uint flags, const ErtsMsegOpt_t *opt)
{
MemKind* mk;
void *new_seg;
Uint new_size;
/* Just allocate a new segment if we didn't have one before */
if (!seg || !old_size) {
new_seg = mseg_alloc(ma, atype, new_size_p, flags, opt);
DEC_CC(ma, alloc);
return new_seg;
}
/* Dealloc old segment if new segment is of size 0 */
if (!(*new_size_p)) {
mseg_dealloc(ma, atype, seg, old_size, flags, opt);
DEC_CC(ma, dealloc);
return NULL;
}
mk = memkind(ma, opt);
new_seg = seg;
/* Carrier align */
new_size = ALIGNED_CEILING(*new_size_p);
/* Cache optim (if applicable) */
if (MSEG_FLG_IS_2POW(flags) && !IS_2POW(new_size))
new_size = ceil_2pow(new_size);
if (new_size == old_size)
;
else if (new_size < old_size) {
Uint shrink_sz = old_size - new_size;
#if CAN_PARTLY_DESTROY
if (new_size < ma->min_seg_size)
ma->min_seg_size = new_size;
#endif
/* +M<S>rsbcst <ratio> */
if (shrink_sz < opt->abs_shrink_th
&& 100*shrink_sz < opt->rel_shrink_th*old_size) {
new_size = old_size;
}
else {
#if CAN_PARTLY_DESTROY
if (erts_mtrace_enabled)
erts_mtrace_crr_realloc(new_seg, atype, SEGTYPE, seg, new_size);
mseg_destroy(ma, mk, ((char *) seg) + new_size, shrink_sz);
#elif HAVE_MSEG_RECREATE
goto do_recreate;
#else
new_seg = mseg_alloc(ma, atype, &new_size, flags, opt);
ASSERT(MAP_IS_ALIGNED(new_seg) || !new_seg);
if (!new_seg)
new_size = old_size;
else {
sys_memcpy(((char *) new_seg),
((char *) seg),
MIN(new_size, old_size));
mseg_dealloc(ma, atype, seg, old_size, flags, opt);
}
#endif
}
}
else {
if (!opt->preserv) {
mseg_dealloc(ma, atype, seg, old_size, flags, opt);
new_seg = mseg_alloc(ma, atype, &new_size, flags, opt);
ASSERT(MAP_IS_ALIGNED(new_seg) || !new_seg);
}
else {
#if HAVE_MSEG_RECREATE
#if !CAN_PARTLY_DESTROY
do_recreate:
#endif
new_seg = mseg_recreate(ma, mk, (void *) seg, old_size, new_size);
/* ASSERT(MAP_IS_ALIGNED(new_seg) || !new_seg);
* will not always be aligned and it ok for now
*/
if (erts_mtrace_enabled)
erts_mtrace_crr_realloc(new_seg, atype, SEGTYPE, seg, new_size);
if (!new_seg)
new_size = old_size;
#else
new_seg = mseg_alloc(ma, atype, &new_size, flags, opt);
ASSERT(MAP_IS_ALIGNED(new_seg) || !new_seg);
if (!new_seg)
new_size = old_size;
else {
sys_memcpy(((char *) new_seg), ((char *) seg), MIN(new_size, old_size));
mseg_dealloc(ma, atype, seg, old_size, flags, opt);
}
#endif
}
}
INC_CC(ma, realloc);
ASSERT(!MSEG_FLG_IS_2POW(flags) || IS_2POW(new_size));
*new_size_p = new_size;
ERTS_MSEG_REALLOC_STAT(mk, old_size, new_size);
return new_seg;
}
/* --- Info stuff ---------------------------------------------------------- */
static struct {
Eterm version;
Eterm options;
Eterm amcbf;
Eterm rmcbf;
Eterm mcs;
Eterm memkind;
Eterm name;
Eterm status;
Eterm cached_segments;
Eterm cache_hits;
Eterm segments;
Eterm segments_size;
Eterm segments_watermark;
Eterm calls;
Eterm mseg_alloc;
Eterm mseg_dealloc;
Eterm mseg_realloc;
Eterm mseg_create;
Eterm mseg_create_resize;
Eterm mseg_destroy;
#if HAVE_MSEG_RECREATE
Eterm mseg_recreate;
#endif
Eterm mseg_clear_cache;
Eterm mseg_check_cache;
#ifdef DEBUG
Eterm end_of_atoms;
#endif
} am;
static void ERTS_INLINE atom_init(Eterm *atom, char *name)
{
*atom = am_atom_put(name, strlen(name));
}
#define AM_INIT(AM) atom_init(&am.AM, #AM)
static void
init_atoms(ErtsMsegAllctr_t *ma)
{
#ifdef DEBUG
Eterm *atom;
#endif
ERTS_MSEG_UNLOCK(ma);
erts_mtx_lock(&init_atoms_mutex);
if (!atoms_initialized) {
#ifdef DEBUG
for (atom = (Eterm *) &am; atom <= &am.end_of_atoms; atom++) {
*atom = THE_NON_VALUE;
}
#endif
AM_INIT(version);
AM_INIT(memkind);
AM_INIT(name);
AM_INIT(options);
AM_INIT(amcbf);
AM_INIT(rmcbf);
AM_INIT(mcs);
AM_INIT(status);
AM_INIT(cached_segments);
AM_INIT(cache_hits);
AM_INIT(segments);
AM_INIT(segments_size);
AM_INIT(segments_watermark);
AM_INIT(calls);
AM_INIT(mseg_alloc);
AM_INIT(mseg_dealloc);
AM_INIT(mseg_realloc);
AM_INIT(mseg_create);
AM_INIT(mseg_create_resize);
AM_INIT(mseg_destroy);
#if HAVE_MSEG_RECREATE
AM_INIT(mseg_recreate);
#endif
AM_INIT(mseg_clear_cache);
AM_INIT(mseg_check_cache);
#ifdef DEBUG
for (atom = (Eterm *) &am; atom < &am.end_of_atoms; atom++) {
ASSERT(*atom != THE_NON_VALUE);
}
#endif
}
ERTS_MSEG_LOCK(ma);
atoms_initialized = 1;
erts_mtx_unlock(&init_atoms_mutex);
}
#define bld_uint erts_bld_uint
#define bld_cons erts_bld_cons
#define bld_tuple erts_bld_tuple
#define bld_string erts_bld_string
#define bld_2tup_list erts_bld_2tup_list
/*
* bld_unstable_uint() (instead of bld_uint()) is used when values may
* change between size check and actual build. This because a value
* that would fit a small when size check is done may need to be built
* as a big when the actual build is performed. Caller is required to
* HRelease after build.
*/
static ERTS_INLINE Eterm
bld_unstable_uint(Uint **hpp, Uint *szp, Uint ui)
{
Eterm res = THE_NON_VALUE;
if (szp)
*szp += BIG_UINT_HEAP_SIZE;
if (hpp) {
if (IS_USMALL(0, ui))
res = make_small(ui);
else {
res = uint_to_big(ui, *hpp);
*hpp += BIG_UINT_HEAP_SIZE;
}
}
return res;
}
static ERTS_INLINE void
add_2tup(Uint **hpp, Uint *szp, Eterm *lp, Eterm el1, Eterm el2)
{
*lp = bld_cons(hpp, szp, bld_tuple(hpp, szp, 2, el1, el2), *lp);
}
static ERTS_INLINE void
add_3tup(Uint **hpp, Uint *szp, Eterm *lp, Eterm el1, Eterm el2, Eterm el3)
{
*lp = bld_cons(hpp, szp, bld_tuple(hpp, szp, 3, el1, el2, el3), *lp);
}
static ERTS_INLINE void
add_4tup(Uint **hpp, Uint *szp, Eterm *lp,
Eterm el1, Eterm el2, Eterm el3, Eterm el4)
{
*lp = bld_cons(hpp, szp, bld_tuple(hpp, szp, 4, el1, el2, el3, el4), *lp);
}
static Eterm
info_options(ErtsMsegAllctr_t *ma,
char *prefix,
int *print_to_p,
void *print_to_arg,
Uint **hpp,
Uint *szp)
{
Eterm res = THE_NON_VALUE;
if (print_to_p) {
int to = *print_to_p;
void *arg = print_to_arg;
erts_print(to, arg, "%samcbf: %beu\n", prefix, ma->abs_max_cache_bad_fit);
erts_print(to, arg, "%srmcbf: %beu\n", prefix, ma->rel_max_cache_bad_fit);
erts_print(to, arg, "%smcs: %beu\n", prefix, ma->max_cache_size);
}
if (hpp || szp) {
if (!atoms_initialized)
init_atoms(ma);
res = NIL;
add_2tup(hpp, szp, &res,
am.mcs,
bld_uint(hpp, szp, ma->max_cache_size));
add_2tup(hpp, szp, &res,
am.rmcbf,
bld_uint(hpp, szp, ma->rel_max_cache_bad_fit));
add_2tup(hpp, szp, &res,
am.amcbf,
bld_uint(hpp, szp, ma->abs_max_cache_bad_fit));
}
return res;
}
static Eterm
info_calls(ErtsMsegAllctr_t *ma, int *print_to_p, void *print_to_arg, Uint **hpp, Uint *szp)
{
Eterm res = THE_NON_VALUE;
if (print_to_p) {
#define PRINT_CC(TO, TOA, CC) \
if (ma->calls.CC.giga_no == 0) \
erts_print(TO, TOA, "mseg_%s calls: %b32u\n", #CC, ma->calls.CC.no); \
else \
erts_print(TO, TOA, "mseg_%s calls: %b32u%09b32u\n", #CC, \
ma->calls.CC.giga_no, ma->calls.CC.no)
int to = *print_to_p;
void *arg = print_to_arg;
PRINT_CC(to, arg, alloc);
PRINT_CC(to, arg, dealloc);
PRINT_CC(to, arg, realloc);
PRINT_CC(to, arg, create);
PRINT_CC(to, arg, create_resize);
PRINT_CC(to, arg, destroy);
#if HAVE_MSEG_RECREATE
PRINT_CC(to, arg, recreate);
#endif
PRINT_CC(to, arg, clear_cache);
PRINT_CC(to, arg, check_cache);
#undef PRINT_CC
}
if (hpp || szp) {
res = NIL;
add_3tup(hpp, szp, &res,
am.mseg_check_cache,
bld_unstable_uint(hpp, szp, ma->calls.check_cache.giga_no),
bld_unstable_uint(hpp, szp, ma->calls.check_cache.no));
add_3tup(hpp, szp, &res,
am.mseg_clear_cache,
bld_unstable_uint(hpp, szp, ma->calls.clear_cache.giga_no),
bld_unstable_uint(hpp, szp, ma->calls.clear_cache.no));
#if HAVE_MSEG_RECREATE
add_3tup(hpp, szp, &res,
am.mseg_recreate,
bld_unstable_uint(hpp, szp, ma->calls.recreate.giga_no),
bld_unstable_uint(hpp, szp, ma->calls.recreate.no));
#endif
add_3tup(hpp, szp, &res,
am.mseg_destroy,
bld_unstable_uint(hpp, szp, ma->calls.destroy.giga_no),
bld_unstable_uint(hpp, szp, ma->calls.destroy.no));
add_3tup(hpp, szp, &res,
am.mseg_create,
bld_unstable_uint(hpp, szp, ma->calls.create.giga_no),
bld_unstable_uint(hpp, szp, ma->calls.create.no));
add_3tup(hpp, szp, &res,
am.mseg_create_resize,
bld_unstable_uint(hpp, szp, ma->calls.create_resize.giga_no),
bld_unstable_uint(hpp, szp, ma->calls.create_resize.no));
add_3tup(hpp, szp, &res,
am.mseg_realloc,
bld_unstable_uint(hpp, szp, ma->calls.realloc.giga_no),
bld_unstable_uint(hpp, szp, ma->calls.realloc.no));
add_3tup(hpp, szp, &res,
am.mseg_dealloc,
bld_unstable_uint(hpp, szp, ma->calls.dealloc.giga_no),
bld_unstable_uint(hpp, szp, ma->calls.dealloc.no));
add_3tup(hpp, szp, &res,
am.mseg_alloc,
bld_unstable_uint(hpp, szp, ma->calls.alloc.giga_no),
bld_unstable_uint(hpp, szp, ma->calls.alloc.no));
}
return res;
}
static Eterm
info_status(ErtsMsegAllctr_t *ma, MemKind* mk, int *print_to_p, void *print_to_arg,
int begin_new_max_period, Uint **hpp, Uint *szp)
{
Eterm res = THE_NON_VALUE;
if (mk->segments.max_ever.no < mk->segments.max.no)
mk->segments.max_ever.no = mk->segments.max.no;
if (mk->segments.max_ever.sz < mk->segments.max.sz)
mk->segments.max_ever.sz = mk->segments.max.sz;
if (print_to_p) {
int to = *print_to_p;
void *arg = print_to_arg;
erts_print(to, arg, "cached_segments: %beu\n", mk->cache_size);
erts_print(to, arg, "cache_hits: %beu\n", mk->cache_hits);
erts_print(to, arg, "segments: %beu %beu %beu\n",
mk->segments.current.no, mk->segments.max.no, mk->segments.max_ever.no);
erts_print(to, arg, "segments_size: %beu %beu %beu\n",
mk->segments.current.sz, mk->segments.max.sz, mk->segments.max_ever.sz);
erts_print(to, arg, "segments_watermark: %beu\n",
mk->segments.current.watermark);
}
if (hpp || szp) {
res = NIL;
add_2tup(hpp, szp, &res,
am.segments_watermark,
bld_unstable_uint(hpp, szp, mk->segments.current.watermark));
add_4tup(hpp, szp, &res,
am.segments_size,
bld_unstable_uint(hpp, szp, mk->segments.current.sz),
bld_unstable_uint(hpp, szp, mk->segments.max.sz),
bld_unstable_uint(hpp, szp, mk->segments.max_ever.sz));
add_4tup(hpp, szp, &res,
am.segments,
bld_unstable_uint(hpp, szp, mk->segments.current.no),
bld_unstable_uint(hpp, szp, mk->segments.max.no),
bld_unstable_uint(hpp, szp, mk->segments.max_ever.no));
add_2tup(hpp, szp, &res,
am.cache_hits,
bld_unstable_uint(hpp, szp, mk->cache_hits));
add_2tup(hpp, szp, &res,
am.cached_segments,
bld_unstable_uint(hpp, szp, mk->cache_size));
}
if (begin_new_max_period) {
mk->segments.max.no = mk->segments.current.no;
mk->segments.max.sz = mk->segments.current.sz;
}
return res;
}
static Eterm info_memkind(ErtsMsegAllctr_t *ma, MemKind* mk, int *print_to_p, void *print_to_arg,
int begin_max_per, Uint **hpp, Uint *szp)
{
Eterm res = THE_NON_VALUE;
Eterm atoms[3];
Eterm values[3];
if (print_to_p) {
erts_print(*print_to_p, print_to_arg, "memory kind: %s\n", mk->name);
}
if (hpp || szp) {
atoms[0] = am.name;
atoms[1] = am.status;
atoms[2] = am.calls;
values[0] = erts_bld_string(hpp, szp, mk->name);
}
values[1] = info_status(ma, mk, print_to_p, print_to_arg, begin_max_per, hpp, szp);
values[2] = info_calls(ma, print_to_p, print_to_arg, hpp, szp);
if (hpp || szp)
res = bld_2tup_list(hpp, szp, 3, atoms, values);
return res;
}
static Eterm
info_version(ErtsMsegAllctr_t *ma, int *print_to_p, void *print_to_arg, Uint **hpp, Uint *szp)
{
Eterm res = THE_NON_VALUE;
if (print_to_p) {
erts_print(*print_to_p, print_to_arg, "version: %s\n",
ERTS_MSEG_VSN_STR);
}
if (hpp || szp) {
res = bld_string(hpp, szp, ERTS_MSEG_VSN_STR);
}
return res;
}
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* Exported functions *
\* */
Eterm
erts_mseg_info_options(int ix,
int *print_to_p, void *print_to_arg,
Uint **hpp, Uint *szp)
{
ErtsMsegAllctr_t *ma = ERTS_MSEG_ALLCTR_IX(ix);
Eterm res;
ERTS_MSEG_LOCK(ma);
ERTS_DBG_MA_CHK_THR_ACCESS(ma);
res = info_options(ma, "option ", print_to_p, print_to_arg, hpp, szp);
ERTS_MSEG_UNLOCK(ma);
return res;
}
Eterm
erts_mseg_info(int ix,
int *print_to_p,
void *print_to_arg,
int begin_max_per,
Uint **hpp,
Uint *szp)
{
ErtsMsegAllctr_t *ma = ERTS_MSEG_ALLCTR_IX(ix);
Eterm res = THE_NON_VALUE;
Eterm atoms[4];
Eterm values[4];
Uint n = 0;
ERTS_MSEG_LOCK(ma);
ERTS_DBG_MA_CHK_THR_ACCESS(ma);
if (hpp || szp) {
if (!atoms_initialized)
init_atoms(ma);
atoms[0] = am.version;
atoms[1] = am.options;
atoms[2] = am.memkind;
atoms[3] = am.memkind;
}
values[n++] = info_version(ma, print_to_p, print_to_arg, hpp, szp);
values[n++] = info_options(ma, "option ", print_to_p, print_to_arg, hpp, szp);
#if HALFWORD_HEAP
values[n++] = info_memkind(ma, &ma->low_mem, print_to_p, print_to_arg, begin_max_per, hpp, szp);
values[n++] = info_memkind(ma, &ma->hi_mem, print_to_p, print_to_arg, begin_max_per, hpp, szp);
#else
values[n++] = info_memkind(ma, &ma->the_mem, print_to_p, print_to_arg, begin_max_per, hpp, szp);
#endif
if (hpp || szp)
res = bld_2tup_list(hpp, szp, n, atoms, values);
ERTS_MSEG_UNLOCK(ma);
return res;
}
void *
erts_mseg_alloc_opt(ErtsAlcType_t atype, Uint *size_p, Uint flags, const ErtsMsegOpt_t *opt)
{
ErtsMsegAllctr_t *ma = ERTS_MSEG_ALLCTR_OPT(opt);
void *seg;
ERTS_MSEG_LOCK(ma);
ERTS_DBG_MA_CHK_THR_ACCESS(ma);
seg = mseg_alloc(ma, atype, size_p, flags, opt);
ERTS_MSEG_UNLOCK(ma);
return seg;
}
void *
erts_mseg_alloc(ErtsAlcType_t atype, Uint *size_p, Uint flags)
{
return erts_mseg_alloc_opt(atype, size_p, flags, &erts_mseg_default_opt);
}
void
erts_mseg_dealloc_opt(ErtsAlcType_t atype, void *seg,
Uint size, Uint flags, const ErtsMsegOpt_t *opt)
{
ErtsMsegAllctr_t *ma = ERTS_MSEG_ALLCTR_OPT(opt);
ERTS_MSEG_LOCK(ma);
ERTS_DBG_MA_CHK_THR_ACCESS(ma);
mseg_dealloc(ma, atype, seg, size, flags, opt);
ERTS_MSEG_UNLOCK(ma);
}
void
erts_mseg_dealloc(ErtsAlcType_t atype, void *seg, Uint size, Uint flags)
{
erts_mseg_dealloc_opt(atype, seg, size, flags, &erts_mseg_default_opt);
}
void *
erts_mseg_realloc_opt(ErtsAlcType_t atype, void *seg,
Uint old_size, Uint *new_size_p,
Uint flags,
const ErtsMsegOpt_t *opt)
{
ErtsMsegAllctr_t *ma = ERTS_MSEG_ALLCTR_OPT(opt);
void *new_seg;
ERTS_MSEG_LOCK(ma);
ERTS_DBG_MA_CHK_THR_ACCESS(ma);
new_seg = mseg_realloc(ma, atype, seg, old_size, new_size_p, flags, opt);
ERTS_MSEG_UNLOCK(ma);
return new_seg;
}
void *
erts_mseg_realloc(ErtsAlcType_t atype, void *seg,
Uint old_size, Uint *new_size_p, Uint flags)
{
return erts_mseg_realloc_opt(atype, seg, old_size, new_size_p,
flags, &erts_mseg_default_opt);
}
Uint
erts_mseg_no(const ErtsMsegOpt_t *opt)
{
ErtsMsegAllctr_t *ma = ERTS_MSEG_ALLCTR_OPT(opt);
MemKind* mk;
Uint n = 0;
ERTS_MSEG_LOCK(ma);
ERTS_DBG_MA_CHK_THR_ACCESS(ma);
for (mk=ma->mk_list; mk; mk=mk->next) {
n += mk->segments.current.no;
}
ERTS_MSEG_UNLOCK(ma);
return n;
}
Uint
erts_mseg_unit_size(void)
{
return MSEG_ALIGNED_SIZE;
}
static void mem_kind_init(ErtsMsegAllctr_t *ma, MemKind* mk, const char* name)
{
int i;
/* Clear all cache headers */
mseg_cache_clear_node(&(mk->cache_free));
mseg_cache_clear_node(&(mk->cache_unpowered_node));
for (i = 0; i < CACHE_AREAS; i++) {
mseg_cache_clear_node(&(mk->cache_powered_node[i]));
}
/* Populate cache free list */
ASSERT(ma->max_cache_size <= MAX_CACHE_SIZE);
for (i = 0; i < ma->max_cache_size; i++) {
mseg_cache_clear_node(&(mk->cache[i]));
erts_circleq_push_head(&(mk->cache_free), &(mk->cache[i]));
}
mk->cache_size = 0;
mk->cache_hits = 0;
mk->segments.current.watermark = 0;
mk->segments.current.no = 0;
mk->segments.current.sz = 0;
mk->segments.max.no = 0;
mk->segments.max.sz = 0;
mk->segments.max_ever.no = 0;
mk->segments.max_ever.sz = 0;
mk->ma = ma;
mk->name = name;
mk->next = ma->mk_list;
ma->mk_list = mk;
}
void
erts_mseg_init(ErtsMsegInit_t *init)
{
int i;
UWord x;
#ifdef ERTS_SMP
no_mseg_allocators = init->nos + 1;
#else
no_mseg_allocators = 1;
#endif
x = (UWord) malloc(sizeof(ErtsAlgndMsegAllctr_t)
*no_mseg_allocators
+ (ERTS_CACHE_LINE_SIZE-1));
if (x & ERTS_CACHE_LINE_MASK)
x = (x & ~ERTS_CACHE_LINE_MASK) + ERTS_CACHE_LINE_SIZE;
ASSERT((x & ERTS_CACHE_LINE_MASK) == 0);
aligned_mseg_allctr = (ErtsAlgndMsegAllctr_t *) x;
atoms_initialized = 0;
erts_mtx_init(&init_atoms_mutex, "mseg_init_atoms");
#if HAVE_MMAP && !defined(MAP_ANON)
mmap_fd = open("/dev/zero", O_RDWR);
if (mmap_fd < 0)
erl_exit(ERTS_ABORT_EXIT, "erts_mseg: unable to open /dev/zero\n");
#endif
#if HAVE_MMAP && HALFWORD_HEAP
initialize_pmmap();
#endif
if (!IS_2POW(GET_PAGE_SIZE))
erl_exit(ERTS_ABORT_EXIT, "erts_mseg: Unexpected page_size %beu\n", GET_PAGE_SIZE);
ASSERT((MSEG_ALIGNED_SIZE % GET_PAGE_SIZE) == 0);
for (i = 0; i < no_mseg_allocators; i++) {
ErtsMsegAllctr_t *ma = ERTS_MSEG_ALLCTR_IX(i);
ma->ix = i;
ma->is_init_done = 0;
if (i != 0)
ma->is_thread_safe = 0;
else {
ma->is_thread_safe = 1;
erts_mtx_init(&ma->mtx, "mseg");
}
ma->is_cache_check_scheduled = 0;
/* Options ... */
ma->abs_max_cache_bad_fit = init->amcbf;
ma->rel_max_cache_bad_fit = init->rmcbf;
ma->max_cache_size = init->mcs;
if (ma->max_cache_size > MAX_CACHE_SIZE)
ma->max_cache_size = MAX_CACHE_SIZE;
ma->mk_list = NULL;
#if HALFWORD_HEAP
mem_kind_init(ma, &ma->low_mem, "low memory");
mem_kind_init(ma, &ma->hi_mem, "high memory");
#else
mem_kind_init(ma, &ma->the_mem, "all memory");
#endif
sys_memzero((void *) &ma->calls, sizeof(ErtsMsegCalls));
#if CAN_PARTLY_DESTROY
ma->min_seg_size = ~((Uint) 0);
#endif
}
}
static ERTS_INLINE Uint tot_cache_size(ErtsMsegAllctr_t *ma)
{
MemKind* mk;
Uint sz = 0;
ERTS_DBG_MA_CHK_THR_ACCESS(ma);
for (mk=ma->mk_list; mk; mk=mk->next) {
sz += mk->cache_size;
}
return sz;
}
/*
* erts_mseg_late_init() have to be called after all allocators,
* threads and timers have been initialized.
*/
void
erts_mseg_late_init(void)
{
ErtsMsegAllctr_t *ma = ERTS_MSEG_ALLCTR_SS();
ERTS_MSEG_LOCK(ma);
ERTS_DBG_MA_CHK_THR_ACCESS(ma);
ma->is_init_done = 1;
if (tot_cache_size(ma))
schedule_cache_check(ma);
ERTS_MSEG_UNLOCK(ma);
}
#endif /* #if HAVE_ERTS_MSEG */
unsigned long
erts_mseg_test(unsigned long op,
unsigned long a1,
unsigned long a2,
unsigned long a3)
{
switch (op) {
#if HAVE_ERTS_MSEG
case 0x400: /* Have erts_mseg */
return (unsigned long) 1;
case 0x401:
return (unsigned long) erts_mseg_alloc(ERTS_ALC_A_INVALID, (Uint *) a1, (Uint) 0);
case 0x402:
erts_mseg_dealloc(ERTS_ALC_A_INVALID, (void *) a1, (Uint) a2, (Uint) 0);
return (unsigned long) 0;
case 0x403:
return (unsigned long) erts_mseg_realloc(ERTS_ALC_A_INVALID,
(void *) a1,
(Uint) a2,
(Uint *) a3,
(Uint) 0);
case 0x404:
erts_mseg_clear_cache();
return (unsigned long) 0;
case 0x405:
return (unsigned long) erts_mseg_no(&erts_mseg_default_opt);
case 0x406: {
ErtsMsegAllctr_t *ma = ERTS_MSEG_ALLCTR_IX(0);
unsigned long res;
ERTS_MSEG_LOCK(ma);
res = (unsigned long) tot_cache_size(ma);
ERTS_MSEG_UNLOCK(ma);
return res;
}
#else /* #if HAVE_ERTS_MSEG */
case 0x400: /* Have erts_mseg */
return (unsigned long) 0;
#endif /* #if HAVE_ERTS_MSEG */
default: ASSERT(0); return ~((unsigned long) 0);
}
}
#if HALFWORD_HEAP
/*
* Very simple page oriented mmap replacer. Works in the lower
* 32 bit address range of a 64bit program.
* Implements anonymous mmap mremap and munmap with address order first fit.
* The free list is expected to be very short...
* To be used for compressed pointers in Erlang halfword emulator
* implementation. The MacOS X version is more of a toy, it's not really
* for production as the halfword erlang VM relies on Linux specific memory
* mapping tricks.
*/
/* #define HARDDEBUG 1 */
#ifdef HARDDEBUG
static void dump_freelist(void)
{
FreeBlock *p = first;
while (p) {
fprintf(stderr, "p = %p\r\np->num = %ld\r\np->next = %p\r\n\r\n",
(void *) p, (unsigned long) p->num, (void *) p->next);
p = p->next;
}
}
#define HARDDEBUG_HW_INCOMPLETE_ALIGNMENT(PTR, SZ) \
fprintf(stderr,"Mapping of address %p with size %ld " \
"does not map complete pages (%s:%d)\r\n", \
(void *) (PTR), (unsigned long) (SZ),__FILE__, __LINE__)
#define HARDDEBUG_HW_UNALIGNED_ALIGNMENT(PTR, SZ) \
fprintf(stderr,"Mapping of address %p with size %ld " \
"is not page aligned (%s:%d)\r\n", \
(void *) (PTR), (unsigned long) (SZ),__FILE__, __LINE__)
#define HARDDEBUG_MAP_FAILED(PTR, SZ) \
fprintf(stderr, "Could not actually map memory " \
"at address %p with size %ld (%s:%d) ..\r\n", \
(void *) (PTR), (unsigned long) (SZ),__FILE__, __LINE__)
#else
#define HARDDEBUG_HW_INCOMPLETE_ALIGNMENT(PTR, SZ) do{}while(0)
#define HARDDEBUG_HW_UNALIGNED_ALIGNMENT(PTR, SZ) do{}while(0)
#define HARDDEBUG_MAP_FAILED(PTR, SZ) do{}while(0)
#endif
#ifdef __APPLE__
#define MAP_ANONYMOUS MAP_ANON
#endif
#define INIT_LOCK() do {erts_mtx_init(&pmmap_mutex, "pmmap");} while(0)
#define TAKE_LOCK() do {erts_mtx_lock(&pmmap_mutex);} while(0)
#define RELEASE_LOCK() do {erts_mtx_unlock(&pmmap_mutex);} while(0)
static erts_mtx_t pmmap_mutex; /* Also needed when !USE_THREADS */
typedef struct _free_block {
unsigned long num; /*pages*/
struct _free_block *next;
} FreeBlock;
/* Protect with lock */
static FreeBlock *first;
static void *do_map(void *ptr, size_t sz)
{
void *res;
if (ALIGNED_CEILING(sz) != sz) {
HARDDEBUG_HW_INCOMPLETE_ALIGNMENT(ptr, sz);
return NULL;
}
if (((unsigned long) ptr) % MSEG_ALIGNED_SIZE) {
HARDDEBUG_HW_UNALIGNED_ALIGNMENT(ptr, sz);
return NULL;
}
#if HAVE_MMAP
res = mmap(ptr, sz,
PROT_READ | PROT_WRITE, MAP_PRIVATE |
MAP_ANONYMOUS | MAP_FIXED,
-1 , 0);
#else
# error "Missing mmap support"
#endif
if (res == MAP_FAILED) {
HARDDEBUG_MAP_FAILED(ptr, sz);
return NULL;
}
return res;
}
static int do_unmap(void *ptr, size_t sz)
{
void *res;
if (ALIGNED_CEILING(sz) != sz) {
HARDDEBUG_HW_INCOMPLETE_ALIGNMENT(ptr, sz);
return 1;
}
if (((unsigned long) ptr) % MSEG_ALIGNED_SIZE) {
HARDDEBUG_HW_UNALIGNED_ALIGNMENT(ptr, sz);
return 1;
}
res = mmap(ptr, sz,
PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE | MAP_FIXED,
-1 , 0);
if (res == MAP_FAILED) {
HARDDEBUG_MAP_FAILED(ptr, sz);
return 1;
}
return 0;
}
#ifdef __APPLE__
/*
* The first 4 gig's are protected on Macos X for 64bit processes :(
* The range 0x1000000000 - 0x10FFFFFFFF is selected as an arbitrary
* value of a normally unused range... Real MMAP's will avoid
* it and all 32bit compressed pointers can be in that range...
* More expensive than on Linux where expansion of compressed
* poiters involves no masking (as they are in the first 4 gig's).
* It's also very uncertain if the MAP_NORESERVE flag really has
* any effect in MacOS X. Swap space may always be allocated...
*/
#define SET_RANGE_MIN() /* nothing */
#define RANGE_MIN 0x1000000000UL
#define RANGE_MAX 0x1100000000UL
#define RANGE_MASK (RANGE_MIN)
#define EXTRA_MAP_FLAGS (MAP_FIXED)
#else
static size_t range_min;
#define SET_RANGE_MIN() do { range_min = (size_t) sbrk(0); } while (0)
#define RANGE_MIN range_min
#define RANGE_MAX 0x100000000UL
#define RANGE_MASK 0UL
#define EXTRA_MAP_FLAGS (0)
#endif
static int initialize_pmmap(void)
{
char *p,*q,*rptr;
size_t rsz;
FreeBlock *initial;
SET_RANGE_MIN();
if (sizeof(void *) != 8) {
erl_exit(1,"Halfword emulator cannot be run in 32bit mode");
}
p = (char *) RANGE_MIN;
q = (char *) RANGE_MAX;
rsz = ALIGNED_FLOOR(q - p);
rptr = mmap_align(NULL, (void *) p, rsz,
PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS |
MAP_NORESERVE | EXTRA_MAP_FLAGS,
-1 , 0);
#ifdef HARDDEBUG
printf("p=%p, rsz = %ld, pages = %ld, got range = %p -> %p\r\n",
p, (unsigned long) rsz, (unsigned long) (rsz / MSEG_ALIGNED_SIZE),
(void *) rptr, (void*)(rptr + rsz));
#endif
if ((UWord)(rptr + rsz) > RANGE_MAX) {
size_t rsz_trunc = RANGE_MAX - (UWord)rptr;
#ifdef HARDDEBUG
printf("Reducing mmap'ed memory from %lu to %lu Mb, reduced range = %p -> %p\r\n",
rsz/(1024*1024), rsz_trunc/(1024*1024), rptr, rptr+rsz_trunc);
#endif
munmap((void*)RANGE_MAX, rsz - rsz_trunc);
rsz = rsz_trunc;
}
if (!do_map(rptr, MSEG_ALIGNED_SIZE)) {
erl_exit(1,"Could not actually mmap first page for halfword emulator...\n");
}
initial = (FreeBlock *) rptr;
initial->num = (rsz / MSEG_ALIGNED_SIZE);
initial->next = NULL;
first = initial;
INIT_LOCK();
return 0;
}
static void *pmmap(size_t size)
{
size_t real_size = ALIGNED_CEILING(size);
size_t num_pages = real_size / MSEG_ALIGNED_SIZE;
FreeBlock **block;
FreeBlock *tail;
FreeBlock *res;
TAKE_LOCK();
for (block = &first;
*block != NULL && (*block)->num < num_pages;
block = &((*block)->next))
;
if (!(*block)) {
RELEASE_LOCK();
return NULL;
}
if ((*block)->num == num_pages) {
/* nice, perfect fit */
res = *block;
*block = (*block)->next;
} else {
tail = (FreeBlock *) (((char *) ((void *) (*block))) + real_size);
if (!do_map(tail, MSEG_ALIGNED_SIZE)) {
HARDDEBUG_MAP_FAILED(tail, MSEG_ALIGNED_SIZE);
RELEASE_LOCK();
return NULL;
}
tail->num = (*block)->num - num_pages;
tail->next = (*block)->next;
res = *block;
*block = tail;
}
RELEASE_LOCK();
if (!do_map(res, real_size)) {
HARDDEBUG_MAP_FAILED(res, real_size);
return NULL;
}
return (void *) res;
}
static int pmunmap(void *p, size_t size)
{
size_t real_size = ALIGNED_CEILING(size);
size_t num_pages = real_size / MSEG_ALIGNED_SIZE;
FreeBlock *block;
FreeBlock *last;
FreeBlock *nb = (FreeBlock *) p;
ASSERT(((unsigned long)p & CHECK_POINTER_MASK)==0);
if (real_size > MSEG_ALIGNED_SIZE) {
if (do_unmap(((char *) p) + MSEG_ALIGNED_SIZE, real_size - MSEG_ALIGNED_SIZE)) {
return 1;
}
}
TAKE_LOCK();
last = NULL;
block = first;
while(block != NULL && ((void *) block) < p) {
last = block;
block = block->next;
}
if (block != NULL &&
((void *) block) == ((void *) (((char *) p) + real_size))) {
/* Merge new free block with following */
nb->num = block->num + num_pages;
nb->next = block->next;
if (do_unmap(block, MSEG_ALIGNED_SIZE)) {
RELEASE_LOCK();
return 1;
}
} else {
/* just link in */
nb->num = num_pages;
nb->next = block;
}
if (last != NULL) {
if (p == ((void *) (((char *) last) + (last->num * MSEG_ALIGNED_SIZE)))) {
/* Merge with previous */
last->num += nb->num;
last->next = nb->next;
if (do_unmap(nb, MSEG_ALIGNED_SIZE)) {
RELEASE_LOCK();
return 1;
}
} else {
last->next = nb;
}
} else {
first = nb;
}
RELEASE_LOCK();
return 0;
}
static void *pmremap(void *old_address, size_t old_size,
size_t new_size)
{
size_t new_real_size = ALIGNED_CEILING(new_size);
size_t new_num_pages = new_real_size / MSEG_ALIGNED_SIZE;
size_t old_real_size = ALIGNED_CEILING(old_size);
size_t old_num_pages = old_real_size / MSEG_ALIGNED_SIZE;
if (new_num_pages == old_num_pages) {
return old_address;
} else if (new_num_pages < old_num_pages) { /* Shrink */
size_t nfb_pages = old_num_pages - new_num_pages;
size_t nfb_real_size = old_real_size - new_real_size;
void *vnfb = (void *) (((char *)old_address) + new_real_size);
FreeBlock *nfb = (FreeBlock *) vnfb;
FreeBlock **block;
TAKE_LOCK();
for (block = &first;
*block != NULL && (*block) < nfb;
block = &((*block)->next))
;
if (!(*block) ||
(*block) > ((FreeBlock *)(((char *) vnfb) + nfb_real_size))) {
/* Normal link in */
if (nfb_pages > 1) {
if (do_unmap((void *)(((char *) vnfb) + MSEG_ALIGNED_SIZE),
(nfb_pages - 1)*MSEG_ALIGNED_SIZE)) {
return NULL;
}
}
nfb->next = (*block);
nfb->num = nfb_pages;
(*block) = nfb;
} else { /* block merge */
nfb->next = (*block)->next;
nfb->num = nfb_pages + (*block)->num;
/* unmap also the first page of the next freeblock */
(*block) = nfb;
if (do_unmap((void *)(((char *) vnfb) + MSEG_ALIGNED_SIZE),
nfb_pages*MSEG_ALIGNED_SIZE)) {
return NULL;
}
}
RELEASE_LOCK();
return old_address;
} else { /* Enlarge */
FreeBlock **block;
void *old_end = (void *) (((char *)old_address) + old_real_size);
TAKE_LOCK();
for (block = &first;
*block != NULL && (*block) < (FreeBlock *) old_address;
block = &((*block)->next))
;
if ((*block) == NULL || old_end > ((void *) RANGE_MAX) ||
(*block) != old_end ||
(*block)->num < (new_num_pages - old_num_pages)) {
/* cannot extend */
void *result;
RELEASE_LOCK();
result = pmmap(new_size);
if (result == NULL) {
return NULL;
}
memcpy(result,old_address,old_size);
if (pmunmap(old_address,old_size)) {
/* Oups... */
pmunmap(result,new_size);
return NULL;
}
return result;
} else { /* extend */
size_t remaining_pages = (*block)->num -
(new_num_pages - old_num_pages);
if (!remaining_pages) {
void *p = (void *) (((char *) (*block)) + MSEG_ALIGNED_SIZE);
void *n = (*block)->next;
size_t x = ((*block)->num - 1) * MSEG_ALIGNED_SIZE;
if (x > 0) {
if (do_map(p,x) == NULL) {
RELEASE_LOCK();
return NULL;
}
}
(*block) = n;
} else {
FreeBlock *nfb = (FreeBlock *) ((void *)
(((char *) old_address) +
new_real_size));
void *p = (void *) (((char *) (*block)) + MSEG_ALIGNED_SIZE);
if (do_map(p,new_real_size - old_real_size) == NULL) {
RELEASE_LOCK();
return NULL;
}
nfb->num = remaining_pages;
nfb->next = (*block)->next;
(*block) = nfb;
}
RELEASE_LOCK();
return old_address;
}
}
}
#endif /* HALFWORD_HEAP */