/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 2004-2009. All Rights Reserved.
*
* The contents of this file are subject to the Erlang Public License,
* Version 1.1, (the "License"); you may not use this file except in
* compliance with the License. You should have received a copy of the
* Erlang Public License along with this software. If not, it can be
* retrieved online at http://www.erlang.org/.
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* %CopyrightEnd%
*/
/*
* Description: Test suite for the ethread thread library.
* Author: Rickard Green
*/
#define ETHR_NO_SUPP_THR_LIB_NOT_FATAL
#include "ethread.h"
#include "erl_misc_utils.h"
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#ifndef __WIN32__
#include <unistd.h>
#endif
#include <limits.h>
/*
* Auxiliary functions
*/
#define PRINT_VA_LIST(FRMT) \
do { \
if (FRMT && FRMT != '\0') { \
va_list args; \
va_start(args, FRMT); \
vfprintf(stderr, FRMT, args); \
va_end(args); \
} \
} while (0)
#define ASSERT(B) \
do { \
if (!(B)) \
fail("%s:%d: Assertion \"%s\" failed!",__FILE__,__LINE__,#B); \
} while (0)
#define ASSERT_PRINT(B, PRNT) \
do { \
if (!(B)) { \
print PRNT; \
fail("%s:%d: Assertion \"%s\" failed!",__FILE__,__LINE__,#B); \
} \
} while (0)
#define ASSERT_EQ(VAR, VAL, FSTR) \
do { \
if ((VAR) != (VAL)) { \
print("%s=" FSTR "\n", #VAR, (VAR)); \
fail("%s:%d: Assertion \"%s == " FSTR "\" failed!", \
__FILE__, __LINE__, #VAR, (VAL)); \
} \
} while (0)
#ifdef __WIN32_
#define EOL "\r\n"
#else
#define EOL "\n"
#endif
static void
print_eol(void)
{
fprintf(stderr, EOL);
}
static void print_line(char *frmt,...)
{
PRINT_VA_LIST(frmt);
print_eol();
}
static void print(char *frmt,...)
{
PRINT_VA_LIST(frmt);
}
static void fail(char *frmt,...)
{
char *abrt_env;
print_eol();
fprintf(stderr, "ETHR-TEST-FAILURE");
PRINT_VA_LIST(frmt);
print_eol();
abrt_env = getenv("ERL_ABORT_ON_FAILURE");
if (abrt_env && strcmp("true", abrt_env) == 0)
abort();
else
exit(1);
}
static void skip(char *frmt,...)
{
print_eol();
fprintf(stderr, "ETHR-TEST-SKIP");
PRINT_VA_LIST(frmt);
print_eol();
exit(0);
}
static void succeed(char *frmt,...)
{
print_eol();
fprintf(stderr, "ETHR-TEST-SUCCESS");
PRINT_VA_LIST(frmt);
print_eol();
exit(0);
}
static void
do_sleep(unsigned secs)
{
while (erts_milli_sleep(secs*1000) != 0);
}
#define WAIT_UNTIL_INTERVAL 10
#define WAIT_UNTIL_LIM(TEST, LIM) \
do { \
int ms__ = (LIM)*1000; \
while (!(TEST)) { \
while (erts_milli_sleep(WAIT_UNTIL_INTERVAL) != 0); \
ms__ -= WAIT_UNTIL_INTERVAL; \
if (ms__ <= 0) \
break; \
} \
} while (0)
static void
send_my_pid(void)
{
#ifndef __WIN32__
int pid = (int) getpid();
fprintf(stderr, EOL "ETHR-TEST-PID%d" EOL, pid);
#endif
}
/*
* The test-cases
*/
#ifndef ETHR_NO_THREAD_LIB
/*
* The create join thread test case.
*
* Tests ethr_thr_create and ethr_thr_join.
*/
#define CJTT_NO_THREADS 64
ethr_tid cjtt_tids[CJTT_NO_THREADS + 1];
int cjtt_ix[CJTT_NO_THREADS + 1];
int cjtt_res[CJTT_NO_THREADS + 1];
void *cjtt_thread(void *vpix)
{
int ix = *((int *) vpix);
cjtt_res[ix] = ix;
return (void *) &cjtt_res[ix];
}
static void
create_join_thread_test(void)
{
int i, res;
for (i = 1; i <= CJTT_NO_THREADS; i++) {
cjtt_ix[i] = i;
cjtt_res[i] = 0;
}
for (i = 1; i <= CJTT_NO_THREADS; i++) {
res = ethr_thr_create(&cjtt_tids[i],
cjtt_thread,
(void *) &cjtt_ix[i],
NULL);
ASSERT(res == 0);
}
for (i = 1; i <= CJTT_NO_THREADS; i++) {
int *tres;
res = ethr_thr_join(cjtt_tids[i], (void **) &tres);
ASSERT(res == 0);
ASSERT(tres == &cjtt_res[i]);
ASSERT(cjtt_res[i] == i);
}
}
/*
* The eq tid test case.
*
* Tests ethr_equal_tids.
*/
#define ETT_THREADS 100000
static ethr_tid ett_tids[3];
static ethr_mutex ett_mutex = ETHR_MUTEX_INITER;
static ethr_cond ett_cond = ETHR_COND_INITER;
static int ett_terminate;
static void *
ett_thread(void *my_tid)
{
ASSERT(!ethr_equal_tids(ethr_self(), ett_tids[0]));
ASSERT(ethr_equal_tids(ethr_self(), *((ethr_tid *) my_tid)));
return NULL;
}
static void *
ett_thread2(void *unused)
{
int res;
res = ethr_mutex_lock(&ett_mutex);
ASSERT(res == 0);
while (!ett_terminate) {
res = ethr_cond_wait(&ett_cond, &ett_mutex);
ASSERT(res == 0);
}
res = ethr_mutex_unlock(&ett_mutex);
ASSERT(res == 0);
return NULL;
}
static void
equal_tids_test(void)
{
int res, i;
ett_tids[0] = ethr_self();
res = ethr_thr_create(&ett_tids[1], ett_thread, (void *) &ett_tids[1], NULL);
ASSERT(res == 0);
ASSERT(ethr_equal_tids(ethr_self(), ett_tids[0]));
ASSERT(!ethr_equal_tids(ethr_self(), ett_tids[1]));
res = ethr_thr_join(ett_tids[1], NULL);
res = ethr_thr_create(&ett_tids[2], ett_thread, (void *) &ett_tids[2], NULL);
ASSERT(res == 0);
ASSERT(ethr_equal_tids(ethr_self(), ett_tids[0]));
ASSERT(!ethr_equal_tids(ethr_self(), ett_tids[1]));
ASSERT(!ethr_equal_tids(ethr_self(), ett_tids[2]));
#if 0
/* This fails on some linux platforms. Until we decides if a tid
* is allowed to be reused right away or not, we disable the test.
*/
ASSERT(!ethr_equal_tids(ett_tids[1], ett_tids[2]));
#endif
res = ethr_thr_join(ett_tids[2], NULL);
ASSERT(res == 0);
/* Second part of test */
ett_terminate = 0;
res = ethr_thr_create(&ett_tids[1], ett_thread2, NULL, NULL);
ASSERT(res == 0);
ASSERT(!ethr_equal_tids(ett_tids[0], ett_tids[1]));
for (i = 0; i < ETT_THREADS; i++) {
res = ethr_thr_create(&ett_tids[2], ett_thread, (void*)&ett_tids[2], NULL);
ASSERT(res == 0);
ASSERT(!ethr_equal_tids(ett_tids[0], ett_tids[2]));
ASSERT(!ethr_equal_tids(ett_tids[1], ett_tids[2]));
res = ethr_thr_join(ett_tids[2], NULL);
ASSERT(res == 0);
}
res = ethr_mutex_lock(&ett_mutex);
ASSERT(res == 0);
ett_terminate = 1;
res = ethr_cond_signal(&ett_cond);
ASSERT(res == 0);
res = ethr_mutex_unlock(&ett_mutex);
ASSERT(res == 0);
res = ethr_thr_join(ett_tids[1], NULL);
ASSERT(res == 0);
res = ethr_cond_destroy(&ett_cond);
ASSERT(res == 0);
res = ethr_mutex_destroy(&ett_mutex);
ASSERT(res == 0);
}
/*
* The mutex test case.
*
* Tests mutexes.
*/
static ethr_mutex mt_mutex = ETHR_MUTEX_INITER;
static int mt_data;
void *
mt_thread(void *unused)
{
int res;
print_line("Aux thread tries to lock mutex");
res = ethr_mutex_lock(&mt_mutex);
ASSERT(res == 0);
print_line("Aux thread locked mutex");
ASSERT(mt_data == 0);
mt_data = 1;
print_line("Aux thread wrote");
print_line("Aux thread goes to sleep for 1 second");
do_sleep(1);
print_line("Aux thread woke up");
ASSERT(mt_data == 1);
res = ethr_mutex_unlock(&mt_mutex);
ASSERT(res == 0);
print_line("Aux thread unlocked mutex");
return NULL;
}
static void
mutex_test(void)
{
int do_restart = 1;
int res;
ethr_tid tid;
print_line("Running test with statically initialized mutex");
restart:
mt_data = 0;
print_line("Main thread tries to lock mutex");
res = ethr_mutex_lock(&mt_mutex);
ASSERT(res == 0);
print_line("Main thread locked mutex");
ASSERT(mt_data == 0);
print_line("Main thread about to create aux thread");
res = ethr_thr_create(&tid, mt_thread, NULL, NULL);
ASSERT(res == 0);
print_line("Main thread created aux thread");
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(mt_data == 0);
res = ethr_mutex_unlock(&mt_mutex);
ASSERT(res == 0);
print_line("Main thread unlocked mutex");
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
print_line("Main thread tries to lock mutex");
res = ethr_mutex_lock(&mt_mutex);
ASSERT(res == 0);
print_line("Main thread locked mutex");
ASSERT(mt_data == 1);
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(mt_data == 1);
res = ethr_mutex_unlock(&mt_mutex);
ASSERT(res == 0);
print_line("Main thread unlocked mutex");
res = ethr_thr_join(tid, NULL);
ASSERT(res == 0);
print_line("Main thread joined aux thread");
res = ethr_mutex_destroy(&mt_mutex);
ASSERT(res == 0);
print_line("Main thread destroyed mutex");
if (do_restart) {
do_restart = 0;
print_line("Running test with dynamically initialized mutex");
print_line("Trying to initialize mutex");
res = ethr_mutex_init(&mt_mutex);
ASSERT(res == 0);
print_line("Initialized mutex");
goto restart;
}
}
/*
* The try lock mutex test case.
*
* Tests try lock mutex operation.
*/
static ethr_mutex tlmt_mtx1 = ETHR_MUTEX_INITER;
static ethr_mutex tlmt_mtx2 = ETHR_MUTEX_INITER;
static ethr_cond tlmt_cnd2 = ETHR_COND_INITER;
static int tlmt_mtx1_locked;
static int tlmt_mtx1_do_unlock;
static void *
tlmt_thread(void *unused)
{
int res;
res = ethr_mutex_lock(&tlmt_mtx1);
ASSERT(res == 0);
res = ethr_mutex_lock(&tlmt_mtx2);
ASSERT(res == 0);
tlmt_mtx1_locked = 1;
res = ethr_cond_signal(&tlmt_cnd2);
ASSERT(res == 0);
while (!tlmt_mtx1_do_unlock) {
res = ethr_cond_wait(&tlmt_cnd2, &tlmt_mtx2);
ASSERT(res == 0 || res == EINTR);
}
res = ethr_mutex_unlock(&tlmt_mtx2);
ASSERT(res == 0);
res = ethr_mutex_unlock(&tlmt_mtx1);
ASSERT(res == 0);
res = ethr_mutex_lock(&tlmt_mtx2);
ASSERT(res == 0);
tlmt_mtx1_locked = 0;
res = ethr_cond_signal(&tlmt_cnd2);
ASSERT(res == 0);
res = ethr_mutex_unlock(&tlmt_mtx2);
ASSERT(res == 0);
return NULL;
}
static void
try_lock_mutex_test(void)
{
int i, res;
ethr_tid tid;
tlmt_mtx1_locked = 0;
tlmt_mtx1_do_unlock = 0;
res = ethr_thr_create(&tid, tlmt_thread, NULL, NULL);
ASSERT(res == 0);
res = ethr_mutex_lock(&tlmt_mtx2);
ASSERT(res == 0);
while (!tlmt_mtx1_locked) {
res = ethr_cond_wait(&tlmt_cnd2, &tlmt_mtx2);
ASSERT(res == 0 || res == EINTR);
}
res = ethr_mutex_unlock(&tlmt_mtx2);
ASSERT(res == 0);
for (i = 0; i < 10; i++) {
res = ethr_mutex_trylock(&tlmt_mtx1);
ASSERT(res == EBUSY);
}
res = ethr_mutex_lock(&tlmt_mtx2);
ASSERT(res == 0);
tlmt_mtx1_do_unlock = 1;
res = ethr_cond_signal(&tlmt_cnd2);
ASSERT(res == 0);
while (tlmt_mtx1_locked) {
res = ethr_cond_wait(&tlmt_cnd2, &tlmt_mtx2);
ASSERT(res == 0 || res == EINTR);
}
res = ethr_mutex_unlock(&tlmt_mtx2);
ASSERT(res == 0);
res = ethr_mutex_trylock(&tlmt_mtx1);
ASSERT(res == 0);
res = ethr_mutex_unlock(&tlmt_mtx1);
ASSERT(res == 0);
res = ethr_thr_join(tid, NULL);
ASSERT(res == 0);
res = ethr_mutex_destroy(&tlmt_mtx1);
ASSERT(res == 0);
res = ethr_mutex_destroy(&tlmt_mtx2);
ASSERT(res == 0);
res = ethr_cond_destroy(&tlmt_cnd2);
ASSERT(res == 0);
}
/*
* The recursive mutex test case.
*
* Tests recursive mutexes.
*/
#ifdef ETHR_HAVE_ETHR_REC_MUTEX_INIT
static ethr_mutex rmt_mutex
#ifdef ETHR_REC_MUTEX_INITER
= ETHR_REC_MUTEX_INITER
#endif
;
static int rmt_data;
void *
rmt_thread(void *unused)
{
int res;
print_line("Aux thread tries to lock mutex");
res = ethr_mutex_lock(&rmt_mutex);
ASSERT(res == 0);
print_line("Aux thread locked mutex");
ASSERT(rmt_data == 0);
rmt_data = 1;
print_line("Aux thread wrote");
print_line("Aux thread goes to sleep for 1 second");
do_sleep(1);
print_line("Aux thread woke up");
ASSERT(rmt_data == 1);
res = ethr_mutex_unlock(&rmt_mutex);
ASSERT(res == 0);
print_line("Aux thread unlocked mutex");
return NULL;
}
#endif
static void
recursive_mutex_test(void)
{
#ifdef ETHR_HAVE_ETHR_REC_MUTEX_INIT
int do_restart = 1;
int res;
ethr_tid tid;
#ifdef ETHR_REC_MUTEX_INITER
print_line("Running test with statically initialized mutex");
#else
goto dynamic_init;
#endif
restart:
rmt_data = 0;
print_line("Main thread tries to lock mutex");
res = ethr_mutex_lock(&rmt_mutex);
ASSERT(res == 0);
print_line("Main thread locked mutex");
print_line("Main thread tries to lock mutex again");
res = ethr_mutex_lock(&rmt_mutex);
ASSERT(res == 0);
print_line("Main thread locked mutex again");
ASSERT(rmt_data == 0);
print_line("Main thread about to create aux thread");
res = ethr_thr_create(&tid, rmt_thread, NULL, NULL);
ASSERT(res == 0);
print_line("Main thread created aux thread");
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(rmt_data == 0);
res = ethr_mutex_unlock(&rmt_mutex);
ASSERT(res == 0);
print_line("Main thread unlocked mutex");
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(rmt_data == 0);
res = ethr_mutex_unlock(&rmt_mutex);
ASSERT(res == 0);
print_line("Main thread unlocked mutex again");
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
print_line("Main thread tries to lock mutex");
res = ethr_mutex_lock(&rmt_mutex);
ASSERT(res == 0);
print_line("Main thread locked mutex");
ASSERT(rmt_data == 1);
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(rmt_data == 1);
res = ethr_mutex_unlock(&rmt_mutex);
ASSERT(res == 0);
print_line("Main thread unlocked mutex");
res = ethr_thr_join(tid, NULL);
ASSERT(res == 0);
print_line("Main thread joined aux thread");
res = ethr_mutex_destroy(&rmt_mutex);
ASSERT(res == 0);
print_line("Main thread destroyed mutex");
if (do_restart) {
#ifndef ETHR_REC_MUTEX_INITER
dynamic_init:
#endif
do_restart = 0;
print_line("Running test with dynamically initialized mutex");
print_line("Trying to initialize mutex");
res = ethr_rec_mutex_init(&rmt_mutex);
ASSERT(res == 0);
print_line("Initialized mutex");
goto restart;
}
#ifndef ETHR_REC_MUTEX_INITER
succeed("Static initializer for recursive mutexes not supported");
#endif
#else /* #ifdef ETHR_HAVE_ETHR_REC_MUTEX_INIT */
skip("Recursive mutexes not supported");
#endif /* #ifdef ETHR_HAVE_ETHR_REC_MUTEX_INIT */
}
/*
* The time now test.
*
* Tests ethr_time_now by comparing time values with Erlang.
*/
#define TNT_MAX_TIME_DIFF 200000
#define TNT_MAX_TIME_VALUES 52
static void
time_now_test(void)
{
int scanf_res, time_now_res, i, no_values, max_abs_diff;
static ethr_timeval tv[TNT_MAX_TIME_VALUES];
static int ms[TNT_MAX_TIME_VALUES];
i = 0;
do {
ASSERT(i < TNT_MAX_TIME_VALUES);
scanf_res = scanf("%d", &ms[i]);
time_now_res = ethr_time_now(&tv[i]);
ASSERT(scanf_res == 1);
ASSERT(time_now_res == 0);
#if 0
print_line("Got %d; %ld:%ld", ms[i], tv[i].tv_sec, tv[i].tv_nsec);
#endif
i++;
} while (ms[i-1] >= 0);
no_values = i-1;
ASSERT(ms[0] == 0);
print_line("TNT_MAX_TIME_DIFF = %d (us)", TNT_MAX_TIME_DIFF);
max_abs_diff = 0;
for (i = 1; i < no_values; i++) {
long diff;
long tn_us;
long e_us;
tn_us = (tv[i].tv_sec - tv[0].tv_sec) * 1000000;
tn_us += (tv[i].tv_nsec - tv[0].tv_nsec)/1000;
e_us = ms[i]*1000;
diff = e_us - tn_us;
print_line("Erlang time = %ld us; ethr_time_now = %ld us; diff %ld us",
e_us, tn_us, diff);
if (max_abs_diff < abs((int) diff)) {
max_abs_diff = abs((int) diff);
}
ASSERT(e_us - TNT_MAX_TIME_DIFF <= tn_us);
ASSERT(tn_us <= e_us + TNT_MAX_TIME_DIFF);
}
print_line("Max absolute diff = %d us", max_abs_diff);
succeed("Max absolute diff = %d us", max_abs_diff);
}
/*
* The cond wait test case.
*
* Tests ethr_cond_wait with ethr_cond_signal and ethr_cond_broadcast.
*/
static ethr_mutex cwt_mutex = ETHR_MUTEX_INITER;
static ethr_cond cwt_cond = ETHR_COND_INITER;
static int cwt_counter;
void *
cwt_thread(void *is_timedwait_test_ptr)
{
int use_timedwait = *((int *) is_timedwait_test_ptr);
int res;
res = ethr_mutex_lock(&cwt_mutex);
ASSERT(res == 0);
if (use_timedwait) {
ethr_timeval tv;
res = ethr_time_now(&tv);
ASSERT(res == 0);
tv.tv_sec += 3600; /* Make sure we won't time out */
do {
res = ethr_cond_timedwait(&cwt_cond, &cwt_mutex, &tv);
} while (res == EINTR);
ASSERT(res == 0);
}
else {
do {
res = ethr_cond_wait(&cwt_cond, &cwt_mutex);
} while (res == EINTR);
ASSERT(res == 0);
}
cwt_counter++;
res = ethr_mutex_unlock(&cwt_mutex);
ASSERT(res == 0);
return NULL;
}
static void
cond_wait_test(int is_timedwait_test)
{
int do_restart = !is_timedwait_test;
ethr_tid tid1, tid2;
int res;
if (!is_timedwait_test)
print_line("Running test with statically initialized mutex and cond");
restart:
/* Wake with signal */
cwt_counter = 0;
res = ethr_thr_create(&tid1, cwt_thread, (void *) &is_timedwait_test, NULL);
ASSERT(res == 0);
res = ethr_thr_create(&tid2, cwt_thread, (void *) &is_timedwait_test, NULL);
ASSERT(res == 0);
do_sleep(1); /* Make sure threads waits on cond var */
res = ethr_mutex_lock(&cwt_mutex);
ASSERT(res == 0);
res = ethr_cond_signal(&cwt_cond); /* Wake one thread */
ASSERT(res == 0);
do_sleep(1); /* Make sure awakened thread waits on mutex */
ASSERT(cwt_counter == 0);
res = ethr_mutex_unlock(&cwt_mutex);
ASSERT(res == 0);
do_sleep(1); /* Let awakened thread proceed */
res = ethr_mutex_lock(&cwt_mutex);
ASSERT(res == 0);
ASSERT(cwt_counter == 1);
res = ethr_cond_signal(&cwt_cond); /* Wake the other thread */
ASSERT(res == 0);
do_sleep(1); /* Make sure awakened thread waits on mutex */
ASSERT(cwt_counter == 1);
res = ethr_mutex_unlock(&cwt_mutex);
ASSERT(res == 0);
do_sleep(1); /* Let awakened thread proceed */
res = ethr_mutex_lock(&cwt_mutex);
ASSERT(res == 0);
ASSERT(cwt_counter == 2);
res = ethr_mutex_unlock(&cwt_mutex);
ASSERT(res == 0);
res = ethr_thr_join(tid1, NULL);
ASSERT(res == 0);
res = ethr_thr_join(tid2, NULL);
ASSERT(res == 0);
/* Wake with broadcast */
cwt_counter = 0;
res = ethr_thr_create(&tid1, cwt_thread, (void *) &is_timedwait_test, NULL);
ASSERT(res == 0);
res = ethr_thr_create(&tid2, cwt_thread, (void *) &is_timedwait_test, NULL);
ASSERT(res == 0);
do_sleep(1); /* Make sure threads waits on cond var */
res = ethr_mutex_lock(&cwt_mutex);
ASSERT(res == 0);
res = ethr_cond_broadcast(&cwt_cond); /* Wake the threads */
ASSERT(res == 0);
do_sleep(1); /* Make sure awakened threads wait on mutex */
ASSERT(cwt_counter == 0);
res = ethr_mutex_unlock(&cwt_mutex);
ASSERT(res == 0);
do_sleep(1); /* Let awakened threads proceed */
res = ethr_mutex_lock(&cwt_mutex);
ASSERT(res == 0);
ASSERT(cwt_counter == 2);
res = ethr_mutex_unlock(&cwt_mutex);
ASSERT(res == 0);
res = ethr_thr_join(tid1, NULL);
ASSERT(res == 0);
res = ethr_thr_join(tid2, NULL);
ASSERT(res == 0);
res = ethr_mutex_destroy(&cwt_mutex);
ASSERT(res == 0);
res = ethr_cond_destroy(&cwt_cond);
ASSERT(res == 0);
if (do_restart) {
do_restart = 0;
res = ethr_mutex_init(&cwt_mutex);
ASSERT(res == 0);
res = ethr_cond_init(&cwt_cond);
ASSERT(res == 0);
print_line("Running test with dynamically initialized mutex and cond");
goto restart;
}
}
/*
* The cond timedwait test case.
*
* Tests ethr_cond_timedwait with ethr_cond_signal and ethr_cond_broadcast.
*/
#define CTWT_MAX_TIME_DIFF 100000
static long
ctwt_check_timeout(long to)
{
int res;
ethr_timeval tva, tvb;
long diff, abs_diff;
res = ethr_time_now(&tva);
ASSERT(res == 0);
tva.tv_sec += to / 1000;
tva.tv_nsec += (to % 1000) * 1000000;
if (tva.tv_nsec >= 1000000000) {
tva.tv_sec++;
tva.tv_nsec -= 1000000000;
ASSERT(tva.tv_nsec < 1000000000);
}
do {
res = ethr_cond_timedwait(&cwt_cond, &cwt_mutex, &tva);
} while (res == EINTR);
ASSERT(res == ETIMEDOUT);
res = ethr_time_now(&tvb);
ASSERT(res == 0);
diff = (tvb.tv_sec - tva.tv_sec) * 1000000;
diff += (tvb.tv_nsec - tva.tv_nsec)/1000;
print("Timeout=%ld; ", to);
print("tva.tv_sec=%ld tva.tv_nsec=%ld; ", tva.tv_sec, tva.tv_nsec);
print("tvb.tv_sec=%ld tvb.tv_nsec=%ld; ", tvb.tv_sec, tvb.tv_nsec);
print_line("diff (tvb - tva) = %ld us", diff);
abs_diff = (long) abs((int) diff);
ASSERT(CTWT_MAX_TIME_DIFF >= abs_diff);
return abs_diff;
}
static void
cond_timedwait_test(void)
{
int do_restart = 1;
long abs_diff, max_abs_diff = 0;
int res;
#define CTWT_UPD_MAX_DIFF if (abs_diff > max_abs_diff) max_abs_diff = abs_diff;
print_line("Running test with statically initialized mutex and cond");
print_line("CTWT_MAX_TIME_DIFF=%d", CTWT_MAX_TIME_DIFF);
restart:
res = ethr_mutex_lock(&cwt_mutex);
ASSERT(res == 0);
abs_diff = ctwt_check_timeout(300);
CTWT_UPD_MAX_DIFF;
abs_diff = ctwt_check_timeout(700);
CTWT_UPD_MAX_DIFF;
abs_diff = ctwt_check_timeout(1000);
CTWT_UPD_MAX_DIFF;
abs_diff = ctwt_check_timeout(2300);
CTWT_UPD_MAX_DIFF;
abs_diff = ctwt_check_timeout(5100);
CTWT_UPD_MAX_DIFF;
res = ethr_mutex_unlock(&cwt_mutex);
ASSERT(res == 0);
cond_wait_test(1);
if (do_restart) {
do_restart = 0;
res = ethr_mutex_init(&cwt_mutex);
ASSERT(res == 0);
res = ethr_cond_init(&cwt_cond);
ASSERT(res == 0);
print_line("Running test with dynamically initialized mutex and cond");
goto restart;
}
print_line("Max absolute diff = %d us", max_abs_diff);
succeed("Max absolute diff = %d us", max_abs_diff);
#undef CTWT_UPD_MAX_DIFF
}
/*
* The broadcast test case.
*
* Tests that a ethr_cond_broadcast really wakes up all waiting threads.
*/
#define BCT_THREADS 64
#define BCT_NO_OF_WAITS 100
static int bct_woken = 0;
static int bct_waiting = 0;
static int bct_done = 0;
static ethr_mutex bct_mutex = ETHR_MUTEX_INITER;
static ethr_cond bct_cond = ETHR_COND_INITER;
static ethr_cond bct_cntrl_cond = ETHR_COND_INITER;
static void *
bct_thread(void *unused)
{
int res;
res = ethr_mutex_lock(&bct_mutex);
ASSERT(res == 0);
while (!bct_done) {
bct_waiting++;
if (bct_waiting == BCT_THREADS) {
res = ethr_cond_signal(&bct_cntrl_cond);
ASSERT(res == 0);
}
do {
res = ethr_cond_wait(&bct_cond, &bct_mutex);
} while (res == EINTR);
ASSERT(res == 0);
bct_woken++;
if (bct_woken == BCT_THREADS) {
res = ethr_cond_signal(&bct_cntrl_cond);
ASSERT(res == 0);
}
}
res = ethr_mutex_unlock(&bct_mutex);
ASSERT(res == 0);
return NULL;
}
static void
broadcast_test(void)
{
int res, i;
ethr_tid tid[BCT_THREADS];
for (i = 0; i < BCT_THREADS; i++) {
res = ethr_thr_create(&tid[i], bct_thread, NULL, NULL);
ASSERT(res == 0);
}
res = ethr_mutex_lock(&bct_mutex);
ASSERT(res == 0);
for (i = 0; i < BCT_NO_OF_WAITS; i++) {
while (bct_waiting != BCT_THREADS) {
res = ethr_cond_wait(&bct_cntrl_cond, &bct_mutex);
ASSERT(res == 0 || res == EINTR);
}
bct_waiting = 0;
bct_woken = 0;
/* Wake all threads */
res = ethr_cond_broadcast(&bct_cond);
ASSERT(res == 0);
while (bct_woken != BCT_THREADS) {
res = ethr_cond_wait(&bct_cntrl_cond, &bct_mutex);
ASSERT(res == 0 || res == EINTR);
}
}
bct_done = 1;
/* Wake all threads */
res = ethr_cond_broadcast(&bct_cond);
ASSERT(res == 0);
res = ethr_mutex_unlock(&bct_mutex);
ASSERT(res == 0);
for (i = 0; i < BCT_THREADS - 1; i++) {
res = ethr_thr_join(tid[i], NULL);
ASSERT(res == 0);
}
res = ethr_mutex_destroy(&bct_mutex);
ASSERT(res == 0);
res = ethr_cond_destroy(&bct_cntrl_cond);
ASSERT(res == 0);
res = ethr_cond_destroy(&bct_cond);
ASSERT(res == 0);
}
/*
* The detached thread test case.
*
* Tests detached threads.
*/
#define DT_THREADS (50*1024)
#define DT_BATCH_SIZE 64
static ethr_mutex dt_mutex = ETHR_MUTEX_INITER;
static ethr_cond dt_cond = ETHR_COND_INITER;
static int dt_count;
static int dt_limit;
static void *
dt_thread(void *unused)
{
int res;
res = ethr_mutex_lock(&dt_mutex);
ASSERT(res == 0);
dt_count++;
if (dt_count >= dt_limit)
ethr_cond_signal(&dt_cond);
res = ethr_mutex_unlock(&dt_mutex);
ASSERT(res == 0);
return NULL;
}
static void
detached_thread_test(void)
{
ethr_thr_opts thr_opts = ETHR_THR_OPTS_DEFAULT_INITER;
ethr_tid tid[DT_BATCH_SIZE];
int i, j, res;
thr_opts.detached = 1;
dt_count = 0;
dt_limit = 0;
for (i = 0; i < DT_THREADS/DT_BATCH_SIZE; i++) {
dt_limit += DT_BATCH_SIZE;
for (j = 0; j < DT_BATCH_SIZE; j++) {
res = ethr_thr_create(&tid[j], dt_thread, NULL, &thr_opts);
ASSERT(res == 0);
}
res = ethr_mutex_lock(&dt_mutex);
ASSERT(res == 0);
while (dt_count < dt_limit) {
res = ethr_cond_wait(&dt_cond, &dt_mutex);
ASSERT(res == 0 || res == EINTR);
}
res = ethr_mutex_unlock(&dt_mutex);
ASSERT(res == 0);
print_line("dt_count = %d", dt_count);
}
do_sleep(1);
}
/*
* The max threads test case.
*
* Tests
*/
#define MTT_TIMES 10
static int mtt_terminate;
static ethr_mutex mtt_mutex = ETHR_MUTEX_INITER;
static ethr_cond mtt_cond = ETHR_COND_INITER;
static char mtt_string[22*MTT_TIMES]; /* 22 is enough for ", %d" */
void *mtt_thread(void *unused)
{
int res;
res = ethr_mutex_lock(&mtt_mutex);
ASSERT(res == 0);
while (!mtt_terminate) {
res = ethr_cond_wait(&mtt_cond, &mtt_mutex);
ASSERT(res == 0 || res == EINTR);
}
res = ethr_mutex_unlock(&mtt_mutex);
ASSERT(res == 0);
return NULL;
}
static int
mtt_create_join_threads(void)
{
int no_tids = 100, ix = 0, res = 0, no_threads;
ethr_tid *tids;
mtt_terminate = 0;
tids = (ethr_tid *) malloc(sizeof(ethr_tid)*no_tids);
ASSERT(tids);
print_line("Beginning to create threads");
while (1) {
if (ix >= no_tids) {
no_tids += 100;
tids = (ethr_tid *) realloc((void *)tids, sizeof(ethr_tid)*no_tids);
ASSERT(tids);
}
res = ethr_thr_create(&tids[ix], mtt_thread, NULL, NULL);
if (res != 0)
break;
ix++;
} while (res == 0);
no_threads = ix;
print_line("%d = ethr_thr_create()", res);
print_line("Number of created threads: %d", no_threads);
res = ethr_mutex_lock(&mtt_mutex);
ASSERT(res == 0);
mtt_terminate = 1;
res = ethr_cond_broadcast(&mtt_cond);
ASSERT(res == 0);
res = ethr_mutex_unlock(&mtt_mutex);
ASSERT(res == 0);
while (ix) {
res = ethr_thr_join(tids[--ix], NULL);
ASSERT(res == 0);
}
print_line("All created threads terminated");
free((void *) tids);
return no_threads;
}
static void
max_threads_test(void)
{
int no_threads[MTT_TIMES], i, up, down, eq;
char *str;
for (i = 0; i < MTT_TIMES; i++) {
no_threads[i] = mtt_create_join_threads();
}
str = &mtt_string[0];
eq = up = down = 0;
for (i = 0; i < MTT_TIMES; i++) {
if (i == 0) {
str += sprintf(str, "%d", no_threads[i]);
continue;
}
str += sprintf(str, ", %d", no_threads[i]);
if (no_threads[i] < no_threads[i-1])
down++;
else if (no_threads[i] > no_threads[i-1])
up++;
else
eq++;
}
print_line("Max created threads: %s", mtt_string);
/* We fail if the no of threads we are able to create constantly decrease */
ASSERT(!down || up || eq);
succeed("Max created threads: %s", mtt_string);
}
/*
* The forksafety test case.
*
* Tests forksafety.
*/
#ifdef __WIN32__
#define NO_FORK_PRESENT
#endif
#ifndef NO_FORK_PRESENT
static ethr_mutex ft_test_inner_mutex = ETHR_MUTEX_INITER;
static ethr_mutex ft_test_outer_mutex = ETHR_MUTEX_INITER;
static ethr_mutex ft_go_mutex = ETHR_MUTEX_INITER;
static ethr_cond ft_go_cond = ETHR_COND_INITER;
static int ft_go;
static int ft_have_forked;
static void *
ft_thread(void *unused)
{
int res;
res = ethr_mutex_lock(&ft_test_outer_mutex);
ASSERT(res == 0);
res = ethr_mutex_lock(&ft_go_mutex);
ASSERT(res == 0);
ft_go = 1;
res = ethr_cond_signal(&ft_go_cond);
ASSERT(res == 0);
res = ethr_mutex_unlock(&ft_go_mutex);
ASSERT(res == 0);
do_sleep(1);
ASSERT(!ft_have_forked);
res = ethr_mutex_lock(&ft_test_inner_mutex);
ASSERT(res == 0);
res = ethr_mutex_unlock(&ft_test_inner_mutex);
ASSERT(res == 0);
do_sleep(1);
ASSERT(!ft_have_forked);
res = ethr_mutex_unlock(&ft_test_outer_mutex);
ASSERT(res == 0);
do_sleep(1);
ASSERT(ft_have_forked);
return NULL;
}
#endif /* #ifndef NO_FORK_PRESENT */
static void
forksafety_test(void)
{
#ifdef NO_FORK_PRESENT
skip("No fork() present; nothing to test");
#elif defined(DEBUG)
skip("Doesn't work in debug build");
#else
char snd_msg[] = "ok, bye!";
char rec_msg[sizeof(snd_msg)*2];
ethr_tid tid;
int res;
int fds[2];
res = ethr_mutex_set_forksafe(&ft_test_inner_mutex);
if (res == ENOTSUP) {
skip("Forksafety not supported on this platform!");
}
ASSERT(res == 0);
res = ethr_mutex_set_forksafe(&ft_test_outer_mutex);
ASSERT(res == 0);
res = pipe(fds);
ASSERT(res == 0);
ft_go = 0;
ft_have_forked = 0;
res = ethr_mutex_lock(&ft_go_mutex);
ASSERT(res == 0);
res = ethr_thr_create(&tid, ft_thread, NULL, NULL);
ASSERT(res == 0);
do {
res = ethr_cond_wait(&ft_go_cond, &ft_go_mutex);
} while (res == EINTR || !ft_go);
ASSERT(res == 0);
res = ethr_mutex_unlock(&ft_go_mutex);
ASSERT(res == 0);
res = fork();
ft_have_forked = 1;
if (res == 0) {
close(fds[0]);
res = ethr_mutex_lock(&ft_test_outer_mutex);
if (res != 0)
_exit(1);
res = ethr_mutex_lock(&ft_test_inner_mutex);
if (res != 0)
_exit(1);
res = ethr_mutex_unlock(&ft_test_inner_mutex);
if (res != 0)
_exit(1);
res = ethr_mutex_unlock(&ft_test_outer_mutex);
if (res != 0)
_exit(1);
res = ethr_mutex_destroy(&ft_test_inner_mutex);
if (res != 0)
_exit(1);
res = ethr_mutex_destroy(&ft_test_outer_mutex);
if (res != 0)
_exit(1);
res = (int) write(fds[1], (void *) snd_msg, sizeof(snd_msg));
if (res != sizeof(snd_msg))
_exit(1);
close(fds[1]);
_exit(0);
}
ASSERT(res > 0);
close(fds[1]);
res = (int) read(fds[0], (void *) rec_msg, sizeof(rec_msg));
ASSERT(res == (int) sizeof(snd_msg));
ASSERT(strcmp(snd_msg, rec_msg) == 0);
close(fds[0]);
#endif
}
/*
* The vfork test case.
*
* Tests vfork with threads.
*/
#ifdef __WIN32__
#define NO_VFORK_PRESENT
#endif
#ifndef NO_VFORK_PRESENT
#undef vfork
static ethr_mutex vt_mutex = ETHR_MUTEX_INITER;
static void *
vt_thread(void *vprog)
{
char *prog = (char *) vprog;
int res;
char snd_msg[] = "ok, bye!";
char rec_msg[sizeof(snd_msg)*2];
int fds[2];
char closefd[20];
char writefd[20];
res = pipe(fds);
ASSERT(res == 0);
res = sprintf(closefd, "%d", fds[0]);
ASSERT(res <= 20);
res = sprintf(writefd, "%d", fds[1]);
ASSERT(res <= 20);
print("parent: About to vfork and execute ");
print("execlp(\"%s\", \"%s\", \"%s\", \"%s\", \"%s\", \"%s\", \"%s\", NULL)",
prog, prog, "vfork", "exec", snd_msg, closefd, writefd);
print_line(" in child");
res = vfork();
if (res == 0) {
execlp(prog, prog, "vfork", "exec", snd_msg, closefd, writefd, NULL);
_exit(1);
}
ASSERT(res > 0);
print_line("parent: I'm back");
close(fds[1]);
res = (int) read(fds[0], (void *) rec_msg, sizeof(rec_msg));
print_line("parent: %d = read()", res);
print_line("parent: rec_msg=\"%s\"", rec_msg);
ASSERT(res == (int) sizeof(snd_msg));
ASSERT(strcmp(snd_msg, rec_msg) == 0);
close(fds[0]);
return NULL;
}
#endif /* #ifndef NO_VFORK_PRESENT */
static void
vfork_test(int argc, char *argv[])
{
#ifdef NO_VFORK_PRESENT
skip("No vfork() present; nothing to test");
#else
int res;
ethr_tid tid;
if (argc == 6 && strcmp("exec", argv[2]) == 0) {
/* We are child after vfork() and execlp() ... */
char *snd_msg;
int closefd;
int writefd;
snd_msg = argv[3];
closefd = atoi(argv[4]);
writefd = atoi(argv[5]);
print_line("child: snd_msg=\"%s\"; closefd=%d writefd=%d",
snd_msg, closefd, writefd);
close(closefd);
res = (int) write(writefd, (void *) snd_msg, strlen(snd_msg)+1);
print_line("child: %d = write()", res);
if (res != strlen(snd_msg)+1)
exit(1);
close(writefd);
print_line("child: bye");
exit(0);
}
ASSERT(argc == 2);
res = ethr_mutex_set_forksafe(&vt_mutex);
ASSERT(res == 0 || res == ENOTSUP);
res = ethr_mutex_lock(&vt_mutex);
ASSERT(res == 0);
res = ethr_thr_create(&tid, vt_thread, (void *) argv[0], NULL);
ASSERT(res == 0);
do_sleep(1);
res = ethr_mutex_unlock(&vt_mutex);
ASSERT(res == 0);
res = ethr_thr_join(tid, NULL);
ASSERT(res == 0);
res = ethr_mutex_destroy(&vt_mutex);
ASSERT(res == 0);
#endif
}
/*
* The tsd test case.
*
* Tests thread specific data.
*/
#define TT_THREADS 10
static ethr_tsd_key tt_key;
static void *
tt_thread(void *arg)
{
int res = ethr_tsd_set(tt_key, arg);
ASSERT(res == 0);
return ethr_tsd_get(tt_key);
}
static void
tsd_test(void)
{
void *tres;
int i, res;
ethr_tid tid[TT_THREADS];
int values[TT_THREADS];
res = ethr_tsd_key_create(&tt_key);
ASSERT(res == 0);
for (i = 1; i < TT_THREADS; i++) {
res = ethr_thr_create(&tid[i], tt_thread, (void *) &values[i], NULL);
ASSERT(res == 0);
}
tres = tt_thread((void *) &values[0]);
ASSERT(tres == (void *) &values[0]);
for (i = 1; i < TT_THREADS; i++) {
res = ethr_thr_join(tid[i], &tres);
ASSERT(res == 0);
ASSERT(tres == (void *) &values[i]);
}
res = ethr_tsd_key_delete(tt_key);
ASSERT(res == 0);
}
/*
* The spinlock test case.
*
* Tests spinlocks.
*/
static ethr_spinlock_t st_spinlock;
static int st_data;
void *
st_thread(void *unused)
{
int res;
print_line("Aux thread tries to lock spinlock");
res = ethr_spin_lock(&st_spinlock);
ASSERT(res == 0);
print_line("Aux thread locked spinlock");
ASSERT(st_data == 0);
st_data = 1;
print_line("Aux thread wrote");
print_line("Aux thread goes to sleep for 1 second");
do_sleep(1);
print_line("Aux thread woke up");
ASSERT(st_data == 1);
res = ethr_spin_unlock(&st_spinlock);
ASSERT(res == 0);
print_line("Aux thread unlocked spinlock");
return NULL;
}
static void
spinlock_test(void)
{
int res;
ethr_tid tid;
print_line("Trying to initialize spinlock");
res = ethr_spinlock_init(&st_spinlock);
ASSERT(res == 0);
print_line("Initialized spinlock");
st_data = 0;
print_line("Main thread tries to lock spinlock");
res = ethr_spin_lock(&st_spinlock);
ASSERT(res == 0);
print_line("Main thread locked spinlock");
ASSERT(st_data == 0);
print_line("Main thread about to create aux thread");
res = ethr_thr_create(&tid, st_thread, NULL, NULL);
ASSERT(res == 0);
print_line("Main thread created aux thread");
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(st_data == 0);
res = ethr_spin_unlock(&st_spinlock);
ASSERT(res == 0);
print_line("Main thread unlocked spinlock");
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
print_line("Main thread tries to lock spinlock");
res = ethr_spin_lock(&st_spinlock);
ASSERT(res == 0);
print_line("Main thread locked spinlock");
ASSERT(st_data == 1);
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(st_data == 1);
res = ethr_spin_unlock(&st_spinlock);
ASSERT(res == 0);
print_line("Main thread unlocked spinlock");
res = ethr_thr_join(tid, NULL);
ASSERT(res == 0);
print_line("Main thread joined aux thread");
res = ethr_spinlock_destroy(&st_spinlock);
ASSERT(res == 0);
print_line("Main thread destroyed spinlock");
}
/*
* The rwspinlock test case.
*
* Tests rwspinlocks.
*/
static ethr_rwlock_t rwst_rwspinlock;
static int rwst_data;
void *
rwst_thread(void *unused)
{
int data;
int res;
print_line("Aux thread tries to read lock rwspinlock");
res = ethr_read_lock(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Aux thread read locked rwspinlock");
ASSERT(rwst_data == 4711);
print_line("Aux thread tries to read unlock rwspinlock");
res = ethr_read_unlock(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Aux thread read unlocked rwspinlock");
print_line("Aux thread tries to write lock rwspinlock");
res = ethr_write_lock(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Aux thread write locked rwspinlock");
data = ++rwst_data;
print_line("Aux thread wrote");
print_line("Aux thread goes to sleep for 1 second");
do_sleep(1);
print_line("Aux thread woke up");
ASSERT(rwst_data == data);
++rwst_data;
print_line("Aux thread tries to write unlock rwspinlock");
res = ethr_write_unlock(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Aux thread write unlocked rwspinlock");
return NULL;
}
static void
rwspinlock_test(void)
{
int data;
int res;
ethr_tid tid;
print_line("Trying to initialize rwspinlock");
res = ethr_rwlock_init(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Initialized rwspinlock");
rwst_data = 4711;
print_line("Main thread tries to read lock rwspinlock");
res = ethr_read_lock(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Main thread read locked rwspinlock");
ASSERT(rwst_data == 4711);
print_line("Main thread about to create aux thread");
res = ethr_thr_create(&tid, rwst_thread, NULL, NULL);
ASSERT(res == 0);
print_line("Main thread created aux thread");
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(rwst_data == 4711);
print_line("Main thread tries to read unlock rwspinlock");
res = ethr_read_unlock(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Main thread read unlocked rwspinlock");
print_line("Main thread tries to write lock rwspinlock");
res = ethr_write_lock(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Main thread write locked rwspinlock");
data = ++rwst_data;
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(rwst_data == data);
++rwst_data;
print_line("Main thread tries to write unlock rwspinlock");
res = ethr_write_unlock(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Main thread write unlocked rwspinlock");
res = ethr_thr_join(tid, NULL);
ASSERT(res == 0);
print_line("Main thread joined aux thread");
res = ethr_rwlock_destroy(&rwst_rwspinlock);
ASSERT(res == 0);
print_line("Main thread destroyed rwspinlock");
}
/*
* The rwmutex test case.
*
* Tests rwmutexes.
*/
static ethr_rwmutex rwmt_rwmutex;
static int rwmt_data;
void *
rwmt_thread(void *unused)
{
int data;
int res;
print_line("Aux thread tries to read lock rwmutex");
res = ethr_rwmutex_rlock(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Aux thread read locked rwmutex");
ASSERT(rwmt_data == 4711);
print_line("Aux thread tries to read unlock rwmutex");
res = ethr_rwmutex_runlock(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Aux thread read unlocked rwmutex");
print_line("Aux thread tries to write lock rwmutex");
res = ethr_rwmutex_rwlock(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Aux thread write locked rwmutex");
data = ++rwmt_data;
print_line("Aux thread wrote");
print_line("Aux thread goes to sleep for 1 second");
do_sleep(1);
print_line("Aux thread woke up");
ASSERT(rwmt_data == data);
++rwmt_data;
print_line("Aux thread tries to write unlock rwmutex");
res = ethr_rwmutex_rwunlock(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Aux thread write unlocked rwmutex");
return NULL;
}
static void
rwmutex_test(void)
{
int data;
int res;
ethr_tid tid;
print_line("Trying to initialize rwmutex");
res = ethr_rwmutex_init(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Initialized rwmutex");
rwmt_data = 4711;
print_line("Main thread tries to read lock rwmutex");
res = ethr_rwmutex_rlock(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Main thread read locked rwmutex");
ASSERT(rwmt_data == 4711);
print_line("Main thread about to create aux thread");
res = ethr_thr_create(&tid, rwmt_thread, NULL, NULL);
ASSERT(res == 0);
print_line("Main thread created aux thread");
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(rwmt_data == 4711);
print_line("Main thread tries to read unlock rwmutex");
res = ethr_rwmutex_runlock(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Main thread read unlocked rwmutex");
print_line("Main thread tries to write lock rwmutex");
res = ethr_rwmutex_rwlock(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Main thread write locked rwmutex");
data = ++rwmt_data;
print_line("Main thread goes to sleep for 1 second");
do_sleep(1);
print_line("Main thread woke up");
ASSERT(rwmt_data == data);
++rwmt_data;
print_line("Main thread tries to write unlock rwmutex");
res = ethr_rwmutex_rwunlock(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Main thread write unlocked rwmutex");
res = ethr_thr_join(tid, NULL);
ASSERT(res == 0);
print_line("Main thread joined aux thread");
res = ethr_rwmutex_destroy(&rwmt_rwmutex);
ASSERT(res == 0);
print_line("Main thread destroyed rwmutex");
}
/*
* The atomic test case.
*
* Tests atomics.
*/
#define AT_THREADS 4
#define AT_ITER 10000
long at_set_val, at_rm_val, at_max_val;
static ethr_atomic_t at_ready;
static ethr_atomic_t at_go;
static ethr_atomic_t at_done;
static ethr_atomic_t at_data;
void *
at_thread(void *unused)
{
int res, i;
long val, go;
res = ethr_atomic_inctest(&at_ready, &val);
ASSERT(res == 0);
ASSERT(val > 0);
ASSERT(val <= AT_THREADS);
do {
res = ethr_atomic_read(&at_go, &go);
ASSERT(res == 0);
} while (!go);
for (i = 0; i < AT_ITER; i++) {
res = ethr_atomic_or_old(&at_data, at_set_val, &val);
ASSERT(res == 0);
ASSERT(val >= (i == 0 ? 0 : at_set_val) + (long) 4711);
ASSERT(val <= at_max_val);
res = ethr_atomic_and_old(&at_data, ~at_rm_val, &val);
ASSERT(res == 0);
ASSERT(val >= at_set_val + (long) 4711);
ASSERT(val <= at_max_val);
res = ethr_atomic_read(&at_data, &val);
ASSERT(res == 0);
ASSERT(val >= at_set_val + (long) 4711);
ASSERT(val <= at_max_val);
res = ethr_atomic_inctest(&at_data, &val);
ASSERT(res == 0);
ASSERT(val > at_set_val + (long) 4711);
ASSERT(val <= at_max_val);
res = ethr_atomic_dectest(&at_data, &val);
ASSERT(res == 0);
ASSERT(val >= at_set_val + (long) 4711);
ASSERT(val <= at_max_val);
res = ethr_atomic_inc(&at_data);
ASSERT(res == 0);
res = ethr_atomic_dec(&at_data);
ASSERT(res == 0);
res = ethr_atomic_addtest(&at_data, (long) 4711, &val);
ASSERT(res == 0);
ASSERT(val >= at_set_val + (long) 2*4711);
ASSERT(val <= at_max_val);
res = ethr_atomic_add(&at_data, (long) -4711);
ASSERT(res == 0);
ASSERT(val >= at_set_val + (long) 4711);
ASSERT(val <= at_max_val);
}
res = ethr_atomic_inc(&at_done);
ASSERT(res == 0);
return NULL;
}
static void
atomic_test(void)
{
long data_init, data_final, val;
int res, i;
ethr_tid tid[AT_THREADS];
ethr_thr_opts thr_opts = ETHR_THR_OPTS_DEFAULT_INITER;
if (sizeof(long) > 4) {
at_rm_val = ((long) 1) << 57;
at_set_val = ((long) 1) << 60;
}
else {
at_rm_val = ((long) 1) << 27;
at_set_val = ((long) 1) << 30;
}
at_max_val = at_set_val + at_rm_val + ((long) AT_THREADS + 1) * 4711;
data_init = at_rm_val + (long) 4711;
data_final = at_set_val + (long) 4711;
thr_opts.detached = 1;
print_line("Initializing");
res = ethr_atomic_init(&at_ready, 0);
ASSERT(res == 0);
res = ethr_atomic_init(&at_go, 0);
ASSERT(res == 0);
res = ethr_atomic_init(&at_done, data_init);
ASSERT(res == 0);
res = ethr_atomic_init(&at_data, data_init);
ASSERT(res == 0);
res = ethr_atomic_read(&at_data, &val);
ASSERT(res == 0);
ASSERT(val == data_init);
res = ethr_atomic_set(&at_done, 0);
ASSERT(res == 0);
res = ethr_atomic_read(&at_done, &val);
ASSERT(res == 0);
ASSERT(val == 0);
print_line("Creating threads");
for (i = 0; i < AT_THREADS; i++) {
res = ethr_thr_create(&tid[i], at_thread, NULL, &thr_opts);
ASSERT(res == 0);
}
print_line("Waiting for threads to ready up");
do {
res = ethr_atomic_read(&at_ready, &val);
ASSERT(res == 0);
ASSERT(val >= 0);
ASSERT(val <= AT_THREADS);
} while (val != AT_THREADS);
print_line("Letting threads loose");
res = ethr_atomic_xchg(&at_go, 17, &val);
ASSERT(res == 0);
ASSERT(val == 0);
res = ethr_atomic_read(&at_go, &val);
ASSERT(res == 0);
ASSERT(val == 17);
print_line("Waiting for threads to finish");
do {
res = ethr_atomic_read(&at_done, &val);
ASSERT(res == 0);
ASSERT(val >= 0);
ASSERT(val <= AT_THREADS);
} while (val != AT_THREADS);
print_line("Checking result");
res = ethr_atomic_read(&at_data, &val);
ASSERT(res == 0);
ASSERT(val == data_final);
print_line("Result ok");
}
/*
* The gate test case.
*
* Tests gates.
*/
#define GT_THREADS 10
static ethr_atomic_t gt_wait1;
static ethr_atomic_t gt_wait2;
static ethr_atomic_t gt_done;
static ethr_gate gt_gate1;
static ethr_gate gt_gate2;
void *
gt_thread(void *thr_no)
{
int no = (int)(long) thr_no;
int swait = no % 2 == 0;
int res;
long done;
do {
res = ethr_atomic_inc(>_wait1);
ASSERT(res == 0);
if (swait)
res = ethr_gate_swait(>_gate1, INT_MAX);
else
res = ethr_gate_wait(>_gate1);
ASSERT(res == 0);
res = ethr_atomic_dec(>_wait1);
ASSERT(res == 0);
res = ethr_atomic_inc(>_wait2);
ASSERT(res == 0);
if (swait)
res = ethr_gate_swait(>_gate2, INT_MAX);
else
res = ethr_gate_wait(>_gate2);
ASSERT(res == 0);
res = ethr_atomic_dec(>_wait2);
ASSERT(res == 0);
res = ethr_atomic_read(>_done, &done);
ASSERT(res == 0);
} while (!done);
return NULL;
}
static void
gate_test(void)
{
long val;
int res, i;
ethr_tid tid[GT_THREADS];
print_line("Initializing");
res = ethr_atomic_init(>_wait1, 0);
ASSERT_EQ(res, 0, "%d");
res = ethr_atomic_init(>_wait2, 0);
ASSERT_EQ(res, 0, "%d");
res = ethr_atomic_init(>_done, 0);
ASSERT_EQ(res, 0, "%d");
res = ethr_gate_init(>_gate1);
ASSERT_EQ(res, 0, "%d");
res = ethr_gate_init(>_gate2);
ASSERT_EQ(res, 0, "%d");
print_line("Creating threads");
for (i = 0; i < GT_THREADS; i++) {
res = ethr_thr_create(&tid[i], gt_thread, (void *) i, NULL);
ASSERT_EQ(res, 0, "%d");
}
print_line("Waiting for threads to ready up");
do {
res = ethr_atomic_read(>_wait1, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT(0 <= val && val <= GT_THREADS);
} while (val != GT_THREADS);
print_line("Testing");
res = ethr_gate_let_through(>_gate1, 8);
ASSERT_EQ(res, 0, "%d");
WAIT_UNTIL_LIM((res = ethr_atomic_read(>_wait2, &val),
(res != 0 || val == 8)),
60);
res = ethr_atomic_read(>_wait1, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, GT_THREADS - 8, "%ld");
res = ethr_atomic_read(>_wait2, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, 8, "%ld");
res = ethr_gate_let_through(>_gate2, 4);
ASSERT_EQ(res, 0, "%d");
WAIT_UNTIL_LIM((res = ethr_atomic_read(>_wait2, &val),
(res != 0 || val == 4)),
60);
res = ethr_atomic_read(>_wait1, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, GT_THREADS - 4, "%ld");
res = ethr_atomic_read(>_wait2, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, 4, "%ld");
res = ethr_gate_let_through(>_gate1, GT_THREADS);
ASSERT_EQ(res, 0, "%d");
WAIT_UNTIL_LIM((res = ethr_atomic_read(>_wait2, &val),
(res != 0 || val == GT_THREADS)),
60);
res = ethr_atomic_read(>_wait1, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, 0, "%ld");
res = ethr_atomic_read(>_wait2, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, GT_THREADS, "%ld");
res = ethr_gate_let_through(>_gate2, GT_THREADS);
ASSERT_EQ(res, 0, "%d");
WAIT_UNTIL_LIM((res = ethr_atomic_read(>_wait2, &val),
(res != 0 || val == 4)),
60);
res = ethr_atomic_read(>_wait1, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, GT_THREADS - 4, "%ld");
res = ethr_atomic_read(>_wait2, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, 4, "%ld");
res = ethr_atomic_set(>_done, 1);
ASSERT_EQ(res, 0, "%d");
res = ethr_gate_let_through(>_gate2, GT_THREADS);
ASSERT_EQ(res, 0, "%d");
res = ethr_gate_let_through(>_gate1, GT_THREADS - 4);
ASSERT_EQ(res, 0, "%d");
WAIT_UNTIL_LIM(((res = ethr_atomic_read(>_wait1, &val)) != 0
|| (val == 0
&& ((res = ethr_atomic_read(>_wait2, &val)) != 0
|| val == 0))),
60);
res = ethr_atomic_read(>_wait1, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, 0, "%ld");
res = ethr_atomic_read(>_wait2, &val);
ASSERT_EQ(res, 0, "%d");
ASSERT_EQ(val, 0, "%ld");
print_line("Joining threads");
for (i = 0; i < GT_THREADS; i++) {
res = ethr_thr_join(tid[i], NULL);
ASSERT_EQ(res, 0, "%d");
}
res = ethr_gate_destroy(>_gate1);
ASSERT_EQ(res, 0, "%d");
res = ethr_gate_destroy(>_gate2);
ASSERT_EQ(res, 0, "%d");
}
#endif /* #ifndef ETHR_NO_THREAD_LIB */
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* The dispatcher *
\* */
int
main(int argc, char *argv[])
{
if (argc < 2)
fail("To few arguments for test case");
#ifndef ETHR_NO_THREAD_LIB
{
char *testcase;
int res;
send_my_pid();
testcase = argv[1];
res = ethr_init(NULL);
if (res != 0)
fail("Failed to initialize the ethread library");
if (strcmp(testcase, "create_join_thread") == 0)
create_join_thread_test();
else if (strcmp(testcase, "equal_tids") == 0)
equal_tids_test();
else if (strcmp(testcase, "mutex") == 0)
mutex_test();
else if (strcmp(testcase, "try_lock_mutex") == 0)
try_lock_mutex_test();
else if (strcmp(testcase, "recursive_mutex") == 0)
recursive_mutex_test();
else if (strcmp(testcase, "time_now") == 0)
time_now_test();
else if (strcmp(testcase, "cond_wait") == 0)
cond_wait_test(0);
else if (strcmp(testcase, "cond_timedwait") == 0)
cond_timedwait_test();
else if (strcmp(testcase, "broadcast") == 0)
broadcast_test();
else if (strcmp(testcase, "detached_thread") == 0)
detached_thread_test();
else if (strcmp(testcase, "max_threads") == 0)
max_threads_test();
else if (strcmp(testcase, "forksafety") == 0)
forksafety_test();
else if (strcmp(testcase, "vfork") == 0)
vfork_test(argc, argv);
else if (strcmp(testcase, "tsd") == 0)
tsd_test();
else if (strcmp(testcase, "spinlock") == 0)
spinlock_test();
else if (strcmp(testcase, "rwspinlock") == 0)
rwspinlock_test();
else if (strcmp(testcase, "rwmutex") == 0)
rwmutex_test();
else if (strcmp(testcase, "atomic") == 0)
atomic_test();
else if (strcmp(testcase, "gate") == 0)
gate_test();
else
skip("Test case \"%s\" not implemented yet", testcase);
succeed(NULL);
}
#else /* #ifndef ETHR_NO_THREAD_LIB */
skip("No ethread library to test");
#endif /* #ifndef ETHR_NO_THREAD_LIB */
return 0;
}