aboutsummaryrefslogblamecommitdiffstats
path: root/lib/asn1/src/asn1ct_imm.erl
blob: a7b2e8a23b3e55d9b52acc3efa41198003751735 (plain) (tree)
1
2
3
4
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053


                   
                                                        















                                                                         

                                                                     
                                 

                                                  

                                                                   
                                                                 











                                                                           
                                                   






                                        

                                       















                                                     






                              


                                                

                                        
                                          

                                         
                                               







                                                                     








                                                                    
                                 
                                                 

                                 





                                                                        



                                                         
                                                        
                                                     
                                                                 
                                                                   
                                         
                                         






                                                                    
                                                      
                                                           
                                                         
                                                       


                                                
                                            
                                                       
 
                                             
                                                     
 
                             
                                          
 







                                                               
 



                                                        





































































































































































                                                                               

                                                                        



                                                        









                                                                            
























                                                                 





                                                        







































                                                              
 



                    



















                                                                        
                
                                                         
                                             






                                            
                                                
                                                         
                                              
                                

                            


                                                         













                                                           






                                                                              
                                             








































                                                                             




                                                            

































                                                                           









                                                               






















































































                                                                    
   













                                                    

                                                           






































































                                                                 































                                                                    

                                                


                                                     








                                               
































                                                                 

                        
                                                     
               




                                                               





                                                               

















                                                      




                                     






















                                                                






                                                        























































                                                             










                                                    




                                       








                                    









































                                                                    


















                                                                           









                                                                     
                                                                          









































































































                                                                        








                                                                         




































































































































































































































































































































































































































































































































                                                                             


                                                         

                                           

                                                        













































                                                                     








































































































































































































































































































































                                                                                  

                                      
















                                                            
                           



















































































                                                                              












                                                                          



                                                             






                                              




















                                                 






























































                                                                             
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2012-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%
-module(asn1ct_imm).
-export([per_dec_raw_bitstring/2,
	 per_dec_boolean/0,per_dec_enumerated/2,per_dec_enumerated/3,
	 per_dec_extension_map/1,
	 per_dec_integer/2,per_dec_k_m_string/3,
	 per_dec_length/3,per_dec_named_integer/3,
	 per_dec_octet_string/2,per_dec_open_type/1,per_dec_real/1,
	 per_dec_restricted_string/1]).
-export([per_dec_constrained/3,per_dec_normally_small_number/1]).
-export([per_enc_bit_string/4,per_enc_boolean/2,
	 per_enc_choice/3,per_enc_enumerated/3,
	 per_enc_integer/3,per_enc_integer/4,
	 per_enc_null/2,
	 per_enc_k_m_string/4,per_enc_octet_string/3,
	 per_enc_open_type/2,
	 per_enc_restricted_string/3,
	 per_enc_small_number/2]).
-export([per_enc_extension_bit/2,per_enc_extensions/4,per_enc_optional/3]).
-export([per_enc_sof/5]).
-export([enc_absent/3,enc_append/1,enc_bind_var/1]).
-export([enc_cg/2]).
-export([optimize_alignment/1,optimize_alignment/2,
	 dec_slim_cg/2,dec_code_gen/2]).
-export([effective_constraint/2]).
-import(asn1ct_gen, [emit/1]).

-record(st, {var,
	     base}).

dec_slim_cg(Imm0, BytesVar) ->
    {Imm,_} = optimize_alignment(Imm0),
    asn1ct_name:new(v),
    [H|T] = atom_to_list(asn1ct_name:curr(v)) ++ "@",
    VarBase = [H-($a-$A)|T],
    St0 = #st{var=0,base=VarBase},
    {Res,Pre,_} = flatten(Imm, BytesVar, St0),
    dcg_list_outside(Pre),
    Res.

dec_code_gen(Imm, BytesVar) ->
    emit(["begin",nl]),
    {Dst,DstBuf} = dec_slim_cg(Imm, BytesVar),
    emit([",",nl,
	  "{",Dst,",",DstBuf,"}",nl,
	  "end"]),
    ok.

optimize_alignment(Imm) ->
    opt_al(Imm, unknown).

optimize_alignment(Imm, Al) ->
    opt_al(Imm, Al).


per_dec_boolean() ->
    {map,{get_bits,1,[1]},[{0,false},{1,true}]}.

per_dec_enumerated([{V,_}], _Aligned) ->
    {value,V};
per_dec_enumerated(NamedList0, Aligned) ->
    Ub = length(NamedList0) - 1,
    Constraint = [{'ValueRange',{0,Ub}}],
    Int = per_dec_integer(Constraint, Aligned),
    EnumTail = case matched_range(Int) of
		   {0,Ub} ->
		       %% The error case can never happen.
		       [];
		   _ ->
		       [enum_error]
	       end,
    NamedList = per_dec_enumerated_fix_list(NamedList0, EnumTail, 0),
    {map,Int,NamedList}.

per_dec_enumerated(BaseNamedList, NamedListExt0, Aligned) ->
    Base = per_dec_enumerated(BaseNamedList, Aligned),
    NamedListExt = per_dec_enumerated_fix_list(NamedListExt0,
					       [enum_default], 0),
    Ext = {map,per_dec_normally_small_number(Aligned),NamedListExt},
    bit_case(Base, Ext).

per_dec_extension_map(Aligned) ->
    Len = per_dec_normally_small_length(Aligned),
    {get_bits,Len,[1,bitstring]}.

per_dec_integer(Constraint0, Aligned) ->
    Constraint = effective_constraint(integer, Constraint0),
    per_dec_integer_1(Constraint, Aligned).

per_dec_length(SingleValue, _, _Aligned) when is_integer(SingleValue) ->
    {value,SingleValue};
per_dec_length({{Fixed,Fixed},[]}, AllowZero, Aligned) ->
    bit_case(per_dec_length(Fixed, AllowZero, Aligned),
	     per_dec_length(no, AllowZero, Aligned));
per_dec_length({{_,_}=Constr,[]}, AllowZero, Aligned) ->
    bit_case(per_dec_length(Constr, AllowZero, Aligned),
	     per_dec_length(no, AllowZero, Aligned));
per_dec_length({Lb,Ub}, _AllowZero, Aligned) when is_integer(Lb),
						  is_integer(Lb) ->
    per_dec_constrained(Lb, Ub, Aligned);
per_dec_length(no, AllowZero, Aligned) ->
    decode_unconstrained_length(AllowZero, Aligned).

per_dec_named_integer(Constraint, NamedList0, Aligned) ->
    Int = per_dec_integer(Constraint, Aligned),
    NamedList = [{K,V} || {V,K} <- NamedList0] ++ [integer_default],
    {map,Int,NamedList}.

per_dec_k_m_string(StringType, Constraint, Aligned) ->
    SzConstr = effective_constraint(bitstring, Constraint),
    N = string_num_bits(StringType, Constraint, Aligned),
    Imm = dec_string(SzConstr, N, Aligned, k_m_string),
    Chars = char_tab(Constraint, StringType, N),
    convert_string(N, Chars, Imm).

per_dec_octet_string(Constraint, Aligned) ->
    dec_string(Constraint, 8, Aligned, 'OCTET STRING').

per_dec_raw_bitstring(Constraint, Aligned) ->
    dec_string(Constraint, 1, Aligned, 'BIT STRING').

per_dec_open_type(Aligned) ->
    dec_string(no, 8, Aligned, open_type).

per_dec_real(Aligned) ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,real_common,decode_real,[V]},
			com,Buf,"}"])
	  end,
    {call,Dec,
     {get_bits,decode_unconstrained_length(true, Aligned),
      [8,binary,{align,Aligned}]}}.

per_dec_restricted_string(Aligned) ->
    DecLen = decode_unconstrained_length(true, Aligned),
    {get_bits,DecLen,[8,binary]}.

%%%
%%% Encoding.
%%%

per_enc_bit_string(Val0, [], Constraint0, Aligned) ->
    {B,[Val,Bs,Bits]} = mk_vars(Val0, [bs,bits]),
    Constraint = effective_constraint(bitstring, Constraint0),
    ExtraArgs = case constr_min_size(Constraint) of
		    no -> [];
		    Lb -> [Lb]
		end,
    B ++ [{call,per_common,to_bitstring,[Val|ExtraArgs],Bs},
	  {call,erlang,bit_size,[Bs],Bits}|
	  per_enc_length(Bs, 1, Bits, Constraint, Aligned, 'BIT STRING')];
per_enc_bit_string(Val0, NNL0, Constraint0, Aligned) ->
    {B,[Val,Bs,Bits,Positions]} = mk_vars(Val0, [bs,bits,positions]),
    NNL = lists:keysort(2, NNL0),
    Constraint = effective_constraint(bitstring, Constraint0),
    ExtraArgs = case constr_min_size(Constraint) of
		    no -> [];
		    Lb -> [Lb]
		end,
    B ++ [{'try',
	   [bit_string_name2pos_fun(NNL, Val)],
	   {Positions,
	    [{call,per_common,bitstring_from_positions,
	      [Positions|ExtraArgs]}]},
	   [{call,per_common,to_named_bitstring,[Val|ExtraArgs]}],Bs},
	  {call,erlang,bit_size,[Bs],Bits}|
	  per_enc_length(Bs, 1, Bits, Constraint, Aligned, 'BIT STRING')].

per_enc_boolean(Val0, _Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    B++build_cond([[{eq,Val,false},{put_bits,0,1,[1]}],
		   [{eq,Val,true},{put_bits,1,1,[1]}]]).

per_enc_choice(Val0, Cs0, _Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Cs = [[{eq,Val,Tag}|opt_choice(Imm)] || {Tag,Imm} <- Cs0],
    B++build_cond(Cs).

per_enc_enumerated(Val0, {Root,Ext}, Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Constr = enumerated_constraint(Root),
    RootCs = per_enc_enumerated_root(Root, [{put_bits,0,1,[1]}],
				     Val, Constr, Aligned),
    ExtCs = per_enc_enumerated_ext(Ext, Val, Aligned),
    B++[{'cond',RootCs++ExtCs++enumerated_error(Val)}];
per_enc_enumerated(Val0, Root, Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Constr = enumerated_constraint(Root),
    Cs = per_enc_enumerated_root(Root, [], Val, Constr, Aligned),
    B++[{'cond',Cs++enumerated_error(Val)}].

enumerated_error(Val) ->
    [['_',{error,Val}]].

per_enc_integer(Val0, Constraint0, Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Constraint = effective_constraint(integer, Constraint0),
    B ++ per_enc_integer_1(Val, Constraint, Aligned).

per_enc_integer(Val0, NNL, Constraint0, Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    Constraint = effective_constraint(integer, Constraint0),
    Cs = [[{eq,Val,N}|per_enc_integer_1(V, Constraint, Aligned)] ||
	     {N,V} <- NNL],
    case per_enc_integer_1(Val, Constraint, Aligned) of
	[{'cond',IntCs}] ->
	    B ++ [{'cond',Cs++IntCs}];
	Other ->
	    B ++ [{'cond',Cs++[['_'|Other]]}]
    end.

per_enc_null(_Val, _Aligned) ->
    [].

per_enc_k_m_string(Val0, StringType, Constraint, Aligned) ->
    {B,[Val,Bin,Len]} = mk_vars(Val0, [bin,len]),
    SzConstraint = effective_constraint(bitstring, Constraint),
    Unit = string_num_bits(StringType, Constraint, Aligned),
    Chars0 = char_tab(Constraint, StringType, Unit),
    Args = case enc_char_tab(Chars0) of
	       notab -> [Val,Unit];
	       Chars -> [Val,Unit,Chars]
	   end,
    Enc = case Unit of
	      16 ->
		  {call,per_common,encode_chars_16bit,[Val],Bin};
	      32 ->
		  {call,per_common,encode_big_chars,[Val],Bin};
	      8 ->
		  {call,erlang,list_to_binary,[Val],Bin};
	      _ ->
		  {call,per_common,encode_chars,Args,Bin}
	  end,
    case Unit of
	8 ->
	    B ++ [Enc,{call,erlang,byte_size,[Bin],Len}];
	_ ->
	    B ++ [{call,erlang,length,[Val],Len},Enc]
    end ++ per_enc_length(Bin, Unit, Len, SzConstraint, Aligned, k_m_string).

per_enc_open_type([], Aligned) ->
    [{put_bits,1,8,unit(1, Aligned)},{put_bits,0,8,[1]}];
per_enc_open_type([{'cond',
		    [['_',
		      {put_bits,0,0,_},
		      {call,per_common,encode_unconstrained_number,_}=Call]]}],
		  Aligned) ->
    %% We KNOW that encode_unconstrained_number/1 will return an IO list;
    %% therefore the call to complete/1 can be replaced with a cheaper
    %% call to iolist_to_binary/1.
    {Dst,Imm} = per_enc_open_type_output([Call], []),
    ToBin = {erlang,iolist_to_binary},
    Imm ++ per_enc_open_type(Dst, ToBin, Aligned);
per_enc_open_type([{call,erlang,iolist_to_binary,Args}], Aligned) ->
    {_,[_,Bin,Len]} = mk_vars('dummy', [bin,len]),
    [{call,erlang,iolist_to_binary,Args,Bin},
     {call,erlang,byte_size,[Bin],Len}|per_enc_length(Bin, 8, Len, Aligned)];
per_enc_open_type(Imm0, Aligned) ->
    try
	{Prefix,Imm1} = split_off_nonbuilding(Imm0),
	Prefix ++ enc_open_type(Imm1, Aligned)
    catch
	throw:impossible ->
	    {Dst,Imm} = per_enc_open_type_output(Imm0, []),
	    ToBin = {enc_mod(Aligned),complete},
	    Imm ++ per_enc_open_type(Dst, ToBin, Aligned)
    end.

per_enc_octet_string(Val0, Constraint0, Aligned) ->
    {B,[Val,Bin,Len]} = mk_vars(Val0, [bin,len]),
    Constraint = effective_constraint(bitstring, Constraint0),
    B ++ [{call,erlang,iolist_to_binary,[Val],Bin},
	  {call,erlang,byte_size,[Bin],Len}|
	  per_enc_length(Bin, 8, Len, Constraint, Aligned, 'OCTET STRING')].

per_enc_restricted_string(Val0, {M,F}, Aligned) ->
    {B,[Val,Bin,Len]} = mk_vars(Val0, [bin,len]),
    B ++ [{call,M,F,[Val],Bin},
	  {call,erlang,byte_size,[Bin],Len}|
	  per_enc_length(Bin, 8, Len, Aligned)].

per_enc_small_number(Val, Aligned) ->
    build_cond([[{lt,Val,64},{put_bits,Val,7,[1]}],
		['_',{put_bits,1,1,[1]}|
		 per_enc_unsigned(Val, Aligned)]]).

per_enc_extension_bit(Val0, _Aligned) ->
    {B,[Val]} = mk_vars(Val0, []),
    B++build_cond([[{eq,Val,[]},{put_bits,0,1,[1]}],
		   ['_',{put_bits,1,1,[1]}]]).

per_enc_extensions(Val0, Pos0, NumBits, Aligned) when NumBits > 0 ->
    Pos = Pos0 + 1,
    {B,[Val,Bitmap]} = mk_vars(Val0, [bitmap]),
    Length = per_enc_small_length(NumBits, Aligned),
    PutBits = case NumBits of
		  1 -> [{put_bits,1,1,[1]}];
		  _ -> [{put_bits,Bitmap,NumBits,[1]}]
	      end,
    B++[{call,per_common,extension_bitmap,[Val,Pos,Pos+NumBits],Bitmap},
	{'cond',[[{eq,Bitmap,0}],
		 ['_'|Length ++ PutBits]],{var,"Extensions"}}].

per_enc_optional(Val0, {Pos,DefVals}, _Aligned) when is_integer(Pos),
						     is_list(DefVals) ->
    Val1 = lists:concat(["element(",Pos,", ",Val0,")"]),
    {B,[Val]} = mk_vars(Val1, []),
    Zero = {put_bits,0,1,[1]},
    One = {put_bits,1,1,[1]},
    B++[{'cond',
	 [[{eq,Val,DefVal},Zero] || DefVal <- DefVals] ++ [['_',One]]}];
per_enc_optional(Val0, {Pos,{call,M,F,A}}, _Aligned) when is_integer(Pos) ->
    Val1 = lists:concat(["element(",Pos,", ",Val0,")"]),
    {B,[Val,Tmp]} = mk_vars(Val1, [tmp]),
    Zero = {put_bits,0,1,[1]},
    One = {put_bits,1,1,[1]},
    B++[{call,M,F,[Val|A],Tmp},
	{'cond',
	 [[{eq,Tmp,true},Zero],['_',One]]}];
per_enc_optional(Val0, Pos, _Aligned) when is_integer(Pos) ->
    Val1 = lists:concat(["element(",Pos,", ",Val0,")"]),
    {B,[Val]} = mk_vars(Val1, []),
    Zero = {put_bits,0,1,[1]},
    One = {put_bits,1,1,[1]},
    B++[{'cond',[[{eq,Val,asn1_NOVALUE},Zero],
		 ['_',One]]}].

per_enc_sof(Val0, Constraint, ElementVar, ElementImm, Aligned) ->
    {B,[Val,Len]} = mk_vars(Val0, [len]),
    SzConstraint = effective_constraint(bitstring, Constraint),
    LenImm = enc_length(Len, SzConstraint, Aligned),
    Lc0 = [{lc,ElementImm,{var,atom_to_list(ElementVar)},Val}],
    Lc = opt_lc(Lc0, LenImm),
    PreBlock = B ++ [{call,erlang,length,[Val],Len}],
    case LenImm of
	[{'cond',[[C|Action]]}] ->
	    PreBlock ++ [{'cond',[[C|Action++Lc]]}];
	[{sub,_,_,_}=Sub,{'cond',[[C|Action]]}] ->
	    PreBlock ++
		[Sub,{'cond',[[C|Action++Lc]]}];
	EncLen ->
	    PreBlock ++ EncLen ++ Lc
    end.

enc_absent(Val0, {call,M,F,A}, Body) ->
    {B,[Var,Tmp]} = mk_vars(Val0, [tmp]),
    B++[{call,M,F,[Var|A],Tmp},
	{'cond',
	 [[{eq,Tmp,true}],['_'|Body]]}];
enc_absent(Val0, AbsVals, Body) when is_list(AbsVals) ->
    {B,[Var]} = mk_vars(Val0, []),
    Cs = [[{eq,Var,Aval}] || Aval <- AbsVals] ++ [['_'|Body]],
    B++build_cond(Cs).

enc_append([[]|T]) ->
    enc_append(T);
enc_append([[{put_bits,_,_,_}|_]=Pb|[Imm|T]=T0]) ->
    case opt_choice(Pb++Imm) of
	[{put_bits,_,_,_}|_] ->
	    [{block,Pb}|enc_append(T0)];
	Opt ->
	    enc_append([Opt|T])
    end;
enc_append([Imm0|[Imm1|T]=T0]) ->
    try combine_imms(Imm0, Imm1) of
	Imm ->
	    enc_append([Imm|T])
    catch
	throw:impossible ->
	    [{block,Imm0}|enc_append(T0)]
    end;
enc_append([H|T]) ->
    [{block,H}|enc_append(T)];
enc_append([]) -> [].

enc_bind_var(Val) ->
    {B,[{var,Var}]} = mk_vars(Val, []),
    {B,list_to_atom(Var)}.

enc_cg(Imm0, false) ->
    Imm1 = enc_cse(Imm0),
    Imm = enc_pre_cg(Imm1),
    enc_cg(Imm);
enc_cg(Imm0, true) ->
    Imm1 = enc_cse(Imm0),
    Imm2 = enc_hoist_align(Imm1),
    Imm3 = enc_opt_al(Imm2),
    Imm4 = per_fixup(Imm3),
    Imm = enc_pre_cg(Imm4),
    enc_cg(Imm).

%%%
%%% Local functions.
%%%

%% is_aligned(StringType, LowerBound, UpperBound) -> boolean()
%%     StringType = 'OCTET STRING' | 'BIT STRING' | k_m_string
%%     LowerBound = UpperBound = number of bits
%%  Determine whether a string should be aligned in PER.

is_aligned(T, Lb, Ub) when T =:= 'OCTET STRING'; T =:= 'BIT STRING' ->
    %% OCTET STRINGs and BIT STRINGs are aligned to a byte boundary
    %% unless the size is fixed and less than or equal to 16 bits.
    Lb =/= Ub orelse Lb > 16;
is_aligned(k_m_string, _Lb, Ub) ->
    %% X.691 (07/2002) 27.5.7 says if the upper bound times the number
    %% of bits is greater than or equal to 16, then the bit field should
    %% be aligned.
    Ub >= 16.

%%%
%%% Generating the intermediate format format for decoding.
%%%

dec_string(Sv, U, Aligned0, T) when is_integer(Sv) ->
    Bits = U*Sv,
    Aligned = Aligned0 andalso is_aligned(T, Bits, Bits),
    {get_bits,Sv,[U,binary,{align,Aligned}]};
dec_string({{Sv,Sv},[]}, U, Aligned, T) ->
    bit_case(dec_string(Sv, U, Aligned, T),
	     dec_string(no, U, Aligned, T));
dec_string({{_,_}=C,[]}, U, Aligned, T) ->
    bit_case(dec_string(C, U, Aligned, T),
	     dec_string(no, U, Aligned, T));
dec_string({Lb,Ub}, U, Aligned0, T) ->
    Len = per_dec_constrained(Lb, Ub, Aligned0),
    Aligned = Aligned0 andalso is_aligned(T, Lb*U, Ub*U),
    {get_bits,Len,[U,binary,{align,Aligned}]};
dec_string(_, U, Aligned, _T) ->
    Al = [{align,Aligned}],
    DecRest = fun(V, Buf) ->
		      asn1ct_func:call(per_common,
				       decode_fragmented,
				       [V,Buf,U])
	      end,
    {'case',[{test,{get_bits,1,[1|Al]},0,
	      {value,{get_bits,
		      {get_bits,7,[1]},
		      [U,binary]}}},
	     {test,{get_bits,1,[1|Al]},1,
	      {test,{get_bits,1,[1]},0,
	       {value,{get_bits,
		       {get_bits,14,[1]},
		       [U,binary]}}}},
	     {test,{get_bits,1,[1|Al]},1,
	      {test,{get_bits,1,[1]},1,
	       {value,{call,DecRest,{get_bits,6,[1]}}}}}]}.

per_dec_enumerated_fix_list([{V,_}|T], Tail, N) ->
    [{N,V}|per_dec_enumerated_fix_list(T, Tail, N+1)];
per_dec_enumerated_fix_list([], Tail, _) -> Tail.

per_dec_integer_1([{'SingleValue',Value}], _Aligned) ->
    {value,Value};
per_dec_integer_1([{'ValueRange',{Lb,'MAX'}}], Aligned) when is_integer(Lb) ->
    per_decode_semi_constrained(Lb, Aligned);
per_dec_integer_1([{'ValueRange',{Lb,Ub}}], Aligned) when is_integer(Lb),
						    is_integer(Ub) ->
    per_dec_constrained(Lb, Ub, Aligned);
per_dec_integer_1([{{_,_}=Constr0,_}], Aligned) ->
    Constr = effective_constraint(integer, [Constr0]),
    bit_case(per_dec_integer(Constr, Aligned),
	     per_dec_unconstrained(Aligned));
per_dec_integer_1([], Aligned) ->
    per_dec_unconstrained(Aligned).

per_dec_unconstrained(Aligned) ->
    {get_bits,decode_unconstrained_length(false, Aligned),[8,signed]}.

per_dec_constrained(Lb, Ub, false) ->
    Range = Ub - Lb + 1,
    Get = {get_bits,uper_num_bits(Range),[1]},
    add_lb(Lb, Get);
per_dec_constrained(Lb, Ub, true) ->
    Range = Ub - Lb + 1,
    Get = if
	      Range =< 255 ->
		  {get_bits,per_num_bits(Range),[1,unsigned]};
	      Range == 256 ->
		  {get_bits,1,[8,unsigned,{align,true}]};
	      Range =< 65536 ->
		  {get_bits,2,[8,unsigned,{align,true}]};
	      true ->
		  RangeOctLen = byte_size(binary:encode_unsigned(Range - 1)),
		  {get_bits,per_dec_length({1,RangeOctLen}, false, true),
		   [8,unsigned,{align,true}]}
	  end,
    add_lb(Lb, Get).

add_lb(0, Get) -> Get;
add_lb(Lb, Get) -> {add,Get,Lb}.

per_dec_normally_small_number(Aligned) ->
    Small = {get_bits,6,[1]},
    Unlimited = per_decode_semi_constrained(0, Aligned),
    bit_case(Small, Unlimited).

per_dec_normally_small_length(Aligned) ->
    Small = {add,{get_bits,6,[1]},1},
    Unlimited = decode_unconstrained_length(false, Aligned),
    bit_case(Small, Unlimited).

per_decode_semi_constrained(Lb, Aligned) ->
    add_lb(Lb, {get_bits,decode_unconstrained_length(false, Aligned),[8]}).

bit_case(Base, Ext) ->
    {'case',[{test,{get_bits,1,[1]},0,Base},
	     {test,{get_bits,1,[1]},1,Ext}]}.

decode_unconstrained_length(AllowZero, Aligned) ->
    Al = [{align,Aligned}],
    Zero = case AllowZero of
	       false -> [non_zero];
	       true -> []
	   end,
    {'case',[{test,{get_bits,1,[1|Al]},0,
	      {value,{get_bits,7,[1|Zero]}}},
	     {test,{get_bits,1,[1|Al]},1,
	      {test,{get_bits,1,[1]},0,
	       {value,{get_bits,14,[1|Zero]}}}}]}.

uper_num_bits(N) ->
    uper_num_bits(N, 1, 0).

uper_num_bits(N, T, B) when N =< T -> B;
uper_num_bits(N, T, B) -> uper_num_bits(N, T bsl 1, B+1).

per_num_bits(2) -> 1;
per_num_bits(N) when N =< 4 -> 2;
per_num_bits(N) when N =< 8 -> 3;
per_num_bits(N) when N =< 16 -> 4;
per_num_bits(N) when N =< 32 -> 5;
per_num_bits(N) when N =< 64 -> 6;
per_num_bits(N) when N =< 128 -> 7;
per_num_bits(N) when N =< 255 -> 8.

matched_range({get_bits,Bits0,[U|Flags]}) when is_integer(U) ->
    case lists:member(signed, Flags) of
	false ->
	    Bits = U*Bits0,
	    {0,(1 bsl Bits) - 1};
	true ->
	    unknown
    end;
matched_range(_Op) -> unknown.

string_num_bits(StringType, Constraint, Aligned) ->
    case get_constraint(Constraint, 'PermittedAlphabet') of
	{'SingleValue',Sv} ->
	    charbits(length(Sv), Aligned);
	no ->
	    case StringType of
		'IA5String' ->
		    charbits(128, Aligned);
		'VisibleString' ->
		    charbits(95, Aligned);
		'PrintableString' ->
		    charbits(74, Aligned);
		'NumericString' ->
		    charbits(11, Aligned);
		'UniversalString' ->
		    32;
		'BMPString' ->
		    16
	    end
    end.

charbits(NumChars, false) ->
    uper_num_bits(NumChars);
charbits(NumChars, true) ->
    1 bsl uper_num_bits(uper_num_bits(NumChars)).

convert_string(8, notab, Imm) ->
    {convert,binary_to_list,Imm};
convert_string(NumBits, notab, Imm) when NumBits < 8 ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,per_common,decode_chars,
			     [V,NumBits]},com,Buf,"}"])
	  end,
    {call,Dec,Imm};
convert_string(NumBits, notab, Imm) when NumBits =:= 16 ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,per_common,decode_chars_16bit,
			     [V]},com,Buf,"}"])
	  end,
    {call,Dec,Imm};
convert_string(NumBits, notab, Imm) ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,per_common,decode_big_chars,
			     [V,NumBits]},com,Buf,"}"])
	  end,
    {call,Dec,Imm};
convert_string(NumBits, Chars, Imm) ->
    Dec = fun(V, Buf) ->
		  emit(["{",{call,per_common,decode_chars,
			     [V,NumBits,{asis,Chars}]},com,Buf,"}"])
	  end,
    {call,Dec,Imm}.

char_tab(C, StringType, NumBits) ->
    case get_constraint(C, 'PermittedAlphabet') of
	{'SingleValue',Sv} ->
	    char_tab_1(Sv, NumBits);
	no ->
	    case StringType of
		'IA5String' ->
		    notab;
		'VisibleString' ->
		    notab;
		'PrintableString' ->
		    Chars = " '()+,-./0123456789:=?"
			"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
			"abcdefghijklmnopqrstuvwxyz",
		    char_tab_1(Chars, NumBits);
		'NumericString' ->
		    char_tab_1(" 0123456789", NumBits);
		'UniversalString' ->
		    notab;
		'BMPString' ->
		    notab
	    end
    end.

char_tab_1(Chars, NumBits) ->
    Max = lists:max(Chars),
    BitValMax = (1 bsl NumBits) - 1,
    if
	Max =< BitValMax ->
	    notab;
	true ->
	    list_to_tuple(lists:sort(Chars))
    end.

%%%
%%% Remove unnecessary aligning to octet boundaries.
%%%

opt_al({get_bits,E0,Opts0}, A0) ->
    {E,A1} = opt_al(E0, A0),
    Opts = opt_al_1(A1, Opts0),
    A = update_al(A1, E, Opts),
    {{get_bits,E,Opts},A};
opt_al({call,Fun,E0}, A0) ->
    {E,A} = opt_al(E0, A0),
    {{call,Fun,E},A};
opt_al({convert,Op,E0}, A0) ->
    {E,A} = opt_al(E0, A0),
    {{convert,Op,E},A};
opt_al({value,V}=Term, A) when is_integer(V); is_atom(V) ->
    {Term,A};
opt_al({value,E0}, A0) ->
    {E,A} = opt_al(E0, A0),
    {{value,E},A};
opt_al({add,E0,I}, A0) when is_integer(I) ->
    {E,A} = opt_al(E0, A0),
    {{add,E,I},A};
opt_al({test,E0,V,B0}, A0) ->
    {E,A1} = opt_al(E0, A0),
    {B,A2} = opt_al(B0, A1),
    {{test,E,V,B},A2};
opt_al({'case',Cs0}, A0) ->
    {Cs,A} = opt_al_cs(Cs0, A0),
    {{'case',Cs},A};
opt_al({map,E0,Cs}, A0) ->
    {E,A} = opt_al(E0, A0),
    {{map,E,Cs},A};
opt_al(I, A) when is_integer(I) ->
    {I,A}.

opt_al_cs([C0|Cs0], A0) ->
    {C,A1} = opt_al(C0, A0),
    {Cs,A2} = opt_al_cs(Cs0, A0),
    {[C|Cs],merge_al(A1, A2)};
opt_al_cs([], _) -> {[],none}.

merge_al(unknown, _) -> unknown;
merge_al(Other, none) -> Other;
merge_al(_, unknown) -> unknown;
merge_al(I0, I1) ->
    case {I0 rem 8,I1 rem 8} of
	{I,I} -> I;
	{_,_} -> unknown
    end.

opt_al_1(unknown, Opts) ->
    Opts;
opt_al_1(A, Opts0) ->
    case alignment(Opts0) of
	none ->
	    Opts0;
	full ->
	    case A rem 8 of
		0 ->
		    %% Already in alignment.
		    proplists:delete(align, Opts0);
		Bits ->
		    %% Cheaper alignment with a constant padding.
		    Opts1 = proplists:delete(align, Opts0),
		    [{align,8-Bits }|Opts1]
	    end;
	A ->					%Assertion.
	    Opts0
    end.

update_al(A0, E, Opts) ->
    A = case alignment(Opts) of
	    none -> A0;
	    full -> 0;
	    Bits when is_integer(A0) ->
		0  = (A0 + Bits) rem 8;		%Assertion.
	    _ ->
		0
	end,
    [U] = [U || U <- Opts, is_integer(U)],
    if
	U rem 8 =:= 0 -> A;
	is_integer(A), is_integer(E) -> A + U*E;
	true -> unknown
    end.

%%%
%%% Flatten the intermediate format and assign temporaries.
%%%

flatten({get_bits,I,U}, Buf0, St0) when is_integer(I) ->
    {Dst,St} = new_var_pair(St0),
    Gb = {get_bits,{I,Buf0},U,Dst},
    flatten_align(Gb, [], St);
flatten({get_bits,E0,U}, Buf0, St0) ->
    {E,Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St2} = new_var_pair(St1),
    Gb = {get_bits,E,U,Dst},
    flatten_align(Gb, Pre, St2);
flatten({test,{get_bits,I,U},V,E0}, Buf0, St0) when is_integer(I) ->
    {DstBuf0,St1} = new_var("Buf", St0),
    Gb = {get_bits,{I,Buf0},U,{V,DstBuf0}},
    {{_Dst,DstBuf},Pre0,St2} = flatten_align(Gb, [], St1),
    {E,Pre1,St3} = flatten(E0, DstBuf, St2),
    {E,Pre0++Pre1,St3};
flatten({add,E0,I}, Buf0, St0) ->
    {{Src,Buf},Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St} = new_var("Add", St1),
    {{Dst,Buf},Pre++[{add,Src,I,Dst}],St};
flatten({'case',Cs0}, Buf0, St0) ->
    {Dst,St1} = new_var_pair(St0),
    {Cs1,St} = flatten_cs(Cs0, Buf0, St1),
    {Al,Cs2} = flatten_hoist_align(Cs1),
    {Dst,Al++[{'case',Buf0,Cs2,Dst}],St};
flatten({map,E0,Cs0}, Buf0, St0) ->
    {{E,DstBuf},Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St2} = new_var("Int", St1),
    Cs = flatten_map_cs(Cs0, E),
    {{Dst,DstBuf},Pre++[{'map',E,Cs,{Dst,DstBuf}}],St2};
flatten({value,V}, Buf0, St0) when is_atom(V) ->
    {{"'"++atom_to_list(V)++"'",Buf0},[],St0};
flatten({value,V0}, Buf0, St0) when is_integer(V0) ->
    {{V0,Buf0},[],St0};
flatten({value,V0}, Buf0, St0) ->
    flatten(V0, Buf0, St0);
flatten({convert,Op,E0}, Buf0, St0) ->
    {{E,Buf},Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St2} = new_var("Conv", St1),
    {{Dst,Buf},Pre++[{convert,Op,E,Dst}],St2};
flatten({call,Fun,E0}, Buf0, St0) ->
    {Src,Pre,St1} = flatten(E0, Buf0, St0),
    {Dst,St2} = new_var_pair(St1),
    {Dst,Pre++[{call,Fun,Src,Dst}],St2}.

flatten_cs([C0|Cs0], Buf, St0) ->
    {C,Pre,St1} = flatten(C0, Buf, St0),
    {Cs,St2} = flatten_cs(Cs0, Buf, St0),
    St3 = St2#st{var=max(St1#st.var, St2#st.var)},
    {[Pre++[{return,C}]|Cs],St3};
flatten_cs([], _, St) -> {[],St}.

flatten_map_cs(Cs, Var) ->
    flatten_map_cs_1(Cs, {Var,Cs}).

flatten_map_cs_1([{K,V}|Cs], DefData) ->
    [{{asis,K},{asis,V}}|flatten_map_cs_1(Cs, DefData)];
flatten_map_cs_1([integer_default], {Int,_}) ->
    [{'_',Int}];
flatten_map_cs_1([enum_default], {Int,_}) ->
    [{'_',["{asn1_enum,",Int,"}"]}];
flatten_map_cs_1([enum_error], {Var,Cs}) ->
    Vs = [V || {_,V} <- Cs],
    [{'_',["exit({error,{asn1,{decode_enumerated,{",Var,",",
	   {asis,Vs},"}}}})"]}];
flatten_map_cs_1([], _) -> [].

flatten_hoist_align([[{align_bits,_,_}=Ab|T]|Cs]) ->
    flatten_hoist_align_1(Cs, Ab, [T]);
flatten_hoist_align(Cs) -> {[],Cs}.

flatten_hoist_align_1([[Ab|T]|Cs], Ab, Acc) ->
    flatten_hoist_align_1(Cs, Ab, [T|Acc]);
flatten_hoist_align_1([], Ab, Acc) ->
    {[Ab],lists:reverse(Acc)}.

flatten_align({get_bits,{SrcBits,SrcBuf},U,Dst}=Gb0, Pre, St0) ->
    case alignment(U) of
	none ->
	    flatten_align_1(U, Dst, Pre++[Gb0], St0);
	full ->
	    {PadBits,St1} = new_var("Pad", St0),
	    {DstBuf,St2} = new_var("Buf", St1),
	    Ab = {align_bits,SrcBuf,PadBits},
	    Agb = {get_bits,{PadBits,SrcBuf},[1],{'_',DstBuf}},
	    Gb = {get_bits,{SrcBits,DstBuf},U,Dst},
	    flatten_align_1(U, Dst, Pre++[Ab,Agb,Gb], St2);
	PadBits when is_integer(PadBits), PadBits > 0 ->
	    {DstBuf,St1} = new_var("Buf", St0),
	    Agb = {get_bits,{PadBits,SrcBuf},[1],{'_',DstBuf}},
	    Gb = {get_bits,{SrcBits,DstBuf},U,Dst},
	    flatten_align_1(U, Dst, Pre++[Agb,Gb], St1)
    end.

flatten_align_1(U, {D,_}=Dst, Pre, St) ->
    case is_non_zero(U) of
	false ->
	    {Dst,Pre,St};
	true ->
	    {Dst,Pre++[{non_zero,D}],St}
    end.

new_var_pair(St0) ->
    {Var,St1} = new_var("V", St0),
    {Buf,St2} = new_var("Buf", St1),
    {{Var,Buf},St2}.

new_var(Tag, #st{base=VarBase,var=N}=St) ->
    {VarBase++Tag++integer_to_list(N),St#st{var=N+1}}.

alignment([{align,false}|_]) -> none;
alignment([{align,true}|_]) -> full;
alignment([{align,Bits}|_]) -> Bits;
alignment([_|T]) -> alignment(T);
alignment([]) -> none.

is_non_zero(Fl) ->
    lists:member(non_zero, Fl).

%%%
%%% Generate Erlang code from the flattened intermediate format.
%%%

dcg_list_outside([{align_bits,Buf,SzVar}|T]) ->
    emit([SzVar," = bit_size(",Buf,") band 7"]),
    iter_dcg_list_outside(T);
dcg_list_outside([{'case',Buf,Cs,Dst}|T]) ->
    dcg_case(Buf, Cs, Dst),
    iter_dcg_list_outside(T);
dcg_list_outside([{'map',Val,Cs,Dst}|T]) ->
    dcg_map(Val, Cs, Dst),
    iter_dcg_list_outside(T);
dcg_list_outside([{add,S1,S2,Dst}|T]) ->
    emit([Dst," = ",S1," + ",S2]),
    iter_dcg_list_outside(T);
dcg_list_outside([{return,{V,Buf}}|T]) ->
    emit(["{",V,",",Buf,"}"]),
    iter_dcg_list_outside(T);
dcg_list_outside([{call,Fun,{V,Buf},{Dst,DstBuf}}|T]) ->
    emit(["{",Dst,",",DstBuf,"}  = "]),
    Fun(V, Buf),
    iter_dcg_list_outside(T);
dcg_list_outside([{convert,Op,V,Dst}|T]) ->
    emit([Dst," = ",Op,"(",V,")"]),
    iter_dcg_list_outside(T);
dcg_list_outside([{get_bits,{_,Buf0},_,_}|_]=L0) ->
    emit("<<"),
    {L,Buf} = dcg_list_inside(L0, buf),
    emit([Buf,"/bitstring>> = ",Buf0]),
    iter_dcg_list_outside(L);
dcg_list_outside([]) ->
    emit("ignore"),
    ok.

iter_dcg_list_outside([_|_]=T) ->
    emit([",",nl]),
    dcg_list_outside(T);
iter_dcg_list_outside([]) -> ok.

dcg_case(Buf, Cs, {Dst,DstBuf}) ->
    emit(["{",Dst,",",DstBuf,"} = case ",Buf," of",nl]),
    dcg_case_cs(Cs),
    emit("end").

dcg_case_cs([C|Cs]) ->
    emit("<<"),
    {T0,DstBuf} = dcg_list_inside(C, buf),
    emit([DstBuf,"/bitstring>>"]),
    T1 = dcg_guard(T0),
    dcg_list_outside(T1),
    case Cs of
	[] -> emit([nl]);
	[_|_] -> emit([";",nl])
    end,
    dcg_case_cs(Cs);
dcg_case_cs([]) -> ok.

dcg_guard([{non_zero,Src}|T]) ->
    emit([" when ",Src," =/= 0 ->",nl]),
    T;
dcg_guard(T) ->
    emit([" ->",nl]),
    T.

dcg_map(Val, Cs, {Dst,_}) ->
    emit([Dst," = case ",Val," of",nl]),
    dcg_map_cs(Cs),
    emit("end").

dcg_map_cs([{K,V}]) ->
    emit([K," -> ",V,nl]);
dcg_map_cs([{K,V}|Cs]) ->
    emit([K," -> ",V,";",nl]),
    dcg_map_cs(Cs).

dcg_list_inside([{get_bits,{Sz,_},Fl0,{Dst,DstBuf}}|T], _) ->
    Fl = bit_flags(Fl0, []),
    emit([mk_dest(Dst),":",Sz,Fl,","]),
    dcg_list_inside(T, DstBuf);
dcg_list_inside(L, Dst) -> {L,Dst}.

bit_flags([{align,_}|T], Acc) ->
    bit_flags(T, Acc);
bit_flags([non_zero|T], Acc) ->
    bit_flags(T, Acc);
bit_flags([U|T], Acc) when is_integer(U) ->
    bit_flags(T, ["unit:"++integer_to_list(U)|Acc]);
bit_flags([H|T], Acc) ->
    bit_flags(T, [atom_to_list(H)|Acc]);
bit_flags([], []) ->
    "";
bit_flags([], Acc) ->
    case "/" ++ bit_flags_1(Acc, "") of
	"/unit:1" -> [];
	Opts -> Opts
    end.


bit_flags_1([H|T], Sep) ->
    Sep ++ H ++ bit_flags_1(T, "-");
bit_flags_1([], _) -> [].

mk_dest(I) when is_integer(I) ->
    integer_to_list(I);
mk_dest(S) -> S.

%%%
%%% Constructing the intermediate format for encoding.
%%%

split_off_nonbuilding(Imm) ->
    lists:splitwith(fun is_nonbuilding/1, Imm).

is_nonbuilding({apply,_,_,_}) -> true;
is_nonbuilding({assign,_,_}) -> true;
is_nonbuilding({call,_,_,_,_}) -> true;
is_nonbuilding({'cond',_,_}) -> true;
is_nonbuilding({lc,_,_,_,_}) -> true;
is_nonbuilding({sub,_,_,_}) -> true;
is_nonbuilding({'try',_,_,_,_}) -> true;
is_nonbuilding(_) -> false.

mk_vars(Input0, Temps) ->
    asn1ct_name:new(enc),
    Curr = asn1ct_name:curr(enc),
    [H|T] = atom_to_list(Curr),
    Base = [H - ($a - $A)|T ++ "@"],
    if
	is_atom(Input0) ->
	    Input = {var,atom_to_list(Input0)},
	    {[],[Input|mk_vars_1(Base, Temps)]};
	is_integer(Input0) ->
	    {[],[Input0|mk_vars_1(Base, Temps)]};
	Input0 =:= [] ->
	    {[],[Input0|mk_vars_1(Base, Temps)]};
	true ->
	    Input = mk_var(Base, input),
	    {[{assign,Input,Input0}],[Input|mk_vars_1(Base, Temps)]}
    end.

mk_vars_1(Base, Vars) ->
    [mk_var(Base, V) || V <- Vars].

mk_var(Base, V) ->
    {var,Base ++ atom_to_list(V)}.

per_enc_integer_1(Val, [], Aligned) ->
    [{'cond',[['_'|per_enc_unconstrained(Val, Aligned)]]}];
per_enc_integer_1(Val, [{{'SingleValue',[_|_]=Svs}=Constr,[]}], Aligned) ->
    %% An extensible constraint such as (1|17, ...).
    %%
    %% A subtle detail is that the extension root as described in the
    %% ASN.1 spec should be used to determine whether a particular value
    %% belongs to the extension root (as opposed to the effective
    %% constraint, which will be used for the actual encoding).
    %%
    %% So for the example above, only the integers 1 and 17 should be
    %% encoded as root values (extension bit = 0).

    [{'ValueRange',{Lb,Ub}}] = effective_constraint(integer, [Constr]),
    Root = [begin
		{[],_,Put} = per_enc_constrained(Sv, Lb, Ub, Aligned),
		[{eq,Val,Sv},{put_bits,0,1,[1]}|Put]
	    end || Sv <- Svs],
    Cs = Root ++ [['_',{put_bits,1,1,[1]}|
		   per_enc_unconstrained(Val, Aligned)]],
    build_cond(Cs);
per_enc_integer_1(Val0, [{{_,_}=Constr,[]}], Aligned) ->
    {Prefix,Check,Action} = per_enc_integer_2(Val0, Constr, Aligned),
    Prefix++build_cond([[Check,{put_bits,0,1,[1]}|Action],
			['_',{put_bits,1,1,[1]}|
			 per_enc_unconstrained(Val0, Aligned)]]);
per_enc_integer_1(Val0, [Constr], Aligned) ->
    {Prefix,Check,Action} = per_enc_integer_2(Val0, Constr, Aligned),
    Prefix++build_cond([[Check|Action],
			['_',{error,Val0}]]).

per_enc_integer_2(Val, {'SingleValue',Sv}, Aligned) when is_integer(Sv) ->
    per_enc_constrained(Val, Sv, Sv, Aligned);
per_enc_integer_2(Val0, {'ValueRange',{Lb,'MAX'}}, Aligned)
  when is_integer(Lb) ->
    {Prefix,Val} = sub_lb(Val0, Lb),
    {Prefix,{ge,Val,0},per_enc_unsigned(Val, Aligned)};
per_enc_integer_2(Val, {'ValueRange',{Lb,Ub}}, Aligned)
  when is_integer(Lb), is_integer(Ub) ->
    per_enc_constrained(Val, Lb, Ub, Aligned).

per_enc_constrained(Val, Sv, Sv, _Aligned) ->
    {[],{eq,Val,Sv},[]};
per_enc_constrained(Val0, Lb, Ub, false) ->
    {Prefix,Val} = sub_lb(Val0, Lb),
    Range = Ub - Lb + 1,
    NumBits = uper_num_bits(Range),
    Check = {ult,Val,Range},
    Put = [{put_bits,Val,NumBits,[1]}],
    {Prefix,Check,Put};
per_enc_constrained(Val0, Lb, Ub, true) ->
    {Prefix,Val} = sub_lb(Val0, Lb),
    Range = Ub - Lb + 1,
    if
	Range < 256 ->
	    NumBits = per_num_bits(Range),
	    Check = {ult,Val,Range},
	    Put = [{put_bits,Val,NumBits,[1]}],
	    {Prefix,Check,Put};
	Range =:= 256 ->
	    NumBits = 8,
	    Check = {ult,Val,Range},
	    Put = [{put_bits,Val,NumBits,[1,align]}],
	    {Prefix,Check,Put};
	Range =< 65536 ->
	    Check = {ult,Val,Range},
	    Put = [{put_bits,Val,16,[1,align]}],
	    {Prefix,Check,Put};
	true ->
	    {var,VarBase} = Val,
	    Bin = {var,VarBase++"@bin"},
	    BinSize0 = {var,VarBase++"@bin_size0"},
	    BinSize = {var,VarBase++"@bin_size"},
	    Check = {ult,Val,Range},
	    RangeOctsLen = byte_size(binary:encode_unsigned(Range - 1)),
	    BitsNeeded = per_num_bits(RangeOctsLen),
	    Enc = [{call,binary,encode_unsigned,[Val],Bin},
		   {call,erlang,byte_size,[Bin],BinSize0},
		   {sub,BinSize0,1,BinSize},
		   {'cond',[['_',
			     {put_bits,BinSize,BitsNeeded,[1]},
			     {put_bits,Bin,binary,[8,align]}]]}],
	    {Prefix,Check,Enc}
    end.

per_enc_unconstrained(Val, Aligned) ->
    case Aligned of
	false -> [];
	true -> [{put_bits,0,0,[1,align]}]
    end ++ [{call,per_common,encode_unconstrained_number,[Val]}].

per_enc_unsigned(Val, Aligned) ->
    case is_integer(Val) of
	false ->
	    {var,VarBase} = Val,
	    Bin = {var,VarBase++"@bin"},
	    BinSize = {var,VarBase++"@bin_size"},
	    [{call,binary,encode_unsigned,[Val],Bin},
	     {call,erlang,byte_size,[Bin],BinSize}|
	     per_enc_length(Bin, 8, BinSize, Aligned)];
	true ->
	    Bin = binary:encode_unsigned(Val),
	    Len = byte_size(Bin),
	    per_enc_length(Bin, 8, Len, Aligned)
    end.

%% Encode a length field without any constraint.
per_enc_length(Bin, Unit, Len, Aligned) ->
    U = unit(1, Aligned),
    PutBits = put_bits_binary(Bin, Unit, Aligned),
    EncFragmented = {call,per_common,encode_fragmented,[Bin,Unit]},
    Al = case Aligned of
	     false -> [];
	     true -> [{put_bits,0,0,[1,align]}]
	 end,
    build_cond([[{lt,Len,128},
		 {put_bits,Len,8,U},PutBits],
		[{lt,Len,16384},
		 {put_bits,2,2,U},{put_bits,Len,14,[1]},PutBits],
		['_'|Al++[EncFragmented]]]).

per_enc_length(Bin, Unit, Len, no, Aligned, _Type) ->
    per_enc_length(Bin, Unit, Len, Aligned);
per_enc_length(Bin, Unit, Len, {{Lb,Ub},[]}, Aligned, Type) ->
    {Prefix,Check,PutLen} = per_enc_constrained(Len, Lb, Ub, Aligned),
    NoExt = {put_bits,0,1,[1]},
    U = unit(Unit, Aligned, Type, Lb*Unit, Ub*Unit),
    PutBits = [{put_bits,Bin,binary,U}],
    [{'cond',ExtConds0}] = per_enc_length(Bin, Unit, Len, Aligned),
    Ext = {put_bits,1,1,[1]},
    ExtConds = prepend_to_cond(ExtConds0, Ext),
    build_length_cond(Prefix, [[Check,NoExt|PutLen++PutBits]|ExtConds]);
per_enc_length(Bin, Unit, Len, {Lb,Ub}, Aligned, Type)
  when is_integer(Lb) ->
    {Prefix,Check,PutLen} = per_enc_constrained(Len, Lb, Ub, Aligned),
    U = unit(Unit, Aligned, Type, Lb*Unit, Ub*Unit),
    PutBits = [{put_bits,Bin,binary,U}],
    build_length_cond(Prefix, [[Check|PutLen++PutBits]]);
per_enc_length(Bin, Unit0, Len, Sv, Aligned, Type) when is_integer(Sv) ->
    NumBits = Sv*Unit0,
    Unit = case NumBits rem 8 of
	       0 ->
		   %% Help out the alignment optimizer.
		   8;
	       _ ->
		   Unit0
	   end,
    U = unit(Unit, Aligned, Type, NumBits, NumBits),
    Pb = {put_bits,Bin,binary,U},
    [{'cond',[[{eq,Len,Sv},Pb]]}].

enc_length(Len, no, Aligned) ->
    U = unit(1, Aligned),
    build_cond([[{lt,Len,128},
		 {put_bits,Len,8,U}],
		[{lt,Len,16384},
		 {put_bits,2,2,U},{put_bits,Len,14,[1]}]]);
enc_length(Len, {{Lb,Ub},[]}, Aligned) ->
    {Prefix,Check,PutLen} = per_enc_constrained(Len, Lb, Ub, Aligned),
    NoExt = {put_bits,0,1,[1]},
    [{'cond',ExtConds0}] = enc_length(Len, no, Aligned),
    Ext = {put_bits,1,1,[1]},
    ExtConds = prepend_to_cond(ExtConds0, Ext),
    build_length_cond(Prefix, [[Check,NoExt|PutLen]|ExtConds]);
enc_length(Len, {Lb,Ub}, Aligned) when is_integer(Lb) ->
    {Prefix,Check,PutLen} = per_enc_constrained(Len, Lb, Ub, Aligned),
    build_length_cond(Prefix, [[Check|PutLen]]);
enc_length(Len, Sv, _Aligned) when is_integer(Sv) ->
    [{'cond',[[{eq,Len,Sv}]]}].

put_bits_binary(Bin, _Unit, Aligned) when is_binary(Bin) ->
    Sz = byte_size(Bin),
    <<Int:Sz/unit:8>> = Bin,
    {put_bits,Int,8*Sz,unit(1, Aligned)};
put_bits_binary(Bin, Unit, Aligned) ->
    {put_bits,Bin,binary,unit(Unit, Aligned)}.

sub_lb(Val, 0) ->
    {[],Val};
sub_lb({var,Var}=Val0, Lb) ->
    Val = {var,Var++"@sub"},
    {[{sub,Val0,Lb,Val}],Val};
sub_lb(Val, Lb) when is_integer(Val) ->
    {[],Val-Lb}.

build_length_cond([{sub,Var0,Base,Var}]=Prefix, Cs) ->
    %% Non-zero lower bound, such as: SIZE (50..200, ...)
    Prefix++[{'cond',opt_length_nzlb(Cs, {Var0,Var,Base}, 0)}];
build_length_cond([], Cs) ->
    %% Zero lower bound, such as: SIZE (0..200, ...)
    [{'cond',opt_length_zlb(Cs, 0)}].

opt_length_zlb([[{ult,Var,Val}|Actions]|T], Ub) ->
    %% Since the SIZE constraint is zero-based, Var
    %% must be greater than zero, and we can use
    %% the slightly cheaper signed less than operator.
    opt_length_zlb([[{lt,Var,Val}|Actions]|T], Ub);
opt_length_zlb([[{lt,_,Val}|_]=H|T], Ub) ->
    if
	Val =< Ub ->
	    %% A previous test has already matched.
	    opt_length_zlb(T, Ub);
	true ->
	    [H|opt_length_zlb(T, max(Ub, Val))]
    end;
opt_length_zlb([H|T], Ub) ->
    [H|opt_length_zlb(T, Ub)];
opt_length_zlb([], _) -> [].

opt_length_nzlb([[{ult,Var,Val}|_]=H|T], {_,Var,Base}=St, _Ub) ->
    [H|opt_length_nzlb(T, St, Base+Val)];
opt_length_nzlb([[{lt,Var0,Val}|_]=H|T], {Var0,_,_}=St, Ub) ->
    if
	Val =< Ub ->
	    %% A previous test has already matched.
	    opt_length_nzlb(T, St, Ub);
	true ->
	    [H|opt_length_nzlb(T, St, Val)]
    end;
opt_length_nzlb([H|T], St, Ub) ->
    [H|opt_length_nzlb(T, St, Ub)];
opt_length_nzlb([], _, _) -> [].

build_cond(Conds0) ->
    case eval_cond(Conds0, gb_sets:empty()) of
	[['_'|Actions]] ->
	    Actions;
	Conds ->
	    [{'cond',Conds}]
    end.

eval_cond([['_',{'cond',Cs}]], Seen) ->
    eval_cond(Cs, Seen);
eval_cond([[Cond|Actions]=H|T], Seen0) ->
    case gb_sets:is_element(Cond, Seen0) of
	false ->
	    Seen = gb_sets:insert(Cond, Seen0),
	    case eval_cond_1(Cond) of
		false ->
		    eval_cond(T, Seen);
		true ->
		    [['_'|Actions]];
		maybe ->
		    [H|eval_cond(T, Seen)]
	    end;
	true ->
	    eval_cond(T, Seen0)
    end;
eval_cond([], _) -> [].

eval_cond_1({ult,I,N}) when is_integer(I), is_integer(N) ->
    0 =< I andalso I < N;
eval_cond_1({eq,[],[]}) ->
    true;
eval_cond_1({eq,I,N}) when is_integer(I), is_integer(N) ->
    I =:= N;
eval_cond_1({lt,I,N}) when is_integer(I), is_integer(N) ->
    I < N;
eval_cond_1(_) -> maybe.

prepend_to_cond([H|T], Code) ->
    [prepend_to_cond_1(H, Code)|prepend_to_cond(T, Code)];
prepend_to_cond([], _) -> [].

prepend_to_cond_1([Check|T], Code) ->
    [Check,Code|T].

enc_char_tab(notab) ->
    notab;
enc_char_tab(Tab0) ->
    Tab = tuple_to_list(Tab0),
    First = hd(Tab),
    {First-1,list_to_tuple(enc_char_tab_1(Tab, First, 0))}.

enc_char_tab_1([H|T], H, I) ->
    [I|enc_char_tab_1(T, H+1, I+1)];
enc_char_tab_1([_|_]=T, H, I) ->
    [ill|enc_char_tab_1(T, H+1, I)];
enc_char_tab_1([], _, _) -> [].

enumerated_constraint([_]) ->
    [{'SingleValue',0}];
enumerated_constraint(Root) ->
    [{'ValueRange',{0,length(Root)-1}}].

per_enc_enumerated_root(NNL, Prefix, Val, Constr, Aligned) ->
    per_enc_enumerated_root_1(NNL, Prefix, Val, Constr, Aligned, 0).

per_enc_enumerated_root_1([{H,_}|T], Prefix, Val, Constr, Aligned, N) ->
    [[{eq,Val,H}|Prefix++per_enc_integer_1(N, Constr, Aligned)]|
     per_enc_enumerated_root_1(T, Prefix, Val, Constr, Aligned, N+1)];
per_enc_enumerated_root_1([], _, _, _, _, _) -> [].

per_enc_enumerated_ext(NNL, Val, Aligned) ->
    per_enc_enumerated_ext_1(NNL, Val, Aligned, 0).

per_enc_enumerated_ext_1([{H,_}|T], Val, Aligned, N) ->
    [[{eq,Val,H},{put_bits,1,1,[1]}|per_enc_small_number(N, Aligned)]|
     per_enc_enumerated_ext_1(T, Val, Aligned, N+1)];
per_enc_enumerated_ext_1([], _, _, _) -> [].

per_enc_small_length(Val0, Aligned) ->
    {Sub,Val} = sub_lb(Val0, 1),
    U = unit(1, Aligned),
    Sub ++ build_cond([[{lt,Val,64},{put_bits,Val,7,[1]}],
		       [{lt,Val0,128},{put_bits,1,1,[1]},
			{put_bits,Val0,8,U}],
		       ['_',{put_bits,1,1,[1]},
			{put_bits,2,2,U},{put_bits,Val0,14,[1]}]]).

constr_min_size(no) -> no;
constr_min_size({{Lb,_},[]}) when is_integer(Lb) -> Lb;
constr_min_size({Lb,_}) when is_integer(Lb) -> Lb;
constr_min_size(Sv) when is_integer(Sv) -> Sv.

enc_mod(false) -> uper;
enc_mod(true) -> per.

unit(U, false) -> [U];
unit(U, true) -> [U,align].

unit(U, Aligned, Type, Lb, Ub) ->
    case Aligned andalso is_aligned(Type, Lb, Ub) of
	true -> [U,align];
	false -> [U]
    end.

opt_choice(Imm) ->
    {Pb,T0} = lists:splitwith(fun({put_bits,V,_,_}) when is_integer(V) ->
				      true;
				 (_) ->
				      false
			      end, Imm),
    try
	{Prefix,T} = split_off_nonbuilding(T0),
	Prefix ++ opt_choice_1(T, Pb)
    catch
	throw:impossible ->
	    Imm
    end.

opt_choice_1([{'cond',Cs0}], Pb) ->
    case Cs0 of
	[[C|Act]] ->
	    [{'cond',[[C|Pb++Act]]}];
	[[C|Act],['_',{error,_}]=Error] ->
	    [{'cond',[[C|Pb++Act],Error]}];
	_ ->
	    [{'cond',opt_choice_2(Cs0, Pb)}]
    end;
opt_choice_1(_, _) -> throw(impossible).

opt_choice_2([[C|[{put_bits,_,_,_}|_]=Act]|T], Pb) ->
    [[C|Pb++Act]|opt_choice_2(T, Pb)];
opt_choice_2([[_,{error,_}]=H|T], Pb) ->
    [H|opt_choice_2(T, Pb)];
opt_choice_2([_|_], _) ->
    throw(impossible);
opt_choice_2([], _) -> [].


%%%
%%% Helper functions for code generation of open types.
%%%

per_enc_open_type(Val0, {ToBinMod,ToBinFunc}, Aligned) ->
    {B,[Val,Len,Bin]} = mk_vars(Val0, [len,bin]),
    B ++ [{call,ToBinMod,ToBinFunc,[Val],Bin},
	  {call,erlang,byte_size,[Bin],Len}|
	  per_enc_length(Bin, 8, Len, Aligned)].

enc_open_type([{'cond',Cs}], Aligned) ->
    [{'cond',[[C|enc_open_type_1(Act, Aligned)] || [C|Act] <- Cs]}];
enc_open_type(_, _) ->
    throw(impossible).

enc_open_type_1([{error,_}]=Imm, _) ->
    Imm;
enc_open_type_1(Imm, Aligned) ->
    NumBits = num_bits(Imm, 0),
    Pad = case 8 - (NumBits rem 8) of
	      8 -> [];
	      Pad0 -> [{put_bits,0,Pad0,[1]}]
	  end,
    NumBytes = (NumBits+7) div 8,
    enc_length(NumBytes, no, Aligned) ++ Imm ++ Pad.

num_bits([{put_bits,_,N,[U|_]}|T], Sum) when is_integer(N) ->
    num_bits(T, Sum+N*U);
num_bits([_|_], _) ->
    throw(impossible);
num_bits([], Sum) -> Sum.

per_enc_open_type_output([{apply,F,A}], Acc) ->
    Dst = output_var(),
    {Dst,lists:reverse(Acc, [{apply,F,A,{var,atom_to_list(Dst)}}])};
per_enc_open_type_output([{call,M,F,A}], Acc) ->
    Dst = output_var(),
    {Dst,lists:reverse(Acc, [{call,M,F,A,{var,atom_to_list(Dst)}}])};
per_enc_open_type_output([{'cond',Cs}], Acc) ->
    Dst = output_var(),
    {Dst,lists:reverse(Acc, [{'cond',Cs,{var,atom_to_list(Dst)}}])};
per_enc_open_type_output([H|T], Acc) ->
    per_enc_open_type_output(T, [H|Acc]).

output_var() ->
    asn1ct_name:new(enc),
    Curr = asn1ct_name:curr(enc),
    [H|T] = atom_to_list(Curr),
    list_to_atom([H - ($a - $A)|T ++ "@output"]).


%%%
%%% Optimize list comprehensions (SEQUENCE OF/SET OF).
%%%

opt_lc([{lc,[{call,erlang,iolist_to_binary,[Var],Bin},
	       {call,erlang,byte_size,[Bin],LenVar},
	       {'cond',[[{eq,LenVar,Len},{put_bits,Bin,_,[_|Align]}]]}],
	   Var,Val}]=Lc, LenImm) ->
    %% Given a sequence of a fixed length string, such as
    %% SEQUENCE OF OCTET STRING (SIZE (4)), attempt to rewrite to
    %% a list comprehension that just checks the size, followed by
    %% a conversion to binary:
    %%
    %%   _ = [if length(Comp) =:= 4; byte_size(Comp) =:= 4 -> [] end ||
    %%           Comp <- Sof],
    %%   [align|iolist_to_binary(Sof)]

    CheckImm = [{'cond',[[{eq,{expr,"length("++mk_val(Var)++")"},Len}],
			 [{eq,{expr,"byte_size("++mk_val(Var)++")"},Len}]]}],
    Al = case Align of
	     [] ->
		 [];
	     [align] ->
		 [{put_bits,0,0,[1|Align]}]
	 end,
    case Al =:= [] orelse
	is_end_aligned(LenImm) orelse
	lb_is_nonzero(LenImm) of
	false ->
	    %% Not possible because an empty SEQUENCE OF would be
	    %% improperly aligned. Example:
	    %%
	    %%    SEQUENCE (SIZE (0..3)) OF ...

	    Lc;
	true ->
	    %% Examples:
	    %%
	    %% SEQUENCE (SIZE (1..4)) OF ...
	    %%   (OK because there must be at least one element)
	    %%
	    %% SEQUENCE OF ...
	    %%   (OK because the length field will force alignment)
	    %%
	    Al ++ [{lc,CheckImm,Var,Val,{var,"_"}},
		   {call,erlang,iolist_to_binary,[Val]}]
    end;
opt_lc([{lc,ElementImm0,V,L}]=Lc, LenImm) ->
    %% Attempt to hoist the alignment, putting after the length
    %% and before the list comprehension:
    %%
    %%   [Length,
    %%    align,
    %%    [Encode(Comp) || Comp <- Sof]]
    %%

    case enc_opt_al_1(ElementImm0, 0) of
	{ElementImm,0} ->
	    case is_end_aligned(LenImm) orelse
		(is_beginning_aligned(ElementImm0) andalso
		 lb_is_nonzero(LenImm)) of
		false ->
		    %% Examples:
		    %%
		    %% SEQUENCE (SIZE (0..3)) OF OCTET STRING
		    %%   (An empty SEQUENCE OF would be improperly aligned)
		    %%
		    %% SEQUENCE (SIZE (1..3)) OF OCTET STRING (SIZE (0..4))
		    %%   (There would be an improper alignment before the
		    %%   first element)

		    Lc;
		true ->
		    %% Examples:
		    %%
		    %% SEQUENCE OF INTEGER
		    %% SEQUENCE (SIZE (1..4)) OF INTEGER
		    %% SEQUENCE (SIZE (1..4)) OF INTEGER (0..256)

		    [{put_bits,0,0,[1,align]},{lc,ElementImm,V,L}]
	    end;
	_ ->
	    %% Unknown alignment, no alignment, or not aligned at the end.
	    %% Examples:
	    %%
	    %% SEQUENCE OF SomeConstructedType
	    %% SEQUENCE OF INTEGER (0..15)

	    Lc
    end.

is_beginning_aligned([{'cond',Cs}]) ->
    lists:all(fun([_|Act]) -> is_beginning_aligned(Act) end, Cs);
is_beginning_aligned([{error,_}|_]) -> true;
is_beginning_aligned([{put_bits,_,_,U}|_]) ->
    case U of
	[_,align] -> true;
	[_] -> false
    end;
is_beginning_aligned(Imm0) ->
    case split_off_nonbuilding(Imm0) of
	{[],_} -> false;
	{[_|_],Imm} -> is_beginning_aligned(Imm)
    end.

is_end_aligned(Imm) ->
    case enc_opt_al_1(Imm, unknown) of
	{_,0} -> true;
	{_,_} -> false
    end.

lb_is_nonzero([{sub,_,_,_}|_]) -> true;
lb_is_nonzero(_) -> false.

%%%
%%% Attempt to combine two chunks of intermediate code.
%%%

combine_imms(ImmA0, ImmB0) ->
    {Prefix0,ImmA} = split_off_nonbuilding(ImmA0),
    {Prefix1,ImmB} = split_off_nonbuilding(ImmB0),
    Prefix = Prefix0 ++ Prefix1,
    Combined = do_combine(ImmA ++ ImmB, 3.0),
    Prefix ++ Combined.

do_combine([{error,_}=Imm|_], _Budget) ->
    [Imm];
do_combine([{'cond',Cs0}|T], Budget0) ->
    Budget = debit(Budget0, num_clauses(Cs0, 0)),
    Cs = [[C|do_combine(Act++T, Budget)] || [C|Act] <- Cs0],
    [{'cond',Cs}];
do_combine([{put_bits,V,_,_}|_]=L, Budget) when is_integer(V) ->
    {Pb,T} = collect_put_bits(L),
    do_combine_put_bits(Pb, T,Budget);
do_combine(_, _) ->
    throw(impossible).

do_combine_put_bits(Pb, [], _Budget) ->
    Pb;
do_combine_put_bits(Pb, [{'cond',Cs0}|T], Budget) ->
    Cs = [case Act of
	      [{error,_}] ->
		  [C|Act];
	      _ ->
		  [C|do_combine(Pb++Act, Budget)]
	  end || [C|Act] <- Cs0],
    do_combine([{'cond',Cs}|T], Budget);
do_combine_put_bits(_, _, _) ->
    throw(impossible).

debit(Budget0, Alternatives) ->
    case Budget0 - log2(Alternatives) of
	Budget when Budget > 0.0 ->
	    Budget;
	_ ->
	    throw(impossible)
    end.

num_clauses([[_,{error,_}]|T], N) ->
    num_clauses(T, N);
num_clauses([_|T], N) ->
    num_clauses(T, N+1);
num_clauses([], N) -> N.

log2(N) ->
    math:log(N) / math:log(2.0).

collect_put_bits(Imm) ->
    lists:splitwith(fun({put_bits,V,_,_}) when is_integer(V) -> true;
		       (_) -> false
		    end, Imm).

%%%
%%% Simple common subexpression elimination to avoid fetching
%%% the same element twice.
%%%

enc_cse([{assign,{var,V},E}=H|T]) ->
    [H|enc_cse_1(T, E, V)];
enc_cse(Imm) -> Imm.

enc_cse_1([{assign,Dst,E}|T], E, V) ->
    [{assign,Dst,V}|enc_cse_1(T, E, V)];
enc_cse_1([{block,Bl}|T], E, V) ->
    [{block,enc_cse_1(Bl, E, V)}|enc_cse_1(T, E, V)];
enc_cse_1([H|T], E, V) ->
    [H|enc_cse_1(T, E, V)];
enc_cse_1([], _, _) -> [].


%%%
%%% Pre-process the intermediate code to simplify code generation.
%%%

enc_pre_cg(Imm) ->
    enc_pre_cg_1(Imm, outside_list, in_seq).

enc_pre_cg_1([], _StL, _StB) ->
    nil;
enc_pre_cg_1([H], StL, StB) ->
    enc_pre_cg_2(H, StL, StB);
enc_pre_cg_1([H0|T0], StL, StB) ->
    case is_nonbuilding(H0) of
	true ->
	    H = enc_pre_cg_nonbuilding(H0, StL),
	    Seq = {seq,H,enc_pre_cg_1(T0, StL, in_seq)},
	    case StB of
		outside_seq -> {block,Seq};
		in_seq -> Seq
	    end;
	false ->
	    H = enc_pre_cg_2(H0, in_head, outside_seq),
	    T = enc_pre_cg_1(T0, in_tail, outside_seq),
	    enc_make_cons(H, T)
    end.

enc_pre_cg_2(align, StL, _StB) ->
    case StL of
	in_head -> align;
	in_tail -> {cons,align,nil}
    end;
enc_pre_cg_2({apply,_,_}=Imm, _, _) ->
    Imm;
enc_pre_cg_2({block,Bl0}, StL, StB) ->
    enc_pre_cg_1(Bl0, StL, StB);
enc_pre_cg_2({call,_,_,_}=Imm, _, _) ->
    Imm;
enc_pre_cg_2({call_gen,_,_,_,_}=Imm, _, _) ->
    Imm;
enc_pre_cg_2({'cond',Cs0}, StL, _StB) ->
    Cs = [{C,enc_pre_cg_1(Act, StL, outside_seq)} || [C|Act] <- Cs0],
    {'cond',Cs};
enc_pre_cg_2({error,_}=E, _, _) ->
    E;
enc_pre_cg_2({lc,B0,V,L}, StL, _StB) ->
    B = enc_pre_cg_1(B0, StL, outside_seq),
    {lc,B,V,L};
enc_pre_cg_2({put_bits,V,8,[1]}, StL, _StB) ->
    case StL of
	in_head -> {integer,V};
	in_tail -> {cons,{integer,V},nil};
	outside_list -> {cons,{integer,V},nil}
    end;
enc_pre_cg_2({put_bits,V,binary,_}, _StL, _StB) ->
    V;
enc_pre_cg_2({put_bits,_,_,[_]}=PutBits, _StL, _StB) ->
    {binary,[PutBits]};
enc_pre_cg_2({var,_}=Imm, _, _) -> Imm.

enc_make_cons({binary,H}, {binary,T}) ->
    {binary,H++T};
enc_make_cons({binary,H0}, {cons,{binary,H1},T}) ->
    enc_make_cons({binary,H0++H1}, T);
enc_make_cons({binary,H}, {cons,{integer,Int},T}) ->
    enc_make_cons({binary,H++[{put_bits,Int,8,[1]}]}, T);
enc_make_cons({integer,Int}, {binary,T}) ->
    {binary,[{put_bits,Int,8,[1]}|T]};
enc_make_cons({integer,Int}, {cons,{binary,H},T}) ->
    enc_make_cons({binary,[{put_bits,Int,8,[1]}|H]}, T);
enc_make_cons(H, T) ->
    {cons,H,T}.

enc_pre_cg_nonbuilding({'cond',Cs0,Dst}, StL) ->
    Cs = [{C,enc_pre_cg_1(Act, StL, outside_seq)} || [C|Act] <- Cs0],
    {'cond',Cs,Dst};
enc_pre_cg_nonbuilding({lc,B0,Var,List,Dst}, StL) ->
    B = enc_pre_cg_1(B0, StL, outside_seq),
    {lc,B,Var,List,Dst};
enc_pre_cg_nonbuilding({'try',Try0,{P,Succ0},Else0,Dst}, StL) ->
    Try = enc_pre_cg_1(Try0, StL, outside_seq),
    Succ = enc_pre_cg_1(Succ0, StL, outside_seq),
    Else = enc_pre_cg_1(Else0, StL, outside_seq),
    {'try',Try,{P,Succ},Else,Dst};
enc_pre_cg_nonbuilding(Imm, _) -> Imm.


%%%
%%% Code generation for encoding.
%%%

enc_cg({cons,_,_}=Cons) ->
    enc_cg_cons(Cons);
enc_cg({block,Imm}) ->
    emit(["begin",nl]),
    enc_cg(Imm),
    emit([nl,
	  "end"]);
enc_cg({seq,First,Then}) ->
    enc_cg(First),
    emit([com,nl]),
    enc_cg(Then);
enc_cg(align) ->
    emit(align);
enc_cg({apply,F0,As0}) ->
    As = enc_call_args(As0, ""),
    case F0 of
	{M,F} ->
	    emit([{asis,M},":",{asis,F},"(",As,")"]);
	F when is_atom(F) ->
	    emit([{asis,F},"(",As,")"])
    end;
enc_cg({apply,F0,As0,Dst}) ->
    As = enc_call_args(As0, ""),
    emit([mk_val(Dst)," = "]),
    case F0 of
	{M,F} ->
	    emit([{asis,M},":",{asis,F},"(",As,")"]);
	F when is_atom(F) ->
	    emit([{asis,F},"(",As,")"])
    end;
enc_cg({assign,Dst0,Expr}) ->
    Dst = mk_val(Dst0),
    emit([Dst," = ",Expr]);
enc_cg({binary,PutBits}) ->
    emit(["<<",enc_cg_put_bits(PutBits, ""),">>"]);
enc_cg({call,M,F,As0}) ->
    As = [mk_val(A) || A <- As0],
    asn1ct_func:call(M, F, As);
enc_cg({call,M,F,As0,Dst}) ->
    As = [mk_val(A) || A <- As0],
    emit([mk_val(Dst)," = "]),
    asn1ct_func:call(M, F, As);
enc_cg({call_gen,Prefix,Key,Gen,As0}) ->
    As = [mk_val(A) || A <- As0],
    asn1ct_func:call_gen(Prefix, Key, Gen, As);
enc_cg({'cond',Cs}) ->
    enc_cg_cond(Cs);
enc_cg({'cond',Cs,Dst0}) ->
    Dst = mk_val(Dst0),
    emit([Dst," = "]),
    enc_cg_cond(Cs);
enc_cg({error,Error}) when is_function(Error, 0) ->
    Error();
enc_cg({error,Var0}) ->
    Var = mk_val(Var0),
    emit(["exit({error,{asn1,{illegal_value,",Var,"}}})"]);
enc_cg({integer,Int}) ->
    emit(mk_val(Int));
enc_cg({lc,Body,Var,List}) ->
    emit("["),
    enc_cg(Body),
    emit([" || ",mk_val(Var)," <- ",mk_val(List),"]"]);
enc_cg({lc,Body,Var,List,Dst}) ->
    emit([mk_val(Dst)," = ["]),
    enc_cg(Body),
    emit([" || ",mk_val(Var)," <- ",mk_val(List),"]"]);
enc_cg(nil) ->
    emit("[]");
enc_cg({sub,Src0,Int,Dst0}) ->
    Src = mk_val(Src0),
    Dst = mk_val(Dst0),
    emit([Dst," = ",Src," - ",Int]);
enc_cg({'try',Try,{P,Succ},Else,Dst}) ->
    emit([mk_val(Dst)," = try "]),
    enc_cg(Try),
    emit([" of",nl,
	  mk_val(P)," ->",nl]),
    enc_cg(Succ),
    emit([nl,
	  "catch throw:invalid ->",nl]),
    enc_cg(Else),
    emit([nl,
	  "end"]);
enc_cg({var,V}) ->
    emit(V).

enc_cg_cons(Cons) ->
    emit("["),
    enc_cg_cons_1(Cons),
    emit("]").

enc_cg_cons_1({cons,H,{cons,_,_}=T}) ->
    enc_cg(H),
    emit([com,nl]),
    enc_cg_cons_1(T);
enc_cg_cons_1({cons,H,nil}) ->
    enc_cg(H);
enc_cg_cons_1({cons,H,T}) ->
    enc_cg(H),
    emit("|"),
    enc_cg(T).

enc_call_args([A|As], Sep) ->
    [Sep,mk_val(A)|enc_call_args(As, ", ")];
enc_call_args([], _) -> [].

enc_cg_cond([{'_',Action}]) ->
    enc_cg(Action);
enc_cg_cond(Cs) ->
    emit("if "),
    enc_cg_cond(Cs, ""),
    emit([nl,
	  "end"]).

enc_cg_cond([C|Cs], Sep) ->
    emit(Sep),
    enc_cg_cond_1(C),
    enc_cg_cond(Cs, [";",nl]);
enc_cg_cond([], _) -> ok.

enc_cg_cond_1({Cond,Action}) ->
    enc_cond_term(Cond),
    emit([" ->",nl]),
    enc_cg(Action).

enc_cond_term('_') ->
    emit("true");
enc_cond_term({ult,Var0,Int}) ->
    Var = mk_val(Var0),
    N = uper_num_bits(Int),
    case 1 bsl N of
	Int ->
	    emit([Var," bsr ",N," =:= 0"]);
	_ ->
	    emit(["0 =< ",Var,", ",Var," < ",Int])
    end;
enc_cond_term({eq,Var0,Term}) ->
    Var = mk_val(Var0),
    emit([Var," =:= ",{asis,Term}]);
enc_cond_term({ge,Var0,Int}) ->
    Var = mk_val(Var0),
    emit([Var," >= ",Int]);
enc_cond_term({lt,Var0,Int}) ->
    Var = mk_val(Var0),
    emit([Var," < ",Int]).

enc_cg_put_bits([{put_bits,Val0,N,[1]}|T], Sep) ->
    Val = mk_val(Val0),
    [[Sep,Val,":",integer_to_list(N)]|enc_cg_put_bits(T, ",")];
enc_cg_put_bits([], _) -> [].

mk_val({var,Str}) -> Str;
mk_val({expr,Str}) -> Str;
mk_val(Int) when is_integer(Int) -> integer_to_list(Int);
mk_val(Other) -> {asis,Other}.

%%%
%%% Generate a function that maps a name of a bit position
%%%  to the bit position.
%%%

bit_string_name2pos_fun(NNL, Src) ->
    {call_gen,"bit_string_name2pos_",NNL,
     fun(Fd, Name) -> gen_name2pos(Fd, Name, NNL) end,[Src]}.

gen_name2pos(Fd, Name, Names) ->
    Cs0 = gen_name2pos_cs(Names, Name),
    Cs = Cs0 ++ [bit_clause(Name),nil_clause(),invalid_clause()],
    F = {function,1,Name,1,Cs},
    file:write(Fd, [erl_pp:function(F)]).

gen_name2pos_cs([{K,V}|T], Name) ->
    P = [{cons,0,{atom,0,K},{var,0,'T'}}],
    B = [{cons,0,{integer,0,V},{call,0,{atom,0,Name},[{var,0,'T'}]}}],
    [{clause,0,P,[],B}|gen_name2pos_cs(T, Name)];
gen_name2pos_cs([], _) -> [].

bit_clause(Name) ->
    VarT = {var,0,'T'},
    VarPos = {var,0,'Pos'},
    P = [{cons,0,{tuple,0,[{atom,0,bit},VarPos]},VarT}],
    G = [[{call,0,{atom,0,is_integer},[VarPos]}]],
    B = [{cons,0,VarPos,{call,0,{atom,0,Name},[VarT]}}],
    {clause,0,P,G,B}.

nil_clause() ->
    P = B = [{nil,0}],
    {clause,0,P,[],B}.

invalid_clause() ->
    P = [{var,0,'_'}],
    B = [{call,0,{atom,0,throw},[{atom,0,invalid}]}],
    {clause,0,P,[],B}.

%%%
%%% Hoist alignment to reduce the number of list elements in
%%% encode. Fewer lists elements means faster traversal in
%%% complete/{2,3}.
%%%
%%% For example, the following data sequence:
%%%
%%%   [align,<<1:1,0:1>>,[align,<<Len:16>>|Data]]
%%%
%%% can be rewritten to:
%%%
%%%   [align,<<1:1,0:1,0:6>>,[<<Len:16>>|Data]]
%%%
%%% The change from the literal <<1:1,0:1>> to <<1:1,0:1,0:6>>
%%% comes for free, and we have eliminated one element of the
%%% sub list.
%%%
%%% We must be careful not to rewrite:
%%%
%%%   [<<1:1,0:1>>,[align,<<Len:16>>|Data]]
%%%
%%% to:
%%%
%%%   [[<<1:1,0:1>>,align],[<<Len:16>>|Data]]
%%%
%%% because even though [<<1:0,0:1>>,align] is a literal and does
%%% not add any additional construction cost, there is one more
%%% sub list that needs to be traversed.
%%%

enc_hoist_align(Imm0) ->
    Imm = enc_hoist_align_reverse(Imm0, []),
    enc_hoist_align(Imm, false, []).

enc_hoist_align_reverse([H|T], Acc) ->
    case enc_opt_al_1([H], 0) of
	{[H],_} ->
	    enc_hoist_align_reverse(T, [H|Acc]);
	{_,_} ->
	    lists:reverse(T, [H,stop|Acc])
    end;
enc_hoist_align_reverse([], Acc) -> Acc.

enc_hoist_align([stop|T], _Aligned, Acc) ->
    lists:reverse(T, Acc);
enc_hoist_align([{block,Bl0}|T], Aligned, Acc) ->
    Bl = case Aligned of
	     false -> Bl0;
	     true -> enc_hoist_block(Bl0)
	 end,
    case is_beginning_aligned(Bl) of
	false ->
	    enc_hoist_align(T, false, [{block,Bl}|Acc]);
	true ->
	    enc_hoist_align(T, true, [{put_bits,0,0,[1,align]},
				      {block,Bl}|Acc])
    end;
enc_hoist_align([H|T], _, Acc) ->
    enc_hoist_align(T, false, [H|Acc]);
enc_hoist_align([], _, Acc) -> Acc.

enc_hoist_block(Bl) ->
    try
	enc_hoist_block_1(lists:reverse(Bl))
    catch
	throw:impossible ->
	    Bl
    end.

enc_hoist_block_1([{'cond',Cs0}|T]) ->
    Cs = [[C|enc_hoist_block_2(Act)] || [C|Act] <- Cs0],
    H = {'cond',Cs},
    lists:reverse(T, [H]);
enc_hoist_block_1(_) ->
    throw(impossible).

enc_hoist_block_2([{'cond',_}|_]=L) ->
    enc_hoist_block(L);
enc_hoist_block_2([{error,_}]=L) ->
    L;
enc_hoist_block_2([]) ->
    [{put_bits,0,0,[1,align]}];
enc_hoist_block_2(L) ->
    case lists:last(L) of
	{put_bits,_,_,_} ->
	    L ++ [{put_bits,0,0,[1,align]}];
	_ ->
	    throw(impossible)
    end.

%%%
%%% Optimize alignment for encoding.
%%%

enc_opt_al(Imm0) ->
    {Imm,_} = enc_opt_al_1(Imm0, unknown),
    Imm.

enc_opt_al_1([{'cond',Cs0,Dst},{call,per,complete,[Dst],Bin}|T0], Al0) ->
    {Cs1,{M,F}} = enc_opt_al_prepare_cond(Cs0),
    {Cs,_} = enc_opt_al_cond(Cs1, 0),
    {T,Al} = enc_opt_al_1([{call,M,F,[Dst],Bin}|T0], Al0),
    {[{'cond',Cs,Dst}|T],Al};
enc_opt_al_1([H0|T0], Al0) ->
    {H,Al1} = enc_opt_al(H0, Al0),
    {T,Al} = enc_opt_al_1(T0, Al1),
    {H++T,Al};
enc_opt_al_1([], Al) -> {[],Al}.

enc_opt_al({apply,_,_,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({assign,_,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({block,Bl0}, Al0) ->
    {Bl,Al} = enc_opt_al_1(Bl0, Al0),
    {[{block,Bl}],Al};
enc_opt_al({call,erlang,iolist_to_binary,[_]}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({call,per_common,encode_fragmented,[_,U]}=Call, Al) ->
    case U rem 8 of
	0 -> {[Call],Al};
	_ -> {[Call],unknown}
    end;
enc_opt_al({call,per_common,encode_unconstrained_number,[_]}=Call, _) ->
    {[Call],0};
enc_opt_al({call,_,_,_,_}=Call, Al) ->
    {[Call],Al};
enc_opt_al({'cond',Cs0}, Al0) ->
    {Cs,Al} = enc_opt_al_cond(Cs0, Al0),
    {[{'cond',Cs}],Al};
enc_opt_al({error,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({put_bits,V,N,[U,align]}, Al0) when Al0 rem 8 =:= 0 ->
    Al = if
	     is_integer(N) -> N*U;
	     N =:= binary, U rem 8 =:= 0 -> 0;
	     true -> unknown
	 end,
    {[{put_bits,V,N,[U]}],Al};
enc_opt_al({put_bits,V,binary,[U,align]}, Al0) when is_integer(Al0) ->
    N = 8 - (Al0 rem 8),
    Al = case U rem 8 of
	     0 -> 0;
	     _ -> unknown
	 end,
    {[{put_bits,0,N,[1]},{put_bits,V,binary,[U]}],Al};
enc_opt_al({put_bits,V,N0,[U,align]}, Al0) when is_integer(N0), is_integer(Al0) ->
    N = N0 + (8 - Al0 rem 8),
    Al = N0*U,
    {[{put_bits,V,N,[1]}],Al};
enc_opt_al({put_bits,_,N,[U,align]}=PutBits, _) when is_integer(N) ->
    {[PutBits],N*U};
enc_opt_al({put_bits,_,binary,[U,align]}=PutBits, _) when U rem 8 =:= 0 ->
    {[PutBits],0};
enc_opt_al({put_bits,_,N,[U]}=PutBits, Al) when is_integer(N), is_integer(Al) ->
    {[PutBits],Al+N*U};
enc_opt_al({put_bits,_,binary,[U]}=PutBits, Al) when U rem 8 =:= 0 ->
    {[PutBits],Al};
enc_opt_al({sub,_,_,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al({'try',_,_,_,_}=Imm, Al) ->
    {[Imm],Al};
enc_opt_al(Imm, _) ->
    {[Imm],unknown}.

enc_opt_al_cond(Cs0, Al0) ->
    enc_opt_al_cond_1(Cs0, Al0, [], []).

enc_opt_al_cond_1([['_',{error,_}]=C|Cs], Al, CAcc, AAcc) ->
    enc_opt_al_cond_1(Cs, Al, [C|CAcc], AAcc);
enc_opt_al_cond_1([[C|Act0]|Cs0], Al0, CAcc, AAcc) ->
    {Act,Al1} = enc_opt_al_1(Act0, Al0),
    Al = if
	     Al1 =:= unknown -> Al1;
	     true -> Al1 rem 8
	 end,
    enc_opt_al_cond_1(Cs0, Al0, [[C|Act]|CAcc], [Al|AAcc]);
enc_opt_al_cond_1([], _, CAcc, AAcc) ->
    Al = case lists:usort(AAcc) of
	     [] -> unknown;
	     [Al0] -> Al0;
	     [_|_] -> unknown
	 end,
    {lists:reverse(CAcc),Al}.

enc_opt_al_prepare_cond(Cs0) ->
    try enc_opt_al_prepare_cond_1(Cs0) of
	Cs ->
	    {Cs,{erlang,iolist_to_binary}}
    catch
	throw:impossible ->
	    {Cs0,{per,complete}}
    end.

enc_opt_al_prepare_cond_1(Cs) ->
    [[C|enc_opt_al_prepare_cond_2(Act)] || [C|Act] <- Cs].

enc_opt_al_prepare_cond_2([{put_bits,_,binary,[U|_]}|_]) when U rem 8 =/= 0 ->
    throw(impossible);
enc_opt_al_prepare_cond_2([{put_bits,_,_,_}=H|T]) ->
    [H|enc_opt_al_prepare_cond_2(T)];
enc_opt_al_prepare_cond_2([{call,per_common,encode_fragmented,_}=H|T]) ->
    [H|enc_opt_al_prepare_cond_2(T)];
enc_opt_al_prepare_cond_2([_|_]) ->
    throw(impossible);
enc_opt_al_prepare_cond_2([]) ->
    [{put_bits,0,0,[1,align]}].


%%%
%%% For the aligned PER format, fix up the intermediate format
%%% before code generation. Code generation will be somewhat
%%% easier if 'align' appear as a separate instruction.
%%%

per_fixup([{apply,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{apply,_,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{block,Block}|T]) ->
    [{block,per_fixup(Block)}|per_fixup(T)];
per_fixup([{'assign',_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{'cond',Cs0}|T]) ->
    Cs = [[C|per_fixup(Act)] || [C|Act] <- Cs0],
    [{'cond',Cs}|per_fixup(T)];
per_fixup([{'cond',Cs0,Dst}|T]) ->
    Cs = [[C|per_fixup(Act)] || [C|Act] <- Cs0],
    [{'cond',Cs,Dst}|per_fixup(T)];
per_fixup([{call,_,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{call,_,_,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{call_gen,_,_,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{error,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{lc,B,V,L}|T]) ->
    [{lc,per_fixup(B),V,L}|per_fixup(T)];
per_fixup([{lc,B,V,L,Dst}|T]) ->
    [{lc,per_fixup(B),V,L,Dst}|per_fixup(T)];
per_fixup([{sub,_,_,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([{'try',Try0,{P,Succ0},Else0,Dst}|T]) ->
    Try = per_fixup(Try0),
    Succ = per_fixup(Succ0),
    Else = per_fixup(Else0),
    [{'try',Try,{P,Succ},Else,Dst}|per_fixup(T)];
per_fixup([{put_bits,_,_,_}|_]=L) ->
    fixup_put_bits(L);
per_fixup([{var,_}=H|T]) ->
    [H|per_fixup(T)];
per_fixup([]) -> [].

fixup_put_bits([{put_bits,0,0,[_,align]}|T]) ->
    [align|fixup_put_bits(T)];
fixup_put_bits([{put_bits,0,0,_}|T]) ->
    fixup_put_bits(T);
fixup_put_bits([{put_bits,V,N,[U,align]}|T]) ->
    [align,{put_bits,V,N,[U]}|fixup_put_bits(T)];
fixup_put_bits([{put_bits,_,_,_}=H|T]) ->
    [H|fixup_put_bits(T)];
fixup_put_bits(Other) -> per_fixup(Other).

%% effective_constraint(Type,C)
%% Type = atom()
%% C = [C1,...]
%% C1 = {'SingleValue',SV} | {'ValueRange',VR} | {atom(),term()}
%% SV = integer() | [integer(),...]
%% VR = {Lb,Ub}
%% Lb = 'MIN' | integer()
%% Ub = 'MAX' | integer()
%% Returns a single value if C only has a single value constraint, and no
%% value range constraints, that constrains to a single value, otherwise
%% returns a value range that has the lower bound set to the lowest value
%% of all single values and lower bound values in C and the upper bound to
%% the greatest value.
effective_constraint(integer, [{{_,_}=Root,_}|_Rest]) ->
    %% Normalize extension. Note that any range given for the
    %% extension should be ignored anyway.
    [{Root,[]}];
effective_constraint(integer, C) ->
    SVs = get_constraints(C, 'SingleValue'),
    SV = effective_constr('SingleValue', SVs),
    VRs = get_constraints(C, 'ValueRange'),
    VR = effective_constr('ValueRange', VRs),
    greatest_common_range(SV, VR);
effective_constraint(bitstring, C) ->
    case get_constraint(C, 'SizeConstraint') of
	{{Lb,Ub},[]}=Range when is_integer(Lb) ->
	    if
		is_integer(Ub), Ub < 16#10000 ->
		    Range;
		true ->
		    no
	    end;
	{Lb,Ub}=Range when is_integer(Lb) ->
	    if
		is_integer(Ub), Ub < 16#10000 ->
		    if
			Lb =:= Ub -> Lb;
			true -> Range
		    end;
		true ->
		    no
	    end;
	no ->
	    no
    end.

effective_constr(_, []) -> [];
effective_constr('SingleValue', List) ->
    SVList = lists:flatten(lists:map(fun(X) -> element(2, X) end, List)),
    %% Sort and remove duplicates before generating SingleValue or ValueRange
    %% In case of ValueRange, also check for 'MIN and 'MAX'
    case lists:usort(SVList) of
	[N] ->
	    [{'SingleValue',N}];
	[_|_]=L ->
	    [{'ValueRange',{least_Lb(L),greatest_Ub(L)}}]
    end;
effective_constr('ValueRange', List) ->
    LBs = lists:map(fun({_,{Lb,_}}) -> Lb end, List),
    UBs = lists:map(fun({_,{_,Ub}}) -> Ub end, List),
    Lb = least_Lb(LBs),
    [{'ValueRange',{Lb,lists:max(UBs)}}].

greatest_common_range([], VR) ->
    VR;
greatest_common_range(SV, []) ->
    SV;
greatest_common_range([{_,Int}], [{_,{'MIN',Ub}}])
  when is_integer(Int), Int > Ub ->
    [{'ValueRange',{'MIN',Int}}];
greatest_common_range([{_,Int}],[{_,{Lb,Ub}}])
  when is_integer(Int), Int < Lb ->
    [{'ValueRange',{Int,Ub}}];
greatest_common_range([{_,Int}],VR=[{_,{_Lb,_Ub}}]) when is_integer(Int) ->
    VR;
greatest_common_range([{_,L}],[{_,{Lb,Ub}}]) when is_list(L) ->
    Min = least_Lb([Lb|L]),
    Max = greatest_Ub([Ub|L]),
    [{'ValueRange',{Min,Max}}];
greatest_common_range([{_,{Lb1,Ub1}}], [{_,{Lb2,Ub2}}]) ->
    Min = least_Lb([Lb1,Lb2]),
    Max = greatest_Ub([Ub1,Ub2]),
    [{'ValueRange',{Min,Max}}].


least_Lb(L) ->
    case lists:member('MIN', L) of
	true -> 'MIN';
	false -> lists:min(L)
    end.

greatest_Ub(L) ->
    case lists:member('MAX', L) of
	true -> 'MAX';
	false -> lists:max(L)
    end.

get_constraint(C, Key) ->
    case lists:keyfind(Key, 1, C) of
	false -> no;
	{_,V} -> V
    end.

get_constraints([{Key,_}=Pair|T], Key) ->
    [Pair|get_constraints(T, Key)];
get_constraints([_|T], Key) ->
    get_constraints(T, Key);
get_constraints([], _) -> [].