%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2001-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%
-module(asn1rt_per_bin).
%% encoding / decoding of PER aligned
-include("asn1_records.hrl").
-export([dec_fixup/3, cindex/3, list_to_record/2]).
-export([setchoiceext/1, setext/1, fixoptionals/2, fixoptionals/3,
fixextensions/2,
getext/1, getextension/2, skipextensions/3, getbit/1, getchoice/3 ]).
-export([getoptionals/2, getoptionals2/2, set_choice/3, encode_integer/2, encode_integer/3 ]).
-export([decode_integer/2, decode_integer/3, encode_small_number/1, encode_boolean/1,
decode_boolean/1, encode_length/2, decode_length/1, decode_length/2,
encode_small_length/1, decode_small_length/1,
decode_compact_bit_string/3]).
-export([decode_enumerated/3,
encode_bit_string/3, decode_bit_string/3 ]).
-export([encode_octet_string/2, decode_octet_string/2,
encode_null/1, decode_null/1,
encode_object_identifier/1, decode_object_identifier/1,
encode_real/1, decode_real/1,
encode_relative_oid/1, decode_relative_oid/1,
complete/1]).
-export([encode_open_type/2, decode_open_type/2]).
-export([encode_UniversalString/2, decode_UniversalString/2,
encode_PrintableString/2, decode_PrintableString/2,
encode_GeneralString/2, decode_GeneralString/2,
encode_GraphicString/2, decode_GraphicString/2,
encode_TeletexString/2, decode_TeletexString/2,
encode_VideotexString/2, decode_VideotexString/2,
encode_VisibleString/2, decode_VisibleString/2,
encode_UTF8String/1, decode_UTF8String/1,
encode_BMPString/2, decode_BMPString/2,
encode_IA5String/2, decode_IA5String/2,
encode_NumericString/2, decode_NumericString/2,
encode_ObjectDescriptor/2, decode_ObjectDescriptor/1
]).
-export([complete_bytes/1]).
-define('16K',16384).
-define('32K',32768).
-define('64K',65536).
dec_fixup(Terms,Cnames,RemBytes) ->
dec_fixup(Terms,Cnames,RemBytes,[]).
dec_fixup([novalue|T],[_Hc|Tc],RemBytes,Acc) ->
dec_fixup(T,Tc,RemBytes,Acc);
dec_fixup([{_Name,novalue}|T],[_Hc|Tc],RemBytes,Acc) ->
dec_fixup(T,Tc,RemBytes,Acc);
dec_fixup([H|T],[Hc|Tc],RemBytes,Acc) ->
dec_fixup(T,Tc,RemBytes,[{Hc,H}|Acc]);
dec_fixup([],_Cnames,RemBytes,Acc) ->
{lists:reverse(Acc),RemBytes}.
cindex(Ix,Val,Cname) ->
case element(Ix,Val) of
{Cname,Val2} -> Val2;
X -> X
end.
%% converts a list to a record if necessary
list_to_record(_Name,Tuple) when is_tuple(Tuple) ->
Tuple;
list_to_record(Name,List) when is_list(List) ->
list_to_tuple([Name|List]).
%%--------------------------------------------------------
%% setchoiceext(InRootSet) -> [{bit,X}]
%% X is set to 1 when InRootSet==false
%% X is set to 0 when InRootSet==true
%%
setchoiceext(true) ->
[{debug,choiceext},{bits,1,0}];
setchoiceext(false) ->
[{debug,choiceext},{bits,1,1}].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% setext(true|false) -> CompleteList
%%
setext(false) ->
[{debug,ext},{bits,1,0}];
setext(true) ->
[{debug,ext},{bits,1,1}].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This version of fixoptionals/2 are left only because of
%% backward compatibility with older generates
fixoptionals(OptList,Val) when is_tuple(Val) ->
fixoptionals1(OptList,Val,[]);
fixoptionals(OptList,Val) when is_list(Val) ->
fixoptionals1(OptList,Val,1,[],[]).
fixoptionals1([],Val,Acc) ->
%% return {Val,Opt}
{Val,lists:reverse(Acc)};
fixoptionals1([{_,Pos}|Ot],Val,Acc) ->
case element(Pos+1,Val) of
asn1_NOVALUE -> fixoptionals1(Ot,Val,[0|Acc]);
asn1_DEFAULT -> fixoptionals1(Ot,Val,[0|Acc]);
_ -> fixoptionals1(Ot,Val,[1|Acc])
end.
fixoptionals1([{Name,Pos}|Ot],[{Name,Val}|Vt],_Opt,Acc1,Acc2) ->
fixoptionals1(Ot,Vt,Pos+1,[1|Acc1],[{Name,Val}|Acc2]);
fixoptionals1([{_Name,Pos}|Ot],V,Pos,Acc1,Acc2) ->
fixoptionals1(Ot,V,Pos+1,[0|Acc1],[asn1_NOVALUE|Acc2]);
fixoptionals1(O,[Vh|Vt],Pos,Acc1,Acc2) ->
fixoptionals1(O,Vt,Pos+1,Acc1,[Vh|Acc2]);
fixoptionals1([],[Vh|Vt],Pos,Acc1,Acc2) ->
fixoptionals1([],Vt,Pos+1,Acc1,[Vh|Acc2]);
fixoptionals1([],[],_,Acc1,Acc2) ->
% return {Val,Opt}
{list_to_tuple([asn1_RECORDNAME|lists:reverse(Acc2)]),lists:reverse(Acc1)}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% This is the new fixoptionals/3 which is used by the new generates
%%
fixoptionals(OptList,OptLength,Val) when is_tuple(Val) ->
Bits = fixoptionals(OptList,Val,0),
{Val,{bits,OptLength,Bits}};
fixoptionals([],_Val,Acc) ->
%% Optbits
Acc;
fixoptionals([{Pos,DefVal}|Ot],Val,Acc) ->
case element(Pos,Val) of
asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1);
DefVal -> fixoptionals(Ot,Val,Acc bsl 1);
_ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1)
end;
fixoptionals([Pos|Ot],Val,Acc) ->
case element(Pos,Val) of
asn1_NOVALUE -> fixoptionals(Ot,Val,Acc bsl 1);
asn1_DEFAULT -> fixoptionals(Ot,Val,Acc bsl 1);
_ -> fixoptionals(Ot,Val,(Acc bsl 1) + 1)
end.
getext(Bytes) when is_tuple(Bytes) ->
getbit(Bytes);
getext(Bytes) when is_binary(Bytes) ->
getbit({0,Bytes}).
getextension(0, Bytes) ->
{{},Bytes};
getextension(1, Bytes) ->
{Len,Bytes2} = decode_small_length(Bytes),
{Blist, Bytes3} = getbits_as_list(Len,Bytes2),
{list_to_tuple(Blist),Bytes3}.
fixextensions({ext,ExtPos,ExtNum},Val) ->
case fixextensions(ExtPos,ExtNum+ExtPos,Val,0) of
0 -> [];
ExtBits ->
[encode_small_length(ExtNum),{bits,ExtNum,ExtBits}]
end.
fixextensions(Pos,MaxPos,_,Acc) when Pos >= MaxPos ->
Acc;
fixextensions(Pos,ExtPos,Val,Acc) ->
Bit = case catch(element(Pos+1,Val)) of
asn1_NOVALUE ->
0;
asn1_NOEXTVALUE ->
0;
{'EXIT',_} ->
0;
_ ->
1
end,
fixextensions(Pos+1,ExtPos,Val,(Acc bsl 1)+Bit).
skipextensions(Bytes,Nr,ExtensionBitPattern) ->
case (catch element(Nr,ExtensionBitPattern)) of
1 ->
{_,Bytes2} = decode_open_type(Bytes,[]),
skipextensions(Bytes2, Nr+1, ExtensionBitPattern);
0 ->
skipextensions(Bytes, Nr+1, ExtensionBitPattern);
{'EXIT',_} -> % badarg, no more extensions
Bytes
end.
getchoice(Bytes,1,0) -> % only 1 alternative is not encoded
{0,Bytes};
getchoice(Bytes,_,1) ->
decode_small_number(Bytes);
getchoice(Bytes,NumChoices,0) ->
decode_constrained_number(Bytes,{0,NumChoices-1}).
%% old version kept for backward compatibility with generates from R7B
getoptionals(Bytes,NumOpt) ->
{Blist,Bytes1} = getbits_as_list(NumOpt,Bytes),
{list_to_tuple(Blist),Bytes1}.
%% new version used in generates from r8b_patch/3 and later
getoptionals2(Bytes,NumOpt) ->
getbits(Bytes,NumOpt).
%% getbits_as_binary(Num,Bytes) -> {{Unused,BinBits},RestBytes},
%% Num = integer(),
%% Bytes = list() | tuple(),
%% Unused = integer(),
%% BinBits = binary(),
%% RestBytes = tuple()
getbits_as_binary(Num,Bytes) when is_binary(Bytes) ->
getbits_as_binary(Num,{0,Bytes});
getbits_as_binary(0,Buffer) ->
{{0,<<>>},Buffer};
getbits_as_binary(Num,{0,Bin}) when Num > 16 ->
Used = Num rem 8,
Pad = (8 - Used) rem 8,
% Nbytes = Num div 8,
<<Bits:Num,_:Pad,RestBin/binary>> = Bin,
{{Pad,<<Bits:Num,0:Pad>>},RestBin};
getbits_as_binary(Num,Buffer={_Used,_Bin}) -> % Unaligned buffer
%% Num =< 16,
{Bits2,Buffer2} = getbits(Buffer,Num),
Pad = (8 - (Num rem 8)) rem 8,
{{Pad,<<Bits2:Num,0:Pad>>},Buffer2}.
% integer_from_list(Int,[],BigInt) ->
% BigInt;
% integer_from_list(Int,[H|T],BigInt) when Int < 8 ->
% (BigInt bsl Int) bor (H bsr (8-Int));
% integer_from_list(Int,[H|T],BigInt) ->
% integer_from_list(Int-8,T,(BigInt bsl 8) bor H).
getbits_as_list(Num,Bytes) when is_binary(Bytes) ->
getbits_as_list(Num,{0,Bytes},[]);
getbits_as_list(Num,Bytes) ->
getbits_as_list(Num,Bytes,[]).
%% If buffer is empty and nothing more will be picked.
getbits_as_list(0, B, Acc) ->
{lists:reverse(Acc),B};
%% If first byte in buffer is full and at least one byte will be picked,
%% then pick one byte.
getbits_as_list(N,{0,Bin},Acc) when N >= 8 ->
<<B7:1,B6:1,B5:1,B4:1,B3:1,B2:1,B1:1,B0:1,Rest/binary>> = Bin,
getbits_as_list(N-8,{0,Rest},[B0,B1,B2,B3,B4,B5,B6,B7|Acc]);
getbits_as_list(N,{Used,Bin},Acc) when N >= 4, Used =< 4 ->
NewUsed = Used + 4,
Rem = 8 - NewUsed,
<<_:Used,B3:1,B2:1,B1:1,B0:1,_:Rem, Rest/binary>> = Bin,
NewRest = case Rem of 0 -> Rest; _ -> Bin end,
getbits_as_list(N-4,{NewUsed rem 8,NewRest},[B0,B1,B2,B3|Acc]);
getbits_as_list(N,{Used,Bin},Acc) when N >= 2, Used =< 6 ->
NewUsed = Used + 2,
Rem = 8 - NewUsed,
<<_:Used,B1:1,B0:1,_:Rem, Rest/binary>> = Bin,
NewRest = case Rem of 0 -> Rest; _ -> Bin end,
getbits_as_list(N-2,{NewUsed rem 8,NewRest},[B0,B1|Acc]);
getbits_as_list(N,{Used,Bin},Acc) when Used =< 7 ->
NewUsed = Used + 1,
Rem = 8 - NewUsed,
<<_:Used,B0:1,_:Rem, Rest/binary>> = Bin,
NewRest = case Rem of 0 -> Rest; _ -> Bin end,
getbits_as_list(N-1,{NewUsed rem 8,NewRest},[B0|Acc]).
getbit({7,<<_:7,B:1,Rest/binary>>}) ->
{B,{0,Rest}};
getbit({0,Buffer = <<B:1,_:7,_/binary>>}) ->
{B,{1,Buffer}};
getbit({Used,Buffer}) ->
Unused = (8 - Used) - 1,
<<_:Used,B:1,_:Unused,_/binary>> = Buffer,
{B,{Used+1,Buffer}};
getbit(Buffer) when is_binary(Buffer) ->
getbit({0,Buffer}).
getbits({0,Buffer},Num) when (Num rem 8) == 0 ->
<<Bits:Num,Rest/binary>> = Buffer,
{Bits,{0,Rest}};
getbits({Used,Bin},Num) ->
NumPlusUsed = Num + Used,
NewUsed = NumPlusUsed rem 8,
Unused = (8-NewUsed) rem 8,
case Unused of
0 ->
<<_:Used,Bits:Num,Rest/binary>> = Bin,
{Bits,{0,Rest}};
_ ->
Bytes = NumPlusUsed div 8,
<<_:Used,Bits:Num,_UBits:Unused,_/binary>> = Bin,
<<_:Bytes/binary,Rest/binary>> = Bin,
{Bits,{NewUsed,Rest}}
end;
getbits(Bin,Num) when is_binary(Bin) ->
getbits({0,Bin},Num).
% getoctet(Bytes) when is_list(Bytes) ->
% getoctet({0,Bytes});
% getoctet(Bytes) ->
% %% io:format("getoctet:Buffer = ~p~n",[Bytes]),
% getoctet1(Bytes).
% getoctet1({0,[H|T]}) ->
% {H,{0,T}};
% getoctet1({Pos,[_,H|T]}) ->
% {H,{0,T}}.
align({0,L}) ->
{0,L};
align({_Pos,<<_H,T/binary>>}) ->
{0,T};
align(Bytes) ->
{0,Bytes}.
%% First align buffer, then pick the first Num octets.
%% Returns octets as an integer with bit significance as in buffer.
getoctets({0,Buffer},Num) ->
<<Val:Num/integer-unit:8,RestBin/binary>> = Buffer,
{Val,{0,RestBin}};
getoctets({U,<<_Padding,Rest/binary>>},Num) when U /= 0 ->
getoctets({0,Rest},Num);
getoctets(Buffer,Num) when is_binary(Buffer) ->
getoctets({0,Buffer},Num).
% getoctets(Buffer,Num) ->
% %% io:format("getoctets:Buffer = ~p~nNum = ~p~n",[Buffer,Num]),
% getoctets(Buffer,Num,0).
% getoctets(Buffer,0,Acc) ->
% {Acc,Buffer};
% getoctets(Buffer,Num,Acc) ->
% {Oct,NewBuffer} = getoctet(Buffer),
% getoctets(NewBuffer,Num-1,(Acc bsl 8)+Oct).
% getoctets_as_list(Buffer,Num) ->
% getoctets_as_list(Buffer,Num,[]).
% getoctets_as_list(Buffer,0,Acc) ->
% {lists:reverse(Acc),Buffer};
% getoctets_as_list(Buffer,Num,Acc) ->
% {Oct,NewBuffer} = getoctet(Buffer),
% getoctets_as_list(NewBuffer,Num-1,[Oct|Acc]).
%% First align buffer, then pick the first Num octets.
%% Returns octets as a binary
getoctets_as_bin({0,Bin},Num)->
<<Octets:Num/binary,RestBin/binary>> = Bin,
{Octets,{0,RestBin}};
getoctets_as_bin({_U,Bin},Num) ->
<<_Padding,Octets:Num/binary,RestBin/binary>> = Bin,
{Octets,{0,RestBin}};
getoctets_as_bin(Bin,Num) when is_binary(Bin) ->
getoctets_as_bin({0,Bin},Num).
%% same as above but returns octets as a List
getoctets_as_list(Buffer,Num) ->
{Bin,Buffer2} = getoctets_as_bin(Buffer,Num),
{binary_to_list(Bin),Buffer2}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% set_choice(Alt,Choices,Altnum) -> ListofBitSettings
%% Alt = atom()
%% Altnum = integer() | {integer(),integer()}% number of alternatives
%% Choices = [atom()] | {[atom()],[atom()]}
%% When Choices is a tuple the first list is the Rootset and the
%% second is the Extensions and then Altnum must also be a tuple with the
%% lengths of the 2 lists
%%
set_choice(Alt,{L1,L2},{Len1,_Len2}) ->
case set_choice_tag(Alt,L1) of
N when is_integer(N), Len1 > 1 ->
[{bits,1,0}, % the value is in the root set
encode_integer([{'ValueRange',{0,Len1-1}}],N)];
N when is_integer(N) ->
[{bits,1,0}]; % no encoding if only 0 or 1 alternative
false ->
[{bits,1,1}, % extension value
case set_choice_tag(Alt,L2) of
N2 when is_integer(N2) ->
encode_small_number(N2);
false ->
unknown_choice_alt
end]
end;
set_choice(Alt,L,Len) ->
case set_choice_tag(Alt,L) of
N when is_integer(N), Len > 1 ->
encode_integer([{'ValueRange',{0,Len-1}}],N);
N when is_integer(N) ->
[]; % no encoding if only 0 or 1 alternative
false ->
[unknown_choice_alt]
end.
set_choice_tag(Alt,Choices) ->
set_choice_tag(Alt,Choices,0).
set_choice_tag(Alt,[Alt|_Rest],Tag) ->
Tag;
set_choice_tag(Alt,[_H|Rest],Tag) ->
set_choice_tag(Alt,Rest,Tag+1);
set_choice_tag(_Alt,[],_Tag) ->
false.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_fragmented_XXX; decode of values encoded fragmented according
%% to ITU-T X.691 clause 10.9.3.8. The unit (XXX) is either bits, octets,
%% characters or number of components (in a choice,sequence or similar).
%% Buffer is a buffer {Used, Bin}.
%% C is the constrained length.
%% If the buffer is not aligned, this function does that.
decode_fragmented_bits({0,Buffer},C) ->
decode_fragmented_bits(Buffer,C,[]);
decode_fragmented_bits({_N,<<_,Bs/binary>>},C) ->
decode_fragmented_bits(Bs,C,[]).
decode_fragmented_bits(<<3:2,Len:6,Bin/binary>>,C,Acc) ->
{Value,Bin2} = split_binary(Bin, Len * ?'16K'),
decode_fragmented_bits(Bin2,C,[Value,Acc]);
decode_fragmented_bits(<<0:1,0:7,Bin/binary>>,C,Acc) ->
BinBits = list_to_binary(lists:reverse(Acc)),
case C of
Int when is_integer(Int),C == size(BinBits) ->
{BinBits,{0,Bin}};
Int when is_integer(Int) ->
exit({error,{asn1,{illegal_value,C,BinBits}}})
end;
decode_fragmented_bits(<<0:1,Len:7,Bin/binary>>,C,Acc) ->
Result = {BinBits,{Used,_Rest}} =
case (Len rem 8) of
0 ->
<<Value:Len/binary-unit:1,Bin2/binary>> = Bin,
{list_to_binary(lists:reverse([Value|Acc])),{0,Bin2}};
Rem ->
Bytes = Len div 8,
U = 8 - Rem,
<<Value:Bytes/binary-unit:8,Bits1:Rem,Bits2:U,Bin2/binary>> = Bin,
{list_to_binary(lists:reverse([Bits1 bsl U,Value|Acc])),
{Rem,<<Bits2,Bin2/binary>>}}
end,
case C of
Int when is_integer(Int),C == (size(BinBits) - ((8 - Used) rem 8)) ->
Result;
Int when is_integer(Int) ->
exit({error,{asn1,{illegal_value,C,BinBits}}})
end.
decode_fragmented_octets({0,Bin},C) ->
decode_fragmented_octets(Bin,C,[]).
decode_fragmented_octets(<<3:2,Len:6,Bin/binary>>,C,Acc) ->
{Value,Bin2} = split_binary(Bin,Len * ?'16K'),
decode_fragmented_octets(Bin2,C,[Value,Acc]);
decode_fragmented_octets(<<0:1,0:7,Bin/binary>>,C,Acc) ->
Octets = list_to_binary(lists:reverse(Acc)),
case C of
Int when is_integer(Int), C == size(Octets) ->
{Octets,{0,Bin}};
Int when is_integer(Int) ->
exit({error,{asn1,{illegal_value,C,Octets}}})
end;
decode_fragmented_octets(<<0:1,Len:7,Bin/binary>>,C,Acc) ->
<<Value:Len/binary-unit:8,Bin2/binary>> = Bin,
BinOctets = list_to_binary(lists:reverse([Value|Acc])),
case C of
Int when is_integer(Int),size(BinOctets) == Int ->
{BinOctets,Bin2};
Int when is_integer(Int) ->
exit({error,{asn1,{illegal_value,C,BinOctets}}})
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_open_type(Constraint, Value) -> CompleteList
%% Value = list of bytes of an already encoded value (the list must be flat)
%% | binary
%% Contraint = not used in this version
%%
encode_open_type(_C, Val) when is_list(Val) ->
Bin = list_to_binary(Val),
[encode_length(undefined,size(Bin)),{octets,Bin}]; % octets implies align
encode_open_type(_C, Val) when is_binary(Val) ->
[encode_length(undefined,size(Val)),{octets,Val}]. % octets implies align
%% the binary_to_list is not optimal but compatible with the current solution
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_open_type(Buffer,Constraint) -> Value
%% Constraint is not used in this version
%% Buffer = [byte] with PER encoded data
%% Value = [byte] with decoded data (which must be decoded again as some type)
%%
decode_open_type(Bytes, _C) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
getoctets_as_bin(Bytes2,Len).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_integer(Constraint,Value,NamedNumberList) -> CompleteList
%% encode_integer(Constraint,Value) -> CompleteList
%% encode_integer(Constraint,{Name,Value}) -> CompleteList
%%
%%
encode_integer(C,V,NamedNumberList) when is_atom(V) ->
case lists:keysearch(V,1,NamedNumberList) of
{value,{_,NewV}} ->
encode_integer(C,NewV);
_ ->
exit({error,{asn1,{namednumber,V}}})
end;
encode_integer(C,V,_NamedNumberList) when is_integer(V) ->
encode_integer(C,V);
encode_integer(C,{Name,V},NamedNumberList) when is_atom(Name) ->
encode_integer(C,V,NamedNumberList).
encode_integer(C,{Name,Val}) when is_atom(Name) ->
encode_integer(C,Val);
encode_integer([{Rc,_Ec}],Val) when is_tuple(Rc) -> % XXX when is this invoked? First argument most often a list,...Ok this is the extension case...but it doesn't work.
case (catch encode_integer([Rc],Val)) of
{'EXIT',{error,{asn1,_}}} ->
[{bits,1,1},encode_unconstrained_number(Val)];
Encoded ->
[{bits,1,0},Encoded]
end;
encode_integer(C,Val ) when is_list(C) ->
case get_constraint(C,'SingleValue') of
no ->
encode_integer1(C,Val);
V when is_integer(V),V == Val ->
[]; % a type restricted to a single value encodes to nothing
V when is_list(V) ->
case lists:member(Val,V) of
true ->
encode_integer1(C,Val);
_ ->
exit({error,{asn1,{illegal_value,Val}}})
end;
_ ->
exit({error,{asn1,{illegal_value,Val}}})
end.
encode_integer1(C, Val) ->
case VR = get_constraint(C,'ValueRange') of
no ->
encode_unconstrained_number(Val);
{Lb,'MAX'} ->
encode_semi_constrained_number(Lb,Val);
%% positive with range
{Lb,Ub} when Val >= Lb,
Ub >= Val ->
encode_constrained_number(VR,Val);
_ ->
exit({error,{asn1,{illegal_value,VR,Val}}})
end.
decode_integer(Buffer,Range,NamedNumberList) ->
{Val,Buffer2} = decode_integer(Buffer,Range),
case lists:keysearch(Val,2,NamedNumberList) of
{value,{NewVal,_}} -> {NewVal,Buffer2};
_ -> {Val,Buffer2}
end.
decode_integer(Buffer,[{Rc,_Ec}]) when is_tuple(Rc) ->
{Ext,Buffer2} = getext(Buffer),
case Ext of
0 -> decode_integer(Buffer2,[Rc]);
1 -> decode_unconstrained_number(Buffer2)
end;
decode_integer(Buffer,undefined) ->
decode_unconstrained_number(Buffer);
decode_integer(Buffer,C) ->
case get_constraint(C,'SingleValue') of
V when is_integer(V) ->
{V,Buffer};
V when is_list(V) ->
{Val,Buffer2} = decode_integer1(Buffer,C),
case lists:member(Val,V) of
true ->
{Val,Buffer2};
_ ->
exit({error,{asn1,{illegal_value,Val}}})
end;
_ ->
decode_integer1(Buffer,C)
end.
decode_integer1(Buffer,C) ->
case VR = get_constraint(C,'ValueRange') of
no ->
decode_unconstrained_number(Buffer);
{Lb, 'MAX'} ->
decode_semi_constrained_number(Buffer,Lb);
{_,_} ->
decode_constrained_number(Buffer,VR)
end.
% X.691:10.6 Encoding of a normally small non-negative whole number
% Use this for encoding of CHOICE index if there is an extension marker in
% the CHOICE
encode_small_number({Name,Val}) when is_atom(Name) ->
encode_small_number(Val);
encode_small_number(Val) when Val =< 63 ->
% [{bits,1,0},{bits,6,Val}];
[{bits,7,Val}]; % same as above but more efficient
encode_small_number(Val) ->
[{bits,1,1},encode_semi_constrained_number(0,Val)].
decode_small_number(Bytes) ->
{Bit,Bytes2} = getbit(Bytes),
case Bit of
0 ->
getbits(Bytes2,6);
1 ->
decode_semi_constrained_number(Bytes2,0)
end.
%% X.691:10.7 Encoding of a semi-constrained whole number
%% might be an optimization encode_semi_constrained_number(0,Val) ->
encode_semi_constrained_number(C,{Name,Val}) when is_atom(Name) ->
encode_semi_constrained_number(C,Val);
encode_semi_constrained_number({Lb,'MAX'},Val) ->
encode_semi_constrained_number(Lb,Val);
encode_semi_constrained_number(Lb,Val) ->
Val2 = Val - Lb,
Oct = eint_positive(Val2),
Len = length(Oct),
if
Len < 128 ->
{octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster
true ->
[encode_length(undefined,Len),{octets,Oct}]
end.
decode_semi_constrained_number(Bytes,{Lb,_}) ->
decode_semi_constrained_number(Bytes,Lb);
decode_semi_constrained_number(Bytes,Lb) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{V,Bytes3} = getoctets(Bytes2,Len),
{V+Lb,Bytes3}.
encode_constrained_number(Range,{Name,Val}) when is_atom(Name) ->
encode_constrained_number(Range,Val);
encode_constrained_number({Lb,Ub},Val) when Val >= Lb, Ub >= Val ->
Range = Ub - Lb + 1,
Val2 = Val - Lb,
if
Range == 1 ->
[];
Range == 2 ->
{bits,1,Val2};
Range =< 4 ->
{bits,2,Val2};
Range =< 8 ->
{bits,3,Val2};
Range =< 16 ->
{bits,4,Val2};
Range =< 32 ->
{bits,5,Val2};
Range =< 64 ->
{bits,6,Val2};
Range =< 128 ->
{bits,7,Val2};
Range =< 255 ->
{bits,8,Val2};
Range =< 256 ->
{octets,[Val2]};
Range =< 65536 ->
{octets,<<Val2:16>>};
Range =< 16#1000000 ->
Octs = eint_positive(Val2),
[{bits,2,length(Octs)-1},{octets,Octs}];
Range =< 16#100000000 ->
Octs = eint_positive(Val2),
[{bits,2,length(Octs)-1},{octets,Octs}];
Range =< 16#10000000000 ->
Octs = eint_positive(Val2),
[{bits,3,length(Octs)-1},{octets,Octs}];
true ->
exit({not_supported,{integer_range,Range}})
end;
encode_constrained_number(Range,Val) ->
exit({error,{asn1,{integer_range,Range,value,Val}}}).
decode_constrained_number(Buffer,{Lb,Ub}) ->
Range = Ub - Lb + 1,
% Val2 = Val - Lb,
{Val,Remain} =
if
Range == 1 ->
{0,Buffer};
Range == 2 ->
getbits(Buffer,1);
Range =< 4 ->
getbits(Buffer,2);
Range =< 8 ->
getbits(Buffer,3);
Range =< 16 ->
getbits(Buffer,4);
Range =< 32 ->
getbits(Buffer,5);
Range =< 64 ->
getbits(Buffer,6);
Range =< 128 ->
getbits(Buffer,7);
Range =< 255 ->
getbits(Buffer,8);
Range =< 256 ->
getoctets(Buffer,1);
Range =< 65536 ->
getoctets(Buffer,2);
Range =< 16#1000000 ->
{Len,Bytes2} = decode_length(Buffer,{1,3}),
{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
{dec_pos_integer(Octs),Bytes3};
Range =< 16#100000000 ->
{Len,Bytes2} = decode_length(Buffer,{1,4}),
{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
{dec_pos_integer(Octs),Bytes3};
Range =< 16#10000000000 ->
{Len,Bytes2} = decode_length(Buffer,{1,5}),
{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
{dec_pos_integer(Octs),Bytes3};
true ->
exit({not_supported,{integer_range,Range}})
end,
{Val+Lb,Remain}.
%% X.691:10.8 Encoding of an unconstrained whole number
encode_unconstrained_number(Val) when Val >= 0 ->
Oct = eint(Val,[]),
Len = length(Oct),
if
Len < 128 ->
{octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster
true ->
[encode_length(undefined,Len),{octets,Oct}]
end;
encode_unconstrained_number(Val) -> % negative
Oct = enint(Val,[]),
Len = length(Oct),
if
Len < 128 ->
{octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster
true ->
[encode_length(undefined,Len),{octets,Oct}]
end.
%% used for positive Values which don't need a sign bit
%% returns a binary
eint_positive(Val) ->
case eint(Val,[]) of
[0,B1|T] ->
[B1|T];
T ->
T
end.
eint(0, [B|Acc]) when B < 128 ->
[B|Acc];
eint(N, Acc) ->
eint(N bsr 8, [N band 16#ff| Acc]).
enint(-1, [B1|T]) when B1 > 127 ->
[B1|T];
enint(N, Acc) ->
enint(N bsr 8, [N band 16#ff|Acc]).
decode_unconstrained_number(Bytes) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{Ints,Bytes3} = getoctets_as_list(Bytes2,Len),
{dec_integer(Ints),Bytes3}.
dec_pos_integer(Ints) ->
decpint(Ints, 8 * (length(Ints) - 1)).
dec_integer(Ints) when hd(Ints) band 255 =< 127 -> %% Positive number
decpint(Ints, 8 * (length(Ints) - 1));
dec_integer(Ints) -> %% Negative
decnint(Ints, 8 * (length(Ints) - 1)).
decpint([Byte|Tail], Shift) ->
(Byte bsl Shift) bor decpint(Tail, Shift-8);
decpint([], _) -> 0.
decnint([Byte|Tail], Shift) ->
(-128 + (Byte band 127) bsl Shift) bor decpint(Tail, Shift-8).
% minimum_octets(Val) ->
% minimum_octets(Val,[]).
% minimum_octets(Val,Acc) when Val > 0 ->
% minimum_octets((Val bsr 8),[Val band 16#FF|Acc]);
% minimum_octets(0,Acc) ->
% Acc.
%% X.691:10.9 Encoding of a length determinant
%%encode_small_length(undefined,Len) -> % null means no UpperBound
%% encode_small_number(Len).
%% X.691:10.9.3.5
%% X.691:10.9.3.7
encode_length(undefined,Len) -> % un-constrained
if
Len < 128 ->
{octets,[Len]};
Len < 16384 ->
{octets,<<2:2,Len:14>>};
true -> % should be able to endode length >= 16384
exit({error,{asn1,{encode_length,{nyi,above_16k}}}})
end;
encode_length({0,'MAX'},Len) ->
encode_length(undefined,Len);
encode_length(Vr={Lb,Ub},Len) when Ub =< 65535 ,Lb >= 0 -> % constrained
encode_constrained_number(Vr,Len);
encode_length({Lb,_Ub},Len) when is_integer(Lb), Lb >= 0 -> % Ub > 65535
encode_length(undefined,Len);
encode_length({Vr={Lb,Ub},Ext},Len)
when Ub =< 65535 ,Lb >= 0, Len=<Ub, is_list(Ext) ->
%% constrained extensible
[{bits,1,0},encode_constrained_number(Vr,Len)];
encode_length({{Lb,_Ub},Ext},Len) when is_list(Ext) ->
[{bits,1,1},encode_semi_constrained_number(Lb,Len)];
encode_length(SingleValue,_Len) when is_integer(SingleValue) ->
[].
%% X.691 10.9.3.4 (only used for length of bitmap that prefixes extension
%% additions in a sequence or set
encode_small_length(Len) when Len =< 64 ->
%% [{bits,1,0},{bits,6,Len-1}];
{bits,7,Len-1}; % the same as above but more efficient
encode_small_length(Len) ->
[{bits,1,1},encode_length(undefined,Len)].
% decode_small_length({Used,<<_:Used,0:1,Num:6,_:((8-Used+1) rem 8),Rest/binary>>}) ->
% case Buffer of
% <<_:Used,0:1,Num:6,_:((8-Used+1) rem 8),Rest/binary>> ->
% {Num,
% case getbit(Buffer) of
% {0,Remain} ->
% {Bits,Remain2} = getbits(Remain,6),
% {Bits+1,Remain2};
% {1,Remain} ->
% decode_length(Remain,undefined)
% end.
decode_small_length(Buffer) ->
case getbit(Buffer) of
{0,Remain} ->
{Bits,Remain2} = getbits(Remain,6),
{Bits+1,Remain2};
{1,Remain} ->
decode_length(Remain,undefined)
end.
decode_length(Buffer) ->
decode_length(Buffer,undefined).
decode_length(Buffer,undefined) -> % un-constrained
{0,Buffer2} = align(Buffer),
case Buffer2 of
<<0:1,Oct:7,Rest/binary>> ->
{Oct,{0,Rest}};
<<2:2,Val:14,Rest/binary>> ->
{Val,{0,Rest}};
<<3:2,_:14,_Rest/binary>> ->
%% this case should be fixed
exit({error,{asn1,{decode_length,{nyi,above_16k}}}})
end;
%% {Bits,_} = getbits(Buffer2,2),
% case Bits of
% 2 ->
% {Val,Bytes3} = getoctets(Buffer2,2),
% {(Val band 16#3FFF),Bytes3};
% 3 ->
% exit({error,{asn1,{decode_length,{nyi,above_16k}}}});
% _ ->
% {Val,Bytes3} = getoctet(Buffer2),
% {Val band 16#7F,Bytes3}
% end;
decode_length(Buffer,{Lb,Ub}) when Ub =< 65535 ,Lb >= 0 -> % constrained
decode_constrained_number(Buffer,{Lb,Ub});
decode_length(Buffer,{Lb,_}) when is_integer(Lb), Lb >= 0 -> % Ub > 65535
decode_length(Buffer,undefined);
decode_length(Buffer,{VR={_Lb,_Ub},Ext}) when is_list(Ext) ->
case getbit(Buffer) of
{0,Buffer2} ->
decode_length(Buffer2, VR);
{1,Buffer2} ->
decode_length(Buffer2, undefined)
end;
%% {0,Buffer2} = getbit(Buffer),
%% decode_length(Buffer2, VR);
%When does this case occur with {_,_Lb,Ub} ??
% X.691:10.9.3.5
decode_length({Used,Bin},{_,_Lb,_Ub}) -> %when Len =< 127 -> % Unconstrained or large Ub NOTE! this case does not cover case when Ub > 65535
Unused = (8-Used) rem 8,
case Bin of
<<_:Used,0:1,Val:7,R:Unused,Rest/binary>> ->
{Val,{Used,<<R,Rest/binary>>}};
<<_:Used,_:Unused,2:2,Val:14,Rest/binary>> ->
{Val, {0,Rest}};
<<_:Used,_:Unused,3:2,_:14,_Rest/binary>> ->
exit({error,{asn1,{decode_length,{nyi,length_above_64K}}}})
end;
% decode_length(Buffer,{_,_Lb,Ub}) -> %when Len =< 127 -> % Unconstrained or large Ub
% case getbit(Buffer) of
% {0,Remain} ->
% getbits(Remain,7);
% {1,Remain} ->
% {Val,Remain2} = getoctets(Buffer,2),
% {Val band 2#0111111111111111, Remain2}
% end;
decode_length(Buffer,SingleValue) when is_integer(SingleValue) ->
{SingleValue,Buffer}.
% X.691:11
encode_boolean(true) ->
{bits,1,1};
encode_boolean(false) ->
{bits,1,0};
encode_boolean({Name,Val}) when is_atom(Name) ->
encode_boolean(Val);
encode_boolean(Val) ->
exit({error,{asn1,{encode_boolean,Val}}}).
decode_boolean(Buffer) -> %when record(Buffer,buffer)
case getbit(Buffer) of
{1,Remain} -> {true,Remain};
{0,Remain} -> {false,Remain}
end.
%% ENUMERATED with extension marker
decode_enumerated(Buffer,C,{Ntup1,Ntup2}) when is_tuple(Ntup1), is_tuple(Ntup2) ->
{Ext,Buffer2} = getext(Buffer),
case Ext of
0 -> % not an extension value
{Val,Buffer3} = decode_integer(Buffer2,C),
case catch (element(Val+1,Ntup1)) of
NewVal when is_atom(NewVal) -> {NewVal,Buffer3};
_Error -> exit({error,{asn1,{decode_enumerated,{Val,[Ntup1,Ntup2]}}}})
end;
1 -> % this an extension value
{Val,Buffer3} = decode_small_number(Buffer2),
case catch (element(Val+1,Ntup2)) of
NewVal when is_atom(NewVal) -> {NewVal,Buffer3};
_ -> {{asn1_enum,Val},Buffer3}
end
end;
decode_enumerated(Buffer,C,NamedNumberTup) when is_tuple(NamedNumberTup) ->
{Val,Buffer2} = decode_integer(Buffer,C),
case catch (element(Val+1,NamedNumberTup)) of
NewVal when is_atom(NewVal) -> {NewVal,Buffer2};
_Error -> exit({error,{asn1,{decode_enumerated,{Val,NamedNumberTup}}}})
end.
%%===============================================================================
%%===============================================================================
%%===============================================================================
%% Bitstring value, ITU_T X.690 Chapter 8.5
%%===============================================================================
%%===============================================================================
%%===============================================================================
%%===============================================================================
%% encode bitstring value
%%===============================================================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% bitstring NamedBitList
%% Val can be of:
%% - [identifiers] where only named identifers are set to one,
%% the Constraint must then have some information of the
%% bitlength.
%% - [list of ones and zeroes] all bits
%% - integer value representing the bitlist
%% C is constraint Len, only valid when identifiers
%% when the value is a list of {Unused,BinBits}, where
%% Unused = integer(),
%% BinBits = binary().
encode_bit_string(C,Bin={Unused,BinBits},NamedBitList) when is_integer(Unused),
is_binary(BinBits) ->
encode_bin_bit_string(C,Bin,NamedBitList);
%% when the value is a list of named bits
encode_bit_string(C, LoNB=[FirstVal | _RestVal], NamedBitList) when is_atom(FirstVal) ->
ToSetPos = get_all_bitposes(LoNB, NamedBitList, []),
BitList = make_and_set_list(ToSetPos,0),
encode_bit_string(C,BitList,NamedBitList);
encode_bit_string(C, BL=[{bit,_No} | _RestVal], NamedBitList) ->
ToSetPos = get_all_bitposes(BL, NamedBitList, []),
BitList = make_and_set_list(ToSetPos,0),
encode_bit_string(C,BitList,NamedBitList);
%% when the value is a list of ones and zeroes
% encode_bit_string(C, BitListValue, NamedBitList) when is_list(BitListValue) ->
% Bl1 =
% case NamedBitList of
% [] -> % dont remove trailing zeroes
% BitListValue;
% _ -> % first remove any trailing zeroes
% lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end,
% lists:reverse(BitListValue)))
% end,
% BitList = [{bit,X} || X <- Bl1],
% %% BListLen = length(BitList),
% case get_constraint(C,'SizeConstraint') of
% 0 -> % fixed length
% []; % nothing to encode
% V when is_integer(V),V=<16 -> % fixed length 16 bits or less
% pad_list(V,BitList);
% V when is_integer(V) -> % fixed length 16 bits or more
% [align,pad_list(V,BitList)]; % should be another case for V >= 65537
% {Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
% [encode_length({Lb,Ub},length(BitList)),align,BitList];
% no ->
% [encode_length(undefined,length(BitList)),align,BitList];
% Sc -> % extension marker
% [encode_length(Sc,length(BitList)),align,BitList]
% end;
encode_bit_string(C, BitListValue, NamedBitList) when is_list(BitListValue) ->
BitListToBinary =
%% fun that transforms a list of 1 and 0 to a tuple:
%% {UnusedBitsInLastByte, Binary}
fun([1|T],Acc,N,Fun) ->
Fun(T,(Acc bsl 1)+1,N+1,Fun);
([0|T],Acc,N,Fun) ->
Fun(T,(Acc bsl 1),N+1,Fun);
([_H|_T],_,_,_) ->
exit({error,{asn1,{bitstring_bitlist,BitListValue}}});
([],Acc,N,_) ->
Unused = (8 - (N rem 8)) rem 8,
{Unused,<<Acc:N,0:Unused>>}
end,
UnusedAndBin =
case NamedBitList of
[] -> % dont remove trailing zeroes
BitListToBinary(BitListValue,0,0,BitListToBinary);
_ ->
BitListToBinary(lists:reverse(
lists:dropwhile(fun(0)->true;(_)->false end,
lists:reverse(BitListValue))),
0,0,BitListToBinary)
end,
encode_bin_bit_string(C,UnusedAndBin,NamedBitList);
%% when the value is an integer
encode_bit_string(C, IntegerVal, NamedBitList) when is_integer(IntegerVal)->
BitList = int_to_bitlist(IntegerVal),
encode_bit_string(C,BitList,NamedBitList);
%% when the value is a tuple
encode_bit_string(C,{Name,Val}, NamedBitList) when is_atom(Name) ->
encode_bit_string(C,Val,NamedBitList).
%% encode_bin_bit_string/3, when value is a tuple of Unused and BinBits.
%% Unused = integer(),i.e. number unused bits in least sign. byte of
%% BinBits = binary().
encode_bin_bit_string(C,UnusedAndBin={_Unused,_BinBits},NamedBitList) ->
Constr = get_constraint(C,'SizeConstraint'),
UnusedAndBin1 = {Unused1,Bin1} =
remove_trailing_bin(NamedBitList,UnusedAndBin,lower_bound(Constr)),
case Constr of
0 ->
[];
V when is_integer(V),V=<16 ->
{Unused2,Bin2} = pad_list(V,UnusedAndBin1),
<<BitVal:V,_:Unused2>> = Bin2,
{bits,V,BitVal};
V when is_integer(V) ->
[align, pad_list(V, UnusedAndBin1)];
{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
[encode_length({Lb,Ub},size(Bin1)*8 - Unused1),
align,UnusedAndBin1];
{{Fix,Fix},L} when is_integer(Fix),is_list(L) ->
%% X.691 � 15.6, the rest of this paragraph is covered by
%% the last, ie. Sc, clause in this case
case (size(Bin1)*8)-Unused1 of
Size when Size =< Fix, Fix =< 16 ->
{Unused2,Bin2} = pad_list(Fix,UnusedAndBin),
<<BitVal:Fix,_:Unused2>> = Bin2,
[{bits,1,0},{bits,Fix,BitVal}];
Size when Size =< Fix ->
[{bits,1,0},align, pad_list(Fix, UnusedAndBin1)];
Size ->
[{bits,1,1},encode_length(undefined,Size),
align,UnusedAndBin1]
end;
no ->
[encode_length(undefined,size(Bin1)*8 - Unused1),
align,UnusedAndBin1];
Sc ->
[encode_length(Sc,size(Bin1)*8 - Unused1),
align,UnusedAndBin1]
end.
remove_trailing_bin([], {Unused,Bin},_) ->
{Unused,Bin};
remove_trailing_bin(_NamedNumberList,{_Unused,<<>>},C) ->
case C of
Int when is_integer(Int),Int > 0 ->
%% this padding see OTP-4353
pad_list(Int,{0,<<>>});
_ -> {0,<<>>}
end;
remove_trailing_bin(NamedNumberList, {_Unused,Bin},C) ->
Size = size(Bin)-1,
<<Bfront:Size/binary, LastByte:8>> = Bin,
%% clear the Unused bits to be sure
Unused1 = trailingZeroesInNibble(LastByte band 15),
Unused2 =
case Unused1 of
4 ->
4 + trailingZeroesInNibble(LastByte bsr 4);
_ -> Unused1
end,
case Unused2 of
8 ->
remove_trailing_bin(NamedNumberList,{0,Bfront},C);
_ ->
case C of
Int when is_integer(Int),Int > ((size(Bin)*8)-Unused2) ->
%% this padding see OTP-4353
pad_list(Int,{Unused2,Bin});
_ -> {Unused2,Bin}
end
end.
trailingZeroesInNibble(0) ->
4;
trailingZeroesInNibble(1) ->
0;
trailingZeroesInNibble(2) ->
1;
trailingZeroesInNibble(3) ->
0;
trailingZeroesInNibble(4) ->
2;
trailingZeroesInNibble(5) ->
0;
trailingZeroesInNibble(6) ->
1;
trailingZeroesInNibble(7) ->
0;
trailingZeroesInNibble(8) ->
3;
trailingZeroesInNibble(9) ->
0;
trailingZeroesInNibble(10) ->
1;
trailingZeroesInNibble(11) ->
0;
trailingZeroesInNibble(12) -> %#1100
2;
trailingZeroesInNibble(13) ->
0;
trailingZeroesInNibble(14) ->
1;
trailingZeroesInNibble(15) ->
0.
lower_bound({{Lb,_},_}) when is_integer(Lb) ->
Lb;
lower_bound({Lb,_}) when is_integer(Lb) ->
Lb;
lower_bound(C) ->
C.
%%%%%%%%%%%%%%%
%% The result is presented as a list of named bits (if possible)
%% else as a tuple {Unused,Bits}. Unused is the number of unused
%% bits, least significant bits in the last byte of Bits. Bits is
%% the BIT STRING represented as a binary.
%%
decode_compact_bit_string(Buffer, C, NamedNumberList) ->
case get_constraint(C,'SizeConstraint') of
0 -> % fixed length
{{8,0},Buffer};
V when is_integer(V),V=<16 -> %fixed length 16 bits or less
compact_bit_string(Buffer,V,NamedNumberList);
V when is_integer(V),V=<65536 -> %fixed length > 16 bits
Bytes2 = align(Buffer),
compact_bit_string(Bytes2,V,NamedNumberList);
V when is_integer(V) -> % V > 65536 => fragmented value
{Bin,Buffer2} = decode_fragmented_bits(Buffer,V),
case Buffer2 of
{0,_} -> {{0,Bin},Buffer2};
{U,_} -> {{8-U,Bin},Buffer2}
end;
{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
%% This case may demand decoding of fragmented length/value
{Len,Bytes2} = decode_length(Buffer,{Lb,Ub}),
Bytes3 = align(Bytes2),
compact_bit_string(Bytes3,Len,NamedNumberList);
no ->
%% This case may demand decoding of fragmented length/value
{Len,Bytes2} = decode_length(Buffer,undefined),
Bytes3 = align(Bytes2),
compact_bit_string(Bytes3,Len,NamedNumberList);
{{Fix,Fix},L} = Sc when is_list(L), is_integer(Fix), Fix =< 16 ->
%% X.691 �15.6, special case of extension marker
case decode_length(Buffer,Sc) of
{Len,Bytes2} when Len > Fix ->
Bytes3 = align(Bytes2),
compact_bit_string(Bytes3,Len,NamedNumberList);
{Len,Bytes2} ->
compact_bit_string(Bytes2,Len,NamedNumberList)
end;
Sc ->
{Len,Bytes2} = decode_length(Buffer,Sc),
Bytes3 = align(Bytes2),
compact_bit_string(Bytes3,Len,NamedNumberList)
end.
%%%%%%%%%%%%%%%
%% The result is presented as a list of named bits (if possible)
%% else as a list of 0 and 1.
%%
decode_bit_string(Buffer, C, NamedNumberList) ->
case get_constraint(C,'SizeConstraint') of
{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
{Len,Bytes2} = decode_length(Buffer,{Lb,Ub}),
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList);
no ->
{Len,Bytes2} = decode_length(Buffer,undefined),
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList);
0 -> % fixed length
{[],Buffer}; % nothing to encode
V when is_integer(V),V=<16 -> % fixed length 16 bits or less
bit_list_or_named(Buffer,V,NamedNumberList);
V when is_integer(V),V=<65536 ->
Bytes2 = align(Buffer),
bit_list_or_named(Bytes2,V,NamedNumberList);
V when is_integer(V) ->
Bytes2 = align(Buffer),
{BinBits,_} = decode_fragmented_bits(Bytes2,V),
bit_list_or_named(BinBits,V,NamedNumberList);
{{Fix,Fix},L} = Sc when is_list(L), is_integer(Fix), Fix =< 16 ->
%% X.691 �15.6, special case of extension marker
case decode_length(Buffer,Sc) of
{Len,Bytes2} when Len > Fix ->
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList);
{Len,Bytes2} when Len > 16 ->
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList);
{Len,Bytes2} ->
bit_list_or_named(Bytes2,Len,NamedNumberList)
end;
Sc -> %% X.691 �15.6, extension marker
{Len,Bytes2} = decode_length(Buffer,Sc),
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList)
end.
%% if no named bits are declared we will return a
%% {Unused,Bits}. Unused = integer(),
%% Bits = binary().
compact_bit_string(Buffer,Len,[]) ->
getbits_as_binary(Len,Buffer); % {{Unused,BinBits},NewBuffer}
compact_bit_string(Buffer,Len,NamedNumberList) ->
bit_list_or_named(Buffer,Len,NamedNumberList).
%% if no named bits are declared we will return a
%% BitList = [0 | 1]
bit_list_or_named(Buffer,Len,[]) ->
getbits_as_list(Len,Buffer);
%% if there are named bits declared we will return a named
%% BitList where the names are atoms and unnamed bits represented
%% as {bit,Pos}
%% BitList = [atom() | {bit,Pos}]
%% Pos = integer()
bit_list_or_named(Buffer,Len,NamedNumberList) ->
{BitList,Rest} = getbits_as_list(Len,Buffer),
{bit_list_or_named1(0,BitList,NamedNumberList,[]), Rest}.
bit_list_or_named1(Pos,[0|Bt],Names,Acc) ->
bit_list_or_named1(Pos+1,Bt,Names,Acc);
bit_list_or_named1(Pos,[1|Bt],Names,Acc) ->
case lists:keysearch(Pos,2,Names) of
{value,{Name,_}} ->
bit_list_or_named1(Pos+1,Bt,Names,[Name|Acc]);
_ ->
bit_list_or_named1(Pos+1,Bt,Names,[{bit,Pos}|Acc])
end;
bit_list_or_named1(_,[],_,Acc) ->
lists:reverse(Acc).
%%%%%%%%%%%%%%%
%%
int_to_bitlist(Int) when is_integer(Int), Int > 0 ->
[Int band 1 | int_to_bitlist(Int bsr 1)];
int_to_bitlist(0) ->
[].
%%%%%%%%%%%%%%%%%%
%% get_all_bitposes([list of named bits to set], named_bit_db, []) ->
%% [sorted_list_of_bitpositions_to_set]
get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]);
get_all_bitposes([Val | Rest], NamedBitList, Ack) ->
case lists:keysearch(Val, 1, NamedBitList) of
{value, {_ValName, ValPos}} ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]);
_ ->
exit({error,{asn1, {bitstring_namedbit, Val}}})
end;
get_all_bitposes([], _NamedBitList, Ack) ->
lists:sort(Ack).
%%%%%%%%%%%%%%%%%%
%% make_and_set_list([list of positions to set to 1])->
%% returns list with all in SetPos set.
%% in positioning in list the first element is 0, the second 1 etc.., but
%%
make_and_set_list([XPos|SetPos], XPos) ->
[1 | make_and_set_list(SetPos, XPos + 1)];
make_and_set_list([Pos|SetPos], XPos) ->
[0 | make_and_set_list([Pos | SetPos], XPos + 1)];
make_and_set_list([], _) ->
[].
%%%%%%%%%%%%%%%%%
%% pad_list(N,BitList) -> PaddedList
%% returns a padded (with trailing {bit,0} elements) list of length N
%% if Bitlist contains more than N significant bits set an exit asn1_error
%% is generated
pad_list(N,In={Unused,Bin}) ->
pad_list(N, size(Bin)*8 - Unused, In).
pad_list(N,Size,In={_,_}) when N < Size ->
exit({error,{asn1,{range_error,{bit_string,In}}}});
pad_list(N,Size,{Unused,Bin}) when N > Size, Unused > 0 ->
pad_list(N,Size+1,{Unused-1,Bin});
pad_list(N,Size,{_Unused,Bin}) when N > Size ->
pad_list(N,Size+1,{7,<<Bin/binary,0>>});
pad_list(N,N,In={_,_}) ->
In.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% X.691:16
%% encode_octet_string(Constraint,ExtensionMarker,Val)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
encode_octet_string(C,Val) ->
encode_octet_string2(C,Val).
encode_octet_string2(C,{_Name,Val}) ->
encode_octet_string2(C,Val);
encode_octet_string2(C,Val) ->
case get_constraint(C,'SizeConstraint') of
0 ->
[];
1 ->
[V] = Val,
{bits,8,V};
2 ->
[V1,V2] = Val,
[{bits,8,V1},{bits,8,V2}];
Sv when Sv =<65535, Sv == length(Val) -> % fixed length
{octets,Val};
{Lb,Ub} ->
[encode_length({Lb,Ub},length(Val)),{octets,Val}];
Sv when is_list(Sv) ->
[encode_length({hd(Sv),lists:max(Sv)},length(Val)),{octets,Val}];
no ->
[encode_length(undefined,length(Val)),{octets,Val}]
end.
decode_octet_string(Bytes,Range) ->
decode_octet_string(Bytes,Range,false).
decode_octet_string(Bytes,C,false) ->
case get_constraint(C,'SizeConstraint') of
0 ->
{[],Bytes};
1 ->
{B1,Bytes2} = getbits(Bytes,8),
{[B1],Bytes2};
2 ->
{Bs,Bytes2}= getbits(Bytes,16),
{binary_to_list(<<Bs:16>>),Bytes2};
{_,0} ->
{[],Bytes};
Sv when is_integer(Sv), Sv =<65535 -> % fixed length
getoctets_as_list(Bytes,Sv);
Sv when is_integer(Sv) -> % fragmented encoding
Bytes2 = align(Bytes),
decode_fragmented_octets(Bytes2,Sv);
{Lb,Ub} ->
{Len,Bytes2} = decode_length(Bytes,{Lb,Ub}),
getoctets_as_list(Bytes2,Len);
Sv when is_list(Sv) ->
{Len,Bytes2} = decode_length(Bytes,{hd(Sv),lists:max(Sv)}),
getoctets_as_list(Bytes2,Len);
no ->
{Len,Bytes2} = decode_length(Bytes,undefined),
getoctets_as_list(Bytes2,Len)
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Restricted char string types
%% (NumericString, PrintableString,VisibleString,IA5String,BMPString,UniversalString)
%% X.691:26 and X.680:34-36
%%encode_restricted_string(aligned,'BMPString',Constraints,Extension,Val)
encode_restricted_string(aligned,{Name,Val}) when is_atom(Name) ->
encode_restricted_string(aligned,Val);
encode_restricted_string(aligned,Val) when is_list(Val)->
[encode_length(undefined,length(Val)),{octets,Val}].
encode_known_multiplier_string(aligned,StringType,C,_Ext,{Name,Val}) when is_atom(Name) ->
encode_known_multiplier_string(aligned,StringType,C,false,Val);
encode_known_multiplier_string(aligned,StringType,C,_Ext,Val) ->
Result = chars_encode(C,StringType,Val),
NumBits = get_NumBits(C,StringType),
case get_constraint(C,'SizeConstraint') of
Ub when is_integer(Ub), Ub*NumBits =< 16 ->
Result;
0 ->
[];
Ub when is_integer(Ub),Ub =<65535 -> % fixed length
[align,Result];
{Ub,Lb} ->
[encode_length({Ub,Lb},length(Val)),align,Result];
Vl when is_list(Vl) ->
[encode_length({lists:min(Vl),lists:max(Vl)},length(Val)),align,Result];
no ->
[encode_length(undefined,length(Val)),align,Result]
end.
decode_restricted_string(Bytes,aligned) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
getoctets_as_list(Bytes2,Len).
decode_known_multiplier_string(Bytes,aligned,StringType,C,_Ext) ->
NumBits = get_NumBits(C,StringType),
case get_constraint(C,'SizeConstraint') of
Ub when is_integer(Ub), Ub*NumBits =< 16 ->
chars_decode(Bytes,NumBits,StringType,C,Ub);
Ub when is_integer(Ub),Ub =<65535 -> % fixed length
Bytes1 = align(Bytes),
chars_decode(Bytes1,NumBits,StringType,C,Ub);
0 ->
{[],Bytes};
Vl when is_list(Vl) ->
{Len,Bytes1} = decode_length(Bytes,{hd(Vl),lists:max(Vl)}),
Bytes2 = align(Bytes1),
chars_decode(Bytes2,NumBits,StringType,C,Len);
no ->
{Len,Bytes1} = decode_length(Bytes,undefined),
Bytes2 = align(Bytes1),
chars_decode(Bytes2,NumBits,StringType,C,Len);
{Lb,Ub}->
{Len,Bytes1} = decode_length(Bytes,{Lb,Ub}),
Bytes2 = align(Bytes1),
chars_decode(Bytes2,NumBits,StringType,C,Len)
end.
encode_NumericString(C,Val) ->
encode_known_multiplier_string(aligned,'NumericString',C,false,Val).
decode_NumericString(Bytes,C) ->
decode_known_multiplier_string(Bytes,aligned,'NumericString',C,false).
encode_PrintableString(C,Val) ->
encode_known_multiplier_string(aligned,'PrintableString',C,false,Val).
decode_PrintableString(Bytes,C) ->
decode_known_multiplier_string(Bytes,aligned,'PrintableString',C,false).
encode_VisibleString(C,Val) -> % equivalent with ISO646String
encode_known_multiplier_string(aligned,'VisibleString',C,false,Val).
decode_VisibleString(Bytes,C) ->
decode_known_multiplier_string(Bytes,aligned,'VisibleString',C,false).
encode_IA5String(C,Val) ->
encode_known_multiplier_string(aligned,'IA5String',C,false,Val).
decode_IA5String(Bytes,C) ->
decode_known_multiplier_string(Bytes,aligned,'IA5String',C,false).
encode_BMPString(C,Val) ->
encode_known_multiplier_string(aligned,'BMPString',C,false,Val).
decode_BMPString(Bytes,C) ->
decode_known_multiplier_string(Bytes,aligned,'BMPString',C,false).
encode_UniversalString(C,Val) ->
encode_known_multiplier_string(aligned,'UniversalString',C,false,Val).
decode_UniversalString(Bytes,C) ->
decode_known_multiplier_string(Bytes,aligned,'UniversalString',C,false).
%% end of known-multiplier strings for which PER visible constraints are
%% applied
encode_GeneralString(_C,Val) ->
encode_restricted_string(aligned,Val).
decode_GeneralString(Bytes,_C) ->
decode_restricted_string(Bytes,aligned).
encode_GraphicString(_C,Val) ->
encode_restricted_string(aligned,Val).
decode_GraphicString(Bytes,_C) ->
decode_restricted_string(Bytes,aligned).
encode_ObjectDescriptor(_C,Val) ->
encode_restricted_string(aligned,Val).
decode_ObjectDescriptor(Bytes) ->
decode_restricted_string(Bytes,aligned).
encode_TeletexString(_C,Val) -> % equivalent with T61String
encode_restricted_string(aligned,Val).
decode_TeletexString(Bytes,_C) ->
decode_restricted_string(Bytes,aligned).
encode_VideotexString(_C,Val) ->
encode_restricted_string(aligned,Val).
decode_VideotexString(Bytes,_C) ->
decode_restricted_string(Bytes,aligned).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% getBMPChars(Bytes,Len) ->{BMPcharList,RemainingBytes}
%%
getBMPChars(Bytes,1) ->
{O1,Bytes2} = getbits(Bytes,8),
{O2,Bytes3} = getbits(Bytes2,8),
if
O1 == 0 ->
{[O2],Bytes3};
true ->
{[{0,0,O1,O2}],Bytes3}
end;
getBMPChars(Bytes,Len) ->
getBMPChars(Bytes,Len,[]).
getBMPChars(Bytes,0,Acc) ->
{lists:reverse(Acc),Bytes};
getBMPChars(Bytes,Len,Acc) ->
{Octs,Bytes1} = getoctets_as_list(Bytes,2),
case Octs of
[0,O2] ->
getBMPChars(Bytes1,Len-1,[O2|Acc]);
[O1,O2]->
getBMPChars(Bytes1,Len-1,[{0,0,O1,O2}|Acc])
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% chars_encode(C,StringType,Value) -> ValueList
%%
%% encodes chars according to the per rules taking the constraint PermittedAlphabet
%% into account.
%% This function does only encode the value part and NOT the length
chars_encode(C,StringType,Value) ->
case {StringType,get_constraint(C,'PermittedAlphabet')} of
{'UniversalString',{_,_Sv}} ->
exit({error,{asn1,{'not implemented',"UniversalString with PermittedAlphabet constraint"}}});
{'BMPString',{_,_Sv}} ->
exit({error,{asn1,{'not implemented',"BMPString with PermittedAlphabet constraint"}}});
_ ->
{NumBits,CharOutTab} = {get_NumBits(C,StringType),get_CharOutTab(C,StringType)},
chars_encode2(Value,NumBits,CharOutTab)
end.
chars_encode2([H|T],NumBits,{Min,Max,notab}) when H =< Max, H >= Min ->
[{bits,NumBits,H-Min}|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([H|T],NumBits,{Min,Max,Tab}) when H =< Max, H >= Min ->
[{bits,NumBits,exit_if_false(H,element(H-Min+1,Tab))}|chars_encode2(T,NumBits,{Min,Max,Tab})];
chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,notab}) ->
%% no value range check here (ought to be, but very expensive)
% [{bits,NumBits,(A*B*C*D)-Min}|chars_encode2(T,NumBits,{Min,Max,notab})];
[{bits,NumBits,((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min}|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([{A,B,C,D}|T],NumBits,{Min,Max,Tab}) ->
%% no value range check here (ought to be, but very expensive)
% [{bits,NumBits,element((A*B*C*D)-Min,Tab)}|chars_encode2(T,NumBits,{Min,Max,notab})];
[{bits,NumBits,exit_if_false({A,B,C,D},element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab))}|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([H|_T],_,{_,_,_}) ->
exit({error,{asn1,{illegal_char_value,H}}});
chars_encode2([],_,_) ->
[].
exit_if_false(V,false)->
exit({error,{asn1,{"illegal value according to Permitted alphabet constraint",V}}});
exit_if_false(_,V) ->V.
get_NumBits(C,StringType) ->
case get_constraint(C,'PermittedAlphabet') of
{'SingleValue',Sv} ->
charbits(length(Sv),aligned);
no ->
case StringType of
'IA5String' ->
charbits(128,aligned); % 16#00..16#7F
'VisibleString' ->
charbits(95,aligned); % 16#20..16#7E
'PrintableString' ->
charbits(74,aligned); % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z
'NumericString' ->
charbits(11,aligned); % $ ,"0123456789"
'UniversalString' ->
32;
'BMPString' ->
16
end
end.
%%Maybe used later
%%get_MaxChar(C,StringType) ->
%% case get_constraint(C,'PermittedAlphabet') of
%% {'SingleValue',Sv} ->
%% lists:nth(length(Sv),Sv);
%% no ->
%% case StringType of
%% 'IA5String' ->
%% 16#7F; % 16#00..16#7F
%% 'VisibleString' ->
%% 16#7E; % 16#20..16#7E
%% 'PrintableString' ->
%% $z; % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z
%% 'NumericString' ->
%% $9; % $ ,"0123456789"
%% 'UniversalString' ->
%% 16#ffffffff;
%% 'BMPString' ->
%% 16#ffff
%% end
%% end.
%%Maybe used later
%%get_MinChar(C,StringType) ->
%% case get_constraint(C,'PermittedAlphabet') of
%% {'SingleValue',Sv} ->
%% hd(Sv);
%% no ->
%% case StringType of
%% 'IA5String' ->
%% 16#00; % 16#00..16#7F
%% 'VisibleString' ->
%% 16#20; % 16#20..16#7E
%% 'PrintableString' ->
%% $\s; % [$\s,$',$(,$),$+,$,,$-,$.,$/,"0123456789",$:,$=,$?,$A..$Z,$a..$z
%% 'NumericString' ->
%% $\s; % $ ,"0123456789"
%% 'UniversalString' ->
%% 16#00;
%% 'BMPString' ->
%% 16#00
%% end
%% end.
get_CharOutTab(C,StringType) ->
get_CharTab(C,StringType,out).
get_CharInTab(C,StringType) ->
get_CharTab(C,StringType,in).
get_CharTab(C,StringType,InOut) ->
case get_constraint(C,'PermittedAlphabet') of
{'SingleValue',Sv} ->
get_CharTab2(C,StringType,hd(Sv),lists:max(Sv),Sv,InOut);
no ->
case StringType of
'IA5String' ->
{0,16#7F,notab};
'VisibleString' ->
get_CharTab2(C,StringType,16#20,16#7F,notab,InOut);
'PrintableString' ->
Chars = lists:sort(
" '()+,-./0123456789:=?ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"),
get_CharTab2(C,StringType,hd(Chars),lists:max(Chars),Chars,InOut);
'NumericString' ->
get_CharTab2(C,StringType,16#20,$9," 0123456789",InOut);
'UniversalString' ->
{0,16#FFFFFFFF,notab};
'BMPString' ->
{0,16#FFFF,notab}
end
end.
get_CharTab2(C,StringType,Min,Max,Chars,InOut) ->
BitValMax = (1 bsl get_NumBits(C,StringType))-1,
if
Max =< BitValMax ->
{0,Max,notab};
true ->
case InOut of
out ->
{Min,Max,create_char_tab(Min,Chars)};
in ->
{Min,Max,list_to_tuple(Chars)}
end
end.
create_char_tab(Min,L) ->
list_to_tuple(create_char_tab(Min,L,0)).
create_char_tab(Min,[Min|T],V) ->
[V|create_char_tab(Min+1,T,V+1)];
create_char_tab(_Min,[],_V) ->
[];
create_char_tab(Min,L,V) ->
[false|create_char_tab(Min+1,L,V)].
%% This very inefficient and should be moved to compiletime
charbits(NumOfChars,aligned) ->
case charbits(NumOfChars) of
1 -> 1;
2 -> 2;
B when B =< 4 -> 4;
B when B =< 8 -> 8;
B when B =< 16 -> 16;
B when B =< 32 -> 32
end.
charbits(NumOfChars) when NumOfChars =< 2 -> 1;
charbits(NumOfChars) when NumOfChars =< 4 -> 2;
charbits(NumOfChars) when NumOfChars =< 8 -> 3;
charbits(NumOfChars) when NumOfChars =< 16 -> 4;
charbits(NumOfChars) when NumOfChars =< 32 -> 5;
charbits(NumOfChars) when NumOfChars =< 64 -> 6;
charbits(NumOfChars) when NumOfChars =< 128 -> 7;
charbits(NumOfChars) when NumOfChars =< 256 -> 8;
charbits(NumOfChars) when NumOfChars =< 512 -> 9;
charbits(NumOfChars) when NumOfChars =< 1024 -> 10;
charbits(NumOfChars) when NumOfChars =< 2048 -> 11;
charbits(NumOfChars) when NumOfChars =< 4096 -> 12;
charbits(NumOfChars) when NumOfChars =< 8192 -> 13;
charbits(NumOfChars) when NumOfChars =< 16384 -> 14;
charbits(NumOfChars) when NumOfChars =< 32768 -> 15;
charbits(NumOfChars) when NumOfChars =< 65536 -> 16;
charbits(NumOfChars) when is_integer(NumOfChars) ->
16 + charbits1(NumOfChars bsr 16).
charbits1(0) ->
0;
charbits1(NumOfChars) ->
1 + charbits1(NumOfChars bsr 1).
chars_decode(Bytes,_,'BMPString',C,Len) ->
case get_constraint(C,'PermittedAlphabet') of
no ->
getBMPChars(Bytes,Len);
_ ->
exit({error,{asn1,
{'not implemented',
"BMPString with PermittedAlphabet constraint"}}})
end;
chars_decode(Bytes,NumBits,StringType,C,Len) ->
CharInTab = get_CharInTab(C,StringType),
chars_decode2(Bytes,CharInTab,NumBits,Len).
chars_decode2(Bytes,CharInTab,NumBits,Len) ->
chars_decode2(Bytes,CharInTab,NumBits,Len,[]).
chars_decode2(Bytes,_CharInTab,_NumBits,0,Acc) ->
{lists:reverse(Acc),Bytes};
chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) when NumBits > 8 ->
{Char,Bytes2} = getbits(Bytes,NumBits),
Result =
if
Char < 256 -> Char;
true ->
list_to_tuple(binary_to_list(<<Char:32>>))
end,
chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Result|Acc]);
% chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) when NumBits > 8 ->
% {Char,Bytes2} = getbits(Bytes,NumBits),
% Result = case minimum_octets(Char+Min) of
% [NewChar] -> NewChar;
% [C1,C2] -> {0,0,C1,C2};
% [C1,C2,C3] -> {0,C1,C2,C3};
% [C1,C2,C3,C4] -> {C1,C2,C3,C4}
% end,
% chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Result|Acc]);
chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) ->
{Char,Bytes2} = getbits(Bytes,NumBits),
chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Char+Min|Acc]);
%% BMPString and UniversalString with PermittedAlphabet is currently not supported
chars_decode2(Bytes,{Min,Max,CharInTab},NumBits,Len,Acc) ->
{Char,Bytes2} = getbits(Bytes,NumBits),
chars_decode2(Bytes2,{Min,Max,CharInTab},NumBits,Len -1,[element(Char+1,CharInTab)|Acc]).
%% UTF8String
encode_UTF8String(Val) when is_binary(Val) ->
[encode_length(undefined,size(Val)),{octets,Val}];
encode_UTF8String(Val) ->
Bin = list_to_binary(Val),
encode_UTF8String(Bin).
decode_UTF8String(Bytes) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
{list_to_binary(Octs),Bytes3}.
% X.691:17
encode_null(_) -> []. % encodes to nothing
%encode_null({Name,Val}) when is_atom(Name) ->
% encode_null(Val).
decode_null(Bytes) ->
{'NULL',Bytes}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_object_identifier(Val) -> CompleteList
%% encode_object_identifier({Name,Val}) -> CompleteList
%% Val -> {Int1,Int2,...,IntN} % N >= 2
%% Name -> atom()
%% Int1 -> integer(0..2)
%% Int2 -> integer(0..39) when Int1 (0..1) else integer()
%% Int3-N -> integer()
%% CompleteList -> [{bits,8,Val}|{octets,Ol}|align|...]
%%
encode_object_identifier({Name,Val}) when is_atom(Name) ->
encode_object_identifier(Val);
encode_object_identifier(Val) ->
OctetList = e_object_identifier(Val),
Octets = list_to_binary(OctetList), % performs a flatten at the same time
[{debug,object_identifier},encode_length(undefined,size(Octets)),{octets,Octets}].
%% This code is copied from asn1_encode.erl (BER) and corrected and modified
e_object_identifier({'OBJECT IDENTIFIER',V}) ->
e_object_identifier(V);
e_object_identifier({Cname,V}) when is_atom(Cname),is_tuple(V) ->
e_object_identifier(tuple_to_list(V));
e_object_identifier({Cname,V}) when is_atom(Cname),is_list(V) ->
e_object_identifier(V);
e_object_identifier(V) when is_tuple(V) ->
e_object_identifier(tuple_to_list(V));
%% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1)
e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40 ; E1==2 ->
Head = 40*E1 + E2, % weird
e_object_elements([Head|Tail],[]);
e_object_identifier(Oid=[_,_|_Tail]) ->
exit({error,{asn1,{'illegal_value',Oid}}}).
e_object_elements([],Acc) ->
lists:reverse(Acc);
e_object_elements([H|T],Acc) ->
e_object_elements(T,[e_object_element(H)|Acc]).
e_object_element(Num) when Num < 128 ->
[Num];
e_object_element(Num) ->
[e_o_e(Num bsr 7)|[Num band 2#1111111]].
e_o_e(Num) when Num < 128 ->
Num bor 2#10000000;
e_o_e(Num) ->
[e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_object_identifier(Bytes) -> {ObjId,RemainingBytes}
%% ObjId -> {integer(),integer(),...} % at least 2 integers
%% RemainingBytes -> [integer()] when integer() (0..255)
decode_object_identifier(Bytes) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
[First|Rest] = dec_subidentifiers(Octs,0,[]),
Idlist = if
First < 40 ->
[0,First|Rest];
First < 80 ->
[1,First - 40|Rest];
true ->
[2,First - 80|Rest]
end,
{list_to_tuple(Idlist),Bytes3}.
dec_subidentifiers([H|T],Av,Al) when H >=16#80 ->
dec_subidentifiers(T,(Av bsl 7) + (H band 16#7F),Al);
dec_subidentifiers([H|T],Av,Al) ->
dec_subidentifiers(T,0,[(Av bsl 7) + H |Al]);
dec_subidentifiers([],_Av,Al) ->
lists:reverse(Al).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_relative_oid(Val) -> CompleteList
%% encode_relative_oid({Name,Val}) -> CompleteList
encode_relative_oid({Name,Val}) when is_atom(Name) ->
encode_relative_oid(Val);
encode_relative_oid(Val) when is_tuple(Val) ->
encode_relative_oid(tuple_to_list(Val));
encode_relative_oid(Val) when is_list(Val) ->
Octets = list_to_binary([e_object_element(X)||X <- Val]),
[encode_length(undefined,size(Octets)),{octets,Octets}].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_relative_oid(Val) -> {ROID,Rest}
%% decode_relative_oid({Name,Val}) -> {ROID,Rest}
decode_relative_oid(Bytes) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
ObjVals = dec_subidentifiers(Octs,0,[]),
{list_to_tuple(ObjVals),Bytes3}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_real(Val) -> CompleteList
%% encode_real({Name,Val}) -> CompleteList
encode_real({Name,Val}) when is_atom(Name) ->
encode_real(Val);
encode_real(Real) ->
{EncVal,Len} = ?RT_COMMON:encode_real([],Real),
[encode_length(undefined,Len),{octets,EncVal}].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_real(Val) -> {REALvalue,Rest}
%% decode_real({Name,Val}) -> {REALvalue,Rest}
decode_real(Bytes) ->
{Len,{0,Bytes2}} = decode_length(Bytes,undefined),
{RealVal,Rest,Len} = ?RT_COMMON:decode_real(Bytes2,Len),
{RealVal,{0,Rest}}.
get_constraint([{Key,V}],Key) ->
V;
get_constraint([],_Key) ->
no;
get_constraint(C,Key) ->
case lists:keysearch(Key,1,C) of
false ->
no;
{value,{_,V}} ->
V
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% complete(InList) -> ByteList
%% Takes a coded list with bits and bytes and converts it to a list of bytes
%% Should be applied as the last step at encode of a complete ASN.1 type
%%
% complete(L) ->
% case complete1(L) of
% {[],0} ->
% <<0>>;
% {Acc,0} ->
% lists:reverse(Acc);
% {[Hacc|Tacc],Acclen} -> % Acclen >0
% Rest = 8 - Acclen,
% NewHacc = Hacc bsl Rest,
% lists:reverse([NewHacc|Tacc])
% end.
% complete1(InList) when is_list(InList) ->
% complete1(InList,[]);
% complete1(InList) ->
% complete1([InList],[]).
% complete1([{debug,_}|T], Acc) ->
% complete1(T,Acc);
% complete1([H|T],Acc) when is_list(H) ->
% {NewH,NewAcclen} = complete1(H,Acc),
% complete1(T,NewH,NewAcclen);
% complete1([{0,Bin}|T],Acc,0) when is_binary(Bin) ->
% complete1(T,[Bin|Acc],0);
% complete1([{Unused,Bin}|T],Acc,0) when is_integer(Unused),is_binary(Bin) ->
% Size = size(Bin)-1,
% <<Bs:Size/binary,B>> = Bin,
% complete1(T,[(B bsr Unused),Bs|Acc],8-Unused);
% complete1([{Unused,Bin}|T],[Hacc|Tacc],Acclen) when is_integer(Unused),is_binary(Bin) ->
% Rest = 8 - Acclen,
% Used = 8 - Unused,
% case size(Bin) of
% 1 ->
% if
% Rest >= Used ->
% <<B:Used,_:Unused>> = Bin,
% complete1(T,[(Hacc bsl Used) + B|Tacc],
% (Acclen+Used) rem 8);
% true ->
% LeftOver = 8 - Rest - Unused,
% <<Val2:Rest,Val1:LeftOver,_:Unused>> = Bin,
% complete1(T,[Val1,(Hacc bsl Rest) + Val2|Tacc],
% (Acclen+Used) rem 8)
% end;
% N ->
% if
% Rest == Used ->
% N1 = N - 1,
% <<B:Rest,Bs:N1/binary,_:Unused>> = Bin,
% complete1(T,[Bs,(Hacc bsl Rest) + B|Tacc],0);
% Rest > Used ->
% N1 = N - 2,
% N2 = (8 - Rest) + Used,
% <<B1:Rest,Bytes:N1/binary,B2:N2,_:Unused>> = Bin,
% complete1(T,[B2,Bytes,(Hacc bsl Rest) + B1|Tacc],
% (Acclen + Used) rem 8);
% true -> % Rest < Used
% N1 = N - 1,
% N2 = Used - Rest,
% <<B1:Rest,Bytes:N1/binary,B2:N2,_:Unused>> = Bin,
% complete1(T,[B2,Bytes,(Hacc bsl Rest) + B1|Tacc],
% (Acclen + Used) rem 8)
% end
% end;
% %complete1([{octets,N,Val}|T],Acc,Acclen) when N =< 4 ,is_integer(Val) ->
% % complete1([{octets,<<Val:N/unit:8>>}|T],Acc,Acclen);
% complete1([{octets,N,Val}|T],Acc,Acclen) when N =< 4 ,is_integer(Val) ->
% Newval = case N of
% 1 ->
% Val4 = Val band 16#FF,
% [Val4];
% 2 ->
% Val3 = (Val bsr 8) band 16#FF,
% Val4 = Val band 16#FF,
% [Val3,Val4];
% 3 ->
% Val2 = (Val bsr 16) band 16#FF,
% Val3 = (Val bsr 8) band 16#FF,
% Val4 = Val band 16#FF,
% [Val2,Val3,Val4];
% 4 ->
% Val1 = (Val bsr 24) band 16#FF,
% Val2 = (Val bsr 16) band 16#FF,
% Val3 = (Val bsr 8) band 16#FF,
% Val4 = Val band 16#FF,
% [Val1,Val2,Val3,Val4]
% end,
% complete1([{octets,Newval}|T],Acc,Acclen);
% complete1([{octets,Bin}|T],Acc,Acclen) when is_binary(Bin) ->
% Rest = 8 - Acclen,
% if
% Rest == 8 ->
% complete1(T,[Bin|Acc],0);
% true ->
% [Hacc|Tacc]=Acc,
% complete1(T,[Bin, Hacc bsl Rest|Tacc],0)
% end;
% complete1([{octets,Oct}|T],Acc,Acclen) when is_list(Oct) ->
% Rest = 8 - Acclen,
% if
% Rest == 8 ->
% complete1(T,[list_to_binary(Oct)|Acc],0);
% true ->
% [Hacc|Tacc]=Acc,
% complete1(T,[list_to_binary(Oct), Hacc bsl Rest|Tacc],0)
% end;
% complete1([{bit,Val}|T], Acc, Acclen) ->
% complete1([{bits,1,Val}|T],Acc,Acclen);
% complete1([{octet,Val}|T], Acc, Acclen) ->
% complete1([{octets,1,Val}|T],Acc,Acclen);
% complete1([{bits,N,Val}|T], Acc, 0) when N =< 8 ->
% complete1(T,[Val|Acc],N);
% complete1([{bits,N,Val}|T], [Hacc|Tacc], Acclen) when N =< 8 ->
% Rest = 8 - Acclen,
% if
% Rest >= N ->
% complete1(T,[(Hacc bsl N) + Val|Tacc],(Acclen+N) rem 8);
% true ->
% Diff = N - Rest,
% NewHacc = (Hacc bsl Rest) + (Val bsr Diff),
% Mask = element(Diff,{1,3,7,15,31,63,127,255}),
% complete1(T,[(Val band Mask),NewHacc|Tacc],(Acclen+N) rem 8)
% end;
% complete1([{bits,N,Val}|T], Acc, Acclen) -> % N > 8
% complete1([{bits,N-8,Val bsr 8},{bits,8,Val band 255}|T],Acc,Acclen);
% complete1([align|T],Acc,0) ->
% complete1(T,Acc,0);
% complete1([align|T],[Hacc|Tacc],Acclen) ->
% Rest = 8 - Acclen,
% complete1(T,[Hacc bsl Rest|Tacc],0);
% complete1([{octets,N,Val}|T],Acc,Acclen) when is_list(Val) -> % no security check here
% complete1([{octets,Val}|T],Acc,Acclen);
% complete1([],Acc,Acclen) ->
% {Acc,Acclen}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% complete(InList) -> ByteList
%% Takes a coded list with bits and bytes and converts it to a list of bytes
%% Should be applied as the last step at encode of a complete ASN.1 type
%%
complete(L) ->
case complete1(L) of
{[],[]} ->
<<0>>;
{Acc,[]} ->
Acc;
{Acc,Bacc} ->
[Acc|complete_bytes(Bacc)]
end.
%% this function builds the ugly form of lists [E1|E2] to avoid having to reverse it at the end.
%% this is done because it is efficient and that the result always will be sent on a port or
%% converted by means of list_to_binary/1
complete1(InList) when is_list(InList) ->
complete1(InList,[],[]);
complete1(InList) ->
complete1([InList],[],[]).
complete1([],Acc,Bacc) ->
{Acc,Bacc};
complete1([H|T],Acc,Bacc) when is_list(H) ->
{NewH,NewBacc} = complete1(H,Acc,Bacc),
complete1(T,NewH,NewBacc);
complete1([{octets,Bin}|T],Acc,[]) ->
complete1(T,[Acc|Bin],[]);
complete1([{octets,Bin}|T],Acc,Bacc) ->
complete1(T,[Acc|[complete_bytes(Bacc),Bin]],[]);
complete1([{debug,_}|T], Acc,Bacc) ->
complete1(T,Acc,Bacc);
complete1([{bits,N,Val}|T],Acc,Bacc) ->
complete1(T,Acc,complete_update_byte(Bacc,Val,N));
complete1([{bit,Val}|T],Acc,Bacc) ->
complete1(T,Acc,complete_update_byte(Bacc,Val,1));
complete1([align|T],Acc,[]) ->
complete1(T,Acc,[]);
complete1([align|T],Acc,Bacc) ->
complete1(T,[Acc|complete_bytes(Bacc)],[]);
complete1([{0,Bin}|T],Acc,[]) when is_binary(Bin) ->
complete1(T,[Acc|Bin],[]);
complete1([{Unused,Bin}|T],Acc,[]) when is_integer(Unused),is_binary(Bin) ->
Size = size(Bin)-1,
<<Bs:Size/binary,B>> = Bin,
NumBits = 8-Unused,
complete1(T,[Acc|Bs],[[B bsr Unused]|NumBits]);
complete1([{Unused,Bin}|T],Acc,Bacc) when is_integer(Unused),is_binary(Bin) ->
Size = size(Bin)-1,
<<Bs:Size/binary,B>> = Bin,
NumBits = 8 - Unused,
Bf = complete_bytes(Bacc),
complete1(T,[Acc|[Bf,Bs]],[[B bsr Unused]|NumBits]).
complete_update_byte([],Val,Len) ->
complete_update_byte([[0]|0],Val,Len);
complete_update_byte([[Byte|Bacc]|NumBits],Val,Len) when NumBits + Len == 8 ->
[[0,((Byte bsl Len) + Val) band 255|Bacc]|0];
complete_update_byte([[Byte|Bacc]|NumBits],Val,Len) when NumBits + Len > 8 ->
Rem = 8 - NumBits,
Rest = Len - Rem,
complete_update_byte([[0,((Byte bsl Rem) + (Val bsr Rest)) band 255 |Bacc]|0],Val,Rest);
complete_update_byte([[Byte|Bacc]|NumBits],Val,Len) ->
[[((Byte bsl Len) + Val) band 255|Bacc]|NumBits+Len].
complete_bytes([[_Byte|Bacc]|0]) ->
lists:reverse(Bacc);
complete_bytes([[Byte|Bacc]|NumBytes]) ->
lists:reverse([(Byte bsl (8-NumBytes)) band 255|Bacc]);
complete_bytes([]) ->
[].
% complete_bytes(L) ->
% complete_bytes1(lists:reverse(L),[],[],0,0).
% complete_bytes1([H={V,B}|T],Acc,ReplyAcc,NumBits,NumFields) when ((NumBits+B) rem 8) == 0 ->
% NewReplyAcc = [complete_bytes2([H|Acc],0)|ReplyAcc],
% complete_bytes1(T,[],NewReplyAcc,0,0);
% complete_bytes1([H={V,B}|T],Acc,ReplyAcc,NumBits,NumFields) when NumFields == 7; (NumBits+B) div 8 > 0 ->
% Rem = (NumBits+B) rem 8,
% NewReplyAcc = [complete_bytes2([{V bsr Rem,B - Rem}|Acc],0)|ReplyAcc],
% complete_bytes1([{V,Rem}|T],[],NewReplyAcc,0,0);
% complete_bytes1([H={V,B}|T],Acc,ReplyAcc,NumBits,NumFields) ->
% complete_bytes1(T,[H|Acc],ReplyAcc,NumBits+B,NumFields+1);
% complete_bytes1([],[],ReplyAcc,_,_) ->
% lists:reverse(ReplyAcc);
% complete_bytes1([],Acc,ReplyAcc,NumBits,_) ->
% PadBits = case NumBits rem 8 of
% 0 -> 0;
% Rem -> 8 - Rem
% end,
% lists:reverse([complete_bytes2(Acc,PadBits)|ReplyAcc]).
% complete_bytes2([{V1,B1}],PadBits) ->
% <<V1:B1,0:PadBits>>;
% complete_bytes2([{V2,B2},{V1,B1}],PadBits) ->
% <<V1:B1,V2:B2,0:PadBits>>;
% complete_bytes2([{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
% <<V1:B1,V2:B2,V3:B3,0:PadBits>>;
% complete_bytes2([{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
% <<V1:B1,V2:B2,V3:B3,V4:B4,0:PadBits>>;
% complete_bytes2([{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
% <<V1:B1,V2:B2,V3:B3,V4:B4,V5:B5,0:PadBits>>;
% complete_bytes2([{V6,B6},{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
% <<V1:B1,V2:B2,V3:B3,V4:B4,V5:B5,V6:B6,0:PadBits>>;
% complete_bytes2([{V7,B7},{V6,B6},{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
% <<V1:B1,V2:B2,V3:B3,V4:B4,V5:B5,V6:B6,V7:B7,0:PadBits>>;
% complete_bytes2([{V8,B8},{V7,B7},{V6,B6},{V5,B5},{V4,B4},{V3,B3},{V2,B2},{V1,B1}],PadBits) ->
% <<V1:B1,V2:B2,V3:B3,V4:B4,V5:B5,V6:B6,V7:B7,V8:B8,0:PadBits>>.