%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2002-2012. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%
-module(asn1rt_per_bin_rt2ct).
%% encoding / decoding of PER aligned
-include("asn1_records.hrl").
-export([dec_fixup/3, cindex/3, list_to_record/2]).
-export([setchoiceext/1, setext/1, fixoptionals/3, fixextensions/2,
getext/1, getextension/2, skipextensions/3, getbit/1, getchoice/3 ]).
-export([getoptionals/2, getoptionals2/2,
set_choice/3, encode_integer/2, encode_integer/3 ]).
-export([decode_integer/2, decode_integer/3, encode_small_number/1,
decode_boolean/1, encode_length/2, decode_length/1, decode_length/2,
encode_small_length/1, decode_small_length/1,
decode_compact_bit_string/3]).
-export([decode_enumerated/3,
encode_bit_string/3, decode_bit_string/3 ]).
-export([encode_octet_string/2, decode_octet_string/2,
encode_null/1, decode_null/1,
encode_object_identifier/1, decode_object_identifier/1,
encode_real/1, decode_real/1,
encode_relative_oid/1, decode_relative_oid/1,
complete/1]).
-export([encode_open_type/2, decode_open_type/2]).
-export([encode_GeneralString/2, decode_GeneralString/2,
encode_GraphicString/2, decode_GraphicString/2,
encode_TeletexString/2, decode_TeletexString/2,
encode_VideotexString/2, decode_VideotexString/2,
encode_ObjectDescriptor/2, decode_ObjectDescriptor/1,
encode_UTF8String/1,decode_UTF8String/1
]).
-export([decode_constrained_number/2,
decode_constrained_number/3,
decode_unconstrained_number/1,
decode_semi_constrained_number/2,
encode_unconstrained_number/1,
decode_constrained_number/4,
encode_octet_string/3,
decode_octet_string/3,
encode_known_multiplier_string/5,
decode_known_multiplier_string/5,
getoctets/2, getbits/2
% start_drv/1,start_drv2/1,init_drv/1
]).
-export([eint_positive/1]).
-export([pre_complete_bits/2]).
-define('16K',16384).
-define('32K',32768).
-define('64K',65536).
%%-define(nodriver,true).
dec_fixup(Terms,Cnames,RemBytes) ->
dec_fixup(Terms,Cnames,RemBytes,[]).
dec_fixup([novalue|T],[_Hc|Tc],RemBytes,Acc) ->
dec_fixup(T,Tc,RemBytes,Acc);
dec_fixup([{_Name,novalue}|T],[_Hc|Tc],RemBytes,Acc) ->
dec_fixup(T,Tc,RemBytes,Acc);
dec_fixup([H|T],[Hc|Tc],RemBytes,Acc) ->
dec_fixup(T,Tc,RemBytes,[{Hc,H}|Acc]);
dec_fixup([],_Cnames,RemBytes,Acc) ->
{lists:reverse(Acc),RemBytes}.
cindex(Ix,Val,Cname) ->
case element(Ix,Val) of
{Cname,Val2} -> Val2;
X -> X
end.
%% converts a list to a record if necessary
list_to_record(_,Tuple) when is_tuple(Tuple) ->
Tuple;
list_to_record(Name,List) when is_list(List) ->
list_to_tuple([Name|List]).
%%--------------------------------------------------------
%% setchoiceext(InRootSet) -> [{bit,X}]
%% X is set to 1 when InRootSet==false
%% X is set to 0 when InRootSet==true
%%
setchoiceext(true) ->
[0];
setchoiceext(false) ->
[1].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% setext(true|false) -> CompleteList
%%
setext(false) ->
% [{debug,ext},{bits,1,0}];
[0];
setext(true) ->
% [{debug,ext},{bits,1,1}];
[1].
fixoptionals(OptList,_OptLength,Val) when is_tuple(Val) ->
% Bits = fixoptionals(OptList,Val,0),
% {Val,{bits,OptLength,Bits}};
% {Val,[10,OptLength,Bits]};
{Val,fixoptionals(OptList,Val,[])};
fixoptionals([],_,Acc) ->
%% Optbits
lists:reverse(Acc);
fixoptionals([{Pos,DefVal}|Ot],Val,Acc) ->
case element(Pos,Val) of
asn1_DEFAULT -> fixoptionals(Ot,Val,[0|Acc]);
DefVal -> fixoptionals(Ot,Val,[0|Acc]);
_ -> fixoptionals(Ot,Val,[1|Acc])
end;
fixoptionals([Pos|Ot],Val,Acc) ->
case element(Pos,Val) of
asn1_NOVALUE -> fixoptionals(Ot,Val,[0|Acc]);
asn1_DEFAULT -> fixoptionals(Ot,Val,[0|Acc]);
_ -> fixoptionals(Ot,Val,[1|Acc])
end.
getext(Bytes) when is_bitstring(Bytes) ->
getbit(Bytes).
getextension(0, Bytes) ->
{<<>>,Bytes};
getextension(1, Bytes) ->
{Len,Bytes2} = decode_small_length(Bytes),
getbits_as_binary(Len,Bytes2).% {Bin,Bytes3}.
fixextensions({ext,ExtPos,ExtNum},Val) ->
case fixextensions(ExtPos,ExtNum+ExtPos,Val,0) of
0 -> [];
ExtBits ->
[encode_small_length(ExtNum),pre_complete_bits(ExtNum,ExtBits)]
end.
fixextensions(Pos,MaxPos,_,Acc) when Pos >= MaxPos ->
Acc;
fixextensions(Pos,ExtPos,Val,Acc) ->
Bit = case catch(element(Pos+1,Val)) of
asn1_NOVALUE ->
0;
asn1_NOEXTVALUE ->
0;
{'EXIT',_} ->
0;
_ ->
1
end,
fixextensions(Pos+1,ExtPos,Val,(Acc bsl 1)+Bit).
skipextensions(Bytes,Nr,ExtensionBitstr) when is_bitstring(ExtensionBitstr) ->
Prev = Nr - 1,
case ExtensionBitstr of
<<_:Prev,1:1,_/bitstring>> ->
{_,Bytes2} = decode_open_type(Bytes,[]),
skipextensions(Bytes2, Nr+1, ExtensionBitstr);
<<_:Prev,0:1,_/bitstring>> ->
skipextensions(Bytes, Nr+1, ExtensionBitstr);
_ ->
Bytes
end.
getchoice(Bytes,1,0) -> % only 1 alternative is not encoded
{0,Bytes};
getchoice(Bytes,_,1) ->
decode_small_number(Bytes);
getchoice(Bytes,NumChoices,0) ->
decode_constrained_number(Bytes,{0,NumChoices-1}).
%% old version kept for backward compatibility with generates from R7B01
getoptionals(Bytes,NumOpt) ->
getbits_as_binary(NumOpt,Bytes).
%% new version used in generates from r8b_patch/3 and later
getoptionals2(Bytes,NumOpt) ->
{_,_} = getbits(Bytes,NumOpt).
%% getbits_as_binary(Num,Bytes) -> {Bin,Rest}
%% Num = integer(),
%% Bytes = bitstring(),
%% Bin = bitstring(),
%% Rest = bitstring()
getbits_as_binary(Num,Bytes) when is_bitstring(Bytes) ->
<<BS:Num/bitstring,Rest/bitstring>> = Bytes,
{BS,Rest}.
getbits_as_list(Num,Bytes) when is_bitstring(Bytes) ->
<<BitStr:Num/bitstring,Rest/bitstring>> = Bytes,
{[ B || <<B:1>> <= BitStr],Rest}.
getbit(Buffer) ->
<<B:1,Rest/bitstring>> = Buffer,
{B,Rest}.
getbits(Buffer,Num) when is_bitstring(Buffer) ->
<<Bs:Num,Rest/bitstring>> = Buffer,
{Bs,Rest}.
align(Bin) when is_binary(Bin) ->
Bin;
align(BitStr) when is_bitstring(BitStr) ->
AlignBits = bit_size(BitStr) rem 8,
<<_:AlignBits,Rest/binary>> = BitStr,
Rest.
%% First align buffer, then pick the first Num octets.
%% Returns octets as an integer with bit significance as in buffer.
getoctets(Buffer,Num) when is_binary(Buffer) ->
<<Val:Num/integer-unit:8,RestBin/binary>> = Buffer,
{Val,RestBin};
getoctets(Buffer,Num) when is_bitstring(Buffer) ->
AlignBits = bit_size(Buffer) rem 8,
<<_:AlignBits,Val:Num/integer-unit:8,RestBin/binary>> = Buffer,
{Val,RestBin}.
%% First align buffer, then pick the first Num octets.
%% Returns octets as a binary
getoctets_as_bin(Bin,Num) when is_binary(Bin) ->
<<Octets:Num/binary,RestBin/binary>> = Bin,
{Octets,RestBin};
getoctets_as_bin(Bin,Num) when is_bitstring(Bin) ->
AlignBits = bit_size(Bin) rem 8,
<<_:AlignBits,Val:Num/binary,RestBin/binary>> = Bin,
{Val,RestBin}.
%% same as above but returns octets as a List
getoctets_as_list(Buffer,Num) ->
{Bin,Buffer2} = getoctets_as_bin(Buffer,Num),
{binary_to_list(Bin),Buffer2}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% set_choice(Alt,Choices,Altnum) -> ListofBitSettings
%% Alt = atom()
%% Altnum = integer() | {integer(),integer()}% number of alternatives
%% Choices = [atom()] | {[atom()],[atom()]}
%% When Choices is a tuple the first list is the Rootset and the
%% second is the Extensions and then Altnum must also be a tuple with the
%% lengths of the 2 lists
%%
set_choice(Alt,{L1,L2},{Len1,_Len2}) ->
case set_choice_tag(Alt,L1) of
N when is_integer(N), Len1 > 1 ->
% [{bits,1,0}, % the value is in the root set
% encode_constrained_number({0,Len1-1},N)];
[0, % the value is in the root set
encode_constrained_number({0,Len1-1},N)];
N when is_integer(N) ->
% [{bits,1,0}]; % no encoding if only 0 or 1 alternative
[0]; % no encoding if only 0 or 1 alternative
false ->
% [{bits,1,1}, % extension value
[1, % extension value
case set_choice_tag(Alt,L2) of
N2 when is_integer(N2) ->
encode_small_number(N2);
false ->
unknown_choice_alt
end]
end;
set_choice(Alt,L,Len) ->
case set_choice_tag(Alt,L) of
N when is_integer(N), Len > 1 ->
encode_constrained_number({0,Len-1},N);
N when is_integer(N) ->
[]; % no encoding if only 0 or 1 alternative
false ->
[unknown_choice_alt]
end.
set_choice_tag(Alt,Choices) ->
set_choice_tag(Alt,Choices,0).
set_choice_tag(Alt,[Alt|_Rest],Tag) ->
Tag;
set_choice_tag(Alt,[_H|Rest],Tag) ->
set_choice_tag(Alt,Rest,Tag+1);
set_choice_tag(_Alt,[],_Tag) ->
false.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_fragmented_XXX; decode of values encoded fragmented according
%% to ITU-T X.691 clause 10.9.3.8. The unit (XXX) is either bits, octets,
%% characters or number of components (in a choice,sequence or similar).
%% Buffer is a buffer binary().
%% C is the constrained length.
%% If the buffer is not aligned, this function does that.
decode_fragmented_bits(Buffer,C) when is_binary(Buffer) ->
decode_fragmented_bits(Buffer,C,[]);
decode_fragmented_bits(Buffer,C) when is_bitstring(Buffer) ->
AlignBits = bit_size(Buffer) rem 8,
<<_:AlignBits,Rest/binary>> = Buffer,
decode_fragmented_bits(Rest,C,[]).
decode_fragmented_bits(<<3:2,Len:6,Bin/binary>>,C,Acc) ->
{Value,Bin2} = split_binary(Bin, Len * ?'16K'), % Len = 1 | 2 | 3 | 4
decode_fragmented_bits(Bin2,C,[Value|Acc]);
decode_fragmented_bits(<<0:1,0:7,Bin/binary>>,C,Acc) ->
BinBits = erlang:list_to_bitstring(lists:reverse(Acc)),
case C of
Int when is_integer(Int),C == bit_size(BinBits) ->
{BinBits,Bin};
Int when is_integer(Int) ->
exit({error,{asn1,{illegal_value,C,BinBits}}})
end;
decode_fragmented_bits(<<0:1,Len:7,Bin/binary>>,C,Acc) ->
<<Value:Len/bitstring,Rest/bitstring>> = Bin,
BinBits = erlang:list_to_bitstring([Value|Acc]),
case C of
Int when is_integer(Int),C == bit_size(BinBits) ->
{BinBits,Rest};
Int when is_integer(Int) ->
exit({error,{asn1,{illegal_value,C,BinBits}}})
end.
decode_fragmented_octets(Bin,C) ->
decode_fragmented_octets(Bin,C,[]).
decode_fragmented_octets(<<3:2,Len:6,Bin/binary>>,C,Acc) ->
{Value,Bin2} = split_binary(Bin,Len * ?'16K'),
decode_fragmented_octets(Bin2,C,[Value|Acc]);
decode_fragmented_octets(<<0:1,0:7,Bin/binary>>,C,Acc) ->
Octets = list_to_binary(lists:reverse(Acc)),
case C of
Int when is_integer(Int), C == size(Octets) ->
{Octets,Bin};
Int when is_integer(Int) ->
exit({error,{asn1,{illegal_value,C,Octets}}})
end;
decode_fragmented_octets(<<0:1,Len:7,Bin/binary>>,C,Acc) ->
<<Value:Len/binary-unit:8,Bin2/binary>> = Bin,
BinOctets = list_to_binary(lists:reverse([Value|Acc])),
case C of
Int when is_integer(Int),size(BinOctets) == Int ->
{BinOctets,Bin2};
Int when is_integer(Int) ->
exit({error,{asn1,{illegal_value,C,BinOctets}}})
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_open_type(Constraint, Value) -> CompleteList
%% Value = list of bytes of an already encoded value (the list must be flat)
%% | binary
%% Contraint = not used in this version
%%
encode_open_type(_Constraint, Val) when is_list(Val) ->
encode_open_type_1(list_to_binary(Val));
encode_open_type(_Constraint, Val) when is_binary(Val) ->
encode_open_type_1(Val).
encode_open_type_1(Val) ->
case byte_size(Val) of
Size when Size < 256 ->
[encode_length(undefined, Size),20,Size,Val];
Size when Size < 16384 ->
[encode_length(undefined, Size),21,<<Size:16>>,Val];
Size ->
encode_fragmented(Val, Size)
end.
encode_fragmented(Val0, Size) ->
case Size bsr 14 of
F when F >= 4 ->
<<Val1:16#8000/binary,Val2:16#8000/binary,T/binary>> = Val0,
[20,1,16#C4,<<21,16#8000:16>>,Val1,
<<21,16#8000:16>>,Val2|encode_open_type_1(T)];
F ->
SegSz = F * ?'16K',
<<Val:SegSz/binary,T/binary>> = Val0,
[<<20,1,3:2,F:6,21,SegSz:16>>,Val|encode_open_type_1(T)]
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_open_type(Buffer,Constraint) -> Value
%% Constraint is not used in this version
%% Buffer = [byte] with PER encoded data
%% Value = [byte] with decoded data (which must be decoded again as some type)
%%
decode_open_type(Bytes, _Constraint) ->
decode_open_type_1(Bytes, []).
decode_open_type_1(Bytes0, Acc) ->
case decode_length_unlimited(Bytes0) of
{Len,Bytes} when Len < ?'16K', Acc =:= [] ->
getoctets_as_bin(Bytes, Len);
{Len,Bytes1} when Len < ?'16K' ->
{Bin,Bytes} = getoctets_as_bin(Bytes1, Len),
{iolist_to_binary([Acc,Bin]),Bytes};
{Len,Bytes1} ->
<<Bin:Len/binary,Bytes/binary>> = Bytes1,
decode_open_type_1(Bytes, [Acc,Bin])
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_integer(Constraint,Value,NamedNumberList) -> CompleteList
%% encode_integer(Constraint,Value) -> CompleteList
%% encode_integer(Constraint,{Name,Value}) -> CompleteList
%%
%%
encode_integer(C,V,NamedNumberList) when is_atom(V) ->
case lists:keysearch(V,1,NamedNumberList) of
{value,{_,NewV}} ->
encode_integer(C,NewV);
_ ->
exit({error,{asn1,{namednumber,V}}})
end;
encode_integer(C,V,_NamedNumberList) when is_integer(V) ->
encode_integer(C,V);
encode_integer(C,{Name,V},NamedNumberList) when is_atom(Name) ->
encode_integer(C,V,NamedNumberList).
encode_integer(C,{Name,Val}) when is_atom(Name) ->
encode_integer(C,Val);
encode_integer([{Rc,_Ec}],Val) when is_tuple(Rc) -> % XXX when is this invoked? First argument most often a list,...Ok this is the extension case...but it doesn't work.
case (catch encode_integer([Rc],Val)) of
{'EXIT',{error,{asn1,_}}} ->
% [{bits,1,1},encode_unconstrained_number(Val)];
[1,encode_unconstrained_number(Val)];
Encoded ->
% [{bits,1,0},Encoded]
[0,Encoded]
end;
encode_integer([],Val) ->
encode_unconstrained_number(Val);
%% The constraint is the effective constraint, and in this case is a number
encode_integer([{'SingleValue',V}],V) ->
[];
encode_integer([{'ValueRange',VR={Lb,Ub},Range,PreEnc}],Val) when Val >= Lb,
Ub >= Val ->
%% this case when NamedNumberList
encode_constrained_number(VR,Range,PreEnc,Val);
encode_integer([{'ValueRange',{Lb,'MAX'}}],Val) ->
encode_semi_constrained_number(Lb,Val);
encode_integer([{'ValueRange',{'MIN',_}}],Val) ->
encode_unconstrained_number(Val);
encode_integer([{'ValueRange',VR={_Lb,_Ub}}],Val) ->
encode_constrained_number(VR,Val);
encode_integer(_,Val) ->
exit({error,{asn1,{illegal_value,Val}}}).
decode_integer(Buffer,Range,NamedNumberList) ->
{Val,Buffer2} = decode_integer(Buffer,Range),
case lists:keysearch(Val,2,NamedNumberList) of
{value,{NewVal,_}} -> {NewVal,Buffer2};
_ -> {Val,Buffer2}
end.
decode_integer(Buffer,[{Rc,_Ec}]) when is_tuple(Rc) ->
{Ext,Buffer2} = getext(Buffer),
case Ext of
0 -> decode_integer(Buffer2,[Rc]);
1 -> decode_unconstrained_number(Buffer2)
end;
decode_integer(Buffer,undefined) ->
decode_unconstrained_number(Buffer);
decode_integer(Buffer,C) ->
case get_constraint(C,'SingleValue') of
V when is_integer(V) ->
{V,Buffer};
_ ->
decode_integer1(Buffer,C)
end.
decode_integer1(Buffer,C) ->
case VR = get_constraint(C,'ValueRange') of
no ->
decode_unconstrained_number(Buffer);
{Lb, 'MAX'} ->
decode_semi_constrained_number(Buffer,Lb);
{_Lb,_Ub} ->
decode_constrained_number(Buffer,VR)
end.
%% X.691:10.6 Encoding of a normally small non-negative whole number
%% Use this for encoding of CHOICE index if there is an extension marker in
%% the CHOICE
encode_small_number({Name,Val}) when is_atom(Name) ->
encode_small_number(Val);
encode_small_number(Val) when Val =< 63 ->
% [{bits,1,0},{bits,6,Val}];
% [{bits,7,Val}]; % same as above but more efficient
[10,7,Val]; % same as above but more efficient
encode_small_number(Val) ->
% [{bits,1,1},encode_semi_constrained_number(0,Val)].
[1,encode_semi_constrained_number(0,Val)].
decode_small_number(Bytes) ->
{Bit,Bytes2} = getbit(Bytes),
case Bit of
0 ->
getbits(Bytes2,6);
1 ->
decode_semi_constrained_number(Bytes2,0)
end.
%% X.691:10.7 Encoding of a semi-constrained whole number
%% might be an optimization encode_semi_constrained_number(0,Val) ->
encode_semi_constrained_number(C,{Name,Val}) when is_atom(Name) ->
encode_semi_constrained_number(C,Val);
encode_semi_constrained_number({Lb,'MAX'},Val) ->
encode_semi_constrained_number(Lb,Val);
encode_semi_constrained_number(Lb,Val) ->
Val2 = Val - Lb,
Oct = eint_positive(Val2),
Len = length(Oct),
if
Len < 128 ->
%{octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster
[20,Len+1,[Len|Oct]];
Len < 256 ->
[encode_length(undefined,Len),[20,Len,Oct]];
true ->
[encode_length(undefined,Len),[21,<<Len:16>>,Oct]]
end.
decode_semi_constrained_number(Bytes,{Lb,_}) ->
decode_semi_constrained_number(Bytes,Lb);
decode_semi_constrained_number(Bytes,Lb) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{V,Bytes3} = getoctets(Bytes2,Len),
{V+Lb,Bytes3}.
encode_constrained_number({Lb,_Ub},_Range,{bits,N},Val) ->
Val2 = Val-Lb,
% {bits,N,Val2};
[10,N,Val2];
encode_constrained_number({Lb,_Ub},_Range,{octets,N},Val) when N < 256->
%% N is 8 or 16 (1 or 2 octets)
Val2 = Val-Lb,
% {octets,<<Val2:N/unit:8>>};
[20,N,Val2];
encode_constrained_number({Lb,_Ub},_Range,{octets,N},Val) -> % N>255
%% N is 8 or 16 (1 or 2 octets)
Val2 = Val-Lb,
% {octets,<<Val2:N/unit:8>>};
[21,<<N:16>>,Val2];
encode_constrained_number({Lb,_Ub},Range,_,Val) ->
Val2 = Val-Lb,
if
Range =< 16#1000000 -> % max 3 octets
Octs = eint_positive(Val2),
% [encode_length({1,3},size(Octs)),{octets,Octs}];
L = length(Octs),
[encode_length({1,3},L),[20,L,Octs]];
Range =< 16#100000000 -> % max 4 octets
Octs = eint_positive(Val2),
% [encode_length({1,4},size(Octs)),{octets,Octs}];
L = length(Octs),
[encode_length({1,4},L),[20,L,Octs]];
Range =< 16#10000000000 -> % max 5 octets
Octs = eint_positive(Val2),
% [encode_length({1,5},size(Octs)),{octets,Octs}];
L = length(Octs),
[encode_length({1,5},L),[20,L,Octs]];
true ->
exit({not_supported,{integer_range,Range}})
end.
encode_constrained_number(Range,{Name,Val}) when is_atom(Name) ->
encode_constrained_number(Range,Val);
encode_constrained_number({Lb,Ub},Val) when Val >= Lb, Ub >= Val ->
Range = Ub - Lb + 1,
Val2 = Val - Lb,
if
Range == 1 -> [];
Range == 2 ->
% Size = {bits,1,Val2};
[Val2];
Range =< 4 ->
% Size = {bits,2,Val2};
[10,2,Val2];
Range =< 8 ->
[10,3,Val2];
Range =< 16 ->
[10,4,Val2];
Range =< 32 ->
[10,5,Val2];
Range =< 64 ->
[10,6,Val2];
Range =< 128 ->
[10,7,Val2];
Range =< 255 ->
[10,8,Val2];
Range =< 256 ->
% Size = {octets,[Val2]};
[20,1,Val2];
Range =< 65536 ->
% Size = {octets,<<Val2:16>>};
[20,2,<<Val2:16>>];
Range =< (1 bsl (255*8)) ->
Octs = binary:encode_unsigned(Val2),
RangeOcts = binary:encode_unsigned(Range - 1),
OctsLen = erlang:byte_size(Octs),
RangeOctsLen = erlang:byte_size(RangeOcts),
LengthBitsNeeded = asn1rt_per_bin:minimum_bits(RangeOctsLen - 1),
[10,LengthBitsNeeded,OctsLen-1,20,OctsLen,Octs];
true ->
exit({not_supported,{integer_range,Range}})
end;
encode_constrained_number({_,_},Val) ->
exit({error,{asn1,{illegal_value,Val}}}).
decode_constrained_number(Buffer,VR={Lb,Ub}) ->
Range = Ub - Lb + 1,
decode_constrained_number(Buffer,VR,Range).
decode_constrained_number(Buffer,{Lb,_Ub},_Range,{bits,N}) ->
{Val,Remain} = getbits(Buffer,N),
{Val+Lb,Remain};
decode_constrained_number(Buffer,{Lb,_Ub},_Range,{octets,N}) ->
{Val,Remain} = getoctets(Buffer,N),
{Val+Lb,Remain}.
decode_constrained_number(Buffer,{Lb,_Ub},Range) ->
% Val2 = Val - Lb,
{Val,Remain} =
if
Range == 1 ->
{0,Buffer};
Range == 2 ->
getbits(Buffer,1);
Range =< 4 ->
getbits(Buffer,2);
Range =< 8 ->
getbits(Buffer,3);
Range =< 16 ->
getbits(Buffer,4);
Range =< 32 ->
getbits(Buffer,5);
Range =< 64 ->
getbits(Buffer,6);
Range =< 128 ->
getbits(Buffer,7);
Range =< 255 ->
getbits(Buffer,8);
Range =< 256 ->
getoctets(Buffer,1);
Range =< 65536 ->
getoctets(Buffer,2);
Range =< (1 bsl (255*8)) ->
OList = binary:bin_to_list(binary:encode_unsigned(Range - 1)),
RangeOctLen = length(OList),
{Len, Bytes} = decode_length(Buffer, {1, RangeOctLen}),
{Octs, RestBytes} = getoctets_as_bin(Bytes, Len),
{binary:decode_unsigned(Octs), RestBytes};
true ->
exit({not_supported,{integer_range,Range}})
end,
{Val+Lb,Remain}.
%% X.691:10.8 Encoding of an unconstrained whole number
encode_unconstrained_number(Val) when Val >= 0 ->
Oct = eint(Val,[]),
Len = length(Oct),
if
Len < 128 ->
%{octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster
[20,Len+1,[Len|Oct]];
Len < 256 ->
% [encode_length(undefined,Len),20,Len,Oct];
[20,Len+2,<<2:2,Len:14>>,Oct];% equiv with encode_length(undefined,Len) but faster
true ->
% [encode_length(undefined,Len),{octets,Oct}]
[encode_length(undefined,Len),[21,<<Len:16>>,Oct]]
end;
encode_unconstrained_number(Val) -> % negative
Oct = enint(Val,[]),
Len = length(Oct),
if
Len < 128 ->
% {octets,[Len|Oct]}; % equiv with encode_length(undefined,Len) but faster
[20,Len+1,[Len|Oct]];% equiv with encode_length(undefined,Len) but faster
Len < 256 ->
% [encode_length(undefined,Len),20,Len,Oct];
[20,Len+2,<<2:2,Len:14>>,Oct];% equiv with encode_length(undefined,Len) but faster
true ->
%[encode_length(undefined,Len),{octets,Oct}]
[encode_length(undefined,Len),[21,<<Len:16>>,Oct]]
end.
%% used for positive Values which don't need a sign bit
%% returns a list
eint_positive(Val) ->
case eint(Val,[]) of
[0,B1|T] ->
[B1|T];
T ->
T
end.
eint(0, [B|Acc]) when B < 128 ->
[B|Acc];
eint(N, Acc) ->
eint(N bsr 8, [N band 16#ff| Acc]).
enint(-1, [B1|T]) when B1 > 127 ->
[B1|T];
enint(N, Acc) ->
enint(N bsr 8, [N band 16#ff|Acc]).
decode_unconstrained_number(Bytes) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{Ints,Bytes3} = getoctets_as_bin(Bytes2,Len),
{dec_integer(Ints),Bytes3}.
dec_integer(Bin = <<0:1,_:7,_/binary>>) ->
decpint(Bin);
dec_integer(<<_:1,B:7,BitStr/bitstring>>) ->
Size = bit_size(BitStr),
<<I:Size>> = BitStr,
(-128 + B) bsl bit_size(BitStr) bor I.
decpint(Bin) ->
Size = bit_size(Bin),
<<Int:Size>> = Bin,
Int.
%% X.691:10.9 Encoding of a length determinant
%%encode_small_length(undefined,Len) -> % null means no UpperBound
%% encode_small_number(Len).
%% X.691:10.9.3.5
%% X.691:10.9.3.7
encode_length(undefined,Len) -> % un-constrained
if
Len < 128 ->
% {octets,[Len]};
[20,1,Len];
Len < 16384 ->
%{octets,<<2:2,Len:14>>};
[20,2,<<2:2,Len:14>>];
true -> % should be able to endode length >= 16384 i.e. fragmented length
exit({error,{asn1,{encode_length,{nyi,above_16k}}}})
end;
encode_length({0,'MAX'},Len) ->
encode_length(undefined,Len);
encode_length(Vr={Lb,Ub},Len) when Ub =< 65535 ,Lb >= 0 -> % constrained
encode_constrained_number(Vr,Len);
encode_length({Lb,_Ub},Len) when is_integer(Lb), Lb >= 0 -> % Ub > 65535
encode_length(undefined,Len);
encode_length({Vr={Lb,Ub},Ext},Len)
when Ub =< 65535 ,Lb >= 0,Len=<Ub, is_list(Ext) ->
%% constrained extensible
[0,encode_constrained_number(Vr,Len)];
encode_length({{Lb,_},Ext},Len) when is_list(Ext) ->
[1,encode_semi_constrained_number(Lb,Len)];
encode_length(SingleValue,_Len) when is_integer(SingleValue) ->
[].
%% X.691 10.9.3.4 (only used for length of bitmap that prefixes extension
%% additions in a sequence or set
encode_small_length(Len) when Len =< 64 ->
%% [{bits,1,0},{bits,6,Len-1}];
% {bits,7,Len-1}; % the same as above but more efficient
[10,7,Len-1];
encode_small_length(Len) ->
% [{bits,1,1},encode_length(undefined,Len)].
[1,encode_length(undefined,Len)].
decode_small_length(Buffer) ->
case getbit(Buffer) of
{0,Remain} ->
{Bits,Remain2} = getbits(Remain,6),
{Bits+1,Remain2};
{1,Remain} ->
decode_length(Remain,undefined)
end.
decode_length_unlimited(Buffer) ->
case align(Buffer) of
<<0:1,Oct:7,Rest/binary>> ->
{Oct,Rest};
<<1:1,0:1,Val:14,Rest/binary>> ->
{Val,Rest};
<<1:1,1:1,F:6,Rest/binary>> ->
SegSz = F * ?'16K',
{SegSz,Rest}
end.
decode_length(Buffer) ->
decode_length(Buffer,undefined).
decode_length(Buffer,undefined) -> % un-constrained
case align(Buffer) of
<<0:1,Oct:7,Rest/binary>> ->
{Oct,Rest};
<<2:2,Val:14,Rest/binary>> ->
{Val,Rest};
<<3:2,_Val:14,_Rest/binary>> ->
%% this case should be fixed
exit({error,{asn1,{decode_length,{nyi,above_16k}}}})
end;
decode_length(Buffer,{Lb,Ub}) when Ub =< 65535 ,Lb >= 0 -> % constrained
decode_constrained_number(Buffer,{Lb,Ub});
decode_length(Buffer,{Lb,_Ub}) when is_integer(Lb), Lb >= 0 -> % Ub > 65535
decode_length(Buffer,undefined);
decode_length(Buffer,{{Lb,Ub},Ext}) when is_list(Ext) ->
case getbit(Buffer) of
{0,Buffer2} ->
decode_length(Buffer2, {Lb,Ub});
{1,Buffer2} ->
decode_length(Buffer2, undefined)
end;
%When does this case occur with {_,_Lb,Ub} ??
% X.691:10.9.3.5
decode_length(Bin,{_,_Lb,_Ub}) -> % Unconstrained or large Ub NOTE! this case does not cover case when Ub > 65535
case Bin of
<<0:1,Val:7,Rest/bitstring>> ->
{Val,Rest};
_ ->
case align(Bin) of
<<2:2,Val:14,Rest/binary>> ->
{Val,Rest};
<<3:2,_:14,_Rest/binary>> ->
exit({error,{asn1,{decode_length,{nyi,length_above_64K}}}})
end
end;
decode_length(Buffer,SingleValue) when is_integer(SingleValue) ->
{SingleValue,Buffer}.
% X.691:11
decode_boolean(Buffer) -> %when record(Buffer,buffer)
case getbit(Buffer) of
{1,Remain} -> {true,Remain};
{0,Remain} -> {false,Remain}
end.
%% ENUMERATED with extension marker
decode_enumerated(Buffer,C,{Ntup1,Ntup2}) when is_tuple(Ntup1), is_tuple(Ntup2) ->
{Ext,Buffer2} = getext(Buffer),
case Ext of
0 -> % not an extension value
{Val,Buffer3} = decode_integer(Buffer2,C),
case catch (element(Val+1,Ntup1)) of
NewVal when is_atom(NewVal) -> {NewVal,Buffer3};
_Error -> exit({error,{asn1,{decode_enumerated,{Val,[Ntup1,Ntup2]}}}})
end;
1 -> % this an extension value
{Val,Buffer3} = decode_small_number(Buffer2),
case catch (element(Val+1,Ntup2)) of
NewVal when is_atom(NewVal) -> {NewVal,Buffer3};
_ -> {{asn1_enum,Val},Buffer3}
end
end;
decode_enumerated(Buffer,C,NamedNumberTup) when is_tuple(NamedNumberTup) ->
{Val,Buffer2} = decode_integer(Buffer,C),
case catch (element(Val+1,NamedNumberTup)) of
NewVal when is_atom(NewVal) -> {NewVal,Buffer2};
_Error -> exit({error,{asn1,{decode_enumerated,{Val,NamedNumberTup}}}})
end.
%%===============================================================================
%%===============================================================================
%%===============================================================================
%% Bitstring value, ITU_T X.690 Chapter 8.5
%%===============================================================================
%%===============================================================================
%%===============================================================================
%%===============================================================================
%% encode bitstring value
%%===============================================================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% bitstring NamedBitList
%% Val can be of:
%% - [identifiers] where only named identifers are set to one,
%% the Constraint must then have some information of the
%% bitlength.
%% - [list of ones and zeroes] all bits
%% - integer value representing the bitlist
%% C is constraint Len, only valid when identifiers
%% when the value is a list of {Unused,BinBits}, where
%% Unused = integer(),
%% BinBits = binary().
encode_bit_string(C,Bin={Unused,BinBits},NamedBitList) when is_integer(Unused),
is_binary(BinBits) ->
encode_bin_bit_string(C,Bin,NamedBitList);
%% when the value is a list of named bits
encode_bit_string(C, LoNB=[FirstVal | _RestVal], NamedBitList) when is_atom(FirstVal) ->
ToSetPos = get_all_bitposes(LoNB, NamedBitList, []),
BitList = make_and_set_list(ToSetPos,0),
encode_bit_string(C,BitList,NamedBitList);% consider the constraint
encode_bit_string(C, BL=[{bit,_} | _RestVal], NamedBitList) ->
ToSetPos = get_all_bitposes(BL, NamedBitList, []),
BitList = make_and_set_list(ToSetPos,0),
encode_bit_string(C,BitList,NamedBitList);
%% when the value is a list of ones and zeroes
encode_bit_string(Int, BitListValue, _)
when is_list(BitListValue),is_integer(Int),Int =< 16 ->
%% The type is constrained by a single value size constraint
%% range_check(Int,length(BitListValue)),
[40,Int,length(BitListValue),BitListValue];
encode_bit_string(Int, BitListValue, _)
when is_list(BitListValue),is_integer(Int), Int =< 255 ->
%% The type is constrained by a single value size constraint
%% range_check(Int,length(BitListValue)),
[2,40,Int,length(BitListValue),BitListValue];
encode_bit_string(Int, BitListValue, _)
when is_list(BitListValue),is_integer(Int), Int < ?'64K' ->
{Code,DesiredLength,Length} =
case length(BitListValue) of
B1 when B1 > Int ->
exit({error,{'BIT_STRING_length_greater_than_SIZE',
Int,BitListValue}});
B1 when B1 =< 255,Int =< 255 ->
{40,Int,B1};
B1 when B1 =< 255 ->
{42,<<Int:16>>,B1};
B1 ->
{43,<<Int:16>>,<<B1:16>>}
end,
%% The type is constrained by a single value size constraint
[2,Code,DesiredLength,Length,BitListValue];
encode_bit_string(no, BitListValue,[])
when is_list(BitListValue) ->
[encode_length(undefined,length(BitListValue)),
2,BitListValue];
encode_bit_string({{Fix,Fix},Ext}, BitListValue,[])
when is_integer(Fix), is_list(Ext) ->
case length(BitListValue) of
Len when Len =< Fix ->
[0,encode_bit_string(Fix,BitListValue,[])];
_ ->
[1,encode_bit_string(no,BitListValue,[])]
end;
encode_bit_string(C, BitListValue,[])
when is_list(BitListValue) ->
[encode_length(C,length(BitListValue)),
2,BitListValue];
encode_bit_string(no, BitListValue,_NamedBitList)
when is_list(BitListValue) ->
%% this case with an unconstrained BIT STRING can be made more efficient
%% if the complete driver can take a special code so the length field
%% is encoded there.
NewBitLVal = lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end,
lists:reverse(BitListValue))),
[encode_length(undefined,length(NewBitLVal)),
2,NewBitLVal];
encode_bit_string({{Fix,Fix},Ext}, BitListValue,_NamedBitList)
when is_integer(Fix), is_list(Ext) ->
case length(BitListValue) of
Len when Len =< Fix ->
[0,encode_bit_string(Fix,BitListValue,_NamedBitList)];
_ ->
[1,encode_bit_string(no,BitListValue,_NamedBitList)]
end;
encode_bit_string(C,BitListValue,_NamedBitList)
when is_list(BitListValue) ->% C = {_,'MAX'}
% NewBitLVal = lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end,
% lists:reverse(BitListValue))),
NewBitLVal = bit_string_trailing_zeros(BitListValue,C),
[encode_length(C,length(NewBitLVal)),
2,NewBitLVal];
%% when the value is an integer
encode_bit_string(C, IntegerVal, NamedBitList) when is_integer(IntegerVal)->
BitList = int_to_bitlist(IntegerVal),
encode_bit_string(C,BitList,NamedBitList);
%% when the value is a tuple
encode_bit_string(C,{Name,Val}, NamedBitList) when is_atom(Name) ->
encode_bit_string(C,Val,NamedBitList).
bit_string_trailing_zeros(BitList,C) when is_integer(C) ->
bit_string_trailing_zeros1(BitList,C,C);
bit_string_trailing_zeros(BitList,{Lb,Ub}) when is_integer(Lb) ->
bit_string_trailing_zeros1(BitList,Lb,Ub);
bit_string_trailing_zeros(BitList,{{Lb,Ub},_}) when is_integer(Lb) ->
bit_string_trailing_zeros1(BitList,Lb,Ub);
bit_string_trailing_zeros(BitList,_) ->
BitList.
bit_string_trailing_zeros1(BitList,Lb,Ub) ->
case length(BitList) of
Lb -> BitList;
B when B<Lb -> BitList++lists:duplicate(Lb-B,0);
D -> F = fun(L,LB,LB,_,_)->lists:reverse(L);
([0|R],L1,LB,UB,Fun)->Fun(R,L1-1,LB,UB,Fun);
(L,L1,_,UB,_)when L1 =< UB -> lists:reverse(L);
(_,_L1,_,_,_) ->exit({error,{list_length_BIT_STRING,
BitList}}) end,
F(lists:reverse(BitList),D,Lb,Ub,F)
end.
%% encode_bin_bit_string/3, when value is a tuple of Unused and BinBits.
%% Unused = integer(),i.e. number unused bits in least sign. byte of
%% BinBits = binary().
encode_bin_bit_string(C,{Unused,BinBits},_NamedBitList)
when is_integer(C),C=<16 ->
range_check(C,bit_size(BinBits) - Unused),
[45,C,size(BinBits),BinBits];
encode_bin_bit_string(C,{Unused,BinBits},_NamedBitList)
when is_integer(C), C =< 255 ->
range_check(C,bit_size(BinBits) - Unused),
[2,45,C,size(BinBits),BinBits];
encode_bin_bit_string(C,{Unused,BinBits},_NamedBitList)
when is_integer(C), C =< 65535 ->
range_check(C,bit_size(BinBits) - Unused),
case size(BinBits) of
Size when Size =< 255 ->
[2,46,<<C:16>>,Size,BinBits];
Size ->
[2,47,<<C:16>>,<<Size:16>>,BinBits]
end;
%% encode_bin_bit_string(C,{_Unused,BinBits},_NamedBitList)
%% when is_integer(C) ->
%% exit({error,{asn1, {bitstring_size, not_supported, C}}});
encode_bin_bit_string(C,UnusedAndBin={_,_},NamedBitList) ->
% UnusedAndBin1 = {Unused1,Bin1} =
{Unused1,Bin1} =
%% removes all trailing bits if NamedBitList is not empty
remove_trailing_bin(NamedBitList,UnusedAndBin),
case C of
{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
% [encode_length({Lb,Ub},size(Bin1)*8 - Unused1),
% align,UnusedAndBin1];
Size=size(Bin1),
[encode_length({Lb,Ub},Size*8 - Unused1),
2,octets_unused_to_complete(Unused1,Size,Bin1)];
no ->
Size=size(Bin1),
[encode_length(undefined,Size*8 - Unused1),
2,octets_unused_to_complete(Unused1,Size,Bin1)];
{{Fix,Fix},Ext} when is_integer(Fix),is_list(Ext) ->
%%[encode_length(Sc,size(Bin1)*8 - Unused1),
case size(Bin1)*8 - Unused1 of
Size when Size =< Fix ->
[0,encode_bin_bit_string(Fix,UnusedAndBin,NamedBitList)];
_Size ->
[1,encode_bin_bit_string(no,UnusedAndBin,NamedBitList)]
end;
Sc ->
Size=size(Bin1),
[encode_length(Sc,Size*8 - Unused1),
2,octets_unused_to_complete(Unused1,Size,Bin1)]
end.
range_check(C,C) when is_integer(C) ->
ok;
range_check(C1,C2) when is_integer(C1) ->
exit({error,{asn1,{bit_string_out_of_range,{C1,C2}}}}).
remove_trailing_bin([], {Unused,Bin}) ->
{Unused,Bin};
remove_trailing_bin(_NamedNumberList,{_Unused,<<>>}) ->
{0,<<>>};
remove_trailing_bin(NamedNumberList, {_Unused,Bin}) ->
Size = size(Bin)-1,
<<Bfront:Size/binary, LastByte:8>> = Bin,
%% clear the Unused bits to be sure
% LastByte1 = LastByte band (((1 bsl Unused) -1) bxor 255),% why this???
Unused1 = trailingZeroesInNibble(LastByte band 15),
Unused2 =
case Unused1 of
4 ->
4 + trailingZeroesInNibble(LastByte bsr 4);
_ -> Unused1
end,
case Unused2 of
8 ->
remove_trailing_bin(NamedNumberList,{0,Bfront});
_ ->
{Unused2,Bin}
end.
trailingZeroesInNibble(0) ->
4;
trailingZeroesInNibble(1) ->
0;
trailingZeroesInNibble(2) ->
1;
trailingZeroesInNibble(3) ->
0;
trailingZeroesInNibble(4) ->
2;
trailingZeroesInNibble(5) ->
0;
trailingZeroesInNibble(6) ->
1;
trailingZeroesInNibble(7) ->
0;
trailingZeroesInNibble(8) ->
3;
trailingZeroesInNibble(9) ->
0;
trailingZeroesInNibble(10) ->
1;
trailingZeroesInNibble(11) ->
0;
trailingZeroesInNibble(12) -> %#1100
2;
trailingZeroesInNibble(13) ->
0;
trailingZeroesInNibble(14) ->
1;
trailingZeroesInNibble(15) ->
0.
%%%%%%%%%%%%%%%
%% The result is presented as a list of named bits (if possible)
%% else as a tuple {Unused,Bits}. Unused is the number of unused
%% bits, least significant bits in the last byte of Bits. Bits is
%% the BIT STRING represented as a binary.
%%
decode_compact_bit_string(Buffer, C, NamedNumberList) ->
case get_constraint(C,'SizeConstraint') of
0 -> % fixed length
{{8,0},Buffer};
V when is_integer(V),V=<16 -> %fixed length 16 bits or less
compact_bit_string(Buffer,V,NamedNumberList);
V when is_integer(V),V=<65536 -> %fixed length > 16 bits
Bytes2 = align(Buffer),
compact_bit_string(Bytes2,V,NamedNumberList);
V when is_integer(V) -> % V > 65536 => fragmented value
{BitStr,Buffer2} = decode_fragmented_bits(Buffer,V),
case bit_size(BitStr) band 7 of
0 -> {{0,BitStr},Buffer2};
N -> {{8-N,<<BitStr/bitstring,0:(8-N)>>},Buffer2}
end;
{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
%% This case may demand decoding of fragmented length/value
{Len,Bytes2} = decode_length(Buffer,{Lb,Ub}),
Bytes3 = align(Bytes2),
compact_bit_string(Bytes3,Len,NamedNumberList);
no ->
%% This case may demand decoding of fragmented length/value
{Len,Bytes2} = decode_length(Buffer,undefined),
Bytes3 = align(Bytes2),
compact_bit_string(Bytes3,Len,NamedNumberList);
{{Fix,Fix},Ext} = Sc when is_integer(Fix), is_list(Ext) ->
case decode_length(Buffer,Sc) of
{Len,Bytes2} when Len > Fix ->
Bytes3 = align(Bytes2),
compact_bit_string(Bytes3,Len,NamedNumberList);
{Len,Bytes2} when Len > 16 ->
Bytes3 = align(Bytes2),
compact_bit_string(Bytes3,Len,NamedNumberList);
{Len,Bytes2} ->
compact_bit_string(Bytes2,Len,NamedNumberList)
end;
Sc ->
{Len,Bytes2} = decode_length(Buffer,Sc),
Bytes3 = align(Bytes2),
compact_bit_string(Bytes3,Len,NamedNumberList)
end.
%%%%%%%%%%%%%%%
%% The result is presented as a list of named bits (if possible)
%% else as a list of 0 and 1.
%%
decode_bit_string(Buffer, C, NamedNumberList) ->
case get_constraint(C,'SizeConstraint') of
{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
{Len,Bytes2} = decode_length(Buffer,{Lb,Ub}),
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList);
no ->
{Len,Bytes2} = decode_length(Buffer,undefined),
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList);
0 -> % fixed length
{[],Buffer}; % nothing to encode
V when is_integer(V),V=<16 -> % fixed length 16 bits or less
bit_list_or_named(Buffer,V,NamedNumberList);
V when is_integer(V),V=<65536 ->
Bytes2 = align(Buffer),
bit_list_or_named(Bytes2,V,NamedNumberList);
V when is_integer(V) ->
Bytes2 = align(Buffer),
{BinBits,_Bytes3} = decode_fragmented_bits(Bytes2,V),
bit_list_or_named(BinBits,V,NamedNumberList);
{{Fix,Fix},Ext} =Sc when is_integer(Fix), is_list(Ext) ->
case decode_length(Buffer,Sc) of
{Len,Bytes2} when Len > Fix ->
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList);
{Len,Bytes2} when Len > 16 ->
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList);
{Len,Bytes2} ->
bit_list_or_named(Bytes2,Len,NamedNumberList)
end;
Sc -> % extension marker
{Len,Bytes2} = decode_length(Buffer,Sc),
Bytes3 = align(Bytes2),
bit_list_or_named(Bytes3,Len,NamedNumberList)
end.
%% if no named bits are declared we will return a
%% {Unused,Bits}. Unused = integer(),
%% Bits = binary().
compact_bit_string(Buffer,Len,[]) ->
{BitStr,Rest} = getbits_as_binary(Len,Buffer), % {{Unused,BinBits},NewBuffer}
PadLen = (8 - (bit_size(BitStr) rem 8)) rem 8,
{{PadLen,<<BitStr/bitstring,0:PadLen>>},Rest};
compact_bit_string(Buffer,Len,NamedNumberList) ->
bit_list_or_named(Buffer,Len,NamedNumberList).
%% if no named bits are declared we will return a
%% BitList = [0 | 1]
bit_list_or_named(Buffer,Len,[]) ->
getbits_as_list(Len,Buffer);
%% if there are named bits declared we will return a named
%% BitList where the names are atoms and unnamed bits represented
%% as {bit,Pos}
%% BitList = [atom() | {bit,Pos}]
%% Pos = integer()
bit_list_or_named(Buffer,Len,NamedNumberList) ->
{BitList,Rest} = getbits_as_list(Len,Buffer),
{bit_list_or_named1(0,BitList,NamedNumberList,[]), Rest}.
bit_list_or_named1(Pos,[0|Bt],Names,Acc) ->
bit_list_or_named1(Pos+1,Bt,Names,Acc);
bit_list_or_named1(Pos,[1|Bt],Names,Acc) ->
case lists:keysearch(Pos,2,Names) of
{value,{Name,_}} ->
bit_list_or_named1(Pos+1,Bt,Names,[Name|Acc]);
_ ->
bit_list_or_named1(Pos+1,Bt,Names,[{bit,Pos}|Acc])
end;
bit_list_or_named1(_Pos,[],_Names,Acc) ->
lists:reverse(Acc).
%%%%%%%%%%%%%%%
%%
int_to_bitlist(Int) when is_integer(Int), Int > 0 ->
[Int band 1 | int_to_bitlist(Int bsr 1)];
int_to_bitlist(0) ->
[].
%%%%%%%%%%%%%%%%%%
%% get_all_bitposes([list of named bits to set], named_bit_db, []) ->
%% [sorted_list_of_bitpositions_to_set]
get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]);
get_all_bitposes([Val | Rest], NamedBitList, Ack) ->
case lists:keysearch(Val, 1, NamedBitList) of
{value, {_ValName, ValPos}} ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]);
_ ->
exit({error,{asn1, {bitstring_namedbit, Val}}})
end;
get_all_bitposes([], _NamedBitList, Ack) ->
lists:sort(Ack).
%%%%%%%%%%%%%%%%%%
%% make_and_set_list([list of positions to set to 1])->
%% returns list with all in SetPos set.
%% in positioning in list the first element is 0, the second 1 etc.., but
%%
make_and_set_list([XPos|SetPos], XPos) ->
[1 | make_and_set_list(SetPos, XPos + 1)];
make_and_set_list([Pos|SetPos], XPos) ->
[0 | make_and_set_list([Pos | SetPos], XPos + 1)];
make_and_set_list([], _) ->
[].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% X.691:16
%% encode_octet_string(Constraint,ExtensionMarker,Val)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
encode_octet_string(C,Val) ->
encode_octet_string(C,false,Val).
encode_octet_string(C,Bool,{_Name,Val}) ->
encode_octet_string(C,Bool,Val);
encode_octet_string(_C,true,_Val) ->
exit({error,{asn1,{'not_supported',extensionmarker}}});
encode_octet_string(SZ={_,_},false,Val) ->
% [encode_length(SZ,length(Val)),align,
% {octets,Val}];
Len = length(Val),
[encode_length(SZ,Len),2,
octets_to_complete(Len,Val)];
encode_octet_string(SZ,false,Val) when is_list(SZ) ->
Len = length(Val),
[encode_length({hd(SZ),lists:max(SZ)},Len),2,
octets_to_complete(Len,Val)];
encode_octet_string(no,false,Val) ->
Len = length(Val),
[encode_length(undefined,Len),2,
octets_to_complete(Len,Val)];
encode_octet_string(C,_,_) ->
exit({error,{not_implemented,C}}).
decode_octet_string(Bytes,Range) ->
decode_octet_string(Bytes,Range,false).
decode_octet_string(<<B1,Bytes/bitstring>>,1,false) ->
%% {B1,Bytes2} = getbits(Bytes,8),
{[B1],Bytes};
decode_octet_string(<<B1,B2,Bytes/bitstring>>,2,false) ->
%% {Bs,Bytes2}= getbits(Bytes,16),
%% {binary_to_list(<<Bs:16>>),Bytes2};
{[B1,B2],Bytes};
decode_octet_string(Bytes,Sv,false) when is_integer(Sv),Sv=<65535 ->
%% Bytes2 = align(Bytes),
%% getoctets_as_list aligns buffer before it picks octets
getoctets_as_list(Bytes,Sv);
decode_octet_string(Bytes,Sv,false) when is_integer(Sv) ->
Bytes2 = align(Bytes),
decode_fragmented_octets(Bytes2,Sv);
decode_octet_string(Bytes,{Lb,Ub},false) ->
{Len,Bytes2} = decode_length(Bytes,{Lb,Ub}),
%% Bytes3 = align(Bytes2),
getoctets_as_list(Bytes2,Len);
decode_octet_string(Bytes,Sv,false) when is_list(Sv) ->
{Len,Bytes2} = decode_length(Bytes,{hd(Sv),lists:max(Sv)}),
%% Bytes3 = align(Bytes2),
getoctets_as_list(Bytes2,Len);
decode_octet_string(Bytes,no,false) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
%% Bytes3 = align(Bytes2),
getoctets_as_list(Bytes2,Len).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Restricted char string types
%% (NumericString, PrintableString,VisibleString,IA5String,BMPString,UniversalString)
%% X.691:26 and X.680:34-36
%%encode_restricted_string(aligned,'BMPString',Constraints,Extension,Val)
encode_restricted_string(aligned,{Name,Val}) when is_atom(Name) ->
encode_restricted_string(aligned,Val);
encode_restricted_string(aligned,Val) when is_list(Val)->
Len = length(Val),
[encode_length(undefined,Len),octets_to_complete(Len,Val)].
encode_known_multiplier_string(StringType,SizeC,NumBits,CharOutTab,{Name,Val}) when is_atom(Name) ->
encode_known_multiplier_string(StringType,SizeC,NumBits,CharOutTab,Val);
encode_known_multiplier_string(_StringType,SizeC,NumBits,CharOutTab,Val) ->
Result = chars_encode2(Val,NumBits,CharOutTab),
case SizeC of
Ub when is_integer(Ub), Ub*NumBits =< 16 ->
Result;
Ub when is_integer(Ub),Ub =<65535 -> % fixed length
[2,Result];
{Ub,Lb} ->
[encode_length({Ub,Lb},length(Val)),2,Result];
no ->
[encode_length(undefined,length(Val)),2,Result]
end.
decode_restricted_string(Bytes,aligned) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
getoctets_as_list(Bytes2,Len).
decode_known_multiplier_string(StringType,SizeC,NumBits,CharInTab,Bytes) ->
case SizeC of
Ub when is_integer(Ub), Ub*NumBits =< 16 ->
chars_decode(Bytes,NumBits,StringType,CharInTab,Ub);
Ub when is_integer(Ub),Ub =<65535 -> % fixed length
Bytes1 = align(Bytes),
chars_decode(Bytes1,NumBits,StringType,CharInTab,Ub);
Vl when is_list(Vl) ->
{Len,Bytes1} = decode_length(Bytes,{hd(Vl),lists:max(Vl)}),
Bytes2 = align(Bytes1),
chars_decode(Bytes2,NumBits,StringType,CharInTab,Len);
no ->
{Len,Bytes1} = decode_length(Bytes,undefined),
Bytes2 = align(Bytes1),
chars_decode(Bytes2,NumBits,StringType,CharInTab,Len);
{Lb,Ub}->
{Len,Bytes1} = decode_length(Bytes,{Lb,Ub}),
Bytes2 = align(Bytes1),
chars_decode(Bytes2,NumBits,StringType,CharInTab,Len)
end.
encode_GeneralString(_C,Val) ->
encode_restricted_string(aligned,Val).
decode_GeneralString(Bytes,_C) ->
decode_restricted_string(Bytes,aligned).
encode_GraphicString(_C,Val) ->
encode_restricted_string(aligned,Val).
decode_GraphicString(Bytes,_C) ->
decode_restricted_string(Bytes,aligned).
encode_ObjectDescriptor(_C,Val) ->
encode_restricted_string(aligned,Val).
decode_ObjectDescriptor(Bytes) ->
decode_restricted_string(Bytes,aligned).
encode_TeletexString(_C,Val) -> % equivalent with T61String
encode_restricted_string(aligned,Val).
decode_TeletexString(Bytes,_C) ->
decode_restricted_string(Bytes,aligned).
encode_VideotexString(_C,Val) ->
encode_restricted_string(aligned,Val).
decode_VideotexString(Bytes,_C) ->
decode_restricted_string(Bytes,aligned).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% getBMPChars(Bytes,Len) ->{BMPcharList,RemainingBytes}
%%
getBMPChars(<<T/binary>>, 0, Acc) ->
{lists:reverse(Acc),T};
getBMPChars(<<0,O2,Bytes1/bitstring>>, Len, Acc) ->
getBMPChars(Bytes1,Len-1,[O2|Acc]);
getBMPChars(<<O1,O2,Bytes1/bitstring>>, Len, Acc) ->
getBMPChars(Bytes1,Len-1,[{0,0,O1,O2}|Acc]).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% chars_encode(C,StringType,Value) -> ValueList
%%
%% encodes chars according to the per rules taking the constraint PermittedAlphabet
%% into account.
%% This function does only encode the value part and NOT the length
% chars_encode(C,StringType,Value) ->
% case {StringType,get_constraint(C,'PermittedAlphabet')} of
% {'UniversalString',{_,Sv}} ->
% exit({error,{asn1,{'not implemented',"UniversalString with PermittedAlphabet constraint"}}});
% {'BMPString',{_,Sv}} ->
% exit({error,{asn1,{'not implemented',"BMPString with PermittedAlphabet constraint"}}});
% _ ->
% {NumBits,CharOutTab} = {get_NumBits(C,StringType),get_CharOutTab(C,StringType)},
% chars_encode2(Value,NumBits,CharOutTab)
% end.
chars_encode2([H|T],NumBits,T1={Min,Max,notab}) when H =< Max, H >= Min ->
% [[10,NumBits,H-Min]|chars_encode2(T,NumBits,T1)];
[pre_complete_bits(NumBits,H-Min)|chars_encode2(T,NumBits,T1)];
chars_encode2([H|T],NumBits,T1={Min,Max,Tab}) when H =< Max, H >= Min ->
% [[10,NumBits,element(H-Min+1,Tab)]|chars_encode2(T,NumBits,T1)];
[pre_complete_bits(NumBits,exit_if_false(H,element(H-Min+1,Tab)))|
chars_encode2(T,NumBits,T1)];
chars_encode2([{A,B,C,D}|T],NumBits,T1={Min,_Max,notab}) ->
%% no value range check here (ought to be, but very expensive)
% [{bits,NumBits,(A*B*C*D)-Min}|chars_encode2(T,NumBits,{Min,Max,notab})];
% [[10,NumBits,((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min]|chars_encode2(T,NumBits,T1)];
[pre_complete_bits(NumBits,
((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min)|
chars_encode2(T,NumBits,T1)];
chars_encode2([H={A,B,C,D}|T],NumBits,{Min,Max,Tab}) ->
%% no value range check here (ought to be, but very expensive)
[pre_complete_bits(NumBits,exit_if_false(H,element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab)))|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([H|_T],_NumBits,{_Min,_Max,_Tab}) ->
exit({error,{asn1,{illegal_char_value,H}}});
chars_encode2([],_,_) ->
[].
exit_if_false(V,false)->
exit({error,{asn1,{"illegal value according to Permitted alphabet constraint",V}}});
exit_if_false(_,V) ->V.
pre_complete_bits(NumBits,Val) when NumBits =< 8 ->
[10,NumBits,Val];
pre_complete_bits(NumBits,Val) when NumBits =< 16 ->
[10,NumBits-8,Val bsr 8,10,8,(Val band 255)];
pre_complete_bits(NumBits,Val) when NumBits =< 2040 -> % 255 * 8
% LBUsed = NumBits rem 8,
% {Unused,Len} = case (8 - LBUsed) of
% 8 -> {0,NumBits div 8};
% U -> {U,(NumBits div 8) + 1}
% end,
% NewVal = Val bsr LBUsed,
% [30,Unused,Len,<<NewVal:Len/unit:8,Val:LBUsed,0:Unused>>].
Unused = (8 - (NumBits rem 8)) rem 8,
Len = NumBits + Unused,
[30,Unused,Len div 8,<<(Val bsl Unused):Len>>].
chars_decode(Bytes,_,'BMPString',_,Len) ->
getBMPChars(Bytes,Len,[]);
chars_decode(Bytes,NumBits,_StringType,CharInTab,Len) ->
chars_decode2(Bytes,CharInTab,NumBits,Len).
chars_decode2(Bytes,CharInTab,NumBits,Len) ->
chars_decode2(Bytes,CharInTab,NumBits,Len,[]).
chars_decode2(Bytes,_CharInTab,_NumBits,0,Acc) ->
{lists:reverse(Acc),Bytes};
chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) when NumBits > 8 ->
{Char,Bytes2} = getbits(Bytes,NumBits),
Result =
if
Char < 256 -> Char;
true ->
list_to_tuple(binary_to_list(<<Char:32>>))
end,
chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Result|Acc]);
chars_decode2(Bytes,{Min,Max,notab},NumBits,Len,Acc) ->
{Char,Bytes2} = getbits(Bytes,NumBits),
chars_decode2(Bytes2,{Min,Max,notab},NumBits,Len -1,[Char+Min|Acc]);
%% BMPString and UniversalString with PermittedAlphabet is currently not supported
chars_decode2(Bytes,{Min,Max,CharInTab},NumBits,Len,Acc) ->
{Char,Bytes2} = getbits(Bytes,NumBits),
chars_decode2(Bytes2,{Min,Max,CharInTab},NumBits,Len -1,[element(Char+1,CharInTab)|Acc]).
% X.691:17
encode_null(_Val) -> []. % encodes to nothing
%encode_null({Name,Val}) when is_atom(Name) ->
% encode_null(Val).
decode_null(Bytes) ->
{'NULL',Bytes}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_UTF8String(Val) -> CompleteList
%% Val -> <<utf8encoded binary>>
%% CompleteList -> [apropriate codes and values for driver complete]
%%
encode_UTF8String(Val) when is_binary(Val) ->
[encode_length(undefined,size(Val)),
octets_to_complete(size(Val),Val)];
encode_UTF8String(Val) ->
encode_UTF8String(list_to_binary(Val)).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_UTF8String(Bytes) -> {Utf8Binary,RemainingBytes}
%% Utf8Binary -> <<utf8 encoded binary>>
%% RemainingBytes -> <<buffer>>
decode_UTF8String(Bytes) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{_Bin,_Bytes3} = getoctets_as_bin(Bytes2,Len).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_object_identifier(Val) -> CompleteList
%% encode_object_identifier({Name,Val}) -> CompleteList
%% Val -> {Int1,Int2,...,IntN} % N >= 2
%% Name -> atom()
%% Int1 -> integer(0..2)
%% Int2 -> integer(0..39) when Int1 (0..1) else integer()
%% Int3-N -> integer()
%% CompleteList -> [{bits,8,Val}|{octets,Ol}|align|...]
%%
encode_object_identifier({Name,Val}) when is_atom(Name) ->
encode_object_identifier(Val);
encode_object_identifier(Val) ->
OctetList = e_object_identifier(Val),
Octets = list_to_binary(OctetList),
[encode_length(undefined,size(Octets)),
octets_to_complete(size(Octets),Octets)].
e_object_identifier({'OBJECT IDENTIFIER',V}) ->
e_object_identifier(V);
e_object_identifier({Cname,V}) when is_atom(Cname),is_tuple(V) ->
e_object_identifier(tuple_to_list(V));
e_object_identifier({Cname,V}) when is_atom(Cname),is_list(V) ->
e_object_identifier(V);
e_object_identifier(V) when is_tuple(V) ->
e_object_identifier(tuple_to_list(V));
%% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1)
e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40 ; E1==2 ->
Head = 40*E1 + E2, % weird
e_object_elements([Head|Tail],[]);
e_object_identifier(Oid=[_,_|_Tail]) ->
exit({error,{asn1,{'illegal_value',Oid}}}).
e_object_elements([],Acc) ->
lists:reverse(Acc);
e_object_elements([H|T],Acc) ->
e_object_elements(T,[e_object_element(H)|Acc]).
e_object_element(Num) when Num < 128 ->
[Num];
e_object_element(Num) ->
[e_o_e(Num bsr 7)|[Num band 2#1111111]].
e_o_e(Num) when Num < 128 ->
Num bor 2#10000000;
e_o_e(Num) ->
[e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_object_identifier(Bytes) -> {ObjId,RemainingBytes}
%% ObjId -> {integer(),integer(),...} % at least 2 integers
%% RemainingBytes -> [integer()] when integer() (0..255)
decode_object_identifier(Bytes) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
[First|Rest] = dec_subidentifiers(Octs,0,[]),
Idlist = if
First < 40 ->
[0,First|Rest];
First < 80 ->
[1,First - 40|Rest];
true ->
[2,First - 80|Rest]
end,
{list_to_tuple(Idlist),Bytes3}.
dec_subidentifiers([H|T],Av,Al) when H >=16#80 ->
dec_subidentifiers(T,(Av bsl 7) + (H band 16#7F),Al);
dec_subidentifiers([H|T],Av,Al) ->
dec_subidentifiers(T,0,[(Av bsl 7) + H |Al]);
dec_subidentifiers([],_Av,Al) ->
lists:reverse(Al).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_relative_oid(Val) -> CompleteList
%% encode_relative_oid({Name,Val}) -> CompleteList
encode_relative_oid({Name,Val}) when is_atom(Name) ->
encode_relative_oid(Val);
encode_relative_oid(Val) when is_tuple(Val) ->
encode_relative_oid(tuple_to_list(Val));
encode_relative_oid(Val) when is_list(Val) ->
Octets = list_to_binary([e_object_element(X)||X <- Val]),
[encode_length(undefined,size(Octets)),
octets_to_complete(size(Octets),Octets)].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_relative_oid(Val) -> CompleteList
%% decode_relative_oid({Name,Val}) -> CompleteList
decode_relative_oid(Bytes) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{Octs,Bytes3} = getoctets_as_list(Bytes2,Len),
ObjVals = dec_subidentifiers(Octs,0,[]),
{list_to_tuple(ObjVals),Bytes3}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_real(Val) -> CompleteList
%% encode_real({Name,Val}) -> CompleteList
encode_real({Name,Val}) when is_atom(Name) ->
encode_real(Val);
encode_real(Real) ->
{EncVal,Len} = ?RT_COMMON:encode_real([],Real),
[encode_length(undefined,Len),octets_to_complete(size(EncVal),EncVal)].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_real(Val) -> {REALvalue,Rest}
%% decode_real({Name,Val}) -> {REALvalue,Rest}
decode_real(Bytes) ->
{Len,Bytes2} = decode_length(Bytes,undefined),
{RealVal,Rest,Len} = ?RT_COMMON:decode_real(Bytes2,Len),
{RealVal,Rest}.
get_constraint([{Key,V}],Key) ->
V;
get_constraint([],_) ->
no;
get_constraint(C,Key) ->
case lists:keysearch(Key,1,C) of
false ->
no;
{value,{_,V}} ->
V
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% complete(InList) -> ByteList
%% Takes a coded list with bits and bytes and converts it to a list of bytes
%% Should be applied as the last step at encode of a complete ASN.1 type
%%
-ifdef(nodriver).
complete(L) ->
erlang_complete(L).
-else.
%% asn1-1.7
complete(L) ->
case asn1rt_nif:encode_per_complete(L) of
{error, Reason} -> handle_error(Reason, L);
Else when is_binary(Else) -> Else
end.
handle_error([],_)->
exit({error,{asn1,{"memory allocation problem in driver"}}});
handle_error($1,L) -> % error in complete in driver
exit({error,{asn1,L}});
handle_error(ErrL,L) ->
exit({error,{asn1,ErrL,L}}).
-endif.
octets_to_complete(Len,Val) when Len < 256 ->
[20,Len,Val];
octets_to_complete(Len,Val) ->
[21,<<Len:16>>,Val].
octets_unused_to_complete(Unused,Len,Val) when Len < 256 ->
[30,Unused,Len,Val];
octets_unused_to_complete(Unused,Len,Val) ->
[31,Unused,<<Len:16>>,Val].