%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2012-2013. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
-module(asn1rtt_ber).
%% encoding / decoding of BER
-export([ber_decode_nif/1,ber_decode_erlang/1,match_tags/2,ber_encode/1]).
-export([encode_tags/3,
skip_ExtensionAdditions/2]).
-export([encode_boolean/2,decode_boolean/2,
encode_integer/2,encode_integer/3,
decode_integer/2,
number2name/2,
encode_unnamed_bit_string/2,encode_unnamed_bit_string/3,
encode_named_bit_string/3,encode_named_bit_string/4,
encode_bit_string/4,
decode_named_bit_string/3,
decode_compact_bit_string/2,compact_bit_string_size/1,
decode_native_bit_string/2,
native_to_legacy_bit_string/1,
encode_null/2,decode_null/2,
encode_relative_oid/2,decode_relative_oid/2,
encode_object_identifier/2,decode_object_identifier/2,
encode_restricted_string/2,
decode_octet_string/2,
decode_restricted_string/2,
encode_universal_string/2,decode_universal_string/2,
encode_UTF8_string/2,decode_UTF8_string/2,
encode_BMP_string/2,decode_BMP_string/2]).
-export([encode_open_type/2,decode_open_type/2,
decode_open_type_as_binary/2]).
-export([decode_primitive_incomplete/2,decode_selective/2]).
%% For DER.
-export([dynamicsort_SET_components/1,dynamicsort_SETOF/1]).
%% the encoding of class of tag bits 8 and 7
-define(UNIVERSAL, 0).
-define(APPLICATION, 16#40).
-define(CONTEXT, 16#80).
-define(PRIVATE, 16#C0).
%%% primitive or constructed encoding % bit 6
-define(PRIMITIVE, 0).
-define(CONSTRUCTED, 2#00100000).
%%% The tag-number for universal types
-define(N_BOOLEAN, 1).
-define(N_INTEGER, 2).
-define(N_BIT_STRING, 3).
-define(N_OCTET_STRING, 4).
-define(N_NULL, 5).
-define(N_OBJECT_IDENTIFIER, 6).
-define(N_OBJECT_DESCRIPTOR, 7).
-define(N_EXTERNAL, 8).
-define(N_REAL, 9).
-define(N_ENUMERATED, 10).
-define(N_EMBEDDED_PDV, 11).
-define(N_SEQUENCE, 16).
-define(N_SET, 17).
-define(N_NumericString, 18).
-define(N_PrintableString, 19).
-define(N_TeletexString, 20).
-define(N_VideotexString, 21).
-define(N_IA5String, 22).
-define(N_UTCTime, 23).
-define(N_GeneralizedTime, 24).
-define(N_GraphicString, 25).
-define(N_VisibleString, 26).
-define(N_GeneralString, 27).
-define(N_UniversalString, 28).
-define(N_BMPString, 30).
% the complete tag-word of built-in types
-define(T_BOOLEAN, ?UNIVERSAL bor ?PRIMITIVE bor 1).
-define(T_INTEGER, ?UNIVERSAL bor ?PRIMITIVE bor 2).
-define(T_BIT_STRING, ?UNIVERSAL bor ?PRIMITIVE bor 3). % can be CONSTRUCTED
-define(T_OCTET_STRING, ?UNIVERSAL bor ?PRIMITIVE bor 4). % can be CONSTRUCTED
-define(T_NULL, ?UNIVERSAL bor ?PRIMITIVE bor 5).
-define(T_OBJECT_IDENTIFIER,?UNIVERSAL bor ?PRIMITIVE bor 6).
-define(T_OBJECT_DESCRIPTOR,?UNIVERSAL bor ?PRIMITIVE bor 7).
-define(T_EXTERNAL, ?UNIVERSAL bor ?PRIMITIVE bor 8).
-define(T_REAL, ?UNIVERSAL bor ?PRIMITIVE bor 9).
-define(T_ENUMERATED, ?UNIVERSAL bor ?PRIMITIVE bor 10).
-define(T_EMBEDDED_PDV, ?UNIVERSAL bor ?PRIMITIVE bor 11).
-define(T_SEQUENCE, ?UNIVERSAL bor ?CONSTRUCTED bor 16).
-define(T_SET, ?UNIVERSAL bor ?CONSTRUCTED bor 17).
-define(T_NumericString, ?UNIVERSAL bor ?PRIMITIVE bor 18). %can be constructed
-define(T_PrintableString, ?UNIVERSAL bor ?PRIMITIVE bor 19). %can be constructed
-define(T_TeletexString, ?UNIVERSAL bor ?PRIMITIVE bor 20). %can be constructed
-define(T_VideotexString, ?UNIVERSAL bor ?PRIMITIVE bor 21). %can be constructed
-define(T_IA5String, ?UNIVERSAL bor ?PRIMITIVE bor 22). %can be constructed
-define(T_UTCTime, ?UNIVERSAL bor ?PRIMITIVE bor 23).
-define(T_GeneralizedTime, ?UNIVERSAL bor ?PRIMITIVE bor 24).
-define(T_GraphicString, ?UNIVERSAL bor ?PRIMITIVE bor 25). %can be constructed
-define(T_VisibleString, ?UNIVERSAL bor ?PRIMITIVE bor 26). %can be constructed
-define(T_GeneralString, ?UNIVERSAL bor ?PRIMITIVE bor 27). %can be constructed
-define(T_UniversalString, ?UNIVERSAL bor ?PRIMITIVE bor 28). %can be constructed
-define(T_BMPString, ?UNIVERSAL bor ?PRIMITIVE bor 30). %can be constructed
ber_encode([Tlv]) ->
ber_encode(Tlv);
ber_encode(Tlv) when is_binary(Tlv) ->
Tlv;
ber_encode(Tlv) ->
asn1rt_nif:encode_ber_tlv(Tlv).
ber_decode_nif(B) ->
asn1rt_nif:decode_ber_tlv(B).
ber_decode_erlang(B) when is_binary(B) ->
decode_primitive(B);
ber_decode_erlang(Tlv) ->
{Tlv,<<>>}.
decode_primitive(Bin) ->
{Form,TagNo,V,Rest} = decode_tag_and_length(Bin),
case Form of
1 -> % constructed
{{TagNo,decode_constructed(V)},Rest};
0 -> % primitive
{{TagNo,V},Rest};
2 -> % constructed indefinite
{Vlist,Rest2} = decode_constructed_indefinite(V,[]),
{{TagNo,Vlist},Rest2}
end.
decode_constructed(Bin) when byte_size(Bin) =:= 0 ->
[];
decode_constructed(Bin) ->
{Tlv,Rest} = decode_primitive(Bin),
[Tlv|decode_constructed(Rest)].
decode_constructed_indefinite(<<0,0,Rest/binary>>,Acc) ->
{lists:reverse(Acc),Rest};
decode_constructed_indefinite(Bin,Acc) ->
{Tlv,Rest} = decode_primitive(Bin),
decode_constructed_indefinite(Rest, [Tlv|Acc]).
%% decode_primitive_incomplete/2 decodes an encoded message incomplete
%% by help of the pattern attribute (first argument).
decode_primitive_incomplete([[default,TagNo]],Bin) -> %default
case decode_tag_and_length(Bin) of
{Form,TagNo,V,Rest} ->
decode_incomplete2(Form,TagNo,V,[],Rest);
_ ->
%{asn1_DEFAULT,Bin}
asn1_NOVALUE
end;
decode_primitive_incomplete([[default,TagNo,Directives]],Bin) -> %default, constructed type, Directives points into this type
case decode_tag_and_length(Bin) of
{Form,TagNo,V,Rest} ->
decode_incomplete2(Form,TagNo,V,Directives,Rest);
_ ->
%{asn1_DEFAULT,Bin}
asn1_NOVALUE
end;
decode_primitive_incomplete([[opt,TagNo]],Bin) -> %optional
case decode_tag_and_length(Bin) of
{Form,TagNo,V,Rest} ->
decode_incomplete2(Form,TagNo,V,[],Rest);
_ ->
%{{TagNo,asn1_NOVALUE},Bin}
asn1_NOVALUE
end;
decode_primitive_incomplete([[opt,TagNo,Directives]],Bin) -> %optional
case decode_tag_and_length(Bin) of
{Form,TagNo,V,Rest} ->
decode_incomplete2(Form,TagNo,V,Directives,Rest);
_ ->
%{{TagNo,asn1_NOVALUE},Bin}
asn1_NOVALUE
end;
%% An optional that shall be undecoded
decode_primitive_incomplete([[opt_undec,Tag]],Bin) ->
case decode_tag_and_length(Bin) of
{_,Tag,_,_} ->
decode_incomplete_bin(Bin);
_ ->
asn1_NOVALUE
end;
%% A choice alternative that shall be undecoded
decode_primitive_incomplete([[alt_undec,TagNo]|RestAlts],Bin) ->
case decode_tag_and_length(Bin) of
{_,TagNo,_,_} ->
decode_incomplete_bin(Bin);
_ ->
decode_primitive_incomplete(RestAlts,Bin)
end;
decode_primitive_incomplete([[alt,TagNo]|RestAlts],Bin) ->
case decode_tag_and_length(Bin) of
{_Form,TagNo,V,Rest} ->
{{TagNo,V},Rest};
_ ->
decode_primitive_incomplete(RestAlts,Bin)
end;
decode_primitive_incomplete([[alt,TagNo,Directives]|RestAlts],Bin) ->
case decode_tag_and_length(Bin) of
{Form,TagNo,V,Rest} ->
decode_incomplete2(Form,TagNo,V,Directives,Rest);
_ ->
decode_primitive_incomplete(RestAlts,Bin)
end;
decode_primitive_incomplete([[alt_parts,TagNo]],Bin) ->
case decode_tag_and_length(Bin) of
{_Form,TagNo,V,Rest} ->
{{TagNo,V},Rest};
_ ->
asn1_NOVALUE
end;
decode_primitive_incomplete([[alt_parts,TagNo]|RestAlts],Bin) ->
case decode_tag_and_length(Bin) of
{_Form,TagNo,V,Rest} ->
{{TagNo,decode_parts_incomplete(V)},Rest};
_ ->
decode_primitive_incomplete(RestAlts,Bin)
end;
decode_primitive_incomplete([[undec,_TagNo]|_RestTag],Bin) -> %incomlete decode
decode_incomplete_bin(Bin);
decode_primitive_incomplete([[parts,TagNo]|_RestTag],Bin) ->
case decode_tag_and_length(Bin) of
{_Form,TagNo,V,Rest} ->
{{TagNo,decode_parts_incomplete(V)},Rest};
Err ->
{error,{asn1,"tag failure",TagNo,Err}}
end;
decode_primitive_incomplete([mandatory|RestTag],Bin) ->
{Form,TagNo,V,Rest} = decode_tag_and_length(Bin),
decode_incomplete2(Form,TagNo,V,RestTag,Rest);
%% A choice that is a toptype or a mandatory component of a
%% SEQUENCE or SET.
decode_primitive_incomplete([[mandatory|Directives]],Bin) ->
{Form,TagNo,V,Rest} = decode_tag_and_length(Bin),
decode_incomplete2(Form,TagNo,V,Directives,Rest);
decode_primitive_incomplete([],Bin) ->
decode_primitive(Bin).
%% decode_parts_incomplete/1 receives a number of values encoded in
%% sequence and returns the parts as unencoded binaries
decode_parts_incomplete(<<>>) ->
[];
decode_parts_incomplete(Bin) ->
{ok,Rest} = skip_tag(Bin),
{ok,Rest2} = skip_length_and_value(Rest),
LenPart = byte_size(Bin) - byte_size(Rest2),
<<Part:LenPart/binary,RestBin/binary>> = Bin,
[Part|decode_parts_incomplete(RestBin)].
%% decode_incomplete2 checks if V is a value of a constructed or
%% primitive type, and continues the decode propeerly.
decode_incomplete2(_Form=2,TagNo,V,TagMatch,_) ->
%% constructed indefinite length
{Vlist,Rest2} = decode_constr_indef_incomplete(TagMatch,V,[]),
{{TagNo,Vlist},Rest2};
decode_incomplete2(1,TagNo,V,[TagMatch],Rest) when is_list(TagMatch) ->
{{TagNo,decode_constructed_incomplete(TagMatch,V)},Rest};
decode_incomplete2(1,TagNo,V,TagMatch,Rest) ->
{{TagNo,decode_constructed_incomplete(TagMatch,V)},Rest};
decode_incomplete2(0,TagNo,V,_TagMatch,Rest) ->
{{TagNo,V},Rest}.
decode_constructed_incomplete([Tags=[Ts]],Bin) when is_list(Ts) ->
decode_constructed_incomplete(Tags,Bin);
decode_constructed_incomplete(_TagMatch,<<>>) ->
[];
decode_constructed_incomplete([mandatory|RestTag],Bin) ->
{Tlv,Rest} = decode_primitive(Bin),
[Tlv|decode_constructed_incomplete(RestTag,Rest)];
decode_constructed_incomplete(Directives=[[Alt,_]|_],Bin)
when Alt =:= alt_undec; Alt =:= alt; Alt =:= alt_parts ->
{_Form,TagNo,V,Rest} = decode_tag_and_length(Bin),
case incomplete_choice_alt(TagNo, Directives) of
{alt_undec,_} ->
LenA = byte_size(Bin) - byte_size(Rest),
<<A:LenA/binary,Rest/binary>> = Bin,
A;
{alt,InnerDirectives} ->
{Tlv,Rest} = decode_primitive_incomplete(InnerDirectives,V),
{TagNo,Tlv};
{alt_parts,_} ->
[{TagNo,decode_parts_incomplete(V)}];
no_match -> %% if a choice alternative was encoded that
%% was not specified in the config file,
%% thus decode component anonomous.
{Tlv,_}=decode_primitive(Bin),
Tlv
end;
decode_constructed_incomplete([TagNo|RestTag],Bin) ->
case decode_primitive_incomplete([TagNo],Bin) of
{Tlv,Rest} ->
[Tlv|decode_constructed_incomplete(RestTag,Rest)];
asn1_NOVALUE ->
decode_constructed_incomplete(RestTag,Bin)
end;
decode_constructed_incomplete([],Bin) ->
{Tlv,Rest}=decode_primitive(Bin),
[Tlv|decode_constructed_incomplete([],Rest)].
decode_constr_indef_incomplete(_TagMatch,<<0,0,Rest/binary>>,Acc) ->
{lists:reverse(Acc),Rest};
decode_constr_indef_incomplete([Tag|RestTags],Bin,Acc) ->
case decode_primitive_incomplete([Tag],Bin) of
{Tlv,Rest} ->
decode_constr_indef_incomplete(RestTags,Rest,[Tlv|Acc]);
asn1_NOVALUE ->
decode_constr_indef_incomplete(RestTags,Bin,Acc)
end.
decode_incomplete_bin(Bin) ->
{ok,Rest} = skip_tag(Bin),
{ok,Rest2} = skip_length_and_value(Rest),
IncLen = byte_size(Bin) - byte_size(Rest2),
<<IncBin:IncLen/binary,Ret/binary>> = Bin,
{IncBin,Ret}.
incomplete_choice_alt(TagNo,[[Alt,TagNo]|Directives]) ->
{Alt,Directives};
incomplete_choice_alt(TagNo,[D]) when is_list(D) ->
incomplete_choice_alt(TagNo,D);
incomplete_choice_alt(TagNo,[_H|Directives]) ->
incomplete_choice_alt(TagNo,Directives);
incomplete_choice_alt(_,[]) ->
no_match.
%% decode_selective(Pattern, Binary) the first argument is a pattern that tells
%% what to do with the next element the second is the BER encoded
%% message as a binary
%% Returns {ok,Value} or {error,Reason}
%% Value is a binary that in turn must be decoded to get the decoded
%% value.
decode_selective([],Binary) ->
{ok,Binary};
decode_selective([skip|RestPattern],Binary)->
{ok,RestBinary}=skip_tag(Binary),
{ok,RestBinary2}=skip_length_and_value(RestBinary),
decode_selective(RestPattern,RestBinary2);
decode_selective([[skip_optional,Tag]|RestPattern],Binary) ->
case skip_optional_tag(Tag,Binary) of
{ok,RestBinary} ->
{ok,RestBinary2}=skip_length_and_value(RestBinary),
decode_selective(RestPattern,RestBinary2);
missing ->
decode_selective(RestPattern,Binary)
end;
decode_selective([[choosen,Tag]],Binary) ->
return_value(Tag,Binary);
decode_selective([[choosen,Tag]|RestPattern],Binary) ->
case skip_optional_tag(Tag,Binary) of
{ok,RestBinary} ->
{ok,Value} = get_value(RestBinary),
decode_selective(RestPattern,Value);
missing ->
{ok,<<>>}
end;
decode_selective(P,_) ->
{error,{asn1,{partial_decode,"bad pattern",P}}}.
return_value(Tag,Binary) ->
{ok,{Tag,RestBinary}}=get_tag(Binary),
{ok,{LenVal,_RestBinary2}} = get_length_and_value(RestBinary),
{ok,<<Tag/binary,LenVal/binary>>}.
%% skip_tag and skip_length_and_value are rutines used both by
%% decode_partial_incomplete and decode_selective (decode/2).
skip_tag(<<_:3,31:5,Rest/binary>>)->
skip_long_tag(Rest);
skip_tag(<<_:3,_Tag:5,Rest/binary>>) ->
{ok,Rest}.
skip_long_tag(<<1:1,_:7,Rest/binary>>) ->
skip_long_tag(Rest);
skip_long_tag(<<0:1,_:7,Rest/binary>>) ->
{ok,Rest}.
skip_optional_tag(<<>>,Binary) ->
{ok,Binary};
skip_optional_tag(<<Tag,RestTag/binary>>,<<Tag,Rest/binary>>) ->
skip_optional_tag(RestTag,Rest);
skip_optional_tag(_,_) ->
missing.
skip_length_and_value(Binary) ->
case decode_length(Binary) of
{indefinite,RestBinary} ->
skip_indefinite_value(RestBinary);
{Length,RestBinary} ->
<<_:Length/unit:8,Rest/binary>> = RestBinary,
{ok,Rest}
end.
skip_indefinite_value(<<0,0,Rest/binary>>) ->
{ok,Rest};
skip_indefinite_value(Binary) ->
{ok,RestBinary}=skip_tag(Binary),
{ok,RestBinary2} = skip_length_and_value(RestBinary),
skip_indefinite_value(RestBinary2).
get_value(Binary) ->
case decode_length(Binary) of
{indefinite,RestBinary} ->
get_indefinite_value(RestBinary,[]);
{Length,RestBinary} ->
<<Value:Length/binary,_Rest/binary>> = RestBinary,
{ok,Value}
end.
get_indefinite_value(<<0,0,_Rest/binary>>,Acc) ->
{ok,list_to_binary(lists:reverse(Acc))};
get_indefinite_value(Binary,Acc) ->
{ok,{Tag,RestBinary}}=get_tag(Binary),
{ok,{LenVal,RestBinary2}} = get_length_and_value(RestBinary),
get_indefinite_value(RestBinary2,[LenVal,Tag|Acc]).
get_tag(<<H:1/binary,Rest/binary>>) ->
case H of
<<_:3,31:5>> ->
get_long_tag(Rest,[H]);
_ -> {ok,{H,Rest}}
end.
get_long_tag(<<H:1/binary,Rest/binary>>,Acc) ->
case H of
<<0:1,_:7>> ->
{ok,{list_to_binary(lists:reverse([H|Acc])),Rest}};
_ ->
get_long_tag(Rest,[H|Acc])
end.
get_length_and_value(Bin = <<0:1,Length:7,_T/binary>>) ->
<<Len,Val:Length/binary,Rest/binary>> = Bin,
{ok,{<<Len,Val/binary>>, Rest}};
get_length_and_value(Bin = <<1:1,0:7,_T/binary>>) ->
get_indefinite_length_and_value(Bin);
get_length_and_value(<<1:1,LL:7,T/binary>>) ->
<<Length:LL/unit:8,Rest/binary>> = T,
<<Value:Length/binary,Rest2/binary>> = Rest,
{ok,{<<1:1,LL:7,Length:LL/unit:8,Value/binary>>,Rest2}}.
get_indefinite_length_and_value(<<H,T/binary>>) ->
get_indefinite_length_and_value(T,[H]).
get_indefinite_length_and_value(<<0,0,Rest/binary>>,Acc) ->
{ok,{list_to_binary(lists:reverse(Acc)),Rest}};
get_indefinite_length_and_value(Binary,Acc) ->
{ok,{Tag,RestBinary}}=get_tag(Binary),
{ok,{LenVal,RestBinary2}}=get_length_and_value(RestBinary),
get_indefinite_length_and_value(RestBinary2,[LenVal,Tag|Acc]).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% match_tags takes a Tlv (Tag, Length, Value) structure and matches
%% it with the tags in TagList. If the tags does not match the function
%% crashes otherwise it returns the remaining Tlv after that the tags have
%% been removed.
%%
%% match_tags(Tlv, TagList)
%%
match_tags({T,V}, [T]) ->
V;
match_tags({T,V}, [T|Tt]) ->
match_tags(V,Tt);
match_tags([{T,V}], [T|Tt]) ->
match_tags(V, Tt);
match_tags([{T,_V}|_]=Vlist, [T]) ->
Vlist;
match_tags(Tlv, []) ->
Tlv;
match_tags({Tag,_V}=Tlv, [T|_Tt]) ->
exit({error,{asn1,{wrong_tag,{{expected,T},{got,Tag,Tlv}}}}}).
%%%
%% skips components that do not match a tag in Tags
skip_ExtensionAdditions([], _Tags) ->
[];
skip_ExtensionAdditions([{Tag,_}|Rest]=TLV, Tags) ->
case [X || X=T <- Tags, T =:= Tag] of
[] ->
%% skip this TLV and continue with next
skip_ExtensionAdditions(Rest,Tags);
_ ->
TLV
end.
%%===============================================================================
%% Decode a tag
%%
%% decode_tag(OctetListBuffer) -> {{Form, (Class bsl 16)+ TagNo}, RestOfBuffer, RemovedBytes}
%%===============================================================================
decode_tag_and_length(<<Class:2, Form:1, TagNo:5, 0:1, Length:7, V:Length/binary, RestBuffer/binary>>) when TagNo < 31 ->
{Form, (Class bsl 16) bor TagNo, V, RestBuffer};
decode_tag_and_length(<<Class:2, 1:1, TagNo:5, 1:1, 0:7, T/binary>>) when TagNo < 31 ->
{2, (Class bsl 16) + TagNo, T, <<>>};
decode_tag_and_length(<<Class:2, Form:1, TagNo:5, 1:1, LL:7, Length:LL/unit:8,V:Length/binary, T/binary>>) when TagNo < 31 ->
{Form, (Class bsl 16) bor TagNo, V, T};
decode_tag_and_length(<<Class:2, Form:1, 31:5, 0:1, TagNo:7, 0:1, Length:7, V:Length/binary, RestBuffer/binary>>) ->
{Form, (Class bsl 16) bor TagNo, V, RestBuffer};
decode_tag_and_length(<<Class:2, 1:1, 31:5, 0:1, TagNo:7, 1:1, 0:7, T/binary>>) ->
{2, (Class bsl 16) bor TagNo, T, <<>>};
decode_tag_and_length(<<Class:2, Form:1, 31:5, 0:1, TagNo:7, 1:1, LL:7, Length:LL/unit:8, V:Length/binary, T/binary>>) ->
{Form, (Class bsl 16) bor TagNo, V, T};
decode_tag_and_length(<<Class:2, Form:1, 31:5, 1:1, TagPart1:7, 0:1, TagPartLast, Buffer/binary>>) ->
TagNo = (TagPart1 bsl 7) bor TagPartLast,
{Length, RestBuffer} = decode_length(Buffer),
<< V:Length/binary, RestBuffer2/binary>> = RestBuffer,
{Form, (Class bsl 16) bor TagNo, V, RestBuffer2};
decode_tag_and_length(<<Class:2, Form:1, 31:5, Buffer/binary>>) ->
{TagNo, Buffer1} = decode_tag(Buffer, 0),
{Length, RestBuffer} = decode_length(Buffer1),
<< V:Length/binary, RestBuffer2/binary>> = RestBuffer,
{Form, (Class bsl 16) bor TagNo, V, RestBuffer2}.
%% last partial tag
decode_tag(<<0:1,PartialTag:7, Buffer/binary>>, TagAck) ->
TagNo = (TagAck bsl 7) bor PartialTag,
{TagNo, Buffer};
% more tags
decode_tag(<<_:1,PartialTag:7, Buffer/binary>>, TagAck) ->
TagAck1 = (TagAck bsl 7) bor PartialTag,
decode_tag(Buffer, TagAck1).
%%=======================================================================
%%
%% Encode all tags in the list Tags and return a possibly deep list of
%% bytes with tag and length encoded
%% The taglist must be in reverse order (fixed by the asn1 compiler)
%% e.g [T1,T2] will result in
%% {[EncodedT2,EncodedT1|BytesSoFar],LenSoFar+LenT2+LenT1}
%%
encode_tags([Tag|Trest], BytesSoFar, LenSoFar) ->
{Bytes2,L2} = encode_length(LenSoFar),
encode_tags(Trest, [Tag,Bytes2|BytesSoFar],
LenSoFar + byte_size(Tag) + L2);
encode_tags([], BytesSoFar, LenSoFar) ->
{BytesSoFar,LenSoFar}.
encode_tags(TagIn, {BytesSoFar,LenSoFar}) ->
encode_tags(TagIn, BytesSoFar, LenSoFar).
%%===============================================================================
%%
%% This comment is valid for all the encode/decode functions
%%
%% C = Constraint -> typically {'ValueRange',LowerBound,UpperBound}
%% used for PER-coding but not for BER-coding.
%%
%% Val = Value. If Val is an atom then it is a symbolic integer value
%% (i.e the atom must be one of the names in the NamedNumberList).
%% The NamedNumberList is used to translate the atom to an integer value
%% before encoding.
%%
%%===============================================================================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_open_type(Value) -> io_list (i.e nested list with integers, binaries)
%% Value = list of bytes of an already encoded value (the list must be flat)
%% | binary
encode_open_type(Val, T) when is_list(Val) ->
encode_open_type(list_to_binary(Val), T);
encode_open_type(Val, Tag) ->
encode_tags(Tag, Val, byte_size(Val)).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% decode_open_type(Tlv, TagIn) -> Value
%% Tlv = {Tag,V} | V where V -> binary()
%% TagIn = [TagVal] where TagVal -> int()
%% Value = binary with decoded data (which must be decoded again as some type)
%%
decode_open_type(Tlv, TagIn) ->
case match_tags(Tlv, TagIn) of
Bin when is_binary(Bin) ->
{InnerTlv,_} = ber_decode_nif(Bin),
InnerTlv;
TlvBytes -> TlvBytes
end.
decode_open_type_as_binary(Tlv, TagIn)->
ber_encode(match_tags(Tlv, TagIn)).
%%===============================================================================
%%===============================================================================
%%===============================================================================
%% Boolean, ITU_T X.690 Chapter 8.2
%%===============================================================================
%%===============================================================================
%%===============================================================================
%%===============================================================================
%% encode_boolean(Integer, ReversedTagList) -> {[Octet],Len}
%%===============================================================================
encode_boolean(true, TagIn) ->
encode_tags(TagIn, [16#FF],1);
encode_boolean(false, TagIn) ->
encode_tags(TagIn, [0],1);
encode_boolean(X,_) ->
exit({error,{asn1, {encode_boolean, X}}}).
%%===============================================================================
%% decode_boolean(BuffList, HasTag, TotalLen) -> {true, Remain, RemovedBytes} |
%% {false, Remain, RemovedBytes}
%%===============================================================================
decode_boolean(Tlv,TagIn) ->
Val = match_tags(Tlv, TagIn),
case Val of
<<0:8>> ->
false;
<<_:8>> ->
true;
_ ->
exit({error,{asn1, {decode_boolean, Val}}})
end.
%%===========================================================================
%% Integer, ITU_T X.690 Chapter 8.3
%% encode_integer(Constraint, Value, Tag) -> [octet list]
%% encode_integer(Constraint, Name, NamedNumberList, Tag) -> [octet list]
%% Value = INTEGER | {Name,INTEGER}
%% Tag = tag | notag
%%===========================================================================
encode_integer(Val, Tag) when is_integer(Val) ->
encode_tags(Tag, encode_integer(Val));
encode_integer(Val, _Tag) ->
exit({error,{asn1,{encode_integer,Val}}}).
encode_integer(Val, NamedNumberList, Tag) when is_atom(Val) ->
case lists:keyfind(Val, 1, NamedNumberList) of
{_, NewVal} ->
encode_tags(Tag, encode_integer(NewVal));
_ ->
exit({error,{asn1, {encode_integer_namednumber, Val}}})
end;
encode_integer(Val, _NamedNumberList, Tag) ->
encode_tags(Tag, encode_integer(Val)).
encode_integer(Val) ->
Bytes =
if
Val >= 0 ->
encode_integer_pos(Val, []);
true ->
encode_integer_neg(Val, [])
end,
{Bytes,length(Bytes)}.
encode_integer_pos(0, [B|_Acc]=L) when B < 128 ->
L;
encode_integer_pos(N, Acc) ->
encode_integer_pos((N bsr 8), [N band 16#ff| Acc]).
encode_integer_neg(-1, [B1|_T]=L) when B1 > 127 ->
L;
encode_integer_neg(N, Acc) ->
encode_integer_neg(N bsr 8, [N band 16#ff|Acc]).
%%===============================================================================
%% decode integer
%%===============================================================================
decode_integer(Tlv, TagIn) ->
Bin = match_tags(Tlv, TagIn),
Len = byte_size(Bin),
<<Int:Len/signed-unit:8>> = Bin,
Int.
number2name(Int, NamedNumberList) ->
case lists:keyfind(Int, 2, NamedNumberList) of
{NamedVal,_} ->
NamedVal;
_ ->
Int
end.
%%============================================================================
%% Bitstring value, ITU_T X.690 Chapter 8.6
%%
%% encode bitstring value
%%============================================================================
encode_unnamed_bit_string(Bits, TagIn) ->
Unused = (8 - (bit_size(Bits) band 7)) band 7,
Bin = <<Unused,Bits/bitstring,0:Unused>>,
encode_tags(TagIn, Bin, byte_size(Bin)).
encode_unnamed_bit_string(MaxBits, Bits, TagIn) ->
NumBits = bit_size(Bits),
Unused = (8 - (NumBits band 7)) band 7,
Bin = <<Unused,Bits/bitstring,0:Unused>>,
if
NumBits > MaxBits ->
exit({error,{asn1,
{bitstring_length,
{{was,NumBits},{maximum,MaxBits}}}}});
true ->
encode_tags(TagIn, Bin, byte_size(Bin))
end.
encode_named_bit_string([H|_]=Bits, NamedBitList, TagIn) when is_atom(H) ->
do_encode_named_bit_string(Bits, NamedBitList, TagIn);
encode_named_bit_string([{bit,_}|_]=Bits, NamedBitList, TagIn) ->
do_encode_named_bit_string(Bits, NamedBitList, TagIn);
encode_named_bit_string(Bits, _NamedBitList, TagIn) when is_bitstring(Bits) ->
encode_unnamed_bit_string(Bits, TagIn).
encode_named_bit_string(C, [H|_]=Bits, NamedBitList, TagIn) when is_atom(H) ->
do_encode_named_bit_string(C, Bits, NamedBitList, TagIn);
encode_named_bit_string(C, [{bit,_}|_]=Bits, NamedBitList, TagIn) ->
do_encode_named_bit_string(C, Bits, NamedBitList, TagIn);
encode_named_bit_string(C, Bits, _NamedBitList, TagIn) when is_bitstring(Bits) ->
encode_unnamed_bit_string(C, Bits, TagIn).
do_encode_named_bit_string([FirstVal | RestVal], NamedBitList, TagIn) ->
ToSetPos = get_all_bitposes([FirstVal | RestVal], NamedBitList, []),
Size = lists:max(ToSetPos) + 1,
BitList = make_and_set_list(Size, ToSetPos, 0),
{Len,Unused,OctetList} = encode_bitstring(BitList),
encode_tags(TagIn, [Unused|OctetList],Len+1).
do_encode_named_bit_string(Size, [FirstVal | RestVal], NamedBitList, TagIn) ->
ToSetPos = get_all_bitposes([FirstVal | RestVal], NamedBitList, []),
BitList = make_and_set_list(Size, ToSetPos, 0),
{Len, Unused, OctetList} = encode_bitstring(BitList),
encode_tags(TagIn, [Unused|OctetList], Len+1).
%%============================================================================
%% Bitstring value, ITU_T X.690 Chapter 8.6
%%
%% encode bitstring value
%%
%% bitstring NamedBitList
%% Val can be of:
%% - [identifiers] where only named identifers are set to one,
%% the Constraint must then have some information of the
%% bitlength.
%% - [list of ones and zeroes] all bits
%% - integer value representing the bitlist
%% C is constrint Len, only valid when identifiers
%%============================================================================
encode_bit_string(C, Bits, NamedBitList, TagIn) when is_bitstring(Bits) ->
PadLen = (8 - (bit_size(Bits) band 7)) band 7,
Compact = {PadLen,<<Bits/bitstring,0:PadLen>>},
encode_bin_bit_string(C, Compact, NamedBitList, TagIn);
encode_bit_string(C,Bin={Unused,BinBits},NamedBitList,TagIn) when is_integer(Unused), is_binary(BinBits) ->
encode_bin_bit_string(C,Bin,NamedBitList,TagIn);
encode_bit_string(C, [FirstVal | RestVal], NamedBitList, TagIn) when is_atom(FirstVal) ->
encode_bit_string_named(C, [FirstVal | RestVal], NamedBitList, TagIn);
encode_bit_string(C, [{bit,X} | RestVal], NamedBitList, TagIn) ->
encode_bit_string_named(C, [{bit,X} | RestVal], NamedBitList, TagIn);
encode_bit_string(C, [FirstVal| RestVal], NamedBitList, TagIn) when is_integer(FirstVal) ->
encode_bit_string_bits(C, [FirstVal | RestVal], NamedBitList, TagIn);
encode_bit_string(_C, 0, _NamedBitList, TagIn) ->
encode_tags(TagIn, <<0>>,1);
encode_bit_string(_C, [], _NamedBitList, TagIn) ->
encode_tags(TagIn, <<0>>,1);
encode_bit_string(C, IntegerVal, NamedBitList, TagIn) when is_integer(IntegerVal) ->
BitListVal = int_to_bitlist(IntegerVal),
encode_bit_string_bits(C, BitListVal, NamedBitList, TagIn).
int_to_bitlist(0) ->
[];
int_to_bitlist(Int) when is_integer(Int), Int >= 0 ->
[Int band 1 | int_to_bitlist(Int bsr 1)].
%%=================================================================
%% Encode BIT STRING of the form {Unused,BinBits}.
%% Unused is the number of unused bits in the last byte in BinBits
%% and BinBits is a binary representing the BIT STRING.
%%=================================================================
encode_bin_bit_string(C,{Unused,BinBits},_NamedBitList,TagIn)->
case C of
[] ->
remove_unused_then_dotag(TagIn, Unused, BinBits);
{_Min,Max} ->
BBLen = (byte_size(BinBits)*8)-Unused,
if
BBLen > Max ->
exit({error,{asn1,
{bitstring_length,
{{was,BBLen},{maximum,Max}}}}});
true ->
remove_unused_then_dotag(TagIn, Unused, BinBits)
end;
Size ->
case ((byte_size(BinBits)*8)-Unused) of
BBSize when BBSize =< Size ->
remove_unused_then_dotag(TagIn, Unused, BinBits);
BBSize ->
exit({error,{asn1,
{bitstring_length,
{{was,BBSize},{should_be,Size}}}}})
end
end.
remove_unused_then_dotag(TagIn,Unused,BinBits) ->
case Unused of
0 when byte_size(BinBits) =:= 0 ->
encode_tags(TagIn, <<0>>, 1);
0 ->
Bin = <<Unused,BinBits/binary>>,
encode_tags(TagIn, Bin, byte_size(Bin));
Num ->
N = byte_size(BinBits)-1,
<<BBits:N/binary,LastByte>> = BinBits,
encode_tags(TagIn,
[Unused,binary_to_list(BBits) ++[(LastByte bsr Num) bsl Num]],
1+byte_size(BinBits))
end.
%%=================================================================
%% Encode named bits
%%=================================================================
encode_bit_string_named(C, [FirstVal | RestVal], NamedBitList, TagIn) ->
ToSetPos = get_all_bitposes([FirstVal | RestVal], NamedBitList, []),
Size = case C of
[] ->
lists:max(ToSetPos) + 1;
{_Min,Max} ->
Max;
TSize ->
TSize
end,
BitList = make_and_set_list(Size, ToSetPos, 0),
{Len, Unused, OctetList} = encode_bitstring(BitList),
encode_tags(TagIn, [Unused|OctetList],Len+1).
%%----------------------------------------
%% get_all_bitposes([list of named bits to set], named_bit_db, []) ->
%% [sorted_list_of_bitpositions_to_set]
%%----------------------------------------
get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]);
get_all_bitposes([Val | Rest], NamedBitList, Ack) when is_atom(Val) ->
case lists:keyfind(Val, 1, NamedBitList) of
{_ValName, ValPos} ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]);
_ ->
exit({error,{asn1, {bitstring_namedbit, Val}}})
end;
get_all_bitposes([], _NamedBitList, Ack) ->
lists:sort(Ack).
%%----------------------------------------
%% make_and_set_list(Len of list to return, [list of positions to set to 1])->
%% returns list of Len length, with all in SetPos set.
%% in positioning in list the first element is 0, the second 1 etc.., but
%% Len will make a list of length Len, not Len + 1.
%% BitList = make_and_set_list(C, ToSetPos, 0),
%%----------------------------------------
make_and_set_list(0, [], _) -> [];
make_and_set_list(0, _, _) ->
exit({error,{asn1,bitstring_sizeconstraint}});
make_and_set_list(Len, [XPos|SetPos], XPos) ->
[1 | make_and_set_list(Len - 1, SetPos, XPos + 1)];
make_and_set_list(Len, [Pos|SetPos], XPos) ->
[0 | make_and_set_list(Len - 1, [Pos | SetPos], XPos + 1)];
make_and_set_list(Len, [], XPos) ->
[0 | make_and_set_list(Len - 1, [], XPos + 1)].
%%=================================================================
%% Encode bit string for lists of ones and zeroes
%%=================================================================
encode_bit_string_bits(C, BitListVal, _NamedBitList, TagIn) when is_list(BitListVal) ->
case C of
[] ->
{Len, Unused, OctetList} = encode_bitstring(BitListVal),
%%add unused byte to the Len
encode_tags(TagIn, [Unused | OctetList], Len+1);
Constr={Min,_Max} when is_integer(Min) ->
%% Max may be an integer or 'MAX'
encode_constr_bit_str_bits(Constr,BitListVal,TagIn);
{Constr={_,_},[]} ->%Constr={Min,Max}
%% constraint with extension mark
encode_constr_bit_str_bits(Constr,BitListVal,TagIn);
Constr={{_,_},{_,_}} ->%{{Min1,Max1},{Min2,Max2}}
%% constraint with extension mark
encode_constr_bit_str_bits(Constr,BitListVal,TagIn);
Size when is_integer(Size) ->
case length(BitListVal) of
BitSize when BitSize == Size ->
{Len, Unused, OctetList} = encode_bitstring(BitListVal),
%%add unused byte to the Len
encode_tags(TagIn, [Unused | OctetList], Len+1);
BitSize when BitSize < Size ->
PaddedList = pad_bit_list(Size-BitSize,BitListVal),
{Len, Unused, OctetList} = encode_bitstring(PaddedList),
%%add unused byte to the Len
encode_tags(TagIn, [Unused | OctetList], Len+1);
BitSize ->
exit({error,{asn1,
{bitstring_length, {{was,BitSize},{should_be,Size}}}}})
end
end.
encode_constr_bit_str_bits({{_Min1,Max1},{Min2,Max2}},BitListVal,TagIn) ->
BitLen = length(BitListVal),
case BitLen of
Len when Len > Max2 ->
exit({error,{asn1,{bitstring_length,{{was,BitLen},
{maximum,Max2}}}}});
Len when Len > Max1, Len < Min2 ->
exit({error,{asn1,{bitstring_length,{{was,BitLen},
{not_allowed_interval,
Max1,Min2}}}}});
_ ->
{Len, Unused, OctetList} = encode_bitstring(BitListVal),
%%add unused byte to the Len
encode_tags(TagIn, [Unused, OctetList], Len+1)
end;
encode_constr_bit_str_bits({Min,Max},BitListVal,TagIn) ->
BitLen = length(BitListVal),
if
BitLen > Max ->
exit({error,{asn1,{bitstring_length,{{was,BitLen},
{maximum,Max}}}}});
BitLen < Min ->
exit({error,{asn1,{bitstring_length,{{was,BitLen},
{minimum,Max}}}}});
true ->
{Len, Unused, OctetList} = encode_bitstring(BitListVal),
%%add unused byte to the Len
encode_tags(TagIn, [Unused, OctetList], Len+1)
end.
%% returns a list of length Size + length(BitListVal), with BitListVal
%% as the most significant elements followed by padded zero elements
pad_bit_list(Size, BitListVal) ->
Tail = lists:duplicate(Size,0),
lists:append(BitListVal, Tail).
%%=================================================================
%% Do the actual encoding
%% ([bitlist]) -> {ListLen, UnusedBits, OctetList}
%%=================================================================
encode_bitstring([B8, B7, B6, B5, B4, B3, B2, B1 | Rest]) ->
Val = (B8 bsl 7) bor (B7 bsl 6) bor (B6 bsl 5) bor (B5 bsl 4) bor
(B4 bsl 3) bor (B3 bsl 2) bor (B2 bsl 1) bor B1,
encode_bitstring(Rest, [Val], 1);
encode_bitstring(Val) ->
{Unused, Octet} = unused_bitlist(Val, 7, 0),
{1, Unused, [Octet]}.
encode_bitstring([B8, B7, B6, B5, B4, B3, B2, B1 | Rest], Ack, Len) ->
Val = (B8 bsl 7) bor (B7 bsl 6) bor (B6 bsl 5) bor (B5 bsl 4) bor
(B4 bsl 3) bor (B3 bsl 2) bor (B2 bsl 1) bor B1,
encode_bitstring(Rest, [Ack | [Val]], Len + 1);
%%even multiple of 8 bits..
encode_bitstring([], Ack, Len) ->
{Len, 0, Ack};
%% unused bits in last octet
encode_bitstring(Rest, Ack, Len) ->
{Unused, Val} = unused_bitlist(Rest, 7, 0),
{Len + 1, Unused, [Ack | [Val]]}.
%%%%%%%%%%%%%%%%%%
%% unused_bitlist([list of ones and zeros <= 7], 7, []) ->
%% {Unused bits, Last octet with bits moved to right}
unused_bitlist([], Trail, Ack) ->
{Trail + 1, Ack};
unused_bitlist([Bit | Rest], Trail, Ack) ->
unused_bitlist(Rest, Trail - 1, (Bit bsl Trail) bor Ack).
%%============================================================================
%% decode bitstring value
%%============================================================================
decode_compact_bit_string(Buffer, Tags) ->
case match_and_collect(Buffer, Tags) of
<<0>> -> {0,<<>>};
<<Unused,Bits/binary>> -> {Unused,Bits}
end.
compact_bit_string_size({Unused,Bits}) ->
bit_size(Bits) - Unused.
decode_native_bit_string(Buffer, Tags) ->
case match_and_collect(Buffer, Tags) of
<<0>> ->
<<>>;
<<Unused,Bits/binary>> ->
Size = bit_size(Bits) - Unused,
<<Val:Size/bitstring,_:Unused/bitstring>> = Bits,
Val
end.
decode_named_bit_string(Buffer, NamedNumberList, Tags) ->
case match_and_collect(Buffer, Tags) of
<<0>> ->
[];
<<Unused,Bits/binary>> ->
BitString = decode_bitstring2(byte_size(Bits), Unused, Bits),
decode_bitstring_NNL(BitString, NamedNumberList)
end.
%%----------------------------------------
%% Decode the in buffer to bits
%%----------------------------------------
decode_bitstring2(1, Unused,
<<B7:1,B6:1,B5:1,B4:1,B3:1,B2:1,B1:1,B0:1,_/binary>>) ->
lists:sublist([B7,B6,B5,B4,B3,B2,B1,B0], 8-Unused);
decode_bitstring2(Len, Unused,
<<B7:1,B6:1,B5:1,B4:1,B3:1,B2:1,B1:1,B0:1,Buffer/binary>>) ->
[B7,B6,B5,B4,B3,B2,B1,B0|
decode_bitstring2(Len - 1, Unused, Buffer)].
native_to_legacy_bit_string(Bits) ->
[B || <<B:1>> <= Bits].
%%----------------------------------------
%% Decode the bitlist to names
%%----------------------------------------
decode_bitstring_NNL(BitList, NamedNumberList) ->
decode_bitstring_NNL(BitList, NamedNumberList, 0, []).
decode_bitstring_NNL([],_,_No,Result) ->
lists:reverse(Result);
decode_bitstring_NNL([B|BitList],[{Name,No}|NamedNumberList],No,Result) ->
if
B =:= 0 ->
decode_bitstring_NNL(BitList,NamedNumberList,No+1,Result);
true ->
decode_bitstring_NNL(BitList,NamedNumberList,No+1,[Name|Result])
end;
decode_bitstring_NNL([1|BitList],NamedNumberList,No,Result) ->
decode_bitstring_NNL(BitList,NamedNumberList,No+1,[{bit,No}|Result]);
decode_bitstring_NNL([0|BitList],NamedNumberList,No,Result) ->
decode_bitstring_NNL(BitList,NamedNumberList,No+1,Result).
%%============================================================================
%% Null value, ITU_T X.690 Chapter 8.8
%%
%% encode NULL value
%%============================================================================
encode_null(_Val, TagIn) ->
encode_tags(TagIn, [], 0).
%%============================================================================
%% decode NULL value
%% (Buffer, HasTag, TotalLen) -> {NULL, Remain, RemovedBytes}
%%============================================================================
decode_null(Tlv, Tags) ->
Val = match_tags(Tlv, Tags),
case Val of
<<>> ->
'NULL';
_ ->
exit({error,{asn1,{decode_null,Val}}})
end.
%%============================================================================
%% Object identifier, ITU_T X.690 Chapter 8.19
%%
%% encode Object Identifier value
%%============================================================================
encode_object_identifier(Val, TagIn) ->
encode_tags(TagIn, e_object_identifier(Val)).
e_object_identifier({'OBJECT IDENTIFIER', V}) ->
e_object_identifier(V);
e_object_identifier(V) when is_tuple(V) ->
e_object_identifier(tuple_to_list(V));
%%%%%%%%%%%%%%%
%% e_object_identifier([List of Obect Identifiers]) ->
%% {[Encoded Octetlist of ObjIds], IntLength}
%%
e_object_identifier([E1,E2|Tail]) ->
Head = 40*E1 + E2, % wow!
{H,Lh} = mk_object_val(Head),
{R,Lr} = lists:mapfoldl(fun enc_obj_id_tail/2, 0, Tail),
{[H|R],Lh+Lr}.
enc_obj_id_tail(H, Len) ->
{B,L} = mk_object_val(H),
{B,Len+L}.
%%%%%%%%%%%
%% mk_object_val(Value) -> {OctetList, Len}
%% returns a Val as a list of octets, the 8th bit is always set to one
%% except for the last octet, where it's 0
%%
mk_object_val(Val) when Val =< 127 ->
{[255 band Val], 1};
mk_object_val(Val) ->
mk_object_val(Val bsr 7, [Val band 127], 1).
mk_object_val(0, Ack, Len) ->
{Ack, Len};
mk_object_val(Val, Ack, Len) ->
mk_object_val(Val bsr 7, [((Val band 127) bor 128) | Ack], Len + 1).
%%============================================================================
%% decode Object Identifier value
%% (Buffer, HasTag, TotalLen) -> {{ObjId}, Remain, RemovedBytes}
%%============================================================================
decode_object_identifier(Tlv, Tags) ->
Val = match_tags(Tlv, Tags),
[AddedObjVal|ObjVals] = dec_subidentifiers(Val,0,[]),
{Val1, Val2} = if
AddedObjVal < 40 ->
{0, AddedObjVal};
AddedObjVal < 80 ->
{1, AddedObjVal - 40};
true ->
{2, AddedObjVal - 80}
end,
list_to_tuple([Val1, Val2 | ObjVals]).
dec_subidentifiers(<<>>,_Av,Al) ->
lists:reverse(Al);
dec_subidentifiers(<<1:1,H:7,T/binary>>,Av,Al) ->
dec_subidentifiers(T,(Av bsl 7) + H,Al);
dec_subidentifiers(<<H,T/binary>>,Av,Al) ->
dec_subidentifiers(T,0,[((Av bsl 7) + H)|Al]).
%%============================================================================
%% RELATIVE-OID, ITU_T X.690 Chapter 8.20
%%
%% encode Relative Object Identifier
%%============================================================================
encode_relative_oid(Val,TagIn) when is_tuple(Val) ->
encode_relative_oid(tuple_to_list(Val),TagIn);
encode_relative_oid(Val,TagIn) ->
encode_tags(TagIn, enc_relative_oid(Val)).
enc_relative_oid(Tuple) when is_tuple(Tuple) ->
enc_relative_oid(tuple_to_list(Tuple));
enc_relative_oid(Val) ->
lists:mapfoldl(fun(X,AccIn) ->
{SO,L} = mk_object_val(X),
{SO,L+AccIn}
end, 0, Val).
%%============================================================================
%% decode Relative Object Identifier value
%% (Buffer, HasTag, TotalLen) -> {{ObjId}, Remain, RemovedBytes}
%%============================================================================
decode_relative_oid(Tlv, Tags) ->
Val = match_tags(Tlv, Tags),
ObjVals = dec_subidentifiers(Val,0,[]),
list_to_tuple(ObjVals).
%%============================================================================
%% Restricted character string types, ITU_T X.690 Chapter 8.20
%%
%% encode Numeric Printable Teletex Videotex Visible IA5 Graphic General strings
%%============================================================================
encode_restricted_string(OctetList, TagIn) when is_binary(OctetList) ->
encode_tags(TagIn, OctetList, byte_size(OctetList));
encode_restricted_string(OctetList, TagIn) when is_list(OctetList) ->
encode_tags(TagIn, OctetList, length(OctetList)).
%%============================================================================
%% decode OCTET STRING to binary
%%============================================================================
decode_octet_string(Tlv, TagsIn) ->
Bin = match_and_collect(Tlv, TagsIn),
binary:copy(Bin).
%%============================================================================
%% decode Numeric Printable Teletex Videotex Visible IA5 Graphic General strings
%%============================================================================
decode_restricted_string(Tlv, TagsIn) ->
match_and_collect(Tlv, TagsIn).
%%============================================================================
%% encode Universal string
%%============================================================================
encode_universal_string(Universal, TagIn) ->
OctetList = mk_uni_list(Universal),
encode_tags(TagIn, OctetList, length(OctetList)).
mk_uni_list(In) ->
mk_uni_list(In,[]).
mk_uni_list([],List) ->
lists:reverse(List);
mk_uni_list([{A,B,C,D}|T],List) ->
mk_uni_list(T,[D,C,B,A|List]);
mk_uni_list([H|T],List) ->
mk_uni_list(T,[H,0,0,0|List]).
%%===========================================================================
%% decode Universal strings
%% (Buffer, Range, StringType, HasTag, LenIn) ->
%% {String, Remain, RemovedBytes}
%%===========================================================================
decode_universal_string(Buffer, Tags) ->
Bin = match_and_collect(Buffer, Tags),
mk_universal_string(binary_to_list(Bin)).
mk_universal_string(In) ->
mk_universal_string(In, []).
mk_universal_string([], Acc) ->
lists:reverse(Acc);
mk_universal_string([0,0,0,D|T], Acc) ->
mk_universal_string(T, [D|Acc]);
mk_universal_string([A,B,C,D|T], Acc) ->
mk_universal_string(T, [{A,B,C,D}|Acc]).
%%============================================================================
%% encode UTF8 string
%%============================================================================
encode_UTF8_string(UTF8String, TagIn) when is_binary(UTF8String) ->
encode_tags(TagIn, UTF8String, byte_size(UTF8String));
encode_UTF8_string(UTF8String, TagIn) ->
encode_tags(TagIn, UTF8String, length(UTF8String)).
%%============================================================================
%% decode UTF8 string
%%============================================================================
decode_UTF8_string(Tlv,TagsIn) ->
Val = match_tags(Tlv, TagsIn),
case Val of
[_|_]=PartList -> % constructed val
collect_parts(PartList);
Bin ->
Bin
end.
%%============================================================================
%% encode BMP string
%%============================================================================
encode_BMP_string(BMPString, TagIn) ->
OctetList = mk_BMP_list(BMPString),
encode_tags(TagIn, OctetList, length(OctetList)).
mk_BMP_list(In) ->
mk_BMP_list(In, []).
mk_BMP_list([],List) ->
lists:reverse(List);
mk_BMP_list([{0,0,C,D}|T], List) ->
mk_BMP_list(T, [D,C|List]);
mk_BMP_list([H|T], List) ->
mk_BMP_list(T, [H,0|List]).
%%============================================================================
%% decode (OctetList, Range(ignored), tag|notag) -> {ValList, RestList}
%% (Buffer, Range, StringType, HasTag, TotalLen) ->
%% {String, Remain, RemovedBytes}
%%============================================================================
decode_BMP_string(Buffer, Tags) ->
Bin = match_and_collect(Buffer, Tags),
mk_BMP_string(binary_to_list(Bin)).
mk_BMP_string(In) ->
mk_BMP_string(In,[]).
mk_BMP_string([], US) ->
lists:reverse(US);
mk_BMP_string([0,B|T], US) ->
mk_BMP_string(T, [B|US]);
mk_BMP_string([C,D|T], US) ->
mk_BMP_string(T, [{0,0,C,D}|US]).
%%============================================================================
%% Length handling
%%
%% Encode length
%%
%% encode_length(Int) ->
%% [<127]| [128 + Int (<127),OctetList] | [16#80]
%%============================================================================
encode_length(L) when L =< 16#7F ->
{[L],1};
encode_length(L) ->
Oct = minimum_octets(L),
Len = length(Oct),
if
Len =< 126 ->
{[16#80 bor Len|Oct],Len+1};
true ->
exit({error,{asn1, too_long_length_oct, Len}})
end.
%% Val must be >= 0
minimum_octets(Val) ->
minimum_octets(Val, []).
minimum_octets(0, Acc) ->
Acc;
minimum_octets(Val, Acc) ->
minimum_octets(Val bsr 8, [Val band 16#FF|Acc]).
%%===========================================================================
%% Decode length
%%
%% decode_length(OctetList) -> {{indefinite, RestOctetsL}, NoRemovedBytes} |
%% {{Length, RestOctetsL}, NoRemovedBytes}
%%===========================================================================
decode_length(<<1:1,0:7,T/binary>>) ->
{indefinite,T};
decode_length(<<0:1,Length:7,T/binary>>) ->
{Length,T};
decode_length(<<1:1,LL:7,Length:LL/unit:8,T/binary>>) ->
{Length,T}.
%% dynamicsort_SET_components(Arg) ->
%% Res Arg -> list()
%% Res -> list()
%% Sorts the elements in Arg according to the encoded tag in
%% increasing order.
dynamicsort_SET_components(ListOfEncCs) ->
TagBinL = [begin
Bin = list_to_binary(L),
{dynsort_decode_tag(Bin),Bin}
end || L <- ListOfEncCs],
[E || {_,E} <- lists:keysort(1, TagBinL)].
%% dynamicsort_SETOF(Arg) -> Res
%% Arg -> list()
%% Res -> list()
%% Sorts the elements in Arg in increasing size
dynamicsort_SETOF(ListOfEncVal) ->
BinL = lists:map(fun(L) when is_list(L) -> list_to_binary(L);
(B) -> B end, ListOfEncVal),
lists:sort(BinL).
%% multiple octet tag
dynsort_decode_tag(<<Class:2,_Form:1,31:5,Buffer/binary>>) ->
TagNum = dynsort_decode_tag(Buffer, 0),
{Class,TagNum};
%% single tag (< 31 tags)
dynsort_decode_tag(<<Class:2,_Form:1,TagNum:5,_/binary>>) ->
{Class,TagNum}.
dynsort_decode_tag(<<0:1,PartialTag:7,_/binary>>, TagAcc) ->
(TagAcc bsl 7) bor PartialTag;
dynsort_decode_tag(<<_:1,PartialTag:7,Buffer/binary>>, TagAcc0) ->
TagAcc = (TagAcc0 bsl 7) bor PartialTag,
dynsort_decode_tag(Buffer, TagAcc).
%%-------------------------------------------------------------------------
%% INTERNAL HELPER FUNCTIONS (not exported)
%%-------------------------------------------------------------------------
match_and_collect(Tlv, TagsIn) ->
Val = match_tags(Tlv, TagsIn),
case Val of
[_|_]=PartList -> % constructed val
collect_parts(PartList);
Bin when is_binary(Bin) ->
Bin
end.
collect_parts(TlvList) ->
collect_parts(TlvList, []).
collect_parts([{_,L}|Rest], Acc) when is_list(L) ->
collect_parts(Rest, [collect_parts(L)|Acc]);
collect_parts([{?N_BIT_STRING,<<Unused,Bits/binary>>}|Rest], _Acc) ->
collect_parts_bit(Rest, [Bits], Unused);
collect_parts([{_T,V}|Rest], Acc) ->
collect_parts(Rest, [V|Acc]);
collect_parts([], Acc) ->
list_to_binary(lists:reverse(Acc)).
collect_parts_bit([{?N_BIT_STRING,<<Unused,Bits/binary>>}|Rest], Acc, Uacc) ->
collect_parts_bit(Rest, [Bits|Acc], Unused+Uacc);
collect_parts_bit([], Acc, Uacc) ->
list_to_binary([Uacc|lists:reverse(Acc)]).