%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2012-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(asn1rtt_per).
-export([setext/1, fixextensions/2,
skipextensions/3,
set_choice/3,encode_integer/2,
encode_small_number/1,
encode_constrained_number/2,
encode_length/1,
encode_length/2,
encode_bit_string/3,
encode_object_identifier/1,
encode_relative_oid/1,
complete/1,
encode_open_type/1,
encode_GeneralString/2,
encode_GraphicString/2,
encode_TeletexString/2,
encode_VideotexString/2,
encode_ObjectDescriptor/2,
encode_UTF8String/1,
encode_octet_string/3,
encode_known_multiplier_string/4,
octets_to_complete/2]).
-define('16K',16384).
-define('32K',32768).
-define('64K',65536).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% setext(true|false) -> CompleteList
%%
setext(false) ->
[0];
setext(true) ->
[1].
fixextensions({ext,ExtPos,ExtNum},Val) ->
case fixextensions(ExtPos,ExtNum+ExtPos,Val,0) of
0 -> [];
ExtBits ->
[encode_small_length(ExtNum)|pre_complete_bits(ExtNum,ExtBits)]
end.
fixextensions(Pos,MaxPos,_,Acc) when Pos >= MaxPos ->
Acc;
fixextensions(Pos,ExtPos,Val,Acc) ->
Bit = case catch(element(Pos+1,Val)) of
asn1_NOVALUE ->
0;
asn1_NOEXTVALUE ->
0;
{'EXIT',_} ->
0;
_ ->
1
end,
fixextensions(Pos+1,ExtPos,Val,(Acc bsl 1)+Bit).
skipextensions(Bytes0, Nr, ExtensionBitstr) when is_bitstring(ExtensionBitstr) ->
Prev = Nr - 1,
case ExtensionBitstr of
<<_:Prev,1:1,_/bitstring>> ->
{Len,Bytes1} = decode_length(Bytes0),
<<_:Len/binary,Bytes2/bitstring>> = Bytes1,
skipextensions(Bytes2, Nr+1, ExtensionBitstr);
<<_:Prev,0:1,_/bitstring>> ->
skipextensions(Bytes0, Nr+1, ExtensionBitstr);
_ ->
Bytes0
end.
align(Bin) when is_binary(Bin) ->
Bin;
align(BitStr) when is_bitstring(BitStr) ->
AlignBits = bit_size(BitStr) rem 8,
<<_:AlignBits,Rest/binary>> = BitStr,
Rest.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% set_choice(Alt,Choices,Altnum) -> ListofBitSettings
%% Alt = atom()
%% Altnum = integer() | {integer(),integer()}% number of alternatives
%% Choices = [atom()] | {[atom()],[atom()]}
%% When Choices is a tuple the first list is the Rootset and the
%% second is the Extensions and then Altnum must also be a tuple with the
%% lengths of the 2 lists
%%
set_choice(Alt,{L1,L2},{Len1,_Len2}) ->
case set_choice_tag(Alt,L1) of
N when is_integer(N), Len1 > 1 ->
[0, % the value is in the root set
encode_constrained_number({0,Len1-1},N)];
N when is_integer(N) ->
[0]; % no encoding if only 0 or 1 alternative
false ->
[1, % extension value
case set_choice_tag(Alt, L2) of
N2 when is_integer(N2) ->
encode_small_number(N2);
false ->
unknown_choice_alt
end]
end;
set_choice(Alt, L, Len) ->
case set_choice_tag(Alt, L) of
N when is_integer(N), Len > 1 ->
encode_constrained_number({0,Len-1},N);
N when is_integer(N) ->
[]; % no encoding if only 0 or 1 alternative
false ->
[unknown_choice_alt]
end.
set_choice_tag(Alt,Choices) ->
set_choice_tag(Alt,Choices,0).
set_choice_tag(Alt,[Alt|_Rest],Tag) ->
Tag;
set_choice_tag(Alt,[_H|Rest],Tag) ->
set_choice_tag(Alt,Rest,Tag+1);
set_choice_tag(_Alt,[],_Tag) ->
false.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_open_type(Constraint, Value) -> CompleteList
%% Value = list of bytes of an already encoded value (the list must be flat)
%% | binary
%% Contraint = not used in this version
%%
encode_open_type(Val) when is_list(Val) ->
Bin = list_to_binary(Val),
case byte_size(Bin) of
Size when Size > 255 ->
[encode_length(Size),21,<<Size:16>>,Bin];
Size ->
[encode_length(Size),20,Size,Bin]
end;
encode_open_type(Val) when is_binary(Val) ->
case byte_size(Val) of
Size when Size > 255 ->
[encode_length(Size),21,<<Size:16>>,Val]; % octets implies align
Size ->
[encode_length(Size),20,Size,Val]
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_integer(Constraint, Value) -> CompleteList
%%
encode_integer([{Rc,_Ec}],Val) when is_tuple(Rc) ->
try
[0|encode_integer([Rc], Val)]
catch
_:{error,{asn1,_}} ->
[1|encode_unconstrained_number(Val)]
end;
encode_integer([], Val) ->
encode_unconstrained_number(Val);
%% The constraint is the effective constraint, and in this case is a number
encode_integer([{'SingleValue',V}], V) ->
[];
encode_integer([{'ValueRange',{Lb,Ub}=VR,Range,PreEnc}],Val)
when Val >= Lb, Ub >= Val ->
%% this case when NamedNumberList
encode_constrained_number(VR, Range, PreEnc, Val);
encode_integer([{'ValueRange',{Lb,'MAX'}}], Val) ->
encode_semi_constrained_number(Lb, Val);
encode_integer([{'ValueRange',{'MIN',_}}], Val) ->
encode_unconstrained_number(Val);
encode_integer([{'ValueRange',VR={_Lb,_Ub}}], Val) ->
encode_constrained_number(VR, Val);
encode_integer(_,Val) ->
exit({error,{asn1,{illegal_value,Val}}}).
%% X.691:10.6 Encoding of a normally small non-negative whole number
%% Use this for encoding of CHOICE index if there is an extension marker in
%% the CHOICE
encode_small_number(Val) when Val < 64 ->
[10,7,Val];
encode_small_number(Val) ->
[1|encode_semi_constrained_number(0, Val)].
%% X.691:10.7 Encoding of a semi-constrained whole number
encode_semi_constrained_number(Lb, Val) ->
Val2 = Val - Lb,
Oct = eint_positive(Val2),
Len = length(Oct),
if
Len < 128 ->
[20,Len+1,Len|Oct];
Len < 256 ->
[encode_length(Len),20,Len|Oct];
true ->
[encode_length(Len),21,<<Len:16>>|Oct]
end.
encode_constrained_number({Lb,_Ub},_Range,{bits,N},Val) ->
Val2 = Val-Lb,
[10,N,Val2];
encode_constrained_number({Lb,_Ub},_Range,{octets,N},Val) when N < 256->
%% N is 8 or 16 (1 or 2 octets)
Val2 = Val-Lb,
[20,N,Val2];
encode_constrained_number({Lb,_Ub},_Range,{octets,N},Val) -> % N>255
%% N is 8 or 16 (1 or 2 octets)
Val2 = Val-Lb,
[21,<<N:16>>,Val2];
encode_constrained_number({Lb,_Ub},Range,_,Val) ->
Val2 = Val-Lb,
if
Range =< 16#1000000 -> % max 3 octets
Octs = eint_positive(Val2),
L = length(Octs),
[encode_length({1,3},L),[20,L,Octs]];
Range =< 16#100000000 -> % max 4 octets
Octs = eint_positive(Val2),
L = length(Octs),
[encode_length({1,4},L),[20,L,Octs]];
Range =< 16#10000000000 -> % max 5 octets
Octs = eint_positive(Val2),
L = length(Octs),
[encode_length({1,5},L),[20,L,Octs]];
true ->
exit({not_supported,{integer_range,Range}})
end.
encode_constrained_number({Lb,Ub}, Val) when Val >= Lb, Ub >= Val ->
Range = Ub - Lb + 1,
Val2 = Val - Lb,
if
Range == 1 -> [];
Range == 2 ->
[Val2];
Range =< 4 ->
[10,2,Val2];
Range =< 8 ->
[10,3,Val2];
Range =< 16 ->
[10,4,Val2];
Range =< 32 ->
[10,5,Val2];
Range =< 64 ->
[10,6,Val2];
Range =< 128 ->
[10,7,Val2];
Range =< 255 ->
[10,8,Val2];
Range =< 256 ->
[20,1,Val2];
Range =< 65536 ->
[20,2,<<Val2:16>>];
Range =< (1 bsl (255*8)) ->
Octs = binary:encode_unsigned(Val2),
RangeOcts = binary:encode_unsigned(Range - 1),
OctsLen = byte_size(Octs),
RangeOctsLen = byte_size(RangeOcts),
LengthBitsNeeded = minimum_bits(RangeOctsLen - 1),
[10,LengthBitsNeeded,OctsLen-1,20,OctsLen,Octs];
true ->
exit({not_supported,{integer_range,Range}})
end;
encode_constrained_number({_,_},Val) ->
exit({error,{asn1,{illegal_value,Val}}}).
%% For some reason the minimum bits needed in the length field in
%% the encoding of constrained whole numbers must always be at least 2?
minimum_bits(N) when N < 4 -> 2;
minimum_bits(N) when N < 8 -> 3;
minimum_bits(N) when N < 16 -> 4;
minimum_bits(N) when N < 32 -> 5;
minimum_bits(N) when N < 64 -> 6;
minimum_bits(N) when N < 128 -> 7;
minimum_bits(_N) -> 8.
%% X.691:10.8 Encoding of an unconstrained whole number
encode_unconstrained_number(Val) ->
Oct = if
Val >= 0 ->
eint(Val, []);
true ->
enint(Val, [])
end,
Len = length(Oct),
if
Len < 128 ->
[20,Len + 1,Len|Oct];
Len < 256 ->
[20,Len + 2,<<2:2,Len:14>>|Oct];
true ->
[encode_length(Len),21,<<Len:16>>|Oct]
end.
%% used for positive Values which don't need a sign bit
%% returns a list
eint_positive(Val) ->
case eint(Val,[]) of
[0,B1|T] ->
[B1|T];
T ->
T
end.
eint(0, [B|Acc]) when B < 128 ->
[B|Acc];
eint(N, Acc) ->
eint(N bsr 8, [N band 16#ff| Acc]).
enint(-1, [B1|T]) when B1 > 127 ->
[B1|T];
enint(N, Acc) ->
enint(N bsr 8, [N band 16#ff|Acc]).
%% X.691:10.9 Encoding of a length determinant
%%encode_small_length(undefined,Len) -> % null means no UpperBound
%% encode_small_number(Len).
%% X.691:10.9.3.5
%% X.691:10.9.3.7
encode_length(Len) -> % unconstrained
if
Len < 128 ->
[20,1,Len];
Len < 16384 ->
<<20,2,2:2,Len:14>>;
true -> % should be able to endode length >= 16384 i.e. fragmented length
exit({error,{asn1,{encode_length,{nyi,above_16k}}}})
end.
encode_length(undefined, Len) -> % un-constrained
encode_length(Len);
encode_length({0,'MAX'},Len) ->
encode_length(undefined,Len);
encode_length({Lb,Ub}=Vr, Len) when Ub =< 65535 ,Lb >= 0 -> % constrained
encode_constrained_number(Vr,Len);
encode_length({Lb,_Ub}, Len) when is_integer(Lb), Lb >= 0 -> % Ub > 65535
encode_length(Len);
encode_length({{Lb,Ub}=Vr,Ext}, Len)
when Ub =< 65535 ,Lb >= 0,Len=<Ub, is_list(Ext) ->
%% constrained extensible
[0|encode_constrained_number(Vr,Len)];
encode_length({{Lb,_},Ext},Len) when is_list(Ext) ->
[1|encode_semi_constrained_number(Lb, Len)];
encode_length(SingleValue, _Len) when is_integer(SingleValue) ->
[].
%% X.691 10.9.3.4 (only used for length of bitmap that prefixes extension
%% additions in a sequence or set
encode_small_length(Len) when Len =< 64 ->
[10,7,Len-1];
encode_small_length(Len) ->
[1,encode_length(Len)].
decode_length(Buffer) -> % un-constrained
case align(Buffer) of
<<0:1,Oct:7,Rest/binary>> ->
{Oct,Rest};
<<2:2,Val:14,Rest/binary>> ->
{Val,Rest};
<<3:2,_Val:14,_Rest/binary>> ->
%% this case should be fixed
exit({error,{asn1,{decode_length,{nyi,above_16k}}}})
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% bitstring NamedBitList
%% Val can be of:
%% - [identifiers] where only named identifers are set to one,
%% the Constraint must then have some information of the
%% bitlength.
%% - [list of ones and zeroes] all bits
%% - integer value representing the bitlist
%% C is constraint Len, only valid when identifiers
%% when the value is a list of {Unused,BinBits}, where
%% Unused = integer(),
%% BinBits = binary().
encode_bit_string(C, Bits, NamedBitList) when is_bitstring(Bits) ->
PadLen = (8 - (bit_size(Bits) band 7)) band 7,
Compact = {PadLen,<<Bits/bitstring,0:PadLen>>},
encode_bin_bit_string(C, Compact, NamedBitList);
encode_bit_string(C, {Unused,BinBits}=Bin, NamedBitList)
when is_integer(Unused), is_binary(BinBits) ->
encode_bin_bit_string(C,Bin,NamedBitList);
%% when the value is a list of named bits
encode_bit_string(C, LoNB=[FirstVal | _RestVal], NamedBitList) when is_atom(FirstVal) ->
ToSetPos = get_all_bitposes(LoNB, NamedBitList, []),
BitList = make_and_set_list(ToSetPos,0),
encode_bit_string(C,BitList,NamedBitList);% consider the constraint
encode_bit_string(C, BL=[{bit,_} | _RestVal], NamedBitList) ->
ToSetPos = get_all_bitposes(BL, NamedBitList, []),
BitList = make_and_set_list(ToSetPos,0),
encode_bit_string(C,BitList,NamedBitList);
%% when the value is a list of ones and zeroes
encode_bit_string(Int, BitListValue, _)
when is_list(BitListValue),is_integer(Int),Int =< 16 ->
%% The type is constrained by a single value size constraint
%% range_check(Int,length(BitListValue)),
[40,Int,length(BitListValue),BitListValue];
encode_bit_string(Int, BitListValue, _)
when is_list(BitListValue),is_integer(Int), Int =< 255 ->
%% The type is constrained by a single value size constraint
%% range_check(Int,length(BitListValue)),
[2,40,Int,length(BitListValue),BitListValue];
encode_bit_string(Int, BitListValue, _)
when is_list(BitListValue),is_integer(Int), Int < ?'64K' ->
{Code,DesiredLength,Length} =
case length(BitListValue) of
B1 when B1 > Int ->
exit({error,{'BIT_STRING_length_greater_than_SIZE',
Int,BitListValue}});
B1 when B1 =< 255,Int =< 255 ->
{40,Int,B1};
B1 when B1 =< 255 ->
{42,<<Int:16>>,B1};
B1 ->
{43,<<Int:16>>,<<B1:16>>}
end,
%% The type is constrained by a single value size constraint
[2,Code,DesiredLength,Length,BitListValue];
encode_bit_string(no, BitListValue,[])
when is_list(BitListValue) ->
[encode_length(length(BitListValue)),
2|BitListValue];
encode_bit_string({{Fix,Fix},Ext}, BitListValue,[])
when is_integer(Fix), is_list(Ext) ->
case length(BitListValue) of
Len when Len =< Fix ->
[0|encode_bit_string(Fix, BitListValue, [])];
_ ->
[1|encode_bit_string(no, BitListValue, [])]
end;
encode_bit_string(C, BitListValue,[])
when is_list(BitListValue) ->
[encode_length(C, length(BitListValue)),
2|BitListValue];
encode_bit_string(no, BitListValue,_NamedBitList)
when is_list(BitListValue) ->
%% this case with an unconstrained BIT STRING can be made more efficient
%% if the complete driver can take a special code so the length field
%% is encoded there.
NewBitLVal = lists:reverse(lists:dropwhile(fun(0)->true;(1)->false end,
lists:reverse(BitListValue))),
[encode_length(length(NewBitLVal)),2|NewBitLVal];
encode_bit_string({{Fix,Fix},Ext}, BitListValue, NamedBitList)
when is_integer(Fix), is_list(Ext) ->
case length(BitListValue) of
Len when Len =< Fix ->
[0|encode_bit_string(Fix, BitListValue, NamedBitList)];
_ ->
[1|encode_bit_string(no, BitListValue, NamedBitList)]
end;
encode_bit_string(C, BitListValue, _NamedBitList)
when is_list(BitListValue) -> % C = {_,'MAX'}
NewBitLVal = bit_string_trailing_zeros(BitListValue, C),
[encode_length(C, length(NewBitLVal)),2|NewBitLVal];
%% when the value is an integer
encode_bit_string(C, IntegerVal, NamedBitList) when is_integer(IntegerVal)->
BitList = int_to_bitlist(IntegerVal),
encode_bit_string(C,BitList,NamedBitList).
bit_string_trailing_zeros(BitList,C) when is_integer(C) ->
bit_string_trailing_zeros1(BitList,C,C);
bit_string_trailing_zeros(BitList,{Lb,Ub}) when is_integer(Lb) ->
bit_string_trailing_zeros1(BitList,Lb,Ub);
bit_string_trailing_zeros(BitList,{{Lb,Ub},_}) when is_integer(Lb) ->
bit_string_trailing_zeros1(BitList,Lb,Ub);
bit_string_trailing_zeros(BitList,_) ->
BitList.
bit_string_trailing_zeros1(BitList,Lb,Ub) ->
case length(BitList) of
Lb -> BitList;
B when B < Lb -> BitList++lists:duplicate(Lb-B, 0);
D -> F = fun(L,LB,LB,_,_)->lists:reverse(L);
([0|R],L1,LB,UB,Fun)->Fun(R,L1-1,LB,UB,Fun);
(L,L1,_,UB,_)when L1 =< UB -> lists:reverse(L);
(_,_L1,_,_,_) ->exit({error,{list_length_BIT_STRING,
BitList}}) end,
F(lists:reverse(BitList),D,Lb,Ub,F)
end.
%% encode_bin_bit_string/3, when value is a tuple of Unused and BinBits.
%% Unused = integer(),i.e. number unused bits in least sign. byte of
%% BinBits = binary().
encode_bin_bit_string(C, {Unused,BinBits}, _NamedBitList)
when is_integer(C),C=<16 ->
range_check(C, bit_size(BinBits) - Unused),
[45,C,byte_size(BinBits),BinBits];
encode_bin_bit_string(C, {Unused,BinBits}, _NamedBitList)
when is_integer(C), C =< 255 ->
range_check(C, bit_size(BinBits) - Unused),
[2,45,C,byte_size(BinBits),BinBits];
encode_bin_bit_string(C, {Unused,BinBits}, _NamedBitList)
when is_integer(C), C =< 65535 ->
range_check(C, bit_size(BinBits) - Unused),
case byte_size(BinBits) of
Size when Size =< 255 ->
[2,46,<<C:16>>,Size,BinBits];
Size ->
[2,47,<<C:16>>,<<Size:16>>,BinBits]
end;
encode_bin_bit_string(C,UnusedAndBin={_,_},NamedBitList) ->
{Unused1,Bin1} =
%% removes all trailing bits if NamedBitList is not empty
remove_trailing_bin(NamedBitList,UnusedAndBin),
case C of
{Lb,Ub} when is_integer(Lb),is_integer(Ub) ->
Size = byte_size(Bin1),
[encode_length({Lb,Ub}, Size*8 - Unused1),
2,octets_unused_to_complete(Unused1,Size,Bin1)];
no ->
Size = byte_size(Bin1),
[encode_length(Size*8 - Unused1),
2|octets_unused_to_complete(Unused1, Size, Bin1)];
{{Fix,Fix},Ext} when is_integer(Fix),is_list(Ext) ->
case byte_size(Bin1)*8 - Unused1 of
Size when Size =< Fix ->
[0|encode_bin_bit_string(Fix,UnusedAndBin,NamedBitList)];
_Size ->
[1|encode_bin_bit_string(no,UnusedAndBin,NamedBitList)]
end;
Sc ->
Size = byte_size(Bin1),
[encode_length(Sc, Size*8 - Unused1),
2|octets_unused_to_complete(Unused1,Size,Bin1)]
end.
range_check(C,C) when is_integer(C) ->
ok;
range_check(C1,C2) when is_integer(C1) ->
exit({error,{asn1,{bit_string_out_of_range,{C1,C2}}}}).
remove_trailing_bin([], {Unused,Bin}) ->
{Unused,Bin};
remove_trailing_bin(_NamedNumberList,{_Unused,<<>>}) ->
{0,<<>>};
remove_trailing_bin(NamedNumberList, {_Unused,Bin}) ->
Size = byte_size(Bin)-1,
<<Bfront:Size/binary, LastByte:8>> = Bin,
%% clear the Unused bits to be sure
Unused1 = trailingZeroesInNibble(LastByte band 15),
Unused2 =
case Unused1 of
4 ->
4 + trailingZeroesInNibble(LastByte bsr 4);
_ -> Unused1
end,
case Unused2 of
8 ->
remove_trailing_bin(NamedNumberList,{0,Bfront});
_ ->
{Unused2,Bin}
end.
trailingZeroesInNibble(0) ->
4;
trailingZeroesInNibble(1) ->
0;
trailingZeroesInNibble(2) ->
1;
trailingZeroesInNibble(3) ->
0;
trailingZeroesInNibble(4) ->
2;
trailingZeroesInNibble(5) ->
0;
trailingZeroesInNibble(6) ->
1;
trailingZeroesInNibble(7) ->
0;
trailingZeroesInNibble(8) ->
3;
trailingZeroesInNibble(9) ->
0;
trailingZeroesInNibble(10) ->
1;
trailingZeroesInNibble(11) ->
0;
trailingZeroesInNibble(12) -> %#1100
2;
trailingZeroesInNibble(13) ->
0;
trailingZeroesInNibble(14) ->
1;
trailingZeroesInNibble(15) ->
0.
%%%%%%%%%%%%%%%
%%
int_to_bitlist(Int) when is_integer(Int), Int > 0 ->
[Int band 1 | int_to_bitlist(Int bsr 1)];
int_to_bitlist(0) ->
[].
%%%%%%%%%%%%%%%%%%
%% get_all_bitposes([list of named bits to set], named_bit_db, []) ->
%% [sorted_list_of_bitpositions_to_set]
get_all_bitposes([{bit,ValPos}|Rest], NamedBitList, Ack) ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack ]);
get_all_bitposes([Val | Rest], NamedBitList, Ack) ->
case lists:keyfind(Val, 1, NamedBitList) of
{_ValName, ValPos} ->
get_all_bitposes(Rest, NamedBitList, [ValPos | Ack]);
false ->
exit({error,{asn1, {bitstring_namedbit, Val}}})
end;
get_all_bitposes([], _NamedBitList, Ack) ->
lists:sort(Ack).
%%%%%%%%%%%%%%%%%%
%% make_and_set_list([list of positions to set to 1])->
%% returns list with all in SetPos set.
%% in positioning in list the first element is 0, the second 1 etc.., but
%%
make_and_set_list([XPos|SetPos], XPos) ->
[1 | make_and_set_list(SetPos, XPos + 1)];
make_and_set_list([Pos|SetPos], XPos) ->
[0 | make_and_set_list([Pos | SetPos], XPos + 1)];
make_and_set_list([], _) ->
[].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% X.691:16
%% encode_octet_string(Constraint,ExtensionMarker,Val)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
encode_octet_string(_C, true, _Val) ->
exit({error,{asn1,{'not_supported',extensionmarker}}});
encode_octet_string({_,_}=SZ, false, Val) ->
Len = length(Val),
try
[encode_length(SZ, Len),2|octets_to_complete(Len, Val)]
catch
exit:{error,{asn1,{encode_length,_}}} ->
encode_fragmented_octet_string(Val)
end;
encode_octet_string(SZ, false, Val) when is_list(SZ) ->
Len = length(Val),
try
[encode_length({hd(SZ),lists:max(SZ)},Len),2|
octets_to_complete(Len,Val)]
catch
exit:{error,{asn1,{encode_length,_}}} ->
encode_fragmented_octet_string(Val)
end;
encode_octet_string(Sv, false, Val) when is_integer(Sv) ->
encode_fragmented_octet_string(Val);
encode_octet_string(no, false, Val) ->
Len = length(Val),
try
[encode_length(Len),2|octets_to_complete(Len, Val)]
catch
exit:{error,{asn1,{encode_length,_}}} ->
encode_fragmented_octet_string(Val)
end;
encode_octet_string(C, _, _) ->
exit({error,{not_implemented,C}}).
encode_fragmented_octet_string(Val) ->
Bin = iolist_to_binary(Val),
efos_1(Bin).
efos_1(<<B1:16#C000/binary,B2:16#4000/binary,T/binary>>) ->
[20,1,<<3:2,4:6>>,
octets_to_complete(16#C000, B1),
octets_to_complete(16#4000, B2)|efos_1(T)];
efos_1(<<B:16#C000/binary,T/binary>>) ->
[20,1,<<3:2,3:6>>,octets_to_complete(16#C000, B)|efos_1(T)];
efos_1(<<B:16#8000/binary,T/binary>>) ->
[20,1,<<3:2,2:6>>,octets_to_complete(16#8000, B)|efos_1(T)];
efos_1(<<B:16#4000/binary,T/binary>>) ->
[20,1,<<3:2,1:6>>,octets_to_complete(16#4000, B)|efos_1(T)];
efos_1(<<>>) ->
[20,1,0];
efos_1(<<B/bitstring>>) ->
Len = byte_size(B),
[encode_length(Len)|octets_to_complete(Len, B)].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Restricted char string types
%% (NumericString, PrintableString,VisibleString,IA5String,BMPString,UniversalString)
%% X.691:26 and X.680:34-36
encode_restricted_string(Val) when is_list(Val)->
Len = length(Val),
[encode_length(Len)|octets_to_complete(Len, Val)].
encode_known_multiplier_string(SizeC, NumBits, CharOutTab, Val) ->
Result = chars_encode2(Val, NumBits, CharOutTab),
case SizeC of
Ub when is_integer(Ub), Ub*NumBits =< 16 ->
Result;
Ub when is_integer(Ub), Ub =<65535 -> % fixed length
[2,Result];
{Ub,Lb} ->
[encode_length({Ub,Lb},length(Val)),2,Result];
no ->
[encode_length(length(Val)),2,Result]
end.
encode_GeneralString(_C,Val) ->
encode_restricted_string(Val).
encode_GraphicString(_C,Val) ->
encode_restricted_string(Val).
encode_ObjectDescriptor(_C,Val) ->
encode_restricted_string(Val).
encode_TeletexString(_C,Val) -> % equivalent with T61String
encode_restricted_string(Val).
encode_VideotexString(_C,Val) ->
encode_restricted_string(Val).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% chars_encode(C,StringType,Value) -> ValueList
%%
%% encodes chars according to the per rules taking the constraint
%% PermittedAlphabet into account.
%%
%% This function only encodes the value part and NOT the length.
chars_encode2([H|T],NumBits,T1={Min,Max,notab}) when H =< Max, H >= Min ->
[pre_complete_bits(NumBits,H-Min)|chars_encode2(T,NumBits,T1)];
chars_encode2([H|T],NumBits,T1={Min,Max,Tab}) when H =< Max, H >= Min ->
[pre_complete_bits(NumBits,exit_if_false(H,element(H-Min+1,Tab)))|
chars_encode2(T,NumBits,T1)];
chars_encode2([{A,B,C,D}|T],NumBits,T1={Min,_Max,notab}) ->
%% no value range check here (ought to be, but very expensive)
[pre_complete_bits(NumBits,
((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min)|
chars_encode2(T,NumBits,T1)];
chars_encode2([H={A,B,C,D}|T],NumBits,{Min,Max,Tab}) ->
%% no value range check here (ought to be, but very expensive)
[pre_complete_bits(NumBits,exit_if_false(H,element(((((((A bsl 8)+B) bsl 8)+C) bsl 8)+D)-Min,Tab)))|chars_encode2(T,NumBits,{Min,Max,notab})];
chars_encode2([H|_T],_NumBits,{_Min,_Max,_Tab}) ->
exit({error,{asn1,{illegal_char_value,H}}});
chars_encode2([],_,_) ->
[].
exit_if_false(V,false)->
exit({error,{asn1,{"illegal value according to Permitted alphabet constraint",V}}});
exit_if_false(_,V) ->V.
pre_complete_bits(NumBits,Val) when NumBits =< 8 ->
[10,NumBits,Val];
pre_complete_bits(NumBits,Val) when NumBits =< 16 ->
[10,NumBits-8,Val bsr 8,10,8,(Val band 255)];
pre_complete_bits(NumBits,Val) when NumBits =< 2040 -> % 255 * 8
Unused = (8 - (NumBits rem 8)) rem 8,
Len = NumBits + Unused,
[30,Unused,Len div 8,<<(Val bsl Unused):Len>>].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_UTF8String(Val) -> CompleteList
%% Val -> <<utf8encoded binary>>
%% CompleteList -> [apropriate codes and values for driver complete]
%%
encode_UTF8String(Val) when is_binary(Val) ->
Sz = byte_size(Val),
[encode_length(Sz),octets_to_complete(Sz, Val)];
encode_UTF8String(Val) ->
encode_UTF8String(list_to_binary(Val)).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_object_identifier(Val) -> CompleteList
%% encode_object_identifier({Name,Val}) -> CompleteList
%% Val -> {Int1,Int2,...,IntN} % N >= 2
%% Name -> atom()
%% Int1 -> integer(0..2)
%% Int2 -> integer(0..39) when Int1 (0..1) else integer()
%% Int3-N -> integer()
%% CompleteList -> [{bits,8,Val}|{octets,Ol}|align|...]
%%
encode_object_identifier(Val) ->
OctetList = e_object_identifier(Val),
Octets = list_to_binary(OctetList),
Sz = byte_size(Octets),
[encode_length(Sz),
octets_to_complete(Sz, Octets)].
e_object_identifier({'OBJECT IDENTIFIER',V}) ->
e_object_identifier(V);
e_object_identifier(V) when is_tuple(V) ->
e_object_identifier(tuple_to_list(V));
%% E1 = 0|1|2 and (E2 < 40 when E1 = 0|1)
e_object_identifier([E1,E2|Tail]) when E1 >= 0, E1 < 2, E2 < 40 ; E1==2 ->
Head = 40*E1 + E2, % weird
e_object_elements([Head|Tail],[]);
e_object_identifier(Oid=[_,_|_Tail]) ->
exit({error,{asn1,{'illegal_value',Oid}}}).
e_object_elements([],Acc) ->
lists:reverse(Acc);
e_object_elements([H|T],Acc) ->
e_object_elements(T,[e_object_element(H)|Acc]).
e_object_element(Num) when Num < 128 ->
[Num];
e_object_element(Num) ->
[e_o_e(Num bsr 7)|[Num band 2#1111111]].
e_o_e(Num) when Num < 128 ->
Num bor 2#10000000;
e_o_e(Num) ->
[e_o_e(Num bsr 7)|[(Num band 2#1111111) bor 2#10000000]].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% encode_relative_oid(Val) -> CompleteList
%% encode_relative_oid({Name,Val}) -> CompleteList
encode_relative_oid(Val) when is_tuple(Val) ->
encode_relative_oid(tuple_to_list(Val));
encode_relative_oid(Val) when is_list(Val) ->
Octets = list_to_binary([e_object_element(X)||X <- Val]),
Sz = byte_size(Octets),
[encode_length(Sz)|octets_to_complete(Sz, Octets)].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% complete(InList) -> ByteList
%% Takes a coded list with bits and bytes and converts it to a list of bytes
%% Should be applied as the last step at encode of a complete ASN.1 type
%%
complete(L) ->
case asn1rt_nif:encode_per_complete(L) of
<<>> -> <<0>>;
Bin -> Bin
end.
octets_to_complete(Len,Val) when Len < 256 ->
[20,Len,Val];
octets_to_complete(Len,Val) ->
[21,<<Len:16>>,Val].
octets_unused_to_complete(Unused,Len,Val) when Len < 256 ->
[30,Unused,Len,Val];
octets_unused_to_complete(Unused,Len,Val) ->
[31,Unused,<<Len:16>>,Val].