%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2007-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(beam_bsm).
-export([module/2,format_error/1]).
-import(lists, [member/2,foldl/3,reverse/1,sort/1,all/2,dropwhile/2]).
%%%
%%% We optimize bit syntax matching where the tail end of a binary is
%%% matched out and immediately passed on to a bs_start_match2 instruction,
%%% such as in this code sequence:
%%%
%%% func_info ...
%%% L1 test bs_start_match2 {f,...} {x,0} Live SavePositions {x,0}
%%% . . .
%%% test bs_get_binary2 {f,...} {x,0} all 1 Flags {x,0}
%%% . . .
%%% call_only 2 L1
%%%
%%% The sequence can be optimized simply by removing the bs_get_binary2
%%% instruction. Another example:
%%%
%%% func_info ...
%%% L1 test bs_start_match2 {f,...} {x,0} Live SavePositions {x,0}
%%% . . .
%%% test bs_get_binary2 {f,...} {x,0} all 8 Flags {x,1}
%%% . . .
%%% move {x,1} {x,0}
%%% call_only 2 L1
%%%
%%% In this case, the bs_get_binary2 instruction must be replaced by
%%%
%%% test bs_unit {x,1} 8
%%%
%%% to ensure that the match fail if the length of the binary in bits
%%% is not evenly divisible by 8.
%%%
%%% Note that the bs_start_match2 instruction doesn't need to be in the same
%%% function as the caller. It can be in the beginning of any function, or
%%% follow the bs_get_binary2 instruction in the same function. The important
%%% thing is that the match context register is not copied or built into
%%% data structures or passed to BIFs.
%%%
-record(btb,
{f, %Gbtrees for all functions.
index, %{Label,Code} index (for liveness).
ok_br, %Labels that are OK.
must_not_save, %Must not save position when
% optimizing (reaches
% bs_context_to_binary).
must_save %Must save position when optimizing.
}).
module({Mod,Exp,Attr,Fs0,Lc}, Opts) ->
D = #btb{f=btb_index(Fs0)},
Fs = [function(F, D) || F <- Fs0],
Code = {Mod,Exp,Attr,Fs,Lc},
case proplists:get_bool(bin_opt_info, Opts) of
true ->
{ok,Code,collect_warnings(Fs)};
false ->
{ok,Code}
end.
-spec format_error('bin_opt' | {'no_bin_opt', term()}) -> nonempty_string().
format_error(bin_opt) ->
"OPTIMIZED: creation of sub binary delayed";
format_error({no_bin_opt,Reason}) ->
lists:flatten(["NOT OPTIMIZED: "|format_error_1(Reason)]).
%%%
%%% Local functions.
%%%
function({function,Name,Arity,Entry,Is}, D0) ->
try
Index = beam_utils:index_labels(Is),
D = D0#btb{index=Index},
{function,Name,Arity,Entry,btb_opt_1(Is, D, [])}
catch
Class:Error ->
Stack = erlang:get_stacktrace(),
io:fwrite("Function: ~w/~w\n", [Name,Arity]),
erlang:raise(Class, Error, Stack)
end.
btb_opt_1([{test,bs_get_binary2,F,_,[Reg,{atom,all},U,Fs],Reg}=I0|Is], D, Acc0) ->
case btb_reaches_match(Is, [Reg], D) of
{error,Reason} ->
Comment = btb_comment_no_opt(Reason, Fs),
btb_opt_1(Is, D, [Comment,I0|Acc0]);
{ok,MustSave} ->
Comment = btb_comment_opt(Fs),
Acc1 = btb_gen_save(MustSave, Reg, [Comment|Acc0]),
Acc = case U of
1 -> Acc1;
_ -> [{test,bs_test_unit,F,[Reg,U]}|Acc1]
end,
btb_opt_1(Is, D, Acc)
end;
btb_opt_1([{test,bs_get_binary2,F,_,[Ctx,{atom,all},U,Fs],Dst}=I0|Is], D, Acc0) ->
case btb_reaches_match(Is, [Ctx,Dst], D) of
{error,Reason} ->
Comment = btb_comment_no_opt(Reason, Fs),
btb_opt_1(Is, D, [Comment,I0|Acc0]);
{ok,MustSave} when U =:= 1 ->
Comment = btb_comment_opt(Fs),
Acc1 = btb_gen_save(MustSave, Ctx, [Comment|Acc0]),
Acc = [{move,Ctx,Dst}|Acc1],
btb_opt_1(Is, D, Acc);
{ok,MustSave} ->
Comment = btb_comment_opt(Fs),
Acc1 = btb_gen_save(MustSave, Ctx, [Comment|Acc0]),
Acc = [{move,Ctx,Dst},{test,bs_test_unit,F,[Ctx,U]}|Acc1],
btb_opt_1(Is, D, Acc)
end;
btb_opt_1([I|Is], D, Acc) ->
%%io:format("~p\n", [I]),
btb_opt_1(Is, D, [I|Acc]);
btb_opt_1([], _, Acc) ->
reverse(Acc).
btb_gen_save(true, Reg, Acc) ->
[{bs_save2,Reg,{atom,start}}|Acc];
btb_gen_save(false, _, Acc) -> Acc.
%% btb_reaches_match([Instruction], [Register], D) ->
%% {ok,MustSave}|{error,Reason}
%%
%% The list of Registers should be a list of registers referencing a
%% match context. The Register may contain one element if the
%% bs_get_binary2 instruction looks like
%%
%% test bs_get_binary2 {f,...} Ctx all _ _ Ctx
%%
%% or two elements if the instruction looks like
%%
%% test bs_get_binary2 {f,...} Ctx all _ _ Dst
%%
%% This function determines whether the bs_get_binary2 instruction
%% can be omitted (retaining the match context instead of creating
%% a sub binary).
%%
%% The rule is that the match context ultimately must end up at a
%% bs_start_match2 instruction and nowhere else. That it, it must not
%% be passed to BIFs, or copied or put into data structures. There
%% must only be one copy alive when the match context reaches the
%% bs_start_match2 instruction.
%%
%% At a branch, we must follow all branches and make sure that the above
%% rule is followed (or that the branch kills the match context).
%%
%% The MustSave return value will be true if control may end up at
%% bs_context_to_binary instruction. Since that instruction uses the
%% saved start position, we must use "bs_save2 Ctx start" to
%% update the saved start position. An additional complication is that
%% "bs_save2 Ctx start" must not be used if Dst and Ctx are
%% different registers and both registers may be passed to
%% a bs_context_to_binary instruction.
%%
btb_reaches_match(Is, RegList, D0) ->
try
Regs = btb_regs_from_list(RegList),
D = D0#btb{ok_br=gb_sets:empty(),must_not_save=false,must_save=false},
#btb{must_not_save=MustNotSave,must_save=MustSave} =
btb_reaches_match_1(Is, Regs, D),
case MustNotSave and MustSave of
true -> btb_error(must_and_must_not_save);
_ -> {ok,MustSave}
end
catch
throw:{error,_}=Error -> Error
end.
btb_reaches_match_1(Is, Regs, D) ->
case btb_are_registers_empty(Regs) of
false ->
btb_reaches_match_2(Is, Regs, D);
true ->
%% The context was killed, which is OK.
D
end.
btb_reaches_match_2([{block,Bl}|Is], Regs0, D) ->
Regs = btb_reaches_match_block(Bl, Regs0),
btb_reaches_match_1(Is, Regs, D);
btb_reaches_match_2([{call,Arity,{f,Lbl}}|Is], Regs, D) ->
btb_call(Arity, Lbl, Regs, Is, D);
btb_reaches_match_2([{apply,Arity}|Is], Regs, D) ->
btb_call(Arity+2, apply, Regs, Is, D);
btb_reaches_match_2([{call_fun,Live}=I|Is], Regs, D) ->
btb_call(Live, I, Regs, Is, D);
btb_reaches_match_2([{make_fun2,_,_,_,Live}|Is], Regs, D) ->
btb_call(Live, make_fun2, Regs, Is, D);
btb_reaches_match_2([{call_ext,Arity,Func}=I|Is], Regs0, D) ->
%% Allow us scanning beyond the call in case the match
%% context is saved on the stack.
case beam_jump:is_exit_instruction(I) of
false ->
btb_call(Arity, Func, Regs0, Is, D);
true ->
Regs = btb_kill_not_live(Arity, Regs0),
btb_tail_call(Func, Regs, D)
end;
btb_reaches_match_2([{kill,Y}|Is], Regs, D) ->
btb_reaches_match_1(Is, btb_kill([Y], Regs), D);
btb_reaches_match_2([{deallocate,_}|Is], Regs0, D) ->
Regs = btb_kill_yregs(Regs0),
btb_reaches_match_1(Is, Regs, D);
btb_reaches_match_2([return=I|_], Regs0, D) ->
btb_ensure_not_used([{x,0}], I, Regs0),
D;
btb_reaches_match_2([{gc_bif,_,{f,F},Live,Ss,Dst}=I|Is], Regs0, D0) ->
btb_ensure_not_used(Ss, I, Regs0),
Regs1 = btb_kill_not_live(Live, Regs0),
Regs = btb_kill([Dst], Regs1),
D = btb_follow_branch(F, Regs, D0),
btb_reaches_match_1(Is, Regs, D);
btb_reaches_match_2([{bif,_,{f,F},Ss,Dst}=I|Is], Regs0, D0) ->
btb_ensure_not_used(Ss, I, Regs0),
Regs = btb_kill([Dst], Regs0),
D = btb_follow_branch(F, Regs, D0),
btb_reaches_match_1(Is, Regs, D);
btb_reaches_match_2([{test,bs_start_match2,{f,F},Live,[Ctx,_],Ctx}=I|Is],
Regs0, D0) ->
CtxRegs = btb_context_regs(Regs0),
case member(Ctx, CtxRegs) of
false ->
%% This bs_start_match2 instruction does not use "our"
%% match state. Therefore we can continue the search
%% for another bs_start_match2 instruction.
D = btb_follow_branch(F, Regs0, D0),
Regs = btb_kill_not_live(Live, Regs0),
btb_reaches_match_2(Is, Regs, D);
true ->
%% OK. This instruction will use "our" match state,
%% but we must make sure that all other copies of the
%% match state are killed in the code that follows
%% the instruction. (We know that the fail branch cannot
%% be taken in this case.)
OtherCtxRegs = CtxRegs -- [Ctx],
case btb_are_all_unused(OtherCtxRegs, Is, D0) of
false -> btb_error({OtherCtxRegs,not_all_unused_after,I});
true -> D0
end
end;
btb_reaches_match_2([{test,bs_start_match2,{f,F},Live,[Bin,_],Ctx}|Is],
Regs0, D0) ->
CtxRegs = btb_context_regs(Regs0),
case member(Bin, CtxRegs) orelse member(Ctx, CtxRegs) of
false ->
%% This bs_start_match2 does not reference any copy of the
%% match state. Therefore it can safely be passed on the
%% way to another (perhaps more suitable) bs_start_match2
%% instruction.
D = btb_follow_branch(F, Regs0, D0),
Regs = btb_kill_not_live(Live, Regs0),
btb_reaches_match_2(Is, Regs, D);
true ->
%% This variant of the bs_start_match2 instruction does
%% not accept a match state as source.
btb_error(unsuitable_bs_start_match)
end;
btb_reaches_match_2([{test,_,{f,F},Ss}=I|Is], Regs, D0) ->
btb_ensure_not_used(Ss, I, Regs),
D = btb_follow_branch(F, Regs, D0),
btb_reaches_match_1(Is, Regs, D);
btb_reaches_match_2([{test,_,{f,F},_,Ss,_}=I|Is], Regs, D0) ->
btb_ensure_not_used(Ss, I, Regs),
D = btb_follow_branch(F, Regs, D0),
btb_reaches_match_1(Is, Regs, D);
btb_reaches_match_2([{select,_,Src,{f,F},Conds}=I|Is], Regs, D0) ->
btb_ensure_not_used([Src], I, Regs),
D1 = btb_follow_branch(F, Regs, D0),
D = btb_follow_branches(Conds, Regs, D1),
btb_reaches_match_1(Is, Regs, D);
btb_reaches_match_2([{jump,{f,Lbl}}|_], Regs, #btb{index=Li}=D) ->
Is = fetch_code_at(Lbl, Li),
btb_reaches_match_2(Is, Regs, D);
btb_reaches_match_2([{label,_}|Is], Regs, D) ->
btb_reaches_match_2(Is, Regs, D);
btb_reaches_match_2([{bs_init,{f,0},_,_,Ss,Dst}=I|Is], Regs, D) ->
btb_ensure_not_used(Ss, I, Regs),
btb_reaches_match_1(Is, btb_kill([Dst], Regs), D);
btb_reaches_match_2([{bs_put,{f,0},_,Ss}=I|Is], Regs, D) ->
btb_ensure_not_used(Ss, I, Regs),
btb_reaches_match_1(Is, Regs, D);
btb_reaches_match_2([{bs_restore2,Src,_}=I|Is], Regs0, D) ->
case btb_contains_context(Src, Regs0) of
false ->
btb_reaches_match_1(Is, Regs0, D);
true ->
%% Check that all other copies of the context registers
%% are unused by the following instructions.
Regs = btb_kill([Src], Regs0),
CtxRegs = btb_context_regs(Regs),
case btb_are_all_unused(CtxRegs, Is, D) of
false -> btb_error({CtxRegs,not_all_unused_after,I});
true -> D#btb{must_not_save=true}
end
end;
btb_reaches_match_2([{bs_context_to_binary,Src}=I|Is], Regs0, D) ->
case btb_contains_context(Src, Regs0) of
false ->
btb_reaches_match_1(Is, Regs0, D);
true ->
%% Check that all other copies of the context registers
%% are unused by the following instructions.
Regs = btb_kill([Src], Regs0),
CtxRegs = btb_context_regs(Regs),
case btb_are_all_unused(CtxRegs, Is, D) of
false -> btb_error({CtxRegs,not_all_unused_after,I});
true -> D#btb{must_not_save=true}
end
end;
btb_reaches_match_2([{badmatch,Src}=I|_], Regs, D) ->
btb_ensure_not_used([Src], I, Regs),
D;
btb_reaches_match_2([{case_end,Src}=I|_], Regs, D) ->
btb_ensure_not_used([Src], I, Regs),
D;
btb_reaches_match_2([if_end|_], _Regs, D) ->
D;
btb_reaches_match_2([{func_info,_,_,Arity}=I|_], Regs0, D) ->
Regs = btb_kill_yregs(btb_kill_not_live(Arity, Regs0)),
case btb_context_regs(Regs) of
[] -> D;
_ -> {binary_used_in,I}
end;
btb_reaches_match_2([{line,_}|Is], Regs, D) ->
btb_reaches_match_1(Is, Regs, D);
btb_reaches_match_2([I|_], Regs, _) ->
btb_error({btb_context_regs(Regs),I,not_handled}).
btb_call(Arity, Lbl, Regs0, Is, D0) ->
Regs = btb_kill_not_live(Arity, Regs0),
case btb_are_x_registers_empty(Regs) of
false ->
%% There is a match context in one of the x registers.
%% First handle the call as if it were a tail call.
D = btb_tail_call(Lbl, Regs, D0),
%% No problem so far (the called function can handle a
%% match context). Now we must make sure that the rest
%% of this function following the call does not attempt
%% to use the match context in case there is a copy
%% tucked away in a y register.
RegList = btb_context_regs(Regs),
YRegs = [R || {y,_}=R <- RegList],
case btb_are_all_unused(YRegs, Is, D) of
true -> D;
false -> btb_error({multiple_uses,RegList})
end;
true ->
%% No match context in any x register. It could have been
%% saved to an y register, so continue to scan the code following
%% the call.
btb_reaches_match_1(Is, Regs, D0)
end.
btb_tail_call(Lbl, Regs, #btb{f=Ftree,must_save=MustSave0}=D) ->
%% Ignore any y registers here.
case [R || {x,_}=R <- btb_context_regs(Regs)] of
[] ->
D;
[{x,_}=Reg] ->
case gb_trees:lookup(Lbl, Ftree) of
{value,{Reg,MustSave}} ->
D#btb{must_save=MustSave0 or MustSave};
_ when is_integer(Lbl) ->
btb_error({{label,Lbl},no_suitable_bs_start_match});
_ ->
btb_error({binary_used_in,Lbl})
end;
[_|_] when not is_integer(Lbl) ->
btb_error({binary_used_in,Lbl});
[_|_]=RegList ->
btb_error({multiple_uses,RegList})
end.
%% btb_follow_branches([Cond], Regs, D) -> D'
%% Recursively follow all the branches.
btb_follow_branches([{f,Lbl}|T], Regs, D0) ->
D = btb_follow_branch(Lbl, Regs, D0),
btb_follow_branches(T, Regs, D);
btb_follow_branches([_|T], Regs, D) ->
btb_follow_branches(T, Regs, D);
btb_follow_branches([], _, D) -> D.
%% btb_follow_branch(Lbl, Regs, D) -> D'
%% Recursively follow the branch.
btb_follow_branch(0, _Regs, D) -> D;
btb_follow_branch(Lbl, Regs, #btb{ok_br=Br0,index=Li}=D) ->
case gb_sets:is_member(Lbl, Br0) of
true ->
%% We have already followed this branch and it was OK.
D;
false ->
%% New branch. Try it.
Is = fetch_code_at(Lbl, Li),
#btb{ok_br=Br,must_not_save=MustNotSave,must_save=MustSave} =
btb_reaches_match_1(Is, Regs, D),
%% Since we got back, this branch is OK.
D#btb{ok_br=gb_sets:insert(Lbl, Br),must_not_save=MustNotSave,
must_save=MustSave}
end.
btb_reaches_match_block([{set,Ds,Ss,{alloc,Live,_}}=I|Is], Regs0) ->
%% An allocation instruction or a GC bif. We'll kill all registers
%% if any copy of the context is used as the source to the BIF.
btb_ensure_not_used(Ss, I, Regs0),
Regs1 = btb_kill_not_live(Live, Regs0),
Regs = btb_kill(Ds, Regs1),
btb_reaches_match_block(Is, Regs);
btb_reaches_match_block([{set,[Dst]=Ds,[Src],move}|Is], Regs0) ->
Regs1 = btb_kill(Ds, Regs0),
Regs = case btb_contains_context(Src, Regs1) of
false -> Regs1;
true -> btb_set_context(Dst, Regs1)
end,
btb_reaches_match_block(Is, Regs);
btb_reaches_match_block([{set,Ds,Ss,_}=I|Is], Regs0) ->
btb_ensure_not_used(Ss, I, Regs0),
Regs = btb_kill(Ds, Regs0),
btb_reaches_match_block(Is, Regs);
btb_reaches_match_block([], Regs) ->
Regs.
%% btb_are_all_killed([Register], [Instruction], D) -> true|false
%% Test whether all of the register are unused in the instruction stream.
btb_are_all_unused(RegList, Is, #btb{index=Li}) ->
all(fun(R) ->
beam_utils:is_not_used(R, Is, Li)
end, RegList).
%% btp_regs_from_list([Register]) -> RegisterSet.
%% Create a register set from a list of registers.
btb_regs_from_list(L) ->
foldl(fun(R, Regs) ->
btb_set_context(R, Regs)
end, {0,0}, L).
%% btb_set_context(Register, RegisterSet) -> RegisterSet'
%% Update RegisterSet to indicate that Register contains the matching context.
btb_set_context({x,N}, {Xregs,Yregs}) ->
{Xregs bor (1 bsl N),Yregs};
btb_set_context({y,N}, {Xregs,Yregs}) ->
{Xregs,Yregs bor (1 bsl N)}.
%% btb_ensure_not_used([Register], Instruction, RegisterSet) -> ok
%% If any register in RegisterSet (the register(s) known to contain
%% the match context) is used in the list of registers, generate an error.
btb_ensure_not_used(Rs, I, Regs) ->
case lists:any(fun(R) -> btb_contains_context(R, Regs) end, Rs) of
true -> btb_error({binary_used_in,I});
false -> ok
end.
%% btb_kill([Register], RegisterSet) -> RegisterSet'
%% Kill all registers mentioned in the list of registers.
btb_kill([{x,N}|Rs], {Xregs,Yregs}) ->
btb_kill(Rs, {Xregs band (bnot (1 bsl N)),Yregs});
btb_kill([{y,N}|Rs], {Xregs,Yregs}) ->
btb_kill(Rs, {Xregs,Yregs band (bnot (1 bsl N))});
btb_kill([{fr,_}|Rs], Regs) ->
btb_kill(Rs, Regs);
btb_kill([], Regs) -> Regs.
%% btb_kill_not_live(Live, RegisterSet) -> RegisterSet'
%% Kill all registers indicated not live by Live.
btb_kill_not_live(Live, {Xregs,Yregs}) ->
{Xregs band ((1 bsl Live)-1),Yregs}.
%% btb_kill(Regs0) -> Regs
%% Kill all y registers.
btb_kill_yregs({Xregs,_}) -> {Xregs,0}.
%% btb_are_registers_empty(RegisterSet) -> true|false
%% Test whether the register set is empty.
btb_are_registers_empty({0,0}) -> true;
btb_are_registers_empty({_,_}) -> false.
%% btb_are_x_registers_empty(Regs) -> true|false
%% Test whether the x registers are empty.
btb_are_x_registers_empty({0,_}) -> true;
btb_are_x_registers_empty({_,_}) -> false.
%% btb_contains_context(Register, RegisterSet) -> true|false
%% Test whether Register contains the context.
btb_contains_context({x,N}, {Regs,_}) -> Regs band (1 bsl N) =/= 0;
btb_contains_context({y,N}, {_,Regs}) -> Regs band (1 bsl N) =/= 0;
btb_contains_context(_, _) -> false.
%% btb_context_regs(RegisterSet) -> [Register]
%% Convert the register set to an explicit list of registers.
btb_context_regs({Xregs,Yregs}) ->
btb_context_regs_1(Xregs, 0, x, btb_context_regs_1(Yregs, 0, y, [])).
btb_context_regs_1(0, _, _, Acc) ->
Acc;
btb_context_regs_1(Regs, N, Tag, Acc) when (Regs band 1) =:= 1 ->
btb_context_regs_1(Regs bsr 1, N+1, Tag, [{Tag,N}|Acc]);
btb_context_regs_1(Regs, N, Tag, Acc) ->
btb_context_regs_1(Regs bsr 1, N+1, Tag, Acc).
%% btb_index([Function]) -> GbTree({EntryLabel,{Register,MustSave}})
%% Build an index of functions that accept a match context instead of
%% a binary. MustSave is true if the function may pass the match
%% context to the bs_context_to_binary instruction (in which case
%% the current position in the binary must have saved into the
%% start position using "bs_save_2 Ctx start".
btb_index(Fs) ->
btb_index_1(Fs, []).
btb_index_1([{function,_,_,Entry,Is0}|Fs], Acc0) ->
[{label,Entry}|Is] =
dropwhile(fun({label,L}) when L =:= Entry -> false;
(_) -> true
end, Is0),
Acc = btb_index_2(Is, Entry, false, Acc0),
btb_index_1(Fs, Acc);
btb_index_1([], Acc) -> gb_trees:from_orddict(sort(Acc)).
btb_index_2([{test,bs_start_match2,{f,_},_,[Reg,_],Reg}|_],
Entry, MustSave, Acc) ->
[{Entry,{Reg,MustSave}}|Acc];
btb_index_2(Is0, Entry, _, Acc) ->
try btb_index_find_start_match(Is0) of
Is -> btb_index_2(Is, Entry, true, Acc)
catch
throw:none -> Acc
end.
btb_index_find_start_match([{test,_,{f,F},_},{bs_context_to_binary,_}|Is]) ->
btb_index_find_label(Is, F);
btb_index_find_start_match(_) ->
throw(none).
btb_index_find_label([{label,L}|Is], L) -> Is;
btb_index_find_label([_|Is], L) -> btb_index_find_label(Is, L).
btb_error(Error) ->
throw({error,Error}).
fetch_code_at(Lbl, Li) ->
case beam_utils:code_at(Lbl, Li) of
Is when is_list(Is) -> Is
end.
%%%
%%% Compilation information warnings.
%%%
btb_comment_opt({field_flags,[{anno,A}|_]}) ->
{'%',{bin_opt,A}};
btb_comment_opt(_) ->
{'%',{bin_opt,[]}}.
btb_comment_no_opt(Reason, {field_flags,[{anno,A}|_]}) ->
{'%',{no_bin_opt,Reason,A}};
btb_comment_no_opt(Reason, _) ->
{'%',{no_bin_opt,Reason,[]}}.
collect_warnings(Fs) ->
D = warning_index_functions(Fs),
foldl(fun(F, A) -> collect_warnings_fun(F, D, A) end, [], Fs).
collect_warnings_fun({function,_,_,_,Is}, D, A) ->
collect_warnings_instr(Is, D, A).
collect_warnings_instr([{'%',{bin_opt,Where}}|Is], D, Acc0) ->
Acc = add_warning(bin_opt, Where, Acc0),
collect_warnings_instr(Is, D, Acc);
collect_warnings_instr([{'%',{no_bin_opt,Reason0,Where}}|Is], D, Acc0) ->
Reason = warning_translate_label(Reason0, D),
Acc = add_warning({no_bin_opt,Reason}, Where, Acc0),
collect_warnings_instr(Is, D, Acc);
collect_warnings_instr([_|Is], D, Acc) ->
collect_warnings_instr(Is, D, Acc);
collect_warnings_instr([], _, Acc) -> Acc.
add_warning(Term, Anno, Ws) ->
Line = abs(get_line(Anno)),
File = get_file(Anno),
[{File,[{Line,?MODULE,Term}]}|Ws].
warning_translate_label(Term, D) when is_tuple(Term) ->
case element(1, Term) of
{label,F} ->
FA = gb_trees:get(F, D),
setelement(1, Term, FA);
_ -> Term
end;
warning_translate_label(Term, _) -> Term.
get_line([Line|_]) when is_integer(Line) -> Line;
get_line([_|T]) -> get_line(T);
get_line([]) -> none.
get_file([{file,File}|_]) -> File;
get_file([_|T]) -> get_file(T);
get_file([]) -> "no_file". % should not happen
warning_index_functions(Fs) ->
D = [{Entry,{F,A}} || {function,F,A,Entry,_} <- Fs],
gb_trees:from_orddict(sort(D)).
format_error_1({binary_used_in,{extfunc,M,F,A}}) ->
[io_lib:format("sub binary used by ~p:~p/~p", [M,F,A])|
case {M,F,A} of
{erlang,split_binary,2} ->
"; SUGGEST using binary matching instead of split_binary/2";
_ ->
""
end];
format_error_1({binary_used_in,_}) ->
"sub binary is used or returned";
format_error_1({multiple_uses,_}) ->
"sub binary is matched or used in more than one place";
format_error_1(unsuitable_bs_start_match) ->
"the binary matching instruction that follows in the same function "
"have problems that prevent delayed sub binary optimization "
"(probably indicated by INFO warnings)";
format_error_1({{F,A},no_suitable_bs_start_match}) ->
io_lib:format("called function ~p/~p does not begin with a suitable "
"binary matching instruction", [F,A]);
format_error_1(must_and_must_not_save) ->
"different control paths use different positions in the binary";
format_error_1({_,I,not_handled}) ->
case I of
{'catch',_,_} ->
"the compiler currently does not attempt the delayed sub binary "
"optimization when catch is used";
{'try',_,_} ->
"the compiler currently does not attempt the delayed sub binary "
"optimization when try/catch is used";
_ ->
io_lib:format("compiler limitation: instruction ~p prevents "
"delayed sub binary optimization", [I])
end;
format_error_1(Term) ->
io_lib:format("~w", [Term]).