%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%%
%% Share code for semantically equivalent blocks referred to
%% to by `br` and `switch` instructions.
%%
%% A similar optimization is done in beam_jump, but doing it here as
%% well is beneficial as it may enable other optimizations. If there
%% are many semantically equivalent clauses, this optimization can
%% substanstially decrease compilation times.
%%
%% block/2 is called from the liveness optimization pass in
%% beam_ssa_opt, as code sharing helps the liveness pass and vice
%% versa.
%%
-module(beam_ssa_share).
-export([module/2,block/2]).
-include("beam_ssa.hrl").
-import(lists, [keyfind/3,reverse/1,sort/1]).
-spec module(beam_ssa:b_module(), [compile:option()]) ->
{'ok',beam_ssa:b_module()}.
module(#b_module{body=Fs0}=Module, _Opts) ->
Fs = [function(F) || F <- Fs0],
{ok,Module#b_module{body=Fs}}.
-spec block(Blk0, Blocks0) -> Blk when
Blk0 :: beam_ssa:b_blk(),
Blocks0 :: beam_ssa:block_map(),
Blk :: beam_ssa:b_blk().
block(#b_blk{last=Last0}=Blk, Blocks) ->
case share_terminator(Last0, Blocks) of
none -> Blk;
Last -> Blk#b_blk{last=beam_ssa:normalize(Last)}
end.
%%%
%%% Local functions.
%%%
function(#b_function{anno=Anno,bs=Blocks0}=F) ->
try
PO = reverse(beam_ssa:rpo(Blocks0)),
{Blocks1,Changed} = blocks(PO, Blocks0, false),
Blocks = case Changed of
true ->
beam_ssa:trim_unreachable(Blocks1);
false ->
Blocks0
end,
F#b_function{bs=Blocks}
catch
Class:Error:Stack ->
#{func_info:={_,Name,Arity}} = Anno,
io:fwrite("Function: ~w/~w\n", [Name,Arity]),
erlang:raise(Class, Error, Stack)
end.
blocks([L|Ls], Blocks, Changed) ->
#b_blk{last=Last0} = Blk0 = map_get(L, Blocks),
case block(Blk0, Blocks) of
#b_blk{last=Last0} ->
blocks(Ls, Blocks, Changed);
#b_blk{}=Blk ->
blocks(Ls, Blocks#{L:=Blk}, true)
end;
blocks([], Blocks, Changed) ->
{Blocks,Changed}.
share_terminator(#b_br{bool=#b_var{},succ=Succ0,fail=Fail0}=Br, Blocks) ->
{Succ,SuccBlk} = shortcut_nonempty_block(Succ0, Blocks),
{Fail,FailBlk} = shortcut_nonempty_block(Fail0, Blocks),
case are_equivalent(Succ, SuccBlk, Fail, FailBlk, Blocks) of
true ->
%% The blocks are semantically equivalent.
Br#b_br{succ=Succ,fail=Succ};
false ->
if
Succ =:= Succ0, Fail =:= Fail0 ->
%% None of blocks were cut short.
none;
true ->
%% One or both labels were cut short
%% to avoid jumping to an empty block.
Br#b_br{succ=Succ,fail=Fail}
end
end;
share_terminator(#b_switch{}=Sw, Blocks) ->
share_switch(Sw, Blocks);
share_terminator(_Last, _Blocks) -> none.
%% Test whether the two blocks are semantically equivalent. This
%% function is specially optimized to return `false` as fast as
%% possible if the blocks are not equivalent, as that is the common
%% case.
are_equivalent(_Succ, _, ?EXCEPTION_BLOCK, _, _Blocks) ->
%% ?EXCEPTION_BLOCK is special. Sharing could be incorrect.
false;
are_equivalent(_Succ, #b_blk{is=Is1,last=#b_ret{arg=RetVal1}=Ret1},
_Fail, #b_blk{is=Is2,last=#b_ret{arg=RetVal2}=Ret2}, _Blocks) ->
case {RetVal1,RetVal2} of
{#b_literal{},#b_literal{}} ->
case RetVal1 =:= RetVal2 of
true ->
%% The return values are identical literals. We
%% only need to compare the canonicalized bodies.
Can1 = canonical_is(Is1),
Can2 = canonical_is(Is2),
Can1 =:= Can2;
false ->
%% Non-equal literals.
false
end;
{#b_var{},#b_var{}} ->
%% The return values are varibles. We must canonicalize
%% the blocks (including returns) and compare them.
Can1 = canonical_is(Is1 ++ [Ret1]),
Can2 = canonical_is(Is2 ++ [Ret2]),
Can1 =:= Can2;
{_,_} ->
%% One literal and one variable.
false
end;
are_equivalent(Succ,
#b_blk{is=Is1,
last=#b_br{bool=#b_literal{val=true},
succ=Target}},
Fail,
#b_blk{is=Is2,
last=#b_br{bool=#b_literal{val=true},
succ=Target}},
Blocks) ->
%% Both blocks end with an unconditional branch to the
%% same target block. If the target block has phi nodes,
%% we must pick up the values from the phi nodes and
%% compare them.
#b_blk{is=Is} = map_get(Target, Blocks),
Phis1 = canonical_terminator_phis(Is, Succ),
Phis2 = canonical_terminator_phis(Is, Fail),
case {Phis1,Phis2} of
{[#b_set{args=[#b_literal{}]}|_],_} when Phis1 =/= Phis2 ->
%% Different values are used in the phi nodes.
false;
{_,[#b_set{args=[#b_literal{}]}|_]} when Phis1 =/= Phis2 ->
%% Different values are used in the phi nodes.
false;
{_,_} ->
%% The values in the phi nodes are variables or identical
%% literals. We must canonicalize the blocks and compare
%% them.
Can1 = canonical_is(Is1 ++ Phis1),
Can2 = canonical_is(Is2 ++ Phis2),
Can1 =:= Can2
end;
are_equivalent(Succ0, #b_blk{is=Is1,last=#b_br{bool=#b_var{},fail=Same}},
Fail0, #b_blk{is=Is2,last=#b_br{bool=#b_var{},fail=Same}},
Blocks) ->
%% Two-way branches with identical failure labels. First compare the
%% canonicalized bodies of the blocks.
case canonical_is(Is1) =:= canonical_is(Is2) of
false ->
%% Different bodies.
false;
true ->
%% Bodies were equal. That is fairly uncommon, so to keep
%% the code simple we will rewrite the `br` to a `switch`
%% and let share_switch/2 do the work of following the
%% branches.
Sw = #b_switch{arg=#b_var{name=not_used},fail=Fail0,
list=[{#b_literal{},Succ0}]},
#b_switch{fail=Fail,list=[{_,Succ}]} = share_switch(Sw, Blocks),
Fail =:= Succ
end;
are_equivalent(_, _, _, _, _) -> false.
share_switch(#b_switch{fail=Fail0,list=List0}=Sw, Blocks) ->
Prep = share_prepare_sw([{value,Fail0}|List0], Blocks, 0, []),
Res = do_share_switch(Prep, Blocks, []),
[{_,Fail}|List] = [VL || {_,VL} <- sort(Res)],
Sw#b_switch{fail=Fail,list=List}.
share_prepare_sw([{V,L0}|T], Blocks, N, Acc) ->
{L,_Blk} = shortcut_nonempty_block(L0, Blocks),
share_prepare_sw(T, Blocks, N+1, [{{L,#{}},{N,{V,L}}}|Acc]);
share_prepare_sw([], _, _, Acc) -> Acc.
do_share_switch(Prep, Blocks, Acc) ->
Map = share_switch_1(Prep, Blocks, #{}),
share_switch_2(maps:values(Map), Blocks, Acc).
share_switch_1([{Next0,Res}|T], Blocks, Map) ->
{Can,Next} = canonical_block(Next0, Blocks),
case Map of
#{Can:=Ls} ->
share_switch_1(T, Blocks, Map#{Can:=[{Next,Res}|Ls]});
#{} ->
share_switch_1(T, Blocks, Map#{Can=>[{Next,Res}]})
end;
share_switch_1([], _Blocks, Map) -> Map.
share_switch_2([[{_,{N,Res}}]|T], Blocks, Acc) ->
%% This block is not equivalent to any other block.
share_switch_2(T, Blocks, [{N,Res}|Acc]);
share_switch_2([[{done,{_,{_,Common}}}|_]=Eqs|T], Blocks, Acc0) ->
%% Two or more blocks are semantically equivalent, and all blocks
%% are either terminated with a `ret` or a `br` to the same target
%% block. Replace the labels in the `switch` for all of those
%% blocks with the label for the first of the blocks.
Acc = [{N,{V,Common}} || {done,{N,{V,_}}} <- Eqs] ++ Acc0,
share_switch_2(T, Blocks, Acc);
share_switch_2([[{_,_}|_]=Prep|T], Blocks, Acc0) ->
%% Two or more blocks are semantically equivalent, but they have
%% different successful successor blocks. Now we must check
%% recursively whether the successor blocks are equivalent too.
Acc = do_share_switch(Prep, Blocks, Acc0),
share_switch_2(T, Blocks, Acc);
share_switch_2([], _, Acc) -> Acc.
canonical_block({L,VarMap0}, Blocks) ->
#b_blk{is=Is,last=Last0} = map_get(L, Blocks),
case canonical_terminator(L, Last0, Blocks) of
none ->
%% The block has a terminator that we don't handle.
{{none,L},done};
{Last,done} ->
%% The block ends with a `ret` or an unconditional `br` to
%% another block.
{Can,_VarMap} = canonical_is(Is ++ Last, VarMap0, []),
{Can,done};
{Last,Next} ->
%% The block ends with a conditional branch.
{Can,VarMap} = canonical_is(Is ++ Last, VarMap0, []),
{Can,{Next,VarMap}}
end.
%% Translate a sequence of instructions to a canonical representation. If the
%% canonical representation of two blocks compare equal, the blocks are
%% semantically equivalent. The following translations are done:
%%
%% * Variables defined in the instruction sequence are replaced with
%% {var,0}, {var,1}, and so on. Free variables are not changed.
%%
%% * `location` annotations that would produce a `line` instruction are
%% kept. All other annotations are cleared.
%%
%% * Instructions are repackaged into tuples instead of into the
%% usual records. The main reason is to avoid violating the types for
%% the SSA records. We can simplify things a little by linking the
%% instructions directly instead of putting them into a list.
canonical_is(Is) ->
{Can,_} = canonical_is(Is, #{}, []),
Can.
canonical_is([#b_set{op=Op,dst=Dst,args=Args0}=I|Is], VarMap0, Acc) ->
Args = [canonical_arg(Arg, VarMap0) || Arg <-Args0],
Var = {var,map_size(VarMap0)},
VarMap = VarMap0#{Dst=>Var},
LineAnno = case Op of
bs_match ->
%% The location annotation for a bs_match instruction
%% is only used in warnings, never to emit a `line`
%% instruction. Therefore, it should not be included.
[];
_ ->
%% The location annotation will be used in a `line`
%% instruction. It must be included.
beam_ssa:get_anno(location, I, none)
end,
canonical_is(Is, VarMap, {Op,LineAnno,Var,Args,Acc});
canonical_is([#b_ret{arg=Arg}], VarMap, Acc0) ->
Acc1 = case Acc0 of
{call,_Anno,Var,[#b_local{}|_]=Args,PrevAcc} ->
%% This is a tail-recursive call to a local function.
%% There will be no line instruction generated;
%% thus, the annotation is not significant.
{call,[],Var,Args,PrevAcc};
_ ->
Acc0
end,
{{ret,canonical_arg(Arg, VarMap),Acc1},VarMap};
canonical_is([#b_br{bool=#b_var{}=Arg,fail=Fail}], VarMap, Acc) ->
%% A previous buggy version of this code omitted the canonicalized
%% argument in the return value. Unfortunately, that worked most
%% of the time, except when `br` terminator referenced a variable
%% defined in a previous block instead of in the same block.
{{br,canonical_arg(Arg, VarMap),succ,Fail,Acc},VarMap};
canonical_is([#b_br{succ=Succ}], VarMap, Acc) ->
{{br,Succ,Acc},VarMap};
canonical_is([], VarMap, Acc) ->
{Acc,VarMap}.
canonical_terminator(_L, #b_ret{}=Ret, _Blocks) ->
{[Ret],done};
canonical_terminator(L, #b_br{bool=#b_literal{val=true},succ=Succ}=Br, Blocks) ->
#b_blk{is=Is} = map_get(Succ, Blocks),
case canonical_terminator_phis(Is, L) of
[] ->
{[],Succ};
[_|_]=Phis ->
{Phis ++ [Br],done}
end;
canonical_terminator(_L, #b_br{bool=#b_var{},succ=Succ}=Br, _Blocks) ->
{[Br],Succ};
canonical_terminator(_, _, _) -> none.
canonical_terminator_phis([#b_set{op=phi,args=PhiArgs}=Phi|Is], L) ->
{Value,L} = keyfind(L, 2, PhiArgs),
[Phi#b_set{op=copy,args=[Value]}|canonical_terminator_phis(Is, L)];
canonical_terminator_phis([#b_set{op=peek_message}=I|_], L) ->
%% We could get stuck into an infinite loop if we allowed the
%% comparisons to continue into this block. Force an unequal
%% compare with all other predecessors of this block.
[I#b_set{op=copy,args=[#b_literal{val=L}]}];
canonical_terminator_phis(_, _) -> [].
canonical_arg(#b_var{}=Var, VarMap) ->
case VarMap of
#{Var:=CanonicalVar} ->
CanonicalVar;
#{} ->
Var
end;
canonical_arg(#b_remote{mod=Mod,name=Name}, VarMap) ->
{remote,canonical_arg(Mod, VarMap),
canonical_arg(Name, VarMap)};
canonical_arg(Other, _VarMap) -> Other.
%% Shortcut branches to empty blocks if safe.
shortcut_nonempty_block(L, Blocks) ->
case map_get(L, Blocks) of
#b_blk{is=[],last=#b_br{bool=#b_literal{val=true},succ=Succ}}=Blk ->
%% This block is empty.
case is_forbidden(Succ, Blocks) of
false ->
shortcut_nonempty_block(Succ, Blocks);
true ->
{L,Blk}
end;
#b_blk{}=Blk ->
{L,Blk}
end.
is_forbidden(L, Blocks) ->
case map_get(L, Blocks) of
#b_blk{is=[#b_set{op=phi}|_]} -> true;
#b_blk{is=[#b_set{op=peek_message}|_]} -> true;
#b_blk{} -> false
end.