%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2007-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%% Purpose : Common utilities used by several optimization passes.
%%
-module(beam_utils).
-export([is_killed_block/2,is_killed/3,is_killed_at/3,
is_not_used/3,usage/3,
empty_label_index/0,index_label/3,index_labels/1,replace_labels/4,
code_at/2,bif_to_test/3,is_pure_test/1,
live_opt/1,delete_live_annos/1,combine_heap_needs/2,
anno_defs/1,
split_even/1
]).
-export_type([code_index/0,module_code/0,instruction/0]).
-import(lists, [flatmap/2,map/2,member/2,sort/1,reverse/1,splitwith/2]).
-define(is_const(Val), (Val =:= nil orelse
element(1, Val) =:= integer orelse
element(1, Val) =:= float orelse
element(1, Val) =:= atom orelse
element(1, Val) =:= literal)).
%% instruction() describes all instructions that are used during optimzation
%% (from beam_a to beam_z).
-type instruction() :: atom() | tuple().
-type code_index() :: gb_trees:tree(beam_asm:label(), [instruction()]).
-type int_function() :: {'function',beam_asm:function_name(),arity(),
beam_asm:label(),[instruction()]}.
-type module_code() ::
{module(),[_],[_],[int_function()],pos_integer()}.
%% Internal types.
-type fail() :: beam_asm:fail() | 'fail'.
-type test() :: {'test',atom(),fail(),[beam_asm:src()]} |
{'test',atom(),fail(),integer(),list(),beam_asm:reg()}.
-type result_cache() :: gb_trees:tree(beam_asm:label(), 'killed' | 'used').
-record(live,
{lbl :: code_index(), %Label to code index.
res :: result_cache()}). %Result cache for each label.
%% usage(Register, [Instruction], State) -> killed|not_used|used.
%% Determine the usage of Register in the instruction sequence.
%% The return value is one of:
%%
%% killed - The register is not used in any way.
%% not_used - The register is referenced only by an allocating instruction
%% (the actual value does not matter).
%% used - The register is used (its value do matter).
-spec usage(beam_asm:reg(), [instruction()], code_index()) ->
'killed' | 'not_used' | 'used'.
usage(R, Is, D) ->
St = #live{lbl=D,res=gb_trees:empty()},
{Usage,_} = check_liveness(R, Is, St),
Usage.
%% is_killed_block(Register, [Instruction]) -> true|false
%% Determine whether a register is killed by the instruction sequence inside
%% a block.
%%
%% If true is returned, it means that the register will not be
%% referenced in ANY way (not even indirectly by an allocate instruction);
%% i.e. it is OK to enter the instruction sequence with Register
%% containing garbage.
-spec is_killed_block(beam_asm:reg(), [instruction()]) -> boolean().
is_killed_block({x,X}, [{set,_,_,{alloc,Live,_}}|_]) ->
X >= Live;
is_killed_block(R, [{set,Ds,Ss,_Op}|Is]) ->
not member(R, Ss) andalso (member(R, Ds) orelse is_killed_block(R, Is));
is_killed_block(R, [{'%live',_,Regs}|Is]) ->
case R of
{x,X} when (Regs bsr X) band 1 =:= 0 -> true;
_ -> is_killed_block(R, Is)
end;
is_killed_block(_, []) -> false.
%% is_killed(Register, [Instruction], State) -> true|false
%% Determine whether a register is killed by the instruction sequence.
%% If true is returned, it means that the register will not be
%% referenced in ANY way (not even indirectly by an allocate instruction);
%% i.e. it is OK to enter the instruction sequence with Register
%% containing garbage.
%%
%% The state (constructed by index_instructions/1) is used to allow us
%% to determine the kill state across branches.
-spec is_killed(beam_asm:reg(), [instruction()], code_index()) -> boolean().
is_killed(R, Is, D) ->
St = #live{lbl=D,res=gb_trees:empty()},
case check_liveness(R, Is, St) of
{killed,_} -> true;
{_,_} -> false
end.
%% is_killed_at(Reg, Lbl, State) -> true|false
%% Determine whether Reg is killed at label Lbl.
-spec is_killed_at(beam_asm:reg(), beam_asm:label(), code_index()) -> boolean().
is_killed_at(R, Lbl, D) when is_integer(Lbl) ->
St0 = #live{lbl=D,res=gb_trees:empty()},
case check_liveness_at(R, Lbl, St0) of
{killed,_} -> true;
{_,_} -> false
end.
%% is_not_used(Register, [Instruction], State) -> true|false
%% Determine whether a register is never used in the instruction sequence
%% (it could still be referenced by an allocate instruction, meaning that
%% it MUST be initialized, but that its value does not matter).
%% The state is used to allow us to determine the usage state
%% across branches.
-spec is_not_used(beam_asm:reg(), [instruction()], code_index()) -> boolean().
is_not_used(R, Is, D) ->
St = #live{lbl=D,res=gb_trees:empty()},
case check_liveness(R, Is, St) of
{used,_} -> false;
{_,_} -> true
end.
%% index_labels(FunctionIs) -> State
%% Index the instruction sequence so that we can quickly
%% look up the instruction following a specific label.
-spec index_labels([instruction()]) -> code_index().
index_labels(Is) ->
index_labels_1(Is, []).
%% empty_label_index() -> State
%% Create an empty label index.
-spec empty_label_index() -> code_index().
empty_label_index() ->
gb_trees:empty().
%% index_label(Label, [Instruction], State) -> State
%% Add an index for a label.
-spec index_label(beam_asm:label(), [instruction()], code_index()) ->
code_index().
index_label(Lbl, Is0, Acc) ->
Is = drop_labels(Is0),
gb_trees:enter(Lbl, Is, Acc).
%% code_at(Label, State) -> [I].
%% Retrieve the code at the given label.
-spec code_at(beam_asm:label(), code_index()) -> [instruction()].
code_at(L, Ll) ->
gb_trees:get(L, Ll).
%% replace_labels(FunctionIs, Tail, ReplaceDb, Fallback) -> FunctionIs.
%% Replace all labels in instructions according to the ReplaceDb.
%% If label is not found the Fallback is called with the label to
%% produce a new one.
-spec replace_labels([instruction()],
[instruction()],
#{beam_asm:label() => beam_asm:label()},
fun((beam_asm:label()) -> term())) -> [instruction()].
replace_labels(Is, Acc, D, Fb) ->
replace_labels_1(Is, Acc, D, Fb).
%% bif_to_test(Bif, [Op], Fail) -> {test,Test,Fail,[Op]}
%% Convert a BIF to a test. Fail if not possible.
-spec bif_to_test(atom(), list(), fail()) -> test().
bif_to_test(is_atom, [_]=Ops, Fail) -> {test,is_atom,Fail,Ops};
bif_to_test(is_boolean, [_]=Ops, Fail) -> {test,is_boolean,Fail,Ops};
bif_to_test(is_binary, [_]=Ops, Fail) -> {test,is_binary,Fail,Ops};
bif_to_test(is_bitstring,[_]=Ops, Fail) -> {test,is_bitstr,Fail,Ops};
bif_to_test(is_float, [_]=Ops, Fail) -> {test,is_float,Fail,Ops};
bif_to_test(is_function, [_]=Ops, Fail) -> {test,is_function,Fail,Ops};
bif_to_test(is_function, [_,_]=Ops, Fail) -> {test,is_function2,Fail,Ops};
bif_to_test(is_integer, [_]=Ops, Fail) -> {test,is_integer,Fail,Ops};
bif_to_test(is_list, [_]=Ops, Fail) -> {test,is_list,Fail,Ops};
bif_to_test(is_map, [_]=Ops, Fail) -> {test,is_map,Fail,Ops};
bif_to_test(is_number, [_]=Ops, Fail) -> {test,is_number,Fail,Ops};
bif_to_test(is_pid, [_]=Ops, Fail) -> {test,is_pid,Fail,Ops};
bif_to_test(is_port, [_]=Ops, Fail) -> {test,is_port,Fail,Ops};
bif_to_test(is_reference, [_]=Ops, Fail) -> {test,is_reference,Fail,Ops};
bif_to_test(is_tuple, [_]=Ops, Fail) -> {test,is_tuple,Fail,Ops};
bif_to_test('=<', [A,B], Fail) -> {test,is_ge,Fail,[B,A]};
bif_to_test('>', [A,B], Fail) -> {test,is_lt,Fail,[B,A]};
bif_to_test('<', [_,_]=Ops, Fail) -> {test,is_lt,Fail,Ops};
bif_to_test('>=', [_,_]=Ops, Fail) -> {test,is_ge,Fail,Ops};
bif_to_test('==', [A,nil], Fail) -> {test,is_nil,Fail,[A]};
bif_to_test('==', [nil,A], Fail) -> {test,is_nil,Fail,[A]};
bif_to_test('==', [C,A], Fail) when ?is_const(C) ->
{test,is_eq,Fail,[A,C]};
bif_to_test('==', [_,_]=Ops, Fail) -> {test,is_eq,Fail,Ops};
bif_to_test('/=', [C,A], Fail) when ?is_const(C) ->
{test,is_ne,Fail,[A,C]};
bif_to_test('/=', [_,_]=Ops, Fail) -> {test,is_ne,Fail,Ops};
bif_to_test('=:=', [A,nil], Fail) -> {test,is_nil,Fail,[A]};
bif_to_test('=:=', [nil,A], Fail) -> {test,is_nil,Fail,[A]};
bif_to_test('=:=', [C,A], Fail) when ?is_const(C) ->
{test,is_eq_exact,Fail,[A,C]};
bif_to_test('=:=', [_,_]=Ops, Fail) -> {test,is_eq_exact,Fail,Ops};
bif_to_test('=/=', [C,A], Fail) when ?is_const(C) ->
{test,is_ne_exact,Fail,[A,C]};
bif_to_test('=/=', [_,_]=Ops, Fail) -> {test,is_ne_exact,Fail,Ops};
bif_to_test(is_record, [_,_,_]=Ops, Fail) -> {test,is_record,Fail,Ops}.
%% is_pure_test({test,Op,Fail,Ops}) -> true|false.
%% Return 'true' if the test instruction does not modify any
%% registers and/or bit syntax matching state.
%%
-spec is_pure_test(test()) -> boolean().
is_pure_test({test,is_eq,_,[_,_]}) -> true;
is_pure_test({test,is_ne,_,[_,_]}) -> true;
is_pure_test({test,is_eq_exact,_,[_,_]}) -> true;
is_pure_test({test,is_ne_exact,_,[_,_]}) -> true;
is_pure_test({test,is_ge,_,[_,_]}) -> true;
is_pure_test({test,is_lt,_,[_,_]}) -> true;
is_pure_test({test,is_nil,_,[_]}) -> true;
is_pure_test({test,is_nonempty_list,_,[_]}) -> true;
is_pure_test({test,test_arity,_,[_,_]}) -> true;
is_pure_test({test,has_map_fields,_,[_|_]}) -> true;
is_pure_test({test,is_bitstr,_,[_]}) -> true;
is_pure_test({test,is_function2,_,[_,_]}) -> true;
is_pure_test({test,Op,_,Ops}) ->
erl_internal:new_type_test(Op, length(Ops)).
%% live_opt([Instruction]) -> [Instruction].
%% Go through the instruction sequence in reverse execution
%% order, keep track of liveness and remove 'move' instructions
%% whose destination is a register that will not be used.
%% Also insert {'%live',Live,Regs} annotations at the beginning
%% and end of each block.
-spec live_opt([instruction()]) -> [instruction()].
live_opt(Is0) ->
{[{label,Fail}|_]=Bef,[Fi|Is]} =
splitwith(fun({func_info,_,_,_}) -> false;
(_) -> true
end, Is0),
{func_info,_,_,Live} = Fi,
D = gb_trees:insert(Fail, live_call(Live), gb_trees:empty()),
Bef ++ [Fi|live_opt(reverse(Is), 0, D, [])].
%% delete_live_annos([Instruction]) -> [Instruction].
%% Delete all live annotations.
-spec delete_live_annos([instruction()]) -> [instruction()].
delete_live_annos([{block,Bl0}|Is]) ->
case delete_live_annos(Bl0) of
[] -> delete_live_annos(Is);
[_|_]=Bl -> [{block,Bl}|delete_live_annos(Is)]
end;
delete_live_annos([{'%live',_,_}|Is]) ->
delete_live_annos(Is);
delete_live_annos([I|Is]) ->
[I|delete_live_annos(Is)];
delete_live_annos([]) -> [].
%% combine_heap_needs(HeapNeed1, HeapNeed2) -> HeapNeed
%% Combine the heap need for two allocation instructions.
-type heap_need_tag() :: 'floats' | 'words'.
-type heap_need() :: non_neg_integer() |
{'alloc',[{heap_need_tag(),non_neg_integer()}]}.
-spec combine_heap_needs(heap_need(), heap_need()) -> heap_need().
combine_heap_needs(H1, H2) when is_integer(H1), is_integer(H2) ->
H1 + H2;
combine_heap_needs(H1, H2) ->
combine_alloc_lists([H1,H2]).
%% anno_defs(Instructions) -> Instructions'
%% Add {'%def',RegisterBitmap} annotations to the beginning of
%% each block. Iff bit X is set in the the bitmap, it means
%% that {x,X} is defined when the block is entered.
-spec anno_defs([instruction()]) -> [instruction()].
anno_defs(Is0) ->
{Bef,[Fi|Is1]} =
splitwith(fun({func_info,_,_,_}) -> false;
(_) -> true
end, Is0),
{func_info,_,_,Arity} = Fi,
Regs = init_def_regs(Arity),
Is = defs(Is1, Regs, #{}),
Bef ++ [Fi|Is].
%% split_even/1
%% [1,2,3,4,5,6] -> {[1,3,5],[2,4,6]}
-spec split_even(list()) -> {list(),list()}.
split_even(Rs) -> split_even(Rs, [], []).
%%%
%%% Local functions.
%%%
%% check_liveness(Reg, [Instruction], #live{}) ->
%% {killed | not_used | used, #live{}}
%% Find out whether Reg is used or killed in instruction sequence.
%%
%% killed - Reg is assigned or killed by an allocation instruction.
%% not_used - the value of Reg is not used, but Reg must not be garbage
%% used - Reg is used
check_liveness(R, [{block,Blk}|Is], St0) ->
case check_liveness_block(R, Blk, St0) of
{transparent,St1} ->
check_liveness(R, Is, St1);
{alloc_used,St1} ->
%% Used by an allocating instruction, but value not referenced.
%% Must check the rest of the instructions.
not_used(check_liveness(R, Is, St1));
{Other,_}=Res when is_atom(Other) ->
Res
end;
check_liveness(R, [{label,_}|Is], St) ->
check_liveness(R, Is, St);
check_liveness(R, [{test,_,{f,Fail},As}|Is], St0) ->
case member(R, As) of
true ->
{used,St0};
false ->
case check_liveness_at(R, Fail, St0) of
{killed,St1} ->
check_liveness(R, Is, St1);
{not_used,St1} ->
not_used(check_liveness(R, Is, St1));
{used,_}=Used ->
Used
end
end;
check_liveness(R, [{test,Op,Fail,Live,Ss,Dst}|Is], St) ->
%% Check this instruction as a block to get a less conservative
%% result if the caller is is_not_used/3.
Block = [{set,[Dst],Ss,{alloc,Live,{bif,Op,Fail}}}],
check_liveness(R, [{block,Block}|Is], St);
check_liveness(R, [{select,_,R,_,_}|_], St) ->
{used,St};
check_liveness(R, [{select,_,_,Fail,Branches}|_], St) ->
check_liveness_everywhere(R, [Fail|Branches], St);
check_liveness(R, [{jump,{f,F}}|_], St) ->
check_liveness_at(R, F, St);
check_liveness(R, [{case_end,Used}|_], St) ->
check_liveness_ret(R, Used, St);
check_liveness(R, [{badmatch,Used}|_], St) ->
check_liveness_ret(R, Used, St);
check_liveness(_, [if_end|_], St) ->
{killed,St};
check_liveness(R, [{func_info,_,_,Ar}|_], St) ->
case R of
{x,X} when X < Ar -> {used,St};
_ -> {killed,St}
end;
check_liveness(R, [{kill,R}|_], St) ->
{killed,St};
check_liveness(R, [{kill,_}|Is], St) ->
check_liveness(R, Is, St);
check_liveness(R, [{bs_init,_,_,none,Ss,Dst}|Is], St) ->
case member(R, Ss) of
true ->
{used,St};
false ->
if
R =:= Dst -> {killed,St};
true -> check_liveness(R, Is, St)
end
end;
check_liveness(R, [{bs_init,_,_,Live,Ss,Dst}|Is], St) ->
case R of
{x,X} ->
case member(R, Ss) of
true ->
{used,St};
false ->
if
X < Live ->
not_used(check_liveness(R, Is, St));
true ->
{killed,St}
end
end;
{y,_} ->
case member(R, Ss) of
true -> {used,St};
false ->
if
R =:= Dst -> {killed,St};
true -> check_liveness(R, Is, St)
end
end
end;
check_liveness(R, [{deallocate,_}|Is], St) ->
case R of
{y,_} -> {killed,St};
_ -> check_liveness(R, Is, St)
end;
check_liveness({x,_}=R, [return|_], St) ->
case R of
{x,0} -> {used,St};
{x,_} -> {killed,St}
end;
check_liveness(R, [{call,Live,_}|Is], St) ->
case R of
{x,X} when X < Live -> {used,St};
{x,_} -> {killed,St};
{y,_} -> not_used(check_liveness(R, Is, St))
end;
check_liveness(R, [{call_ext,Live,_}=I|Is], St) ->
case R of
{x,X} when X < Live ->
{used,St};
{x,_} ->
{killed,St};
{y,_} ->
case beam_jump:is_exit_instruction(I) of
false ->
not_used(check_liveness(R, Is, St));
true ->
%% We must make sure we don't check beyond this
%% instruction or we will fall through into random
%% unrelated code and get stuck in a loop.
{killed,St}
end
end;
check_liveness(R, [{call_fun,Live}|Is], St) ->
case R of
{x,X} when X =< Live -> {used,St};
{x,_} -> {killed,St};
{y,_} -> not_used(check_liveness(R, Is, St))
end;
check_liveness(R, [{apply,Args}|Is], St) ->
case R of
{x,X} when X < Args+2 -> {used,St};
{x,_} -> {killed,St};
{y,_} -> not_used(check_liveness(R, Is, St))
end;
check_liveness(R, [{bif,Op,Fail,Ss,D}|Is], St) ->
Set = {set,[D],Ss,{bif,Op,Fail}},
check_liveness(R, [{block,[Set]}|Is], St);
check_liveness(R, [{gc_bif,Op,{f,Fail},Live,Ss,D}|Is], St) ->
Set = {set,[D],Ss,{alloc,Live,{gc_bif,Op,Fail}}},
check_liveness(R, [{block,[Set]}|Is], St);
check_liveness(R, [{bs_put,{f,0},_,Ss}|Is], St) ->
case member(R, Ss) of
true -> {used,St};
false -> check_liveness(R, Is, St)
end;
check_liveness(R, [{bs_restore2,S,_}|Is], St) ->
case R of
S -> {used,St};
_ -> check_liveness(R, Is, St)
end;
check_liveness(R, [{bs_save2,S,_}|Is], St) ->
case R of
S -> {used,St};
_ -> check_liveness(R, Is, St)
end;
check_liveness(R, [{move,S,D}|Is], St) ->
case R of
S -> {used,St};
D -> {killed,St};
_ -> check_liveness(R, Is, St)
end;
check_liveness(R, [{make_fun2,_,_,_,NumFree}|Is], St) ->
case R of
{x,X} when X < NumFree -> {used,St};
{x,_} -> {killed,St};
{y,_} -> not_used(check_liveness(R, Is, St))
end;
check_liveness({x,_}=R, [{'catch',_,_}|Is], St) ->
%% All x registers will be killed if an exception occurs.
%% Therefore we only need to check the liveness for the
%% instructions following the catch instruction.
check_liveness(R, Is, St);
check_liveness({x,_}=R, [{'try',_,_}|Is], St) ->
%% All x registers will be killed if an exception occurs.
%% Therefore we only need to check the liveness for the
%% instructions inside the 'try' block.
check_liveness(R, Is, St);
check_liveness(R, [{try_end,Y}|Is], St) ->
case R of
Y ->
{killed,St};
{y,_} ->
%% y registers will be used if an exception occurs and
%% control transfers to the label given in the previous
%% try/2 instruction.
{used,St};
_ ->
check_liveness(R, Is, St)
end;
check_liveness(R, [{catch_end,Y}|Is], St) ->
case R of
Y -> {killed,St};
_ -> check_liveness(R, Is, St)
end;
check_liveness(R, [{get_tuple_element,S,_,D}|Is], St) ->
case R of
S -> {used,St};
D -> {killed,St};
_ -> check_liveness(R, Is, St)
end;
check_liveness(R, [{bs_context_to_binary,S}|Is], St) ->
case R of
S -> {used,St};
_ -> check_liveness(R, Is, St)
end;
check_liveness(R, [{loop_rec,{f,_},{x,0}}|_], St) ->
case R of
{x,_} ->
{killed,St};
_ ->
%% y register. Rarely happens. Be very conversative and
%% assume it's used.
{used,St}
end;
check_liveness(R, [{loop_rec_end,{f,Fail}}|_], St) ->
check_liveness_at(R, Fail, St);
check_liveness(R, [{line,_}|Is], St) ->
check_liveness(R, Is, St);
check_liveness(R, [{get_map_elements,{f,Fail},S,{list,L}}|Is], St0) ->
{Ss,Ds} = split_even(L),
case member(R, [S|Ss]) of
true ->
{used,St0};
false ->
case check_liveness_at(R, Fail, St0) of
{killed,St}=Killed ->
case member(R, Ds) of
true -> Killed;
false -> check_liveness(R, Is, St)
end;
Other ->
Other
end
end;
check_liveness(R, [{put_map,F,Op,S,D,Live,{list,Puts}}|Is], St) ->
Set = {set,[D],[S|Puts],{alloc,Live,{put_map,Op,F}}},
check_liveness(R, [{block,[Set]}||Is], St);
check_liveness(R, [{test_heap,N,Live}|Is], St) ->
I = {block,[{set,[],[],{alloc,Live,{nozero,nostack,N,[]}}}]},
check_liveness(R, [I|Is], St);
check_liveness(R, [{allocate_zero,N,Live}|Is], St) ->
I = {block,[{set,[],[],{alloc,Live,{zero,N,0,[]}}}]},
check_liveness(R, [I|Is], St);
check_liveness(R, [{get_list,S,D1,D2}|Is], St) ->
I = {block,[{set,[D1,D2],[S],get_list}]},
check_liveness(R, [I|Is], St);
check_liveness(_R, Is, St) when is_list(Is) ->
%% Not implemented. Conservatively assume that the register is used.
{used,St}.
check_liveness_everywhere(R, Lbls, St0) ->
check_liveness_everywhere_1(R, Lbls, killed, St0).
check_liveness_everywhere_1(R, [{f,Lbl}|T], Res0, St0) ->
{Res1,St} = check_liveness_at(R, Lbl, St0),
Res = case Res1 of
killed -> Res0;
_ -> Res1
end,
case Res of
used -> {used,St};
_ -> check_liveness_everywhere_1(R, T, Res, St)
end;
check_liveness_everywhere_1(R, [_|T], Res, St) ->
check_liveness_everywhere_1(R, T, Res, St);
check_liveness_everywhere_1(_, [], Res, St) ->
{Res,St}.
check_liveness_at(R, Lbl, #live{lbl=Ll,res=ResMemorized}=St0) ->
case gb_trees:lookup(Lbl, ResMemorized) of
{value,Res} ->
{Res,St0};
none ->
{Res,St} = case gb_trees:lookup(Lbl, Ll) of
{value,Is} -> check_liveness(R, Is, St0);
none -> {used,St0}
end,
{Res,St#live{res=gb_trees:insert(Lbl, Res, St#live.res)}}
end.
not_used({killed,St}) -> {not_used,St};
not_used({_,_}=Res) -> Res.
check_liveness_ret(R, R, St) -> {used,St};
check_liveness_ret(_, _, St) -> {killed,St}.
%% check_liveness_block(Reg, [Instruction], State) ->
%% {killed | not_used | used | alloc_used | transparent,State'}
%% Finds out how Reg is used in the instruction sequence inside a block.
%% Returns one of:
%% killed - Reg is assigned a new value or killed by an
%% allocation instruction
%% not_used - The value is not used, but the register is referenced
%% e.g. by an allocation instruction
%% transparent - Reg is neither used nor killed
%% alloc_used - Used only in an allocate instruction
%% used - Reg is explicitly used by an instruction
%%
%% '%live' annotations are not allowed.
%%
%% (Unknown instructions will cause an exception.)
check_liveness_block({x,X}=R, [{set,Ds,Ss,{alloc,Live,Op}}|Is], St0) ->
if
X >= Live ->
{killed,St0};
true ->
case check_liveness_block_1(R, Ss, Ds, Op, Is, St0) of
{killed,St} -> {not_used,St};
{transparent,St} -> {alloc_used,St};
{_,_}=Res -> Res
end
end;
check_liveness_block({y,_}=R, [{set,Ds,Ss,{alloc,_Live,Op}}|Is], St) ->
check_liveness_block_1(R, Ss, Ds, Op, Is, St);
check_liveness_block(R, [{set,Ds,Ss,Op}|Is], St) ->
check_liveness_block_1(R, Ss, Ds, Op, Is, St);
check_liveness_block(_, [], St) -> {transparent,St}.
check_liveness_block_1(R, Ss, Ds, Op, Is, St0) ->
case member(R, Ss) of
true ->
{used,St0};
false ->
case check_liveness_block_2(R, Op, Ss, St0) of
{killed,St} ->
case member(R, Ds) of
true -> {killed,St};
false -> check_liveness_block(R, Is, St)
end;
{not_used,St} ->
not_used(case member(R, Ds) of
true -> {killed,St};
false -> check_liveness_block(R, Is, St)
end);
{used,St} ->
{used,St}
end
end.
check_liveness_block_2(R, {gc_bif,_Op,{f,Lbl}}, _Ss, St) ->
check_liveness_block_3(R, Lbl, St);
check_liveness_block_2(R, {bif,Op,{f,Lbl}}, Ss, St) ->
Arity = length(Ss),
case erl_internal:comp_op(Op, Arity) orelse
erl_internal:new_type_test(Op, Arity) of
true ->
{killed,St};
false ->
check_liveness_block_3(R, Lbl, St)
end;
check_liveness_block_2(R, {put_map,_Op,{f,Lbl}}, _Ss, St) ->
check_liveness_block_3(R, Lbl, St);
check_liveness_block_2(_, _, _, St) ->
{killed,St}.
check_liveness_block_3(_, 0, St) ->
{killed,St};
check_liveness_block_3(R, Lbl, St0) ->
check_liveness_at(R, Lbl, St0).
index_labels_1([{label,Lbl}|Is0], Acc) ->
Is = drop_labels(Is0),
index_labels_1(Is0, [{Lbl,Is}|Acc]);
index_labels_1([_|Is], Acc) ->
index_labels_1(Is, Acc);
index_labels_1([], Acc) -> gb_trees:from_orddict(sort(Acc)).
drop_labels([{label,_}|Is]) -> drop_labels(Is);
drop_labels(Is) -> Is.
replace_labels_1([{test,Test,{f,Lbl},Ops}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{test,Test,{f,label(Lbl, D, Fb)},Ops}|Acc], D, Fb);
replace_labels_1([{test,Test,{f,Lbl},Live,Ops,Dst}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{test,Test,{f,label(Lbl, D, Fb)},Live,Ops,Dst}|Acc], D, Fb);
replace_labels_1([{select,I,R,{f,Fail0},Vls0}|Is], Acc, D, Fb) ->
Vls = map(fun ({f,L}) -> {f,label(L, D, Fb)};
(Other) -> Other
end, Vls0),
Fail = label(Fail0, D, Fb),
replace_labels_1(Is, [{select,I,R,{f,Fail},Vls}|Acc], D, Fb);
replace_labels_1([{'try',R,{f,Lbl}}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{'try',R,{f,label(Lbl, D, Fb)}}|Acc], D, Fb);
replace_labels_1([{'catch',R,{f,Lbl}}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{'catch',R,{f,label(Lbl, D, Fb)}}|Acc], D, Fb);
replace_labels_1([{jump,{f,Lbl}}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{jump,{f,label(Lbl, D, Fb)}}|Acc], D, Fb);
replace_labels_1([{loop_rec,{f,Lbl},R}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{loop_rec,{f,label(Lbl, D, Fb)},R}|Acc], D, Fb);
replace_labels_1([{loop_rec_end,{f,Lbl}}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{loop_rec_end,{f,label(Lbl, D, Fb)}}|Acc], D, Fb);
replace_labels_1([{wait,{f,Lbl}}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{wait,{f,label(Lbl, D, Fb)}}|Acc], D, Fb);
replace_labels_1([{wait_timeout,{f,Lbl},To}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{wait_timeout,{f,label(Lbl, D, Fb)},To}|Acc], D, Fb);
replace_labels_1([{bif,Name,{f,Lbl},As,R}|Is], Acc, D, Fb) when Lbl =/= 0 ->
replace_labels_1(Is, [{bif,Name,{f,label(Lbl, D, Fb)},As,R}|Acc], D, Fb);
replace_labels_1([{gc_bif,Name,{f,Lbl},Live,As,R}|Is], Acc, D, Fb) when Lbl =/= 0 ->
replace_labels_1(Is, [{gc_bif,Name,{f,label(Lbl, D, Fb)},Live,As,R}|Acc], D, Fb);
replace_labels_1([{call,Ar,{f,Lbl}}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{call,Ar,{f,label(Lbl, D, Fb)}}|Acc], D, Fb);
replace_labels_1([{make_fun2,{f,Lbl},U1,U2,U3}|Is], Acc, D, Fb) ->
replace_labels_1(Is, [{make_fun2,{f,label(Lbl, D, Fb)},U1,U2,U3}|Acc], D, Fb);
replace_labels_1([{bs_init,{f,Lbl},Info,Live,Ss,Dst}|Is], Acc, D, Fb) when Lbl =/= 0 ->
replace_labels_1(Is, [{bs_init,{f,label(Lbl, D, Fb)},Info,Live,Ss,Dst}|Acc], D, Fb);
replace_labels_1([{bs_put,{f,Lbl},Info,Ss}|Is], Acc, D, Fb) when Lbl =/= 0 ->
replace_labels_1(Is, [{bs_put,{f,label(Lbl, D, Fb)},Info,Ss}|Acc], D, Fb);
replace_labels_1([{put_map=I,{f,Lbl},Op,Src,Dst,Live,List}|Is], Acc, D, Fb)
when Lbl =/= 0 ->
replace_labels_1(Is, [{I,{f,label(Lbl, D, Fb)},Op,Src,Dst,Live,List}|Acc], D, Fb);
replace_labels_1([{get_map_elements=I,{f,Lbl},Src,List}|Is], Acc, D, Fb) when Lbl =/= 0 ->
replace_labels_1(Is, [{I,{f,label(Lbl, D, Fb)},Src,List}|Acc], D, Fb);
replace_labels_1([I|Is], Acc, D, Fb) ->
replace_labels_1(Is, [I|Acc], D, Fb);
replace_labels_1([], Acc, _, _) -> Acc.
label(Old, D, Fb) ->
case D of
#{Old := New} -> New;
_ -> Fb(Old)
end.
%% Help function for combine_heap_needs.
combine_alloc_lists(Al0) ->
Al1 = flatmap(fun(Words) when is_integer(Words) ->
[{words,Words}];
({alloc,List}) ->
List
end, Al0),
Al2 = sofs:relation(Al1),
Al3 = sofs:relation_to_family(Al2),
Al4 = sofs:to_external(Al3),
[{Tag,lists:sum(L)} || {Tag,L} <- Al4].
%% live_opt/4.
%% Bit syntax instructions.
live_opt([{bs_context_to_binary,Src}=I|Is], Regs0, D, Acc) ->
Regs = x_live([Src], Regs0),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{bs_init,Fail,_,none,Ss,Dst}=I|Is], Regs0, D, Acc) ->
Regs1 = x_live(Ss, x_dead([Dst], Regs0)),
Regs = live_join_label(Fail, D, Regs1),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{bs_init,Fail,Info,Live0,Ss,Dst}|Is], Regs0, D, Acc) ->
Regs1 = x_dead([Dst], Regs0),
Live = live_regs(Regs1),
true = Live =< Live0, %Assertion.
Regs2 = live_call(Live),
Regs3 = x_live(Ss, Regs2),
Regs = live_join_label(Fail, D, Regs3),
I = {bs_init,Fail,Info,Live,Ss,Dst},
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{bs_put,Fail,_,Ss}=I|Is], Regs0, D, Acc) ->
Regs1 = x_live(Ss, Regs0),
Regs = live_join_label(Fail, D, Regs1),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{bs_restore2,Src,_}=I|Is], Regs0, D, Acc) ->
Regs = x_live([Src], Regs0),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{bs_save2,Src,_}=I|Is], Regs0, D, Acc) ->
Regs = x_live([Src], Regs0),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{test,bs_start_match2,Fail,Live,[Src,_],_}=I|Is], _, D, Acc) ->
Regs0 = live_call(Live),
Regs1 = x_live([Src], Regs0),
Regs = live_join_label(Fail, D, Regs1),
live_opt(Is, Regs, D, [I|Acc]);
%% Other instructions.
live_opt([{block,Bl0}|Is], Regs0, D, Acc) ->
Live0 = {'%live',live_regs(Regs0),Regs0},
{Bl,Regs} = live_opt_block(reverse(Bl0), Regs0, D, [Live0]),
Live = {'%live',live_regs(Regs),Regs},
live_opt(Is, Regs, D, [{block,[Live|Bl]}|Acc]);
live_opt([build_stacktrace=I|Is], _, D, Acc) ->
live_opt(Is, live_call(1), D, [I|Acc]);
live_opt([{label,L}=I|Is], Regs, D0, Acc) ->
D = gb_trees:insert(L, Regs, D0),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{jump,{f,L}}=I|Is], _, D, Acc) ->
Regs = gb_trees:get(L, D),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([return=I|Is], _, D, Acc) ->
live_opt(Is, 1, D, [I|Acc]);
live_opt([{catch_end,_}=I|Is], _, D, Acc) ->
live_opt(Is, live_call(1), D, [I|Acc]);
live_opt([{badmatch,Src}=I|Is], _, D, Acc) ->
Regs = x_live([Src], 0),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{case_end,Src}=I|Is], _, D, Acc) ->
Regs = x_live([Src], 0),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{try_case_end,Src}=I|Is], _, D, Acc) ->
Regs = x_live([Src], 0),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([if_end=I|Is], _, D, Acc) ->
Regs = 0,
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{call,Arity,_}=I|Is], _, D, Acc) ->
live_opt(Is, live_call(Arity), D, [I|Acc]);
live_opt([{call_ext,Arity,_}=I|Is], _, D, Acc) ->
live_opt(Is, live_call(Arity), D, [I|Acc]);
live_opt([{call_fun,Arity}=I|Is], _, D, Acc) ->
live_opt(Is, live_call(Arity+1), D, [I|Acc]);
live_opt([{apply,Arity}=I|Is], _, D, Acc) ->
live_opt(Is, live_call(Arity+2), D, [I|Acc]);
live_opt([{make_fun2,_,_,_,Arity}=I|Is], _, D, Acc) ->
live_opt(Is, live_call(Arity), D, [I|Acc]);
live_opt([{test,_,Fail,Ss}=I|Is], Regs0, D, Acc) ->
Regs1 = x_live(Ss, Regs0),
Regs = live_join_label(Fail, D, Regs1),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{test,_,Fail,Live,Ss,_}=I|Is], _, D, Acc) ->
Regs0 = live_call(Live),
Regs1 = x_live(Ss, Regs0),
Regs = live_join_label(Fail, D, Regs1),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{select,_,Src,Fail,List}=I|Is], Regs0, D, Acc) ->
Regs1 = x_live([Src], Regs0),
Regs = live_join_labels([Fail|List], D, Regs1),
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{try_case,Y}=I|Is], Regs0, D, Acc) ->
Regs = live_call(1),
case Regs0 of
0 ->
live_opt(Is, Regs, D, [{try_end,Y}|Acc]);
_ ->
live_opt(Is, live_call(1), D, [I|Acc])
end;
live_opt([{loop_rec,_Fail,_Dst}=I|Is], _, D, Acc) ->
live_opt(Is, 0, D, [I|Acc]);
live_opt([timeout=I|Is], _, D, Acc) ->
live_opt(Is, 0, D, [I|Acc]);
live_opt([{wait,_}=I|Is], _, D, Acc) ->
live_opt(Is, 0, D, [I|Acc]);
live_opt([{get_map_elements,Fail,Src,{list,List}}=I|Is], Regs0, D, Acc) ->
{Ss,Ds} = split_even(List),
Regs1 = x_live([Src|Ss], x_dead(Ds, Regs0)),
Regs = live_join_label(Fail, D, Regs1),
live_opt(Is, Regs, D, [I|Acc]);
%% Transparent instructions - they neither use nor modify x registers.
live_opt([{deallocate,_}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{kill,_}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{try_end,_}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{loop_rec_end,_}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{wait_timeout,_,nil}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{wait_timeout,_,{Tag,_}}=I|Is], Regs, D, Acc) when Tag =/= x ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{line,_}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
%% The following instructions can occur if the "compilation" has been
%% started from a .S file using the 'from_asm' option.
live_opt([{trim,_,_}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{'%',_}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{recv_set,_}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([{recv_mark,_}=I|Is], Regs, D, Acc) ->
live_opt(Is, Regs, D, [I|Acc]);
live_opt([], _, _, Acc) -> Acc.
live_opt_block([{set,Ds,Ss,Op0}|Is], Regs0, D, Acc) ->
Regs1 = x_live(Ss, x_dead(Ds, Regs0)),
{Op, Regs} = live_opt_block_op(Op0, Regs1, D),
I = {set, Ds, Ss, Op},
case Ds of
[{x,X}] ->
case (not is_live(X, Regs0)) andalso Op =:= move of
true ->
live_opt_block(Is, Regs0, D, Acc);
false ->
live_opt_block(Is, Regs, D, [I|Acc])
end;
_ ->
live_opt_block(Is, Regs, D, [I|Acc])
end;
live_opt_block([{'%live',_,_}|Is], Regs, D, Acc) ->
live_opt_block(Is, Regs, D, Acc);
live_opt_block([], Regs, _, Acc) -> {Acc,Regs}.
live_opt_block_op({alloc,Live0,AllocOp}, Regs0, D) ->
Regs =
case AllocOp of
{Kind, _N, Fail} when Kind =:= gc_bif; Kind =:= put_map ->
live_join_label(Fail, D, Regs0);
_ ->
Regs0
end,
%% The life-time analysis used by the code generator is sometimes too
%% conservative, so it may be possible to lower the number of live
%% registers based on the exact liveness information. The main benefit is
%% that more optimizations that depend on liveness information (such as the
%% beam_bool and beam_dead passes) may be applied.
Live = live_regs(Regs),
true = Live =< Live0,
{{alloc,Live,AllocOp}, live_call(Live)};
live_opt_block_op({bif,_N,Fail} = Op, Regs, D) ->
{Op, live_join_label(Fail, D, Regs)};
live_opt_block_op(Op, Regs, _D) ->
{Op, Regs}.
live_join_labels([{f,L}|T], D, Regs0) when L =/= 0 ->
Regs = gb_trees:get(L, D) bor Regs0,
live_join_labels(T, D, Regs);
live_join_labels([_|T], D, Regs) ->
live_join_labels(T, D, Regs);
live_join_labels([], _, Regs) -> Regs.
live_join_label({f,0}, _, Regs) ->
Regs;
live_join_label({f,L}, D, Regs) ->
gb_trees:get(L, D) bor Regs.
live_call(Live) -> (1 bsl Live) - 1.
live_regs(Regs) ->
live_regs_1(0, Regs).
live_regs_1(N, 0) -> N;
live_regs_1(N, Regs) -> live_regs_1(N+1, Regs bsr 1).
x_dead([{x,N}|Rs], Regs) -> x_dead(Rs, Regs band (bnot (1 bsl N)));
x_dead([_|Rs], Regs) -> x_dead(Rs, Regs);
x_dead([], Regs) -> Regs.
x_live([{x,N}|Rs], Regs) -> x_live(Rs, Regs bor (1 bsl N));
x_live([_|Rs], Regs) -> x_live(Rs, Regs);
x_live([], Regs) -> Regs.
is_live(X, Regs) -> ((Regs bsr X) band 1) =:= 1.
split_even([], Ss, Ds) ->
{reverse(Ss),reverse(Ds)};
split_even([S,D|Rs], Ss, Ds) ->
split_even(Rs, [S|Ss], [D|Ds]).
%%%
%%% Add annotations for defined registers.
%%%
%%% This analysis is done by scanning the instructions in
%%% execution order.
%%%
defs([{apply,_}=I|Is], _Regs, D) ->
[I|defs(Is, 1, D)];
defs([{bif,_,{f,Fail},_Src,Dst}=I|Is], Regs0, D) ->
Regs = def_regs([Dst], Regs0),
[I|defs(Is, Regs, update_regs(Fail, Regs0, D))];
defs([{block,Block0}|Is], Regs0, D0) ->
{Block,Regs,D} = defs_list(Block0, Regs0, D0),
[{block,[{'%def',Regs0}|Block]}|defs(Is, Regs, D)];
defs([{bs_init,{f,L},_,_,_,Dst}=I|Is], Regs0, D) ->
Regs = def_regs([Dst], Regs0),
[I|defs(Is, Regs, update_regs(L, Regs, D))];
defs([{bs_put,{f,L},_,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, update_regs(L, Regs, D))];
defs([build_stacktrace=I|Is], _Regs, D) ->
[I|defs(Is, 1, D)];
defs([{call,_,_}=I|Is], _Regs, D) ->
[I|defs(Is, 1, D)];
defs([{call_ext,_,{extfunc,M,F,A}}=I|Is], _Regs, D) ->
case erl_bifs:is_exit_bif(M, F, A) of
false ->
[I|defs(Is, 1, D)];
true ->
[I|defs_unreachable(Is, D)]
end;
defs([{call_ext,_,_}=I|Is], _Regs, D) ->
[I|defs(Is, 1, D)];
defs([{call_fun,_}=I|Is], _Regs, D) ->
[I|defs(Is, 1, D)];
defs([{'catch',_,{f,L}}=I|Is], Regs, D) ->
RegsAtLabel = init_def_regs(1),
[I|defs(Is, Regs, update_regs(L, RegsAtLabel, D))];
defs([{catch_end,_}=I|Is], _Regs, D) ->
Regs = init_def_regs(1),
[I|defs(Is, Regs, D)];
defs([{gc_bif,_,{f,Fail},Live,_Src,Dst}=I|Is], Regs0, D) ->
true = all_defined(Live, Regs0), %Assertion.
Regs = def_regs([Dst], init_def_regs(Live)),
[I|defs(Is, Regs, update_regs(Fail, Regs0, D))];
defs([{get_map_elements,{f,L},_Src,{list,DstList}}=I|Is], Regs0, D) ->
{_,Ds} = beam_utils:split_even(DstList),
Regs = def_regs(Ds, Regs0),
[I|defs(Is, Regs, update_regs(L, Regs0, D))];
defs([{get_tuple_element,_,_,Dst}=I|Is], Regs0, D) ->
Regs = def_regs([Dst], Regs0),
[I|defs(Is, Regs, D)];
defs([{jump,{f,L}}=I|Is], Regs, D) ->
[I|defs_unreachable(Is, update_regs(L, Regs, D))];
defs([{label,L}=I|Is], Regs0, D) ->
case D of
#{L:=Regs1} ->
Regs = Regs0 band Regs1,
[I|defs(Is, Regs, D)];
#{} ->
[I|defs(Is, Regs0, D)]
end;
defs([{loop_rec,{f,L},{x,0}}=I|Is], _Regs, D0) ->
RegsAtLabel = init_def_regs(0),
D = update_regs(L, RegsAtLabel, D0),
[I|defs(Is, init_def_regs(1), D)];
defs([{loop_rec_end,_}=I|Is], _Regs, D) ->
[I|defs(Is, 0, D)];
defs([{make_fun2,_,_,_,_}=I|Is], _Regs, D) ->
[I|defs(Is, 1, D)];
defs([{move,_,Dst}=I|Is], Regs0, D) ->
Regs = def_regs([Dst], Regs0),
[I|defs(Is, Regs, D)];
defs([{put_map,{f,Fail},_,_,Dst,_,_}=I|Is], Regs0, D) ->
Regs = def_regs([Dst], Regs0),
[I|defs(Is, Regs, update_regs(Fail, Regs0, D))];
defs([return=I|Is], _Regs, D) ->
[I|defs_unreachable(Is, D)];
defs([{select,_,_Src,Fail,List}=I|Is], Regs, D0) ->
D = update_list([Fail|List], Regs, D0),
[I|defs_unreachable(Is, D)];
defs([{test,_,{f,L},_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, update_regs(L, Regs, D))];
defs([{test,_,{f,L},Live,_,Dst}=I|Is], Regs0, D) ->
true = all_defined(Live, Regs0), %Assertion.
Regs = def_regs([Dst], init_def_regs(Live)),
[I|defs(Is, Regs, update_regs(L, Regs0, D))];
defs([{'try',_,{f,L}}=I|Is], Regs, D) ->
RegsAtLabel = init_def_regs(3),
[I|defs(Is, Regs, update_regs(L, RegsAtLabel, D))];
defs([{try_case,_}=I|Is], _Regs, D) ->
[I|defs(Is, init_def_regs(3), D)];
defs([{wait,_}=I|Is], _Regs, D) ->
[I|defs_unreachable(Is, D)];
defs([{wait_timeout,_,_}=I|Is], _Regs, D) ->
[I|defs(Is, 0, D)];
%% Exceptions.
defs([{badmatch,_}=I|Is], _Regs, D) ->
[I|defs_unreachable(Is, D)];
defs([{case_end,_}=I|Is], _Regs, D) ->
[I|defs_unreachable(Is, D)];
defs([if_end=I|Is], _Regs, D) ->
[I|defs_unreachable(Is, D)];
defs([{try_case_end,_}=I|Is], _Regs, D) ->
[I|defs_unreachable(Is, D)];
%% Neutral instructions
defs([{bs_context_to_binary,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{bs_restore2,_,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{bs_save2,_,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{deallocate,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{kill,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{line,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{recv_mark,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{recv_set,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([timeout=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{trim,_,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{try_end,_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([{'%',_}=I|Is], Regs, D) ->
[I|defs(Is, Regs, D)];
defs([], _, _) -> [].
defs_unreachable([{label,L}=I|Is], D) ->
case D of
#{L:=Regs} ->
[I|defs(Is, Regs, D)];
#{} ->
defs_unreachable(Is, D)
end;
defs_unreachable([_|Is], D) ->
defs_unreachable(Is, D);
defs_unreachable([], _D) -> [].
defs_list(Is, Regs, D) ->
defs_list(Is, Regs, D, []).
defs_list([{set,Ds,_,{alloc,Live,Info}}=I|Is], Regs0, D0, Acc) ->
true = all_defined(Live, Regs0), %Assertion.
D = case Info of
{gc_bif,_,{f,Fail}} ->
update_regs(Fail, Regs0, D0);
{put_map,_,{f,Fail}} ->
update_regs(Fail, Regs0, D0);
_ ->
D0
end,
Regs = def_regs(Ds, init_def_regs(Live)),
defs_list(Is, Regs, D, [I|Acc]);
defs_list([{set,Ds,_,Info}=I|Is], Regs0, D0, Acc) ->
D = case Info of
{bif,_,{f,Fail}} ->
update_regs(Fail, Regs0, D0);
{try_catch,'catch',{f,Fail}} ->
update_regs(Fail, init_def_regs(1), D0);
{try_catch,'try',{f,Fail}} ->
update_regs(Fail, init_def_regs(3), D0);
_ ->
D0
end,
Regs = def_regs(Ds, Regs0),
defs_list(Is, Regs, D, [I|Acc]);
defs_list([], Regs, D, Acc) ->
{reverse(Acc),Regs,D}.
init_def_regs(Arity) ->
(1 bsl Arity) - 1.
def_regs([{x,X}|T], Regs) ->
def_regs(T, Regs bor (1 bsl X));
def_regs([_|T], Regs) ->
def_regs(T, Regs);
def_regs([], Regs) -> Regs.
update_list([{f,L}|T], Regs, D0) ->
D = update_regs(L, Regs, D0),
update_list(T, Regs, D);
update_list([_|T], Regs, D) ->
update_list(T, Regs, D);
update_list([], _Regs, D) -> D.
update_regs(L, Regs0, D) ->
case D of
#{L:=Regs1} ->
Regs = Regs0 band Regs1,
D#{L:=Regs};
#{} ->
D#{L=>Regs0}
end.
all_defined(Live, Regs) ->
All = (1 bsl Live) - 1,
Regs band All =:= All.