/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 2010-2014. All Rights Reserved.
*
* The contents of this file are subject to the Erlang Public License,
* Version 1.1, (the "License"); you may not use this file except in
* compliance with the License. You should have received a copy of the
* Erlang Public License along with this software. If not, it can be
* retrieved online at http://www.erlang.org/.
*
* Software distributed under the License is distributed on an "AS IS"
* basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
* the License for the specific language governing rights and limitations
* under the License.
*
* %CopyrightEnd%
*/
/*
* Purpose: Dynamically loadable NIF library for cryptography.
* Based on OpenSSL.
*/
#ifdef __WIN32__
#include <windows.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "erl_nif.h"
#define OPENSSL_THREAD_DEFINES
#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#include <openssl/des.h>
/* #include <openssl/idea.h> This is not supported on the openssl OTP requires */
#include <openssl/dsa.h>
#include <openssl/rsa.h>
#include <openssl/aes.h>
#include <openssl/md5.h>
#include <openssl/md4.h>
#include <openssl/sha.h>
#include <openssl/ripemd.h>
#include <openssl/bn.h>
#include <openssl/objects.h>
#include <openssl/rc4.h>
#include <openssl/rc2.h>
#include <openssl/blowfish.h>
#include <openssl/rand.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#if OPENSSL_VERSION_NUMBER >= 0x1000000fL
#include <openssl/modes.h>
#endif
#include "crypto_callback.h"
#if OPENSSL_VERSION_NUMBER >= 0x00908000L && !defined(OPENSSL_NO_SHA224) && defined(NID_sha224)\
&& !defined(OPENSSL_NO_SHA256) /* disabled like this in my sha.h (?) */
# define HAVE_SHA224
#endif
#if OPENSSL_VERSION_NUMBER >= 0x00908000L && !defined(OPENSSL_NO_SHA256) && defined(NID_sha256)
# define HAVE_SHA256
#endif
#if OPENSSL_VERSION_NUMBER >= 0x00908000L && !defined(OPENSSL_NO_SHA384) && defined(NID_sha384)\
&& !defined(OPENSSL_NO_SHA512) /* disabled like this in my sha.h (?) */
# define HAVE_SHA384
#endif
#if OPENSSL_VERSION_NUMBER >= 0x00908000L && !defined(OPENSSL_NO_SHA512) && defined(NID_sha512)
# define HAVE_SHA512
#endif
#if OPENSSL_VERSION_NUMBER >= 0x0090705FL
# define HAVE_DES_ede3_cfb_encrypt
#endif
#if OPENSSL_VERSION_NUMBER >= 0x009080ffL \
&& !defined(OPENSSL_NO_EC) \
&& !defined(OPENSSL_NO_ECDH) \
&& !defined(OPENSSL_NO_ECDSA)
# define HAVE_EC
#endif
#if OPENSSL_VERSION_NUMBER >= 0x0090803fL
# define HAVE_AES_IGE
#endif
#if OPENSSL_VERSION_NUMBER >= 0x1000100fL
# define HAVE_GCM
#endif
#if defined(NID_chacha20) && !defined(OPENSSL_NO_CHACHA) && !defined(OPENSSL_NO_POLY1305)
# define HAVE_CHACHA20_POLY1305
#endif
#if defined(HAVE_EC)
#include <openssl/ec.h>
#include <openssl/ecdh.h>
#include <openssl/ecdsa.h>
#endif
#if defined(HAVE_CHACHA20_POLY1305)
#include <openssl/chacha.h>
#include <openssl/poly1305.h>
#if !defined(CHACHA20_NONCE_LEN)
# define CHACHA20_NONCE_LEN 8
#endif
#if !defined(POLY1305_TAG_LEN)
# define POLY1305_TAG_LEN 16
#endif
#endif
#ifdef VALGRIND
# include <valgrind/memcheck.h>
/* libcrypto mixes supplied buffer contents into its entropy pool,
which makes valgrind complain about the use of uninitialized data.
We use this valgrind "request" to make sure that no such seemingly
undefined data is returned.
*/
# define ERL_VALGRIND_MAKE_MEM_DEFINED(ptr,size) \
VALGRIND_MAKE_MEM_DEFINED(ptr,size)
# define ERL_VALGRIND_ASSERT_MEM_DEFINED(Ptr,Size) \
do { \
int __erl_valgrind_mem_defined = VALGRIND_CHECK_MEM_IS_DEFINED((Ptr),(Size)); \
if (__erl_valgrind_mem_defined != 0) { \
fprintf(stderr,"\r\n####### VALGRIND_ASSSERT(%p,%ld) failed at %s:%d\r\n", \
(Ptr),(long)(Size), __FILE__, __LINE__); \
abort(); \
} \
} while (0)
#else
# define ERL_VALGRIND_MAKE_MEM_DEFINED(ptr,size)
# define ERL_VALGRIND_ASSERT_MEM_DEFINED(ptr,size)
#endif
#ifdef DEBUG
# define ASSERT(e) \
((void) ((e) ? 1 : (fprintf(stderr,"Assert '%s' failed at %s:%d\n",\
#e, __FILE__, __LINE__), abort(), 0)))
#else
# define ASSERT(e) ((void) 1)
#endif
#ifdef __GNUC__
# define INLINE __inline__
#elif defined(__WIN32__)
# define INLINE __forceinline
#else
# define INLINE
#endif
#define get_int32(s) ((((unsigned char*) (s))[0] << 24) | \
(((unsigned char*) (s))[1] << 16) | \
(((unsigned char*) (s))[2] << 8) | \
(((unsigned char*) (s))[3]))
#define put_int32(s,i) \
{ (s)[0] = (char)(((i) >> 24) & 0xff);\
(s)[1] = (char)(((i) >> 16) & 0xff);\
(s)[2] = (char)(((i) >> 8) & 0xff);\
(s)[3] = (char)((i) & 0xff);\
}
/* This shall correspond to the similar macro in crypto.erl */
/* Current value is: erlang:system_info(context_reductions) * 10 */
#define MAX_BYTES_TO_NIF 20000
#define CONSUME_REDS(NifEnv, Ibin) \
do { \
int _cost = ((Ibin).size * 100) / MAX_BYTES_TO_NIF;\
if (_cost) { \
(void) enif_consume_timeslice((NifEnv), \
(_cost > 100) ? 100 : _cost); \
} \
} while (0)
/* NIF interface declarations */
static int load(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info);
static int upgrade(ErlNifEnv* env, void** priv_data, void** old_priv_data, ERL_NIF_TERM load_info);
static void unload(ErlNifEnv* env, void* priv_data);
/* The NIFs: */
static ERL_NIF_TERM info_lib(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM algorithms(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM md5(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM md5_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM md5_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM md5_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ripemd160(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ripemd160_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ripemd160_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ripemd160_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha224_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha224_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha224_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha224_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha256_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha256_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha256_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha256_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha384_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha384_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha384_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha384_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha512_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha512_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha512_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha512_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM md4(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM md4_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM md4_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM md4_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM md5_mac_n(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha_mac_n(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha224_mac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha256_mac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha384_mac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM sha512_mac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hmac_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hmac_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hmac_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM des_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM des_cfb_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM des_ecb_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM des_ede3_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM des_ede3_cfb_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_cfb_8_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_cfb_128_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_ctr_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_ctr_stream_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_ecb_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rand_bytes_1(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM strong_rand_bytes_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rand_bytes_3(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM strong_rand_mpint_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rand_uniform_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM mod_exp_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dss_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rsa_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_ige_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM do_exor(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rc4_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rc4_set_key(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rc4_encrypt_with_state(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rc2_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rsa_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dss_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rsa_public_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rsa_private_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dh_generate_parameters_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dh_check(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dh_generate_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dh_compute_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM srp_value_B_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM srp_user_secret_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM srp_host_secret_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM bf_cfb64_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM bf_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM bf_ecb_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM blowfish_ofb64_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ec_key_generate(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ecdsa_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ecdsa_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ecdh_compute_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rand_seed_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_gcm_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_gcm_decrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM chacha20_poly1305_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM chacha20_poly1305_decrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
/* helpers */
static void init_algorithms_types(ErlNifEnv*);
static void init_digest_types(ErlNifEnv* env);
static void hmac_md5(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf);
static void hmac_sha1(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf);
#ifdef HAVE_SHA224
static void hmac_sha224(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf);
#endif
#ifdef HAVE_SHA256
static void hmac_sha256(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf);
#endif
#ifdef HAVE_SHA384
static void hmac_sha384(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf);
#endif
#ifdef HAVE_SHA512
static void hmac_sha512(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf);
#endif
#ifdef HAVE_EC
static EC_KEY* ec_key_new(ErlNifEnv* env, ERL_NIF_TERM curve_arg);
static int term2point(ErlNifEnv* env, ERL_NIF_TERM term,
EC_GROUP *group, EC_POINT **pptr);
#endif
static int library_refc = 0; /* number of users of this dynamic library */
static ErlNifFunc nif_funcs[] = {
{"info_lib", 0, info_lib},
{"algorithms", 0, algorithms},
{"md5", 1, md5},
{"md5_init", 0, md5_init},
{"md5_update", 2, md5_update},
{"md5_final", 1, md5_final},
{"ripemd160", 1, ripemd160},
{"ripemd160_init", 0, ripemd160_init},
{"ripemd160_update", 2, ripemd160_update},
{"ripemd160_final", 1, ripemd160_final},
{"sha", 1, sha},
{"sha_init", 0, sha_init},
{"sha_update", 2, sha_update},
{"sha_final", 1, sha_final},
{"sha224_nif", 1, sha224_nif},
{"sha224_init_nif", 0, sha224_init_nif},
{"sha224_update_nif", 2, sha224_update_nif},
{"sha224_final_nif", 1, sha224_final_nif},
{"sha256_nif", 1, sha256_nif},
{"sha256_init_nif", 0, sha256_init_nif},
{"sha256_update_nif", 2, sha256_update_nif},
{"sha256_final_nif", 1, sha256_final_nif},
{"sha384_nif", 1, sha384_nif},
{"sha384_init_nif", 0, sha384_init_nif},
{"sha384_update_nif", 2, sha384_update_nif},
{"sha384_final_nif", 1, sha384_final_nif},
{"sha512_nif", 1, sha512_nif},
{"sha512_init_nif", 0, sha512_init_nif},
{"sha512_update_nif", 2, sha512_update_nif},
{"sha512_final_nif", 1, sha512_final_nif},
{"md4", 1, md4},
{"md4_init", 0, md4_init},
{"md4_update", 2, md4_update},
{"md4_final", 1, md4_final},
{"md5_mac_n", 3, md5_mac_n},
{"sha_mac_n", 3, sha_mac_n},
{"sha224_mac_nif", 3, sha224_mac_nif},
{"sha256_mac_nif", 3, sha256_mac_nif},
{"sha384_mac_nif", 3, sha384_mac_nif},
{"sha512_mac_nif", 3, sha512_mac_nif},
{"hmac_init", 2, hmac_init},
{"hmac_update", 2, hmac_update},
{"hmac_final", 1, hmac_final},
{"hmac_final_n", 2, hmac_final},
{"des_cbc_crypt", 4, des_cbc_crypt},
{"des_cfb_crypt", 4, des_cfb_crypt},
{"des_ecb_crypt", 3, des_ecb_crypt},
{"des_ede3_cbc_crypt", 6, des_ede3_cbc_crypt},
{"des_ede3_cfb_crypt_nif", 6, des_ede3_cfb_crypt_nif},
{"aes_cfb_8_crypt", 4, aes_cfb_8_crypt},
{"aes_cfb_128_crypt", 4, aes_cfb_128_crypt},
{"aes_ctr_encrypt", 3, aes_ctr_encrypt},
{"aes_ctr_decrypt", 3, aes_ctr_encrypt},
{"aes_ctr_stream_encrypt", 2, aes_ctr_stream_encrypt},
{"aes_ctr_stream_decrypt", 2, aes_ctr_stream_encrypt},
{"aes_ecb_crypt", 3, aes_ecb_crypt},
{"rand_bytes", 1, rand_bytes_1},
{"strong_rand_bytes_nif", 1, strong_rand_bytes_nif},
{"rand_bytes", 3, rand_bytes_3},
{"strong_rand_mpint_nif", 3, strong_rand_mpint_nif},
{"rand_uniform_nif", 2, rand_uniform_nif},
{"mod_exp_nif", 4, mod_exp_nif},
{"dss_verify_nif", 4, dss_verify_nif},
{"rsa_verify_nif", 4, rsa_verify_nif},
{"aes_cbc_crypt", 4, aes_cbc_crypt},
{"aes_ige_crypt_nif", 4, aes_ige_crypt_nif},
{"do_exor", 2, do_exor},
{"rc4_encrypt", 2, rc4_encrypt},
{"rc4_set_key", 1, rc4_set_key},
{"rc4_encrypt_with_state", 2, rc4_encrypt_with_state},
{"rc2_cbc_crypt", 4, rc2_cbc_crypt},
{"rsa_sign_nif", 3, rsa_sign_nif},
{"dss_sign_nif", 3, dss_sign_nif},
{"rsa_public_crypt", 4, rsa_public_crypt},
{"rsa_private_crypt", 4, rsa_private_crypt},
{"dh_generate_parameters_nif", 2, dh_generate_parameters_nif},
{"dh_check", 1, dh_check},
{"dh_generate_key_nif", 3, dh_generate_key_nif},
{"dh_compute_key_nif", 3, dh_compute_key_nif},
{"srp_value_B_nif", 5, srp_value_B_nif},
{"srp_user_secret_nif", 7, srp_user_secret_nif},
{"srp_host_secret_nif", 5, srp_host_secret_nif},
{"bf_cfb64_crypt", 4, bf_cfb64_crypt},
{"bf_cbc_crypt", 4, bf_cbc_crypt},
{"bf_ecb_crypt", 3, bf_ecb_crypt},
{"blowfish_ofb64_encrypt", 3, blowfish_ofb64_encrypt},
{"ec_key_generate", 2, ec_key_generate},
{"ecdsa_sign_nif", 4, ecdsa_sign_nif},
{"ecdsa_verify_nif", 5, ecdsa_verify_nif},
{"ecdh_compute_key_nif", 3, ecdh_compute_key_nif},
{"rand_seed_nif", 1, rand_seed_nif},
{"aes_gcm_encrypt", 4, aes_gcm_encrypt},
{"aes_gcm_decrypt", 5, aes_gcm_decrypt},
{"chacha20_poly1305_encrypt", 4, chacha20_poly1305_encrypt},
{"chacha20_poly1305_decrypt", 5, chacha20_poly1305_decrypt}
};
ERL_NIF_INIT(crypto,nif_funcs,load,NULL,upgrade,unload)
#define MD5_CTX_LEN (sizeof(MD5_CTX))
#define MD5_LEN 16
#define MD5_LEN_96 12
#define MD4_CTX_LEN (sizeof(MD4_CTX))
#define MD4_LEN 16
#define RIPEMD160_CTX_LEN (sizeof(RIPEMD160_CTX))
#define RIPEMD160_LEN 20
#define SHA_CTX_LEN (sizeof(SHA_CTX))
#define SHA_LEN 20
#define SHA_LEN_96 12
#define SHA224_LEN (224/8)
#define SHA256_LEN (256/8)
#define SHA384_LEN (384/8)
#define SHA512_LEN (512/8)
#define HMAC_INT_LEN 64
#define HMAC_INT2_LEN 128
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
static ERL_NIF_TERM atom_true;
static ERL_NIF_TERM atom_false;
static ERL_NIF_TERM atom_sha;
static ERL_NIF_TERM atom_sha224;
static ERL_NIF_TERM atom_sha256;
static ERL_NIF_TERM atom_sha384;
static ERL_NIF_TERM atom_sha512;
static ERL_NIF_TERM atom_md5;
static ERL_NIF_TERM atom_md4;
static ERL_NIF_TERM atom_ripemd160;
static ERL_NIF_TERM atom_error;
static ERL_NIF_TERM atom_rsa_pkcs1_padding;
static ERL_NIF_TERM atom_rsa_pkcs1_oaep_padding;
static ERL_NIF_TERM atom_rsa_no_padding;
static ERL_NIF_TERM atom_undefined;
static ERL_NIF_TERM atom_ok;
static ERL_NIF_TERM atom_not_prime;
static ERL_NIF_TERM atom_not_strong_prime;
static ERL_NIF_TERM atom_unable_to_check_generator;
static ERL_NIF_TERM atom_not_suitable_generator;
static ERL_NIF_TERM atom_check_failed;
static ERL_NIF_TERM atom_unknown;
static ERL_NIF_TERM atom_none;
static ERL_NIF_TERM atom_notsup;
static ERL_NIF_TERM atom_digest;
#if defined(HAVE_EC)
static ERL_NIF_TERM atom_ec;
static ERL_NIF_TERM atom_prime_field;
static ERL_NIF_TERM atom_characteristic_two_field;
static ERL_NIF_TERM atom_tpbasis;
static ERL_NIF_TERM atom_ppbasis;
static ERL_NIF_TERM atom_onbasis;
#endif
static ErlNifResourceType* hmac_context_rtype;
struct hmac_context
{
ErlNifMutex* mtx;
int alive;
HMAC_CTX ctx;
};
static void hmac_context_dtor(ErlNifEnv* env, struct hmac_context*);
/*
#define PRINTF_ERR0(FMT) enif_fprintf(stderr, FMT "\n")
#define PRINTF_ERR1(FMT, A1) enif_fprintf(stderr, FMT "\n", A1)
#define PRINTF_ERR2(FMT, A1, A2) enif_fprintf(stderr, FMT "\n", A1, A2)
*/
#define PRINTF_ERR0(FMT)
#define PRINTF_ERR1(FMT,A1)
#define PRINTF_ERR2(FMT,A1,A2)
#ifdef __OSE__
/* For crypto on OSE we have to initialize the crypto library on each
process that uses it. So since we do not know which scheduler is going
to execute the nif we have to check before each nif call that we have
initialized crypto in that process. */
#include "ose.h"
#include "openssl/osessl.h"
static ErlNifTSDKey crypto_init_key;
static int check_ose_crypto(void);
static int init_ose_crypto(void);
static int check_ose_crypto() {
int key = (int)enif_tsd_get(crypto_init_key);
if (!key) {
if (!CRYPTO_OSE5_init()) {
PRINTF_ERR0("CRYPTO: Call to CRYPTO_OSE5_init failed");
return 0;
}
enif_tsd_set(crypto_init_key,1);
}
return 1;
}
static int init_ose_crypto() {
/* Crypto nif upgrade does not work on OSE so no need to
destroy this key */
enif_tsd_key_create("crypto_init_key", &crypto_init_key);
return check_ose_crypto();
}
#define INIT_OSE_CRYPTO() init_ose_crypto()
#define CHECK_OSE_CRYPTO() check_ose_crypto()
#else
#define INIT_OSE_CRYPTO() 1
#define CHECK_OSE_CRYPTO()
#endif
static int verify_lib_version(void)
{
const unsigned long libv = SSLeay();
const unsigned long hdrv = OPENSSL_VERSION_NUMBER;
# define MAJOR_VER(V) ((unsigned long)(V) >> (7*4))
if (MAJOR_VER(libv) != MAJOR_VER(hdrv)) {
PRINTF_ERR2("CRYPTO: INCOMPATIBLE SSL VERSION"
" lib=%lx header=%lx\n", libv, hdrv);
return 0;
}
return 1;
}
#ifdef HAVE_DYNAMIC_CRYPTO_LIB
# if defined(DEBUG)
static char crypto_callback_name[] = "crypto_callback.debug";
# elif defined(VALGRIND)
static char crypto_callback_name[] = "crypto_callback.valgrind";
# else
static char crypto_callback_name[] = "crypto_callback";
# endif
static int change_basename(ErlNifBinary* bin, char* buf, int bufsz, const char* newfile)
{
int i;
for (i = bin->size; i > 0; i--) {
if (bin->data[i-1] == '/')
break;
}
if (i + strlen(newfile) >= bufsz) {
PRINTF_ERR0("CRYPTO: lib name too long");
return 0;
}
memcpy(buf, bin->data, i);
strcpy(buf+i, newfile);
return 1;
}
static void error_handler(void* null, const char* errstr)
{
PRINTF_ERR1("CRYPTO LOADING ERROR: '%s'", errstr);
}
#endif /* HAVE_DYNAMIC_CRYPTO_LIB */
static int init(ErlNifEnv* env, ERL_NIF_TERM load_info)
{
ErlNifSysInfo sys_info;
get_crypto_callbacks_t* funcp;
struct crypto_callbacks* ccb;
int nlocks = 0;
int tpl_arity;
const ERL_NIF_TERM* tpl_array;
int vernum;
ErlNifBinary lib_bin;
char lib_buf[1000];
if (!INIT_OSE_CRYPTO())
return 0;
if (!verify_lib_version())
return 0;
/* load_info: {301, <<"/full/path/of/this/library">>} */
if (!enif_get_tuple(env, load_info, &tpl_arity, &tpl_array)
|| tpl_arity != 2
|| !enif_get_int(env, tpl_array[0], &vernum)
|| vernum != 301
|| !enif_inspect_binary(env, tpl_array[1], &lib_bin)) {
PRINTF_ERR1("CRYPTO: Invalid load_info '%T'", load_info);
return 0;
}
hmac_context_rtype = enif_open_resource_type(env, NULL, "hmac_context",
(ErlNifResourceDtor*) hmac_context_dtor,
ERL_NIF_RT_CREATE|ERL_NIF_RT_TAKEOVER,
NULL);
if (!hmac_context_rtype) {
PRINTF_ERR0("CRYPTO: Could not open resource type 'hmac_context'");
return 0;
}
if (library_refc > 0) {
/* Repeated loading of this library (module upgrade).
* Atoms and callbacks are already set, we are done.
*/
return 1;
}
atom_true = enif_make_atom(env,"true");
atom_false = enif_make_atom(env,"false");
atom_sha = enif_make_atom(env,"sha");
atom_sha224 = enif_make_atom(env,"sha224");
atom_sha256 = enif_make_atom(env,"sha256");
atom_sha384 = enif_make_atom(env,"sha384");
atom_sha512 = enif_make_atom(env,"sha512");
atom_md4 = enif_make_atom(env,"md4");
atom_md5 = enif_make_atom(env,"md5");
atom_ripemd160 = enif_make_atom(env,"ripemd160");
atom_error = enif_make_atom(env,"error");
atom_rsa_pkcs1_padding = enif_make_atom(env,"rsa_pkcs1_padding");
atom_rsa_pkcs1_oaep_padding = enif_make_atom(env,"rsa_pkcs1_oaep_padding");
atom_rsa_no_padding = enif_make_atom(env,"rsa_no_padding");
atom_undefined = enif_make_atom(env,"undefined");
atom_ok = enif_make_atom(env,"ok");
atom_not_prime = enif_make_atom(env,"not_prime");
atom_not_strong_prime = enif_make_atom(env,"not_strong_prime");
atom_unable_to_check_generator = enif_make_atom(env,"unable_to_check_generator");
atom_not_suitable_generator = enif_make_atom(env,"not_suitable_generator");
atom_check_failed = enif_make_atom(env,"check_failed");
atom_unknown = enif_make_atom(env,"unknown");
atom_none = enif_make_atom(env,"none");
atom_notsup = enif_make_atom(env,"notsup");
atom_digest = enif_make_atom(env,"digest");
#if defined(HAVE_EC)
atom_ec = enif_make_atom(env,"ec");
atom_prime_field = enif_make_atom(env,"prime_field");
atom_characteristic_two_field = enif_make_atom(env,"characteristic_two_field");
atom_tpbasis = enif_make_atom(env,"tpbasis");
atom_ppbasis = enif_make_atom(env,"ppbasis");
atom_onbasis = enif_make_atom(env,"onbasis");
#endif
init_digest_types(env);
init_algorithms_types(env);
#ifdef HAVE_DYNAMIC_CRYPTO_LIB
{
void* handle;
if (!change_basename(&lib_bin, lib_buf, sizeof(lib_buf), crypto_callback_name)) {
return 0;
}
if (!(handle = enif_dlopen(lib_buf, &error_handler, NULL))) {
return 0;
}
if (!(funcp = (get_crypto_callbacks_t*) enif_dlsym(handle, "get_crypto_callbacks",
&error_handler, NULL))) {
return 0;
}
}
#else /* !HAVE_DYNAMIC_CRYPTO_LIB */
funcp = &get_crypto_callbacks;
#endif
#ifdef OPENSSL_THREADS
enif_system_info(&sys_info, sizeof(sys_info));
if (sys_info.scheduler_threads > 1) {
nlocks = CRYPTO_num_locks();
}
/* else no need for locks */
#endif
ccb = (*funcp)(nlocks);
if (!ccb || ccb->sizeof_me != sizeof(*ccb)) {
PRINTF_ERR0("Invalid 'crypto_callbacks'");
return 0;
}
CRYPTO_set_mem_functions(ccb->crypto_alloc, ccb->crypto_realloc, ccb->crypto_free);
#ifdef OPENSSL_THREADS
if (nlocks > 0) {
CRYPTO_set_locking_callback(ccb->locking_function);
CRYPTO_set_id_callback(ccb->id_function);
CRYPTO_set_dynlock_create_callback(ccb->dyn_create_function);
CRYPTO_set_dynlock_lock_callback(ccb->dyn_lock_function);
CRYPTO_set_dynlock_destroy_callback(ccb->dyn_destroy_function);
}
#endif /* OPENSSL_THREADS */
return 1;
}
static int load(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info)
{
if (!init(env, load_info)) {
return -1;
}
*priv_data = NULL;
library_refc++;
return 0;
}
static int upgrade(ErlNifEnv* env, void** priv_data, void** old_priv_data,
ERL_NIF_TERM load_info)
{
if (*old_priv_data != NULL) {
return -1; /* Don't know how to do that */
}
if (*priv_data != NULL) {
return -1; /* Don't know how to do that */
}
if (!init(env, load_info)) {
return -1;
}
library_refc++;
return 0;
}
static void unload(ErlNifEnv* env, void* priv_data)
{
--library_refc;
}
static int algo_hash_cnt;
static ERL_NIF_TERM algo_hash[8]; /* increase when extending the list */
static int algo_pubkey_cnt;
static ERL_NIF_TERM algo_pubkey[3]; /* increase when extending the list */
static int algo_cipher_cnt;
static ERL_NIF_TERM algo_cipher[4]; /* increase when extending the list */
static void init_algorithms_types(ErlNifEnv* env)
{
algo_hash_cnt = 0;
algo_hash[algo_hash_cnt++] = atom_md4;
algo_hash[algo_hash_cnt++] = atom_md5;
algo_hash[algo_hash_cnt++] = atom_sha;
algo_hash[algo_hash_cnt++] = atom_ripemd160;
#ifdef HAVE_SHA224
algo_hash[algo_hash_cnt++] = atom_sha224;
#endif
#ifdef HAVE_SHA256
algo_hash[algo_hash_cnt++] = atom_sha256;
#endif
#ifdef HAVE_SHA384
algo_hash[algo_hash_cnt++] = atom_sha384;
#endif
#ifdef HAVE_SHA512
algo_hash[algo_hash_cnt++] = atom_sha512;
#endif
algo_pubkey_cnt = 0;
#if defined(HAVE_EC)
#if !defined(OPENSSL_NO_EC2M)
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env,"ec_gf2m");
#endif
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env,"ecdsa");
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env,"ecdh");
#endif
algo_cipher_cnt = 0;
#ifdef HAVE_DES_ede3_cfb_encrypt
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "des3_cbf");
#endif
#ifdef HAVE_AES_IGE
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"aes_ige256");
#endif
#if defined(HAVE_GCM)
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"aes_gcm");
#endif
#if defined(HAVE_CHACHA20_POLY1305)
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"chacha20_poly1305");
#endif
ASSERT(algo_hash_cnt <= sizeof(algo_hash)/sizeof(ERL_NIF_TERM));
ASSERT(algo_pubkey_cnt <= sizeof(algo_pubkey)/sizeof(ERL_NIF_TERM));
ASSERT(algo_cipher_cnt <= sizeof(algo_cipher)/sizeof(ERL_NIF_TERM));
}
static ERL_NIF_TERM algorithms(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
return enif_make_tuple3(env,
enif_make_list_from_array(env, algo_hash, algo_hash_cnt),
enif_make_list_from_array(env, algo_pubkey, algo_pubkey_cnt),
enif_make_list_from_array(env, algo_cipher, algo_cipher_cnt));
}
static ERL_NIF_TERM info_lib(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
/* [{<<"OpenSSL">>,9470143,<<"OpenSSL 0.9.8k 25 Mar 2009">>}] */
static const char libname[] = "OpenSSL";
unsigned name_sz = strlen(libname);
const char* ver = SSLeay_version(SSLEAY_VERSION);
unsigned ver_sz = strlen(ver);
ERL_NIF_TERM name_term, ver_term;
int ver_num = OPENSSL_VERSION_NUMBER;
/* R16:
* Ignore library version number from SSLeay() and instead show header
* version. Otherwise user might try to call a function that is implemented
* by a newer library but not supported by the headers used at compile time.
* Example: DES_ede3_cfb_encrypt in 0.9.7i but not in 0.9.7d.
*
* Version string is still from library though.
*/
memcpy(enif_make_new_binary(env, name_sz, &name_term), libname, name_sz);
memcpy(enif_make_new_binary(env, ver_sz, &ver_term), ver, ver_sz);
return enif_make_list1(env, enif_make_tuple3(env, name_term,
enif_make_int(env, ver_num),
ver_term));
}
static ERL_NIF_TERM md5(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data) */
ErlNifBinary ibin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &ibin)) {
return enif_make_badarg(env);
}
MD5((unsigned char *) ibin.data, ibin.size,
enif_make_new_binary(env,MD5_LEN, &ret));
CONSUME_REDS(env,ibin);
return ret;
}
static ERL_NIF_TERM md5_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* () */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
MD5_Init((MD5_CTX *) enif_make_new_binary(env, MD5_CTX_LEN, &ret));
return ret;
}
static ERL_NIF_TERM md5_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
MD5_CTX* new_ctx;
ErlNifBinary ctx_bin, data_bin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin)
|| ctx_bin.size != MD5_CTX_LEN
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
new_ctx = (MD5_CTX*) enif_make_new_binary(env,MD5_CTX_LEN, &ret);
memcpy(new_ctx, ctx_bin.data, MD5_CTX_LEN);
MD5_Update(new_ctx, data_bin.data, data_bin.size);
CONSUME_REDS(env,data_bin);
return ret;
}
static ERL_NIF_TERM md5_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) */
ErlNifBinary ctx_bin;
MD5_CTX ctx_clone;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != MD5_CTX_LEN) {
return enif_make_badarg(env);
}
memcpy(&ctx_clone, ctx_bin.data, MD5_CTX_LEN); /* writable */
MD5_Final(enif_make_new_binary(env, MD5_LEN, &ret), &ctx_clone);
return ret;
}
static ERL_NIF_TERM ripemd160(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data) */
ErlNifBinary ibin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &ibin)) {
return enif_make_badarg(env);
}
RIPEMD160((unsigned char *) ibin.data, ibin.size,
enif_make_new_binary(env,RIPEMD160_LEN, &ret));
CONSUME_REDS(env,ibin);
return ret;
}
static ERL_NIF_TERM ripemd160_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* () */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
RIPEMD160_Init((RIPEMD160_CTX *) enif_make_new_binary(env, RIPEMD160_CTX_LEN, &ret));
return ret;
}
static ERL_NIF_TERM ripemd160_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
RIPEMD160_CTX* new_ctx;
ErlNifBinary ctx_bin, data_bin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin)
|| ctx_bin.size != RIPEMD160_CTX_LEN
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
new_ctx = (RIPEMD160_CTX*) enif_make_new_binary(env,RIPEMD160_CTX_LEN, &ret);
memcpy(new_ctx, ctx_bin.data, RIPEMD160_CTX_LEN);
RIPEMD160_Update(new_ctx, data_bin.data, data_bin.size);
CONSUME_REDS(env, data_bin);
return ret;
}
static ERL_NIF_TERM ripemd160_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) */
ErlNifBinary ctx_bin;
RIPEMD160_CTX ctx_clone;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != RIPEMD160_CTX_LEN) {
return enif_make_badarg(env);
}
memcpy(&ctx_clone, ctx_bin.data, RIPEMD160_CTX_LEN); /* writable */
RIPEMD160_Final(enif_make_new_binary(env, RIPEMD160_LEN, &ret), &ctx_clone);
return ret;
}
static ERL_NIF_TERM sha(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data) */
ErlNifBinary ibin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &ibin)) {
return enif_make_badarg(env);
}
SHA1((unsigned char *) ibin.data, ibin.size,
enif_make_new_binary(env,SHA_LEN, &ret));
CONSUME_REDS(env,ibin);
return ret;
}
static ERL_NIF_TERM sha_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* () */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
SHA1_Init((SHA_CTX *) enif_make_new_binary(env, SHA_CTX_LEN, &ret));
return ret;
}
static ERL_NIF_TERM sha_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
SHA_CTX* new_ctx;
ErlNifBinary ctx_bin, data_bin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != SHA_CTX_LEN
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
new_ctx = (SHA_CTX*) enif_make_new_binary(env,SHA_CTX_LEN, &ret);
memcpy(new_ctx, ctx_bin.data, SHA_CTX_LEN);
SHA1_Update(new_ctx, data_bin.data, data_bin.size);
CONSUME_REDS(env,data_bin);
return ret;
}
static ERL_NIF_TERM sha_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) */
ErlNifBinary ctx_bin;
SHA_CTX ctx_clone;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != SHA_CTX_LEN) {
return enif_make_badarg(env);
}
memcpy(&ctx_clone, ctx_bin.data, SHA_CTX_LEN); /* writable */
SHA1_Final(enif_make_new_binary(env, SHA_LEN, &ret), &ctx_clone);
return ret;
}
static ERL_NIF_TERM sha224_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data) */
#ifdef HAVE_SHA224
ErlNifBinary ibin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &ibin)) {
return enif_make_badarg(env);
}
SHA224((unsigned char *) ibin.data, ibin.size,
enif_make_new_binary(env,SHA224_LEN, &ret));
CONSUME_REDS(env,ibin);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha224_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* () */
#ifdef HAVE_SHA224
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
SHA224_Init((SHA256_CTX *) enif_make_new_binary(env, sizeof(SHA256_CTX), &ret));
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha224_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
#ifdef HAVE_SHA224
SHA256_CTX* new_ctx;
ErlNifBinary ctx_bin, data_bin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != sizeof(SHA256_CTX)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
new_ctx = (SHA256_CTX*) enif_make_new_binary(env,sizeof(SHA256_CTX), &ret);
memcpy(new_ctx, ctx_bin.data, sizeof(SHA256_CTX));
SHA224_Update(new_ctx, data_bin.data, data_bin.size);
CONSUME_REDS(env,data_bin);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha224_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) */
#ifdef HAVE_SHA224
ErlNifBinary ctx_bin;
SHA256_CTX ctx_clone;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != sizeof(SHA256_CTX)) {
return enif_make_badarg(env);
}
memcpy(&ctx_clone, ctx_bin.data, sizeof(SHA256_CTX)); /* writable */
SHA224_Final(enif_make_new_binary(env, SHA224_LEN, &ret), &ctx_clone);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha256_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data) */
#ifdef HAVE_SHA256
ErlNifBinary ibin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &ibin)) {
return enif_make_badarg(env);
}
SHA256((unsigned char *) ibin.data, ibin.size,
enif_make_new_binary(env,SHA256_LEN, &ret));
CONSUME_REDS(env,ibin);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha256_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* () */
#ifdef HAVE_SHA256
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
SHA256_Init((SHA256_CTX *) enif_make_new_binary(env, sizeof(SHA256_CTX), &ret));
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha256_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
#ifdef HAVE_SHA256
SHA256_CTX* new_ctx;
ErlNifBinary ctx_bin, data_bin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != sizeof(SHA256_CTX)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
new_ctx = (SHA256_CTX*) enif_make_new_binary(env,sizeof(SHA256_CTX), &ret);
memcpy(new_ctx, ctx_bin.data, sizeof(SHA256_CTX));
SHA256_Update(new_ctx, data_bin.data, data_bin.size);
CONSUME_REDS(env,data_bin);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha256_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) */
#ifdef HAVE_SHA256
ErlNifBinary ctx_bin;
SHA256_CTX ctx_clone;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != sizeof(SHA256_CTX)) {
return enif_make_badarg(env);
}
memcpy(&ctx_clone, ctx_bin.data, sizeof(SHA256_CTX)); /* writable */
SHA256_Final(enif_make_new_binary(env, SHA256_LEN, &ret), &ctx_clone);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha384_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data) */
#ifdef HAVE_SHA384
ErlNifBinary ibin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &ibin)) {
return enif_make_badarg(env);
}
SHA384((unsigned char *) ibin.data, ibin.size,
enif_make_new_binary(env,SHA384_LEN, &ret));
CONSUME_REDS(env,ibin);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha384_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* () */
#ifdef HAVE_SHA384
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
SHA384_Init((SHA512_CTX *) enif_make_new_binary(env, sizeof(SHA512_CTX), &ret));
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha384_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
#ifdef HAVE_SHA384
SHA512_CTX* new_ctx;
ErlNifBinary ctx_bin, data_bin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != sizeof(SHA512_CTX)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
new_ctx = (SHA512_CTX*) enif_make_new_binary(env,sizeof(SHA512_CTX), &ret);
memcpy(new_ctx, ctx_bin.data, sizeof(SHA512_CTX));
SHA384_Update(new_ctx, data_bin.data, data_bin.size);
CONSUME_REDS(env,data_bin);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha384_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) */
#ifdef HAVE_SHA384
ErlNifBinary ctx_bin;
SHA512_CTX ctx_clone;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != sizeof(SHA512_CTX)) {
return enif_make_badarg(env);
}
memcpy(&ctx_clone, ctx_bin.data, sizeof(SHA512_CTX)); /* writable */
SHA384_Final(enif_make_new_binary(env, SHA384_LEN, &ret), &ctx_clone);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha512_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data) */
#ifdef HAVE_SHA512
ErlNifBinary ibin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &ibin)) {
return enif_make_badarg(env);
}
SHA512((unsigned char *) ibin.data, ibin.size,
enif_make_new_binary(env,SHA512_LEN, &ret));
CONSUME_REDS(env,ibin);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha512_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* () */
#ifdef HAVE_SHA512
ERL_NIF_TERM ret;
SHA512_Init((SHA512_CTX *) enif_make_new_binary(env, sizeof(SHA512_CTX), &ret));
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha512_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
#ifdef HAVE_SHA512
SHA512_CTX* new_ctx;
ErlNifBinary ctx_bin, data_bin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != sizeof(SHA512_CTX)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
new_ctx = (SHA512_CTX*) enif_make_new_binary(env,sizeof(SHA512_CTX), &ret);
memcpy(new_ctx, ctx_bin.data, sizeof(SHA512_CTX));
SHA512_Update(new_ctx, data_bin.data, data_bin.size);
CONSUME_REDS(env,data_bin);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha512_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) */
#ifdef HAVE_SHA512
ErlNifBinary ctx_bin;
SHA512_CTX ctx_clone;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != sizeof(SHA512_CTX)) {
return enif_make_badarg(env);
}
memcpy(&ctx_clone, ctx_bin.data, sizeof(SHA512_CTX)); /* writable */
SHA512_Final(enif_make_new_binary(env, SHA512_LEN, &ret), &ctx_clone);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM md4(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data) */
ErlNifBinary ibin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &ibin)) {
return enif_make_badarg(env);
}
MD4((unsigned char *) ibin.data, ibin.size,
enif_make_new_binary(env,MD4_LEN, &ret));
CONSUME_REDS(env,ibin);
return ret;
}
static ERL_NIF_TERM md4_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* () */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
MD4_Init((MD4_CTX *) enif_make_new_binary(env, MD4_CTX_LEN, &ret));
return ret;
}
static ERL_NIF_TERM md4_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
MD4_CTX* new_ctx;
ErlNifBinary ctx_bin, data_bin;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != MD4_CTX_LEN
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
new_ctx = (MD4_CTX*) enif_make_new_binary(env,MD4_CTX_LEN, &ret);
memcpy(new_ctx, ctx_bin.data, MD4_CTX_LEN);
MD4_Update(new_ctx, data_bin.data, data_bin.size);
CONSUME_REDS(env,data_bin);
return ret;
}
static ERL_NIF_TERM md4_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) */
ErlNifBinary ctx_bin;
MD4_CTX ctx_clone;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &ctx_bin) || ctx_bin.size != MD4_CTX_LEN) {
return enif_make_badarg(env);
}
memcpy(&ctx_clone, ctx_bin.data, MD4_CTX_LEN); /* writable */
MD4_Final(enif_make_new_binary(env, MD4_LEN, &ret), &ctx_clone);
return ret;
}
static ERL_NIF_TERM md5_mac_n(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Data, MacSize) */
unsigned char hmacbuf[SHA_DIGEST_LENGTH];
ErlNifBinary key, data;
unsigned mac_sz;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data)
|| !enif_get_uint(env,argv[2],&mac_sz) || mac_sz > MD5_LEN) {
return enif_make_badarg(env);
}
hmac_md5(key.data, key.size, data.data, data.size, hmacbuf);
memcpy(enif_make_new_binary(env, mac_sz, &ret), hmacbuf, mac_sz);
CONSUME_REDS(env,data);
return ret;
}
static ERL_NIF_TERM sha_mac_n(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Data, MacSize) */
unsigned char hmacbuf[SHA_DIGEST_LENGTH];
ErlNifBinary key, data;
unsigned mac_sz;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data)
|| !enif_get_uint(env,argv[2],&mac_sz) || mac_sz > SHA_LEN) {
return enif_make_badarg(env);
}
hmac_sha1(key.data, key.size, data.data, data.size, hmacbuf);
memcpy(enif_make_new_binary(env, mac_sz, &ret),
hmacbuf, mac_sz);
CONSUME_REDS(env,data);
return ret;
}
static ERL_NIF_TERM sha224_mac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Data, MacSize) */
#ifdef HAVE_SHA224
unsigned char hmacbuf[SHA224_DIGEST_LENGTH];
ErlNifBinary key, data;
unsigned mac_sz;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data)
|| !enif_get_uint(env,argv[2],&mac_sz) || mac_sz > SHA224_DIGEST_LENGTH) {
return enif_make_badarg(env);
}
hmac_sha224(key.data, key.size, data.data, data.size, hmacbuf);
memcpy(enif_make_new_binary(env, mac_sz, &ret),
hmacbuf, mac_sz);
CONSUME_REDS(env,data);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha256_mac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Data, MacSize) */
#ifdef HAVE_SHA256
unsigned char hmacbuf[SHA256_DIGEST_LENGTH];
ErlNifBinary key, data;
unsigned mac_sz;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data)
|| !enif_get_uint(env,argv[2],&mac_sz) || mac_sz > SHA256_DIGEST_LENGTH) {
return enif_make_badarg(env);
}
hmac_sha256(key.data, key.size, data.data, data.size, hmacbuf);
memcpy(enif_make_new_binary(env, mac_sz, &ret),
hmacbuf, mac_sz);
CONSUME_REDS(env,data);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha384_mac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Data, MacSize) */
#ifdef HAVE_SHA384
unsigned char hmacbuf[SHA384_DIGEST_LENGTH];
ErlNifBinary key, data;
unsigned mac_sz;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data)
|| !enif_get_uint(env,argv[2],&mac_sz) || mac_sz > SHA384_DIGEST_LENGTH) {
return enif_make_badarg(env);
}
hmac_sha384(key.data, key.size, data.data, data.size, hmacbuf);
memcpy(enif_make_new_binary(env, mac_sz, &ret),
hmacbuf, mac_sz);
CONSUME_REDS(env,data);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM sha512_mac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Data, MacSize) */
#ifdef HAVE_SHA512
unsigned char hmacbuf[SHA512_DIGEST_LENGTH];
ErlNifBinary key, data;
unsigned mac_sz;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data)
|| !enif_get_uint(env,argv[2],&mac_sz) || mac_sz > SHA512_DIGEST_LENGTH) {
return enif_make_badarg(env);
}
hmac_sha512(key.data, key.size, data.data, data.size, hmacbuf);
memcpy(enif_make_new_binary(env, mac_sz, &ret),
hmacbuf, mac_sz);
CONSUME_REDS(env,data);
return ret;
#else
return atom_notsup;
#endif
}
static void hmac_context_dtor(ErlNifEnv* env, struct hmac_context *obj)
{
if (obj->alive) {
HMAC_CTX_cleanup(&obj->ctx);
obj->alive = 0;
}
enif_mutex_destroy(obj->mtx);
}
static ERL_NIF_TERM hmac_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Key) */
ErlNifBinary key;
struct hmac_context* obj;
const EVP_MD *md;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (argv[0] == atom_sha) md = EVP_sha1();
#ifdef HAVE_SHA224
else if (argv[0] == atom_sha224) md = EVP_sha224();
#endif
#ifdef HAVE_SHA256
else if (argv[0] == atom_sha256) md = EVP_sha256();
#endif
#ifdef HAVE_SHA384
else if (argv[0] == atom_sha384) md = EVP_sha384();
#endif
#ifdef HAVE_SHA512
else if (argv[0] == atom_sha512) md = EVP_sha512();
#endif
else if (argv[0] == atom_md5) md = EVP_md5();
else if (argv[0] == atom_ripemd160) md = EVP_ripemd160();
else goto badarg;
if (!enif_inspect_iolist_as_binary(env, argv[1], &key)) {
badarg:
return enif_make_badarg(env);
}
obj = enif_alloc_resource(hmac_context_rtype, sizeof(struct hmac_context));
obj->mtx = enif_mutex_create("crypto.hmac");
obj->alive = 1;
HMAC_CTX_init(&obj->ctx);
HMAC_Init(&obj->ctx, key.data, key.size, md);
ret = enif_make_resource(env, obj);
enif_release_resource(obj);
return ret;
}
static ERL_NIF_TERM hmac_update(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
ErlNifBinary data;
struct hmac_context* obj;
CHECK_OSE_CRYPTO();
if (!enif_get_resource(env, argv[0], hmac_context_rtype, (void**)&obj)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data)) {
return enif_make_badarg(env);
}
enif_mutex_lock(obj->mtx);
if (!obj->alive) {
enif_mutex_unlock(obj->mtx);
return enif_make_badarg(env);
}
HMAC_Update(&obj->ctx, data.data, data.size);
enif_mutex_unlock(obj->mtx);
CONSUME_REDS(env,data);
return argv[0];
}
static ERL_NIF_TERM hmac_final(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) or (Context, HashLen) */
ERL_NIF_TERM ret;
struct hmac_context* obj;
unsigned char mac_buf[EVP_MAX_MD_SIZE];
unsigned char * mac_bin;
unsigned int req_len = 0;
unsigned int mac_len;
CHECK_OSE_CRYPTO();
if (!enif_get_resource(env,argv[0],hmac_context_rtype, (void**)&obj)
|| (argc == 2 && !enif_get_uint(env, argv[1], &req_len))) {
return enif_make_badarg(env);
}
enif_mutex_lock(obj->mtx);
if (!obj->alive) {
enif_mutex_unlock(obj->mtx);
return enif_make_badarg(env);
}
HMAC_Final(&obj->ctx, mac_buf, &mac_len);
HMAC_CTX_cleanup(&obj->ctx);
obj->alive = 0;
enif_mutex_unlock(obj->mtx);
if (argc == 2 && req_len < mac_len) {
/* Only truncate to req_len bytes if asked. */
mac_len = req_len;
}
mac_bin = enif_make_new_binary(env, mac_len, &ret);
memcpy(mac_bin, mac_buf, mac_len);
return ret;
}
static ERL_NIF_TERM des_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Ivec, Text, IsEncrypt) */
ErlNifBinary key, ivec, text;
DES_key_schedule schedule;
DES_cblock ivec_clone; /* writable copy */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key) || key.size != 8
|| !enif_inspect_binary(env, argv[1], &ivec) || ivec.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[2], &text)
|| text.size % 8 != 0) {
return enif_make_badarg(env);
}
memcpy(&ivec_clone, ivec.data, 8);
DES_set_key((const_DES_cblock*)key.data, &schedule);
DES_ncbc_encrypt(text.data, enif_make_new_binary(env, text.size, &ret),
text.size, &schedule, &ivec_clone, (argv[3] == atom_true));
CONSUME_REDS(env,text);
return ret;
}
static ERL_NIF_TERM des_cfb_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Ivec, Text, IsEncrypt) */
ErlNifBinary key, ivec, text;
DES_key_schedule schedule;
DES_cblock ivec_clone; /* writable copy */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key) || key.size != 8
|| !enif_inspect_binary(env, argv[1], &ivec) || ivec.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[2], &text)) {
return enif_make_badarg(env);
}
memcpy(&ivec_clone, ivec.data, 8);
DES_set_key((const_DES_cblock*)key.data, &schedule);
DES_cfb_encrypt(text.data, enif_make_new_binary(env, text.size, &ret),
8, text.size, &schedule, &ivec_clone, (argv[3] == atom_true));
CONSUME_REDS(env,text);
return ret;
}
static ERL_NIF_TERM des_ecb_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Text/Cipher, IsEncrypt) */
ErlNifBinary key, text;
DES_key_schedule schedule;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key) || key.size != 8 ||
!enif_inspect_iolist_as_binary(env, argv[1], &text) || text.size != 8) {
return enif_make_badarg(env);
}
DES_set_key((const_DES_cblock*)key.data, &schedule);
DES_ecb_encrypt((const_DES_cblock*)text.data,
(DES_cblock*)enif_make_new_binary(env, 8, &ret),
&schedule, (argv[2] == atom_true));
CONSUME_REDS(env,text);
return ret;
}
static ERL_NIF_TERM des_ede3_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key1, Key2, Key3, IVec, Text/Cipher, IsEncrypt) */
ErlNifBinary key1, key2, key3, ivec, text;
DES_key_schedule schedule1, schedule2, schedule3;
DES_cblock ivec_clone; /* writable copy */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key1) || key1.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[1], &key2) || key2.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[2], &key3) || key3.size != 8
|| !enif_inspect_binary(env, argv[3], &ivec) || ivec.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[4], &text)
|| text.size % 8 != 0) {
return enif_make_badarg(env);
}
memcpy(&ivec_clone, ivec.data, 8);
DES_set_key((const_DES_cblock*)key1.data, &schedule1);
DES_set_key((const_DES_cblock*)key2.data, &schedule2);
DES_set_key((const_DES_cblock*)key3.data, &schedule3);
DES_ede3_cbc_encrypt(text.data, enif_make_new_binary(env,text.size,&ret),
text.size, &schedule1, &schedule2, &schedule3,
&ivec_clone, (argv[5] == atom_true));
CONSUME_REDS(env,text);
return ret;
}
static ERL_NIF_TERM des_ede3_cfb_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key1, Key2, Key3, IVec, Text/Cipher, IsEncrypt) */
#ifdef HAVE_DES_ede3_cfb_encrypt
ErlNifBinary key1, key2, key3, ivec, text;
DES_key_schedule schedule1, schedule2, schedule3;
DES_cblock ivec_clone; /* writable copy */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key1) || key1.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[1], &key2) || key2.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[2], &key3) || key3.size != 8
|| !enif_inspect_binary(env, argv[3], &ivec) || ivec.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[4], &text)) {
return enif_make_badarg(env);
}
memcpy(&ivec_clone, ivec.data, 8);
DES_set_key((const_DES_cblock*)key1.data, &schedule1);
DES_set_key((const_DES_cblock*)key2.data, &schedule2);
DES_set_key((const_DES_cblock*)key3.data, &schedule3);
DES_ede3_cfb_encrypt(text.data, enif_make_new_binary(env,text.size,&ret),
8, text.size, &schedule1, &schedule2, &schedule3,
&ivec_clone, (argv[5] == atom_true));
CONSUME_REDS(env,text);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM aes_cfb_8_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec, Data, IsEncrypt) */
ErlNifBinary key, ivec, text;
AES_KEY aes_key;
unsigned char ivec_clone[16]; /* writable copy */
int new_ivlen = 0;
ERL_NIF_TERM ret;
if (!enif_inspect_iolist_as_binary(env, argv[0], &key) || key.size != 16
|| !enif_inspect_binary(env, argv[1], &ivec) || ivec.size != 16
|| !enif_inspect_iolist_as_binary(env, argv[2], &text)) {
return enif_make_badarg(env);
}
memcpy(ivec_clone, ivec.data, 16);
AES_set_encrypt_key(key.data, 128, &aes_key);
AES_cfb8_encrypt((unsigned char *) text.data,
enif_make_new_binary(env, text.size, &ret),
text.size, &aes_key, ivec_clone, &new_ivlen,
(argv[3] == atom_true));
CONSUME_REDS(env,text);
return ret;
}
static ERL_NIF_TERM aes_cfb_128_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec, Data, IsEncrypt) */
ErlNifBinary key, ivec, text;
AES_KEY aes_key;
unsigned char ivec_clone[16]; /* writable copy */
int new_ivlen = 0;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key) || key.size != 16
|| !enif_inspect_binary(env, argv[1], &ivec) || ivec.size != 16
|| !enif_inspect_iolist_as_binary(env, argv[2], &text)) {
return enif_make_badarg(env);
}
memcpy(ivec_clone, ivec.data, 16);
AES_set_encrypt_key(key.data, 128, &aes_key);
AES_cfb128_encrypt((unsigned char *) text.data,
enif_make_new_binary(env, text.size, &ret),
text.size, &aes_key, ivec_clone, &new_ivlen,
(argv[3] == atom_true));
CONSUME_REDS(env,text);
return ret;
}
/* Common for both encrypt and decrypt
*/
static ERL_NIF_TERM aes_ctr_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec, Data) */
ErlNifBinary key, ivec, text;
AES_KEY aes_key;
unsigned char ivec_clone[16]; /* writable copy */
unsigned char ecount_buf[AES_BLOCK_SIZE];
unsigned int num = 0;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| AES_set_encrypt_key(key.data, key.size*8, &aes_key) != 0
|| !enif_inspect_binary(env, argv[1], &ivec) || ivec.size != 16
|| !enif_inspect_iolist_as_binary(env, argv[2], &text)) {
return enif_make_badarg(env);
}
memcpy(ivec_clone, ivec.data, 16);
memset(ecount_buf, 0, sizeof(ecount_buf));
AES_ctr128_encrypt((unsigned char *) text.data,
enif_make_new_binary(env, text.size, &ret),
text.size, &aes_key, ivec_clone, ecount_buf, &num);
CONSUME_REDS(env,text);
/* To do an incremental {en|de}cryption, the state to to keep between calls
must include ivec_clone, ecount_buf and num. */
return ret;
}
/* Initializes state for ctr streaming (de)encryption
*/
static ERL_NIF_TERM aes_ctr_stream_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* ({Key, IVec, ECount, Num}, Data) */
ErlNifBinary key_bin, ivec_bin, text_bin, ecount_bin;
AES_KEY aes_key;
unsigned int num;
ERL_NIF_TERM ret, num2_term, cipher_term, ivec2_term, ecount2_term, new_state_term;
int state_arity;
const ERL_NIF_TERM *state_term;
unsigned char * ivec2_buf;
unsigned char * ecount2_buf;
CHECK_OSE_CRYPTO();
if (!enif_get_tuple(env, argv[0], &state_arity, &state_term)
|| state_arity != 4
|| !enif_inspect_iolist_as_binary(env, state_term[0], &key_bin)
|| AES_set_encrypt_key(key_bin.data, key_bin.size*8, &aes_key) != 0
|| !enif_inspect_binary(env, state_term[1], &ivec_bin) || ivec_bin.size != 16
|| !enif_inspect_binary(env, state_term[2], &ecount_bin) || ecount_bin.size != AES_BLOCK_SIZE
|| !enif_get_uint(env, state_term[3], &num)
|| !enif_inspect_iolist_as_binary(env, argv[1], &text_bin)) {
return enif_make_badarg(env);
}
ivec2_buf = enif_make_new_binary(env, ivec_bin.size, &ivec2_term);
ecount2_buf = enif_make_new_binary(env, ecount_bin.size, &ecount2_term);
memcpy(ivec2_buf, ivec_bin.data, 16);
memcpy(ecount2_buf, ecount_bin.data, ecount_bin.size);
AES_ctr128_encrypt((unsigned char *) text_bin.data,
enif_make_new_binary(env, text_bin.size, &cipher_term),
text_bin.size, &aes_key, ivec2_buf, ecount2_buf, &num);
num2_term = enif_make_uint(env, num);
new_state_term = enif_make_tuple4(env, state_term[0], ivec2_term, ecount2_term, num2_term);
ret = enif_make_tuple2(env, new_state_term, cipher_term);
CONSUME_REDS(env,text_bin);
return ret;
}
static ERL_NIF_TERM aes_gcm_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key,Iv,AAD,In) */
#if defined(HAVE_GCM)
GCM128_CONTEXT *ctx = NULL;
ErlNifBinary key, iv, aad, in;
AES_KEY aes_key;
unsigned char *outp;
ERL_NIF_TERM out, out_tag;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| AES_set_encrypt_key(key.data, key.size*8, &aes_key) != 0
|| !enif_inspect_binary(env, argv[1], &iv) || iv.size == 0
|| !enif_inspect_iolist_as_binary(env, argv[2], &aad)
|| !enif_inspect_iolist_as_binary(env, argv[3], &in)) {
return enif_make_badarg(env);
}
if (!(ctx = CRYPTO_gcm128_new(&aes_key, (block128_f)AES_encrypt)))
return atom_error;
CRYPTO_gcm128_setiv(ctx, iv.data, iv.size);
if (CRYPTO_gcm128_aad(ctx, aad.data, aad.size))
goto out_err;
outp = enif_make_new_binary(env, in.size, &out);
/* encrypt */
if (CRYPTO_gcm128_encrypt(ctx, in.data, outp, in.size))
goto out_err;
/* calculate the tag */
CRYPTO_gcm128_tag(ctx, enif_make_new_binary(env, EVP_GCM_TLS_TAG_LEN, &out_tag), EVP_GCM_TLS_TAG_LEN);
CRYPTO_gcm128_release(ctx);
CONSUME_REDS(env, in);
return enif_make_tuple2(env, out, out_tag);
out_err:
CRYPTO_gcm128_release(ctx);
return atom_error;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM aes_gcm_decrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key,Iv,AAD,In,Tag) */
#if defined(HAVE_GCM)
GCM128_CONTEXT *ctx;
ErlNifBinary key, iv, aad, in, tag;
AES_KEY aes_key;
unsigned char *outp;
ERL_NIF_TERM out;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| AES_set_encrypt_key(key.data, key.size*8, &aes_key) != 0
|| !enif_inspect_binary(env, argv[1], &iv) || iv.size == 0
|| !enif_inspect_iolist_as_binary(env, argv[2], &aad)
|| !enif_inspect_iolist_as_binary(env, argv[3], &in)
|| !enif_inspect_iolist_as_binary(env, argv[4], &tag) || tag.size != EVP_GCM_TLS_TAG_LEN) {
return enif_make_badarg(env);
}
if (!(ctx = CRYPTO_gcm128_new(&aes_key, (block128_f)AES_encrypt)))
return atom_error;
CRYPTO_gcm128_setiv(ctx, iv.data, iv.size);
if (CRYPTO_gcm128_aad(ctx, aad.data, aad.size))
goto out_err;
outp = enif_make_new_binary(env, in.size, &out);
/* decrypt */
if (CRYPTO_gcm128_decrypt(ctx, in.data, outp, in.size))
goto out_err;
/* calculate and check the tag */
if (CRYPTO_gcm128_finish(ctx, tag.data, EVP_GCM_TLS_TAG_LEN))
goto out_err;
CRYPTO_gcm128_release(ctx);
CONSUME_REDS(env, in);
return out;
out_err:
CRYPTO_gcm128_release(ctx);
return atom_error;
#else
return atom_notsup;
#endif
}
#if defined(HAVE_CHACHA20_POLY1305)
static void
poly1305_update_with_length(poly1305_state *poly1305,
const unsigned char *data, size_t data_len)
{
size_t j = data_len;
unsigned char length_bytes[8];
unsigned i;
for (i = 0; i < sizeof(length_bytes); i++) {
length_bytes[i] = j;
j >>= 8;
}
CRYPTO_poly1305_update(poly1305, data, data_len);
CRYPTO_poly1305_update(poly1305, length_bytes, sizeof(length_bytes));
}
#endif
static ERL_NIF_TERM chacha20_poly1305_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key,Iv,AAD,In) */
#if defined(HAVE_CHACHA20_POLY1305)
ErlNifBinary key, iv, aad, in;
unsigned char *outp;
ERL_NIF_TERM out, out_tag;
ErlNifUInt64 in_len_64;
unsigned char poly1305_key[32];
poly1305_state poly1305;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key) || key.size != 32
|| !enif_inspect_binary(env, argv[1], &iv) || iv.size != CHACHA20_NONCE_LEN
|| !enif_inspect_iolist_as_binary(env, argv[2], &aad)
|| !enif_inspect_iolist_as_binary(env, argv[3], &in)) {
return enif_make_badarg(env);
}
/* Take from OpenSSL patch set/LibreSSL:
*
* The underlying ChaCha implementation may not overflow the block
* counter into the second counter word. Therefore we disallow
* individual operations that work on more than 2TB at a time.
* in_len_64 is needed because, on 32-bit platforms, size_t is only
* 32-bits and this produces a warning because it's always false.
* Casting to uint64_t inside the conditional is not sufficient to stop
* the warning. */
in_len_64 = in.size;
if (in_len_64 >= (1ULL << 32) * 64 - 64)
return enif_make_badarg(env);
memset(poly1305_key, 0, sizeof(poly1305_key));
CRYPTO_chacha_20(poly1305_key, poly1305_key, sizeof(poly1305_key), key.data, iv.data, 0);
outp = enif_make_new_binary(env, in.size, &out);
CRYPTO_poly1305_init(&poly1305, poly1305_key);
poly1305_update_with_length(&poly1305, aad.data, aad.size);
CRYPTO_chacha_20(outp, in.data, in.size, key.data, iv.data, 1);
poly1305_update_with_length(&poly1305, outp, in.size);
CRYPTO_poly1305_finish(&poly1305, enif_make_new_binary(env, POLY1305_TAG_LEN, &out_tag));
CONSUME_REDS(env, in);
return enif_make_tuple2(env, out, out_tag);
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM chacha20_poly1305_decrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key,Iv,AAD,In,Tag) */
#if defined(HAVE_CHACHA20_POLY1305)
ErlNifBinary key, iv, aad, in, tag;
unsigned char *outp;
ERL_NIF_TERM out;
ErlNifUInt64 in_len_64;
unsigned char poly1305_key[32];
unsigned char mac[POLY1305_TAG_LEN];
poly1305_state poly1305;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key) || key.size != 32
|| !enif_inspect_binary(env, argv[1], &iv) || iv.size != CHACHA20_NONCE_LEN
|| !enif_inspect_iolist_as_binary(env, argv[2], &aad)
|| !enif_inspect_iolist_as_binary(env, argv[3], &in)
|| !enif_inspect_iolist_as_binary(env, argv[4], &tag) || tag.size != POLY1305_TAG_LEN) {
return enif_make_badarg(env);
}
/* Take from OpenSSL patch set/LibreSSL:
*
* The underlying ChaCha implementation may not overflow the block
* counter into the second counter word. Therefore we disallow
* individual operations that work on more than 2TB at a time.
* in_len_64 is needed because, on 32-bit platforms, size_t is only
* 32-bits and this produces a warning because it's always false.
* Casting to uint64_t inside the conditional is not sufficient to stop
* the warning. */
in_len_64 = in.size;
if (in_len_64 >= (1ULL << 32) * 64 - 64)
return enif_make_badarg(env);
memset(poly1305_key, 0, sizeof(poly1305_key));
CRYPTO_chacha_20(poly1305_key, poly1305_key, sizeof(poly1305_key), key.data, iv.data, 0);
CRYPTO_poly1305_init(&poly1305, poly1305_key);
poly1305_update_with_length(&poly1305, aad.data, aad.size);
poly1305_update_with_length(&poly1305, in.data, in.size);
CRYPTO_poly1305_finish(&poly1305, mac);
if (memcmp(mac, tag.data, POLY1305_TAG_LEN) != 0)
return atom_error;
outp = enif_make_new_binary(env, in.size, &out);
CRYPTO_chacha_20(outp, in.data, in.size, key.data, iv.data, 1);
CONSUME_REDS(env, in);
return out;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM aes_ecb_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Data, IsEncrypt) */
ErlNifBinary key_bin, data_bin;
AES_KEY aes_key;
int i;
unsigned char* ret_ptr;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| (key_bin.size != 16 && key_bin.size != 32)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)
|| data_bin.size % 16 != 0) {
return enif_make_badarg(env);
}
if (argv[2] == atom_true) {
i = AES_ENCRYPT;
AES_set_encrypt_key(key_bin.data, key_bin.size*8, &aes_key);
}
else {
i = AES_DECRYPT;
AES_set_decrypt_key(key_bin.data, key_bin.size*8, &aes_key);
}
ret_ptr = enif_make_new_binary(env, data_bin.size, &ret);
AES_ecb_encrypt(data_bin.data, ret_ptr, &aes_key, i);
CONSUME_REDS(env,data_bin);
return ret;
}
static ERL_NIF_TERM rand_bytes_1(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Bytes) */
unsigned bytes;
unsigned char* data;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_get_uint(env, argv[0], &bytes)) {
return enif_make_badarg(env);
}
data = enif_make_new_binary(env, bytes, &ret);
RAND_pseudo_bytes(data, bytes);
ERL_VALGRIND_MAKE_MEM_DEFINED(data, bytes);
return ret;
}
static ERL_NIF_TERM strong_rand_bytes_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Bytes) */
unsigned bytes;
unsigned char* data;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_get_uint(env, argv[0], &bytes)) {
return enif_make_badarg(env);
}
data = enif_make_new_binary(env, bytes, &ret);
if ( RAND_bytes(data, bytes) != 1) {
return atom_false;
}
ERL_VALGRIND_MAKE_MEM_DEFINED(data, bytes);
return ret;
}
static ERL_NIF_TERM rand_bytes_3(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Bytes, TopMask, BottomMask) */
unsigned bytes;
unsigned char* data;
unsigned top_mask, bot_mask;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_get_uint(env, argv[0], &bytes)
|| !enif_get_uint(env, argv[1], &top_mask)
|| !enif_get_uint(env, argv[2], &bot_mask)) {
return enif_make_badarg(env);
}
data = enif_make_new_binary(env, bytes, &ret);
RAND_pseudo_bytes(data, bytes);
ERL_VALGRIND_MAKE_MEM_DEFINED(data, bytes);
if (bytes > 0) {
data[bytes-1] |= top_mask;
data[0] |= bot_mask;
}
return ret;
}
static ERL_NIF_TERM strong_rand_mpint_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Bytes, TopMask, BottomMask) */
unsigned bits;
BIGNUM *bn_rand;
int top, bottom;
unsigned char* data;
unsigned dlen;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_get_uint(env, argv[0], &bits)
|| !enif_get_int(env, argv[1], &top)
|| !enif_get_int(env, argv[2], &bottom)) {
return enif_make_badarg(env);
}
if (! (top == -1 || top == 0 || top == 1) ) {
return enif_make_badarg(env);
}
if (! (bottom == 0 || bottom == 1) ) {
return enif_make_badarg(env);
}
bn_rand = BN_new();
if (! bn_rand ) {
return enif_make_badarg(env);
}
/* Get a (bits) bit random number */
if (!BN_rand(bn_rand, bits, top, bottom)) {
ret = atom_false;
}
else {
/* Copy the bignum into an erlang mpint binary. */
dlen = BN_num_bytes(bn_rand);
data = enif_make_new_binary(env, dlen+4, &ret);
put_int32(data, dlen);
BN_bn2bin(bn_rand, data+4);
ERL_VALGRIND_MAKE_MEM_DEFINED(data+4, dlen);
}
BN_free(bn_rand);
return ret;
}
static int get_bn_from_mpint(ErlNifEnv* env, ERL_NIF_TERM term, BIGNUM** bnp)
{
ErlNifBinary bin;
int sz;
if (!enif_inspect_binary(env,term,&bin)) {
return 0;
}
ERL_VALGRIND_ASSERT_MEM_DEFINED(bin.data, bin.size);
sz = bin.size - 4;
if (sz < 0 || get_int32(bin.data) != sz) {
return 0;
}
*bnp = BN_bin2bn(bin.data+4, sz, NULL);
return 1;
}
static int get_bn_from_bin(ErlNifEnv* env, ERL_NIF_TERM term, BIGNUM** bnp)
{
ErlNifBinary bin;
if (!enif_inspect_binary(env,term,&bin)) {
return 0;
}
ERL_VALGRIND_ASSERT_MEM_DEFINED(bin.data, bin.size);
*bnp = BN_bin2bn(bin.data, bin.size, NULL);
return 1;
}
static ERL_NIF_TERM rand_uniform_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Lo,Hi) */
BIGNUM *bn_from = NULL, *bn_to, *bn_rand;
unsigned char* data;
unsigned dlen;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!get_bn_from_mpint(env, argv[0], &bn_from)
|| !get_bn_from_mpint(env, argv[1], &bn_rand)) {
if (bn_from) BN_free(bn_from);
return enif_make_badarg(env);
}
bn_to = BN_new();
BN_sub(bn_to, bn_rand, bn_from);
BN_pseudo_rand_range(bn_rand, bn_to);
BN_add(bn_rand, bn_rand, bn_from);
dlen = BN_num_bytes(bn_rand);
data = enif_make_new_binary(env, dlen+4, &ret);
put_int32(data, dlen);
BN_bn2bin(bn_rand, data+4);
ERL_VALGRIND_MAKE_MEM_DEFINED(data+4, dlen);
BN_free(bn_rand);
BN_free(bn_from);
BN_free(bn_to);
return ret;
}
static ERL_NIF_TERM mod_exp_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Base,Exponent,Modulo,bin_hdr) */
BIGNUM *bn_base=NULL, *bn_exponent=NULL, *bn_modulo=NULL, *bn_result;
BN_CTX *bn_ctx;
unsigned char* ptr;
unsigned dlen;
unsigned bin_hdr; /* return type: 0=plain binary, 4: mpint */
unsigned extra_byte;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!get_bn_from_bin(env, argv[0], &bn_base)
|| !get_bn_from_bin(env, argv[1], &bn_exponent)
|| !get_bn_from_bin(env, argv[2], &bn_modulo)
|| !enif_get_uint(env,argv[3],&bin_hdr) || (bin_hdr & ~4)) {
if (bn_base) BN_free(bn_base);
if (bn_exponent) BN_free(bn_exponent);
if (bn_modulo) BN_free(bn_modulo);
return enif_make_badarg(env);
}
bn_result = BN_new();
bn_ctx = BN_CTX_new();
BN_mod_exp(bn_result, bn_base, bn_exponent, bn_modulo, bn_ctx);
dlen = BN_num_bytes(bn_result);
extra_byte = bin_hdr && BN_is_bit_set(bn_result, dlen*8-1);
ptr = enif_make_new_binary(env, bin_hdr+extra_byte+dlen, &ret);
if (bin_hdr) {
put_int32(ptr, extra_byte+dlen);
ptr[4] = 0; /* extra zeroed byte to ensure a positive mpint */
ptr += bin_hdr + extra_byte;
}
BN_bn2bin(bn_result, ptr);
BN_free(bn_result);
BN_CTX_free(bn_ctx);
BN_free(bn_modulo);
BN_free(bn_exponent);
BN_free(bn_base);
return ret;
}
static ERL_NIF_TERM dss_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (DigestType|none, Data|{digest,Digest}, Signature,Key=[P, Q, G, Y]) */
ErlNifBinary data_bin, sign_bin;
BIGNUM *dsa_p = NULL, *dsa_q = NULL, *dsa_g = NULL, *dsa_y = NULL;
unsigned char hmacbuf[SHA_DIGEST_LENGTH];
unsigned char* digest;
ERL_NIF_TERM head, tail;
const ERL_NIF_TERM* tpl_terms;
int tpl_arity;
DSA *dsa;
int i;
CHECK_OSE_CRYPTO();
if (argv[0] == atom_sha) {
if (enif_get_tuple(env, argv[1], &tpl_arity, &tpl_terms)) {
if (tpl_arity != 2 || tpl_terms[0] != atom_digest
|| !enif_inspect_binary(env, tpl_terms[1], &data_bin)
|| data_bin.size != SHA_DIGEST_LENGTH) {
return enif_make_badarg(env);
}
digest = data_bin.data;
}
else {
if (!enif_inspect_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
SHA1(data_bin.data, data_bin.size, hmacbuf);
digest = hmacbuf;
}
}
else if (argv[0] == atom_none && enif_inspect_binary(env, argv[1], &data_bin)
&& data_bin.size == SHA_DIGEST_LENGTH) {
digest = data_bin.data;
}
else {
return enif_make_badarg(env);
}
if (!enif_inspect_binary(env, argv[2], &sign_bin)
|| !enif_get_list_cell(env, argv[3], &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_q)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_g)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_y)
|| !enif_is_empty_list(env,tail)) {
if (dsa_p) BN_free(dsa_p);
if (dsa_q) BN_free(dsa_q);
if (dsa_g) BN_free(dsa_g);
if (dsa_y) BN_free(dsa_y);
return enif_make_badarg(env);
}
dsa = DSA_new();
dsa->p = dsa_p;
dsa->q = dsa_q;
dsa->g = dsa_g;
dsa->priv_key = NULL;
dsa->pub_key = dsa_y;
i = DSA_verify(0, digest, SHA_DIGEST_LENGTH,
sign_bin.data, sign_bin.size, dsa);
DSA_free(dsa);
return(i > 0) ? atom_true : atom_false;
}
static void md5_digest(unsigned char* in, unsigned int in_len, unsigned char* out)
{
MD5(in, in_len, out);
}
static void sha1_digest(unsigned char* in, unsigned int in_len, unsigned char* out)
{
SHA1(in, in_len, out);
}
#ifdef HAVE_SHA224
static void sha224_digest(unsigned char* in, unsigned int in_len, unsigned char* out)
{
SHA224(in, in_len, out);
}
#endif
#ifdef HAVE_SHA256
static void sha256_digest(unsigned char* in, unsigned int in_len, unsigned char* out)
{
SHA256(in, in_len, out);
}
#endif
#ifdef HAVE_SHA384
static void sha384_digest(unsigned char* in, unsigned int in_len, unsigned char* out)
{
SHA384(in, in_len, out);
}
#endif
#ifdef HAVE_SHA512
static void sha512_digest(unsigned char* in, unsigned int in_len, unsigned char* out)
{
SHA512(in, in_len, out);
}
#endif
struct digest_type_t {
const char* type_str;
unsigned len; /* 0 if notsup */
int NID_type;
void (*funcp)(unsigned char* in, unsigned int in_len, unsigned char* out);
ERL_NIF_TERM type_atom;
};
struct digest_type_t digest_types[] =
{
{"md5", MD5_DIGEST_LENGTH, NID_md5, md5_digest},
{"sha", SHA_DIGEST_LENGTH, NID_sha1, sha1_digest},
{"sha224",
#ifdef HAVE_SHA224
SHA224_LEN, NID_sha224, sha224_digest
#else
0
#endif
},
{"sha256",
#ifdef HAVE_SHA256
SHA256_LEN, NID_sha256, sha256_digest
#else
0
#endif
},
{"sha384",
#ifdef HAVE_SHA384
SHA384_LEN, NID_sha384, sha384_digest
#else
0
#endif
},
{"sha512",
#ifdef HAVE_SHA512
SHA512_LEN, NID_sha512, sha512_digest
#else
0
#endif
},
{NULL}
};
static void init_digest_types(ErlNifEnv* env)
{
struct digest_type_t* p = digest_types;
for (p = digest_types; p->type_str; p++) {
p->type_atom = enif_make_atom(env, p->type_str);
}
}
static struct digest_type_t* get_digest_type(ERL_NIF_TERM type)
{
struct digest_type_t* p = NULL;
for (p = digest_types; p->type_str; p++) {
if (type == p->type_atom) {
return p;
}
}
return NULL;
}
static ERL_NIF_TERM rsa_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Data|{digest,Digest}, Signature, Key=[E,N]) */
ErlNifBinary data_bin, sign_bin;
unsigned char hmacbuf[SHA512_LEN];
ERL_NIF_TERM head, tail, ret;
int i;
RSA* rsa;
const ERL_NIF_TERM type = argv[0];
const ERL_NIF_TERM* tpl_terms;
int tpl_arity;
struct digest_type_t* digp = NULL;
unsigned char* digest = NULL;
CHECK_OSE_CRYPTO();
digp = get_digest_type(type);
if (!digp) {
return enif_make_badarg(env);
}
if (!digp->len) {
return atom_notsup;
}
rsa = RSA_new();
if (!enif_inspect_binary(env, argv[2], &sign_bin)
|| !enif_get_list_cell(env, argv[3], &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->e)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->n)
|| !enif_is_empty_list(env, tail)) {
ret = enif_make_badarg(env);
goto done;
}
if (enif_get_tuple(env, argv[1], &tpl_arity, &tpl_terms)) {
if (tpl_arity != 2 || tpl_terms[0] != atom_digest
|| !enif_inspect_binary(env, tpl_terms[1], &data_bin)
|| data_bin.size != digp->len) {
ret = enif_make_badarg(env);
goto done;
}
digest = data_bin.data;
}
else if (enif_inspect_binary(env, argv[1], &data_bin)) {
digest = hmacbuf;
digp->funcp(data_bin.data, data_bin.size, digest);
}
else {
ret = enif_make_badarg(env);
goto done;
}
i = RSA_verify(digp->NID_type, digest, digp->len,
sign_bin.data, sign_bin.size, rsa);
ret = (i==1 ? atom_true : atom_false);
done:
RSA_free(rsa);
return ret;
}
static ERL_NIF_TERM aes_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec, Data, IsEncrypt) */
ErlNifBinary key_bin, ivec_bin, data_bin;
unsigned char ivec[16];
int enc, i = 0, outlen = 0;
EVP_CIPHER_CTX *ctx = NULL;
const EVP_CIPHER *cipher = NULL;
unsigned char* ret_ptr;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| (key_bin.size != 16 && key_bin.size != 32)
|| !enif_inspect_binary(env, argv[1], &ivec_bin)
|| ivec_bin.size != 16
|| !enif_inspect_iolist_as_binary(env, argv[2], &data_bin)
|| data_bin.size % 16 != 0) {
return enif_make_badarg(env);
}
if (argv[3] == atom_true)
enc = 1;
else
enc = 0;
if (!(ctx = EVP_CIPHER_CTX_new()))
return enif_make_badarg(env);
if (key_bin.size == 16)
cipher = EVP_aes_128_cbc();
else if (key_bin.size == 32)
cipher = EVP_aes_256_cbc();
memcpy(ivec, ivec_bin.data, 16); /* writeable copy */
/* openssl docs say we need to leave at least 3 blocks available
at the end of the buffer for EVP calls. let's be safe */
ret_ptr = enif_make_new_binary(env, data_bin.size + 16*3, &ret);
if (EVP_CipherInit_ex(ctx, cipher, NULL, key_bin.data, ivec, enc) != 1)
return enif_make_badarg(env);
/* disable padding, we only handle whole blocks */
EVP_CIPHER_CTX_set_padding(ctx, 0);
if (EVP_CipherUpdate(ctx, ret_ptr, &i, data_bin.data, data_bin.size) != 1)
return enif_make_badarg(env);
outlen += i;
if (EVP_CipherFinal_ex(ctx, ret_ptr + outlen, &i) != 1)
return enif_make_badarg(env);
outlen += i;
EVP_CIPHER_CTX_free(ctx);
CONSUME_REDS(env,data_bin);
/* the garbage collector is going to love this */
return enif_make_sub_binary(env, ret, 0, outlen);
}
static ERL_NIF_TERM aes_ige_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec, Data, IsEncrypt) */
#ifdef HAVE_AES_IGE
ErlNifBinary key_bin, ivec_bin, data_bin;
AES_KEY aes_key;
unsigned char ivec[32];
int i;
unsigned char* ret_ptr;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| (key_bin.size != 16 && key_bin.size != 32)
|| !enif_inspect_binary(env, argv[1], &ivec_bin)
|| ivec_bin.size != 32
|| !enif_inspect_iolist_as_binary(env, argv[2], &data_bin)
|| data_bin.size % 16 != 0) {
return enif_make_badarg(env);
}
if (argv[3] == atom_true) {
i = AES_ENCRYPT;
AES_set_encrypt_key(key_bin.data, key_bin.size*8, &aes_key);
}
else {
i = AES_DECRYPT;
AES_set_decrypt_key(key_bin.data, key_bin.size*8, &aes_key);
}
ret_ptr = enif_make_new_binary(env, data_bin.size, &ret);
memcpy(ivec, ivec_bin.data, 32); /* writable copy */
AES_ige_encrypt(data_bin.data, ret_ptr, data_bin.size, &aes_key, ivec, i);
CONSUME_REDS(env,data_bin);
return ret;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM do_exor(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data1, Data2) */
ErlNifBinary d1, d2;
unsigned char* ret_ptr;
int i;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env,argv[0], &d1)
|| !enif_inspect_iolist_as_binary(env,argv[1], &d2)
|| d1.size != d2.size) {
return enif_make_badarg(env);
}
ret_ptr = enif_make_new_binary(env, d1.size, &ret);
for (i=0; i<d1.size; i++) {
ret_ptr[i] = d1.data[i] ^ d2.data[i];
}
CONSUME_REDS(env,d1);
return ret;
}
static ERL_NIF_TERM rc4_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Data) */
ErlNifBinary key, data;
RC4_KEY rc4_key;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env,argv[0], &key)
|| !enif_inspect_iolist_as_binary(env,argv[1], &data)) {
return enif_make_badarg(env);
}
RC4_set_key(&rc4_key, key.size, key.data);
RC4(&rc4_key, data.size, data.data,
enif_make_new_binary(env, data.size, &ret));
CONSUME_REDS(env,data);
return ret;
}
static ERL_NIF_TERM rc4_set_key(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key) */
ErlNifBinary key;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env,argv[0], &key)) {
return enif_make_badarg(env);
}
RC4_set_key((RC4_KEY*)enif_make_new_binary(env, sizeof(RC4_KEY), &ret),
key.size, key.data);
return ret;
}
static ERL_NIF_TERM rc4_encrypt_with_state(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (State, Data) */
ErlNifBinary state, data;
RC4_KEY* rc4_key;
ERL_NIF_TERM new_state, new_data;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env,argv[0], &state)
|| state.size != sizeof(RC4_KEY)
|| !enif_inspect_iolist_as_binary(env,argv[1], &data)) {
return enif_make_badarg(env);
}
rc4_key = (RC4_KEY*)enif_make_new_binary(env, sizeof(RC4_KEY), &new_state);
memcpy(rc4_key, state.data, sizeof(RC4_KEY));
RC4(rc4_key, data.size, data.data,
enif_make_new_binary(env, data.size, &new_data));
CONSUME_REDS(env,data);
return enif_make_tuple2(env,new_state,new_data);
}
static ERL_NIF_TERM rc2_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key,IVec,Data,IsEncrypt) */
ErlNifBinary key_bin, ivec_bin, data_bin;
RC2_KEY rc2_key;
ERL_NIF_TERM ret;
unsigned char iv_copy[8];
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| (key_bin.size != 5 && key_bin.size != 8 && key_bin.size != 16)
|| !enif_inspect_binary(env, argv[1], &ivec_bin)
|| ivec_bin.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[2], &data_bin)
|| data_bin.size % 8 != 0) {
return enif_make_badarg(env);
}
RC2_set_key(&rc2_key, key_bin.size, key_bin.data, key_bin.size*8);
memcpy(iv_copy, ivec_bin.data, 8);
RC2_cbc_encrypt(data_bin.data,
enif_make_new_binary(env, data_bin.size, &ret),
data_bin.size, &rc2_key,
iv_copy,
(argv[3] == atom_true));
CONSUME_REDS(env,data_bin);
return ret;
}
static int get_rsa_private_key(ErlNifEnv* env, ERL_NIF_TERM key, RSA *rsa)
{
/* key=[E,N,D]|[E,N,D,P1,P2,E1,E2,C] */
ERL_NIF_TERM head, tail;
if (!enif_get_list_cell(env, key, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->e)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->n)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->d)
|| (!enif_is_empty_list(env, tail) &&
(!enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->q)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->dmp1)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->dmq1)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->iqmp)
|| !enif_is_empty_list(env, tail)))) {
return 0;
}
return 1;
}
static ERL_NIF_TERM rsa_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Data|{digest,Digest}, Key=[E,N,D]|[E,N,D,P1,P2,E1,E2,C]) */
ErlNifBinary data_bin, ret_bin;
unsigned char hmacbuf[SHA512_LEN];
unsigned rsa_s_len;
RSA* rsa;
int i;
const ERL_NIF_TERM* tpl_terms;
int tpl_arity;
struct digest_type_t *digp;
unsigned char* digest;
CHECK_OSE_CRYPTO();
digp = get_digest_type(argv[0]);
if (!digp) {
return enif_make_badarg(env);
}
if (!digp->len) {
return atom_notsup;
}
if (enif_get_tuple(env, argv[1], &tpl_arity, &tpl_terms)) {
if (tpl_arity != 2 || tpl_terms[0] != atom_digest
|| !enif_inspect_binary(env, tpl_terms[1], &data_bin)
|| data_bin.size != digp->len) {
return enif_make_badarg(env);
}
digest = data_bin.data;
}
else {
if (!enif_inspect_binary(env,argv[1],&data_bin)) {
return enif_make_badarg(env);
}
digest = hmacbuf;
digp->funcp(data_bin.data, data_bin.size, digest);
}
rsa = RSA_new();
if (!get_rsa_private_key(env, argv[2], rsa)) {
RSA_free(rsa);
return enif_make_badarg(env);
}
enif_alloc_binary(RSA_size(rsa), &ret_bin);
ERL_VALGRIND_ASSERT_MEM_DEFINED(digest, digp->len);
i = RSA_sign(digp->NID_type, digest, digp->len,
ret_bin.data, &rsa_s_len, rsa);
RSA_free(rsa);
if (i) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, rsa_s_len);
if (rsa_s_len != ret_bin.size) {
enif_realloc_binary(&ret_bin, rsa_s_len);
ERL_VALGRIND_ASSERT_MEM_DEFINED(ret_bin.data, rsa_s_len);
}
return enif_make_binary(env,&ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
}
static ERL_NIF_TERM dss_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (DigesType|none, Data|{digest,Digest}, Key=[P,Q,G,PrivKey]) */
ErlNifBinary data_bin, ret_bin;
ERL_NIF_TERM head, tail;
unsigned char hmacbuf[SHA_DIGEST_LENGTH];
unsigned int dsa_s_len;
const ERL_NIF_TERM* tpl_terms;
int tpl_arity;
unsigned char* digest = NULL;
DSA* dsa;
int i;
CHECK_OSE_CRYPTO();
if (argv[0] == atom_sha) {
if (enif_get_tuple(env, argv[1], &tpl_arity, &tpl_terms)) {
if (tpl_arity != 2 || tpl_terms[0] != atom_digest
|| !enif_inspect_binary(env, tpl_terms[1], &data_bin)
|| data_bin.size != SHA_DIGEST_LENGTH) {
return enif_make_badarg(env);
}
digest = data_bin.data;
}
else {
if (!enif_inspect_binary(env,argv[1],&data_bin)) {
return enif_make_badarg(env);
}
SHA1(data_bin.data, data_bin.size, hmacbuf);
digest = hmacbuf;
}
}
else if (argv[0] == atom_none
&& enif_inspect_binary(env,argv[1],&data_bin)
&& data_bin.size == SHA_DIGEST_LENGTH) {
digest = data_bin.data;
}
else {
return enif_make_badarg(env);
}
dsa = DSA_new();
dsa->pub_key = NULL;
if (!enif_get_list_cell(env, argv[2], &head, &tail)
|| !get_bn_from_bin(env, head, &dsa->p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa->q)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa->g)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa->priv_key)
|| !enif_is_empty_list(env,tail)) {
DSA_free(dsa);
return enif_make_badarg(env);
}
enif_alloc_binary(DSA_size(dsa), &ret_bin);
i = DSA_sign(NID_sha1, digest, SHA_DIGEST_LENGTH,
ret_bin.data, &dsa_s_len, dsa);
DSA_free(dsa);
if (i) {
if (dsa_s_len != ret_bin.size) {
enif_realloc_binary(&ret_bin, dsa_s_len);
}
return enif_make_binary(env, &ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
}
static int rsa_pad(ERL_NIF_TERM term, int* padding)
{
if (term == atom_rsa_pkcs1_padding) {
*padding = RSA_PKCS1_PADDING;
}
else if (term == atom_rsa_pkcs1_oaep_padding) {
*padding = RSA_PKCS1_OAEP_PADDING;
}
else if (term == atom_rsa_no_padding) {
*padding = RSA_NO_PADDING;
}
else {
return 0;
}
return 1;
}
static ERL_NIF_TERM rsa_public_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data, PublKey=[E,N], Padding, IsEncrypt) */
ErlNifBinary data_bin, ret_bin;
ERL_NIF_TERM head, tail;
int padding, i;
RSA* rsa;
CHECK_OSE_CRYPTO();
rsa = RSA_new();
if (!enif_inspect_binary(env, argv[0], &data_bin)
|| !enif_get_list_cell(env, argv[1], &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->e)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa->n)
|| !enif_is_empty_list(env,tail)
|| !rsa_pad(argv[2], &padding)) {
RSA_free(rsa);
return enif_make_badarg(env);
}
enif_alloc_binary(RSA_size(rsa), &ret_bin);
if (argv[3] == atom_true) {
ERL_VALGRIND_ASSERT_MEM_DEFINED(data_bin.data,data_bin.size);
i = RSA_public_encrypt(data_bin.size, data_bin.data,
ret_bin.data, rsa, padding);
if (i > 0) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, i);
}
}
else {
i = RSA_public_decrypt(data_bin.size, data_bin.data,
ret_bin.data, rsa, padding);
if (i > 0) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, i);
enif_realloc_binary(&ret_bin, i);
}
}
RSA_free(rsa);
if (i > 0) {
return enif_make_binary(env,&ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
}
static ERL_NIF_TERM rsa_private_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data, Key=[E,N,D]|[E,N,D,P1,P2,E1,E2,C], Padding, IsEncrypt) */
ErlNifBinary data_bin, ret_bin;
int padding, i;
RSA* rsa;
CHECK_OSE_CRYPTO();
rsa = RSA_new();
if (!enif_inspect_binary(env, argv[0], &data_bin)
|| !get_rsa_private_key(env, argv[1], rsa)
|| !rsa_pad(argv[2], &padding)) {
RSA_free(rsa);
return enif_make_badarg(env);
}
enif_alloc_binary(RSA_size(rsa), &ret_bin);
if (argv[3] == atom_true) {
ERL_VALGRIND_ASSERT_MEM_DEFINED(data_bin.data,data_bin.size);
i = RSA_private_encrypt(data_bin.size, data_bin.data,
ret_bin.data, rsa, padding);
if (i > 0) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, i);
}
}
else {
i = RSA_private_decrypt(data_bin.size, data_bin.data,
ret_bin.data, rsa, padding);
if (i > 0) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, i);
enif_realloc_binary(&ret_bin, i);
}
}
RSA_free(rsa);
if (i > 0) {
return enif_make_binary(env,&ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
}
static ERL_NIF_TERM dh_generate_parameters_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (PrimeLen, Generator) */
int prime_len, generator;
DH* dh_params;
int p_len, g_len;
unsigned char *p_ptr, *g_ptr;
ERL_NIF_TERM ret_p, ret_g;
CHECK_OSE_CRYPTO();
if (!enif_get_int(env, argv[0], &prime_len)
|| !enif_get_int(env, argv[1], &generator)) {
return enif_make_badarg(env);
}
dh_params = DH_generate_parameters(prime_len, generator, NULL, NULL);
if (dh_params == NULL) {
return atom_error;
}
p_len = BN_num_bytes(dh_params->p);
g_len = BN_num_bytes(dh_params->g);
p_ptr = enif_make_new_binary(env, p_len, &ret_p);
g_ptr = enif_make_new_binary(env, g_len, &ret_g);
BN_bn2bin(dh_params->p, p_ptr);
BN_bn2bin(dh_params->g, g_ptr);
ERL_VALGRIND_MAKE_MEM_DEFINED(p_ptr, p_len);
ERL_VALGRIND_MAKE_MEM_DEFINED(g_ptr, g_len);
DH_free(dh_params);
return enif_make_list2(env, ret_p, ret_g);
}
static ERL_NIF_TERM dh_check(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* ([PrimeLen, Generator]) */
DH* dh_params;
int i;
ERL_NIF_TERM ret, head, tail;
CHECK_OSE_CRYPTO();
dh_params = DH_new();
if (!enif_get_list_cell(env, argv[0], &head, &tail)
|| !get_bn_from_bin(env, head, &dh_params->p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dh_params->g)
|| !enif_is_empty_list(env,tail)) {
DH_free(dh_params);
return enif_make_badarg(env);
}
if (DH_check(dh_params, &i)) {
if (i == 0) ret = atom_ok;
else if (i & DH_CHECK_P_NOT_PRIME) ret = atom_not_prime;
else if (i & DH_CHECK_P_NOT_SAFE_PRIME) ret = atom_not_strong_prime;
else if (i & DH_UNABLE_TO_CHECK_GENERATOR) ret = atom_unable_to_check_generator;
else if (i & DH_NOT_SUITABLE_GENERATOR) ret = atom_not_suitable_generator;
else ret = enif_make_tuple2(env, atom_unknown, enif_make_uint(env, i));
}
else { /* Check Failed */
ret = enif_make_tuple2(env, atom_error, atom_check_failed);
}
DH_free(dh_params);
return ret;
}
static ERL_NIF_TERM dh_generate_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (PrivKey, DHParams=[P,G], Mpint) */
DH* dh_params;
int pub_len, prv_len;
unsigned char *pub_ptr, *prv_ptr;
ERL_NIF_TERM ret, ret_pub, ret_prv, head, tail;
int mpint; /* 0 or 4 */
CHECK_OSE_CRYPTO();
dh_params = DH_new();
if (!(get_bn_from_bin(env, argv[0], &dh_params->priv_key)
|| argv[0] == atom_undefined)
|| !enif_get_list_cell(env, argv[1], &head, &tail)
|| !get_bn_from_bin(env, head, &dh_params->p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dh_params->g)
|| !enif_is_empty_list(env, tail)
|| !enif_get_int(env, argv[2], &mpint) || (mpint & ~4)) {
DH_free(dh_params);
return enif_make_badarg(env);
}
if (DH_generate_key(dh_params)) {
pub_len = BN_num_bytes(dh_params->pub_key);
prv_len = BN_num_bytes(dh_params->priv_key);
pub_ptr = enif_make_new_binary(env, pub_len+mpint, &ret_pub);
prv_ptr = enif_make_new_binary(env, prv_len+mpint, &ret_prv);
if (mpint) {
put_int32(pub_ptr, pub_len); pub_ptr += 4;
put_int32(prv_ptr, prv_len); prv_ptr += 4;
}
BN_bn2bin(dh_params->pub_key, pub_ptr);
BN_bn2bin(dh_params->priv_key, prv_ptr);
ERL_VALGRIND_MAKE_MEM_DEFINED(pub_ptr, pub_len);
ERL_VALGRIND_MAKE_MEM_DEFINED(prv_ptr, prv_len);
ret = enif_make_tuple2(env, ret_pub, ret_prv);
}
else {
ret = atom_error;
}
DH_free(dh_params);
return ret;
}
static ERL_NIF_TERM dh_compute_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (OthersPublicKey, MyPrivateKey, DHParams=[P,G]) */
DH* dh_params;
BIGNUM* pubkey = NULL;
int i;
ErlNifBinary ret_bin;
ERL_NIF_TERM ret, head, tail;
CHECK_OSE_CRYPTO();
dh_params = DH_new();
if (!get_bn_from_bin(env, argv[0], &pubkey)
|| !get_bn_from_bin(env, argv[1], &dh_params->priv_key)
|| !enif_get_list_cell(env, argv[2], &head, &tail)
|| !get_bn_from_bin(env, head, &dh_params->p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dh_params->g)
|| !enif_is_empty_list(env, tail)) {
ret = enif_make_badarg(env);
}
else {
enif_alloc_binary(DH_size(dh_params), &ret_bin);
i = DH_compute_key(ret_bin.data, pubkey, dh_params);
if (i > 0) {
if (i != ret_bin.size) {
enif_realloc_binary(&ret_bin, i);
}
ret = enif_make_binary(env, &ret_bin);
}
else {
enif_release_binary(&ret_bin);
ret = atom_error;
}
}
if (pubkey) BN_free(pubkey);
DH_free(dh_params);
return ret;
}
static ERL_NIF_TERM srp_value_B_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Multiplier, Verifier, Generator, Exponent, Prime) */
BIGNUM *bn_verifier = NULL;
BIGNUM *bn_exponent = NULL, *bn_generator = NULL, *bn_prime = NULL, *bn_multiplier = NULL, *bn_result;
BN_CTX *bn_ctx;
unsigned char* ptr;
unsigned dlen;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!get_bn_from_bin(env, argv[0], &bn_multiplier)
|| !get_bn_from_bin(env, argv[1], &bn_verifier)
|| !get_bn_from_bin(env, argv[2], &bn_generator)
|| !get_bn_from_bin(env, argv[3], &bn_exponent)
|| !get_bn_from_bin(env, argv[4], &bn_prime)) {
if (bn_multiplier) BN_free(bn_multiplier);
if (bn_verifier) BN_free(bn_verifier);
if (bn_generator) BN_free(bn_generator);
if (bn_exponent) BN_free(bn_exponent);
if (bn_prime) BN_free(bn_prime);
return enif_make_badarg(env);
}
bn_result = BN_new();
bn_ctx = BN_CTX_new();
/* B = k*v + g^b % N */
/* k * v */
BN_mod_mul(bn_multiplier, bn_multiplier, bn_verifier, bn_prime, bn_ctx);
/* g^b % N */
BN_mod_exp(bn_result, bn_generator, bn_exponent, bn_prime, bn_ctx);
/* k*v + g^b % N */
BN_mod_add(bn_result, bn_result, bn_multiplier, bn_prime, bn_ctx);
/* check that B % N != 0, reuse bn_multiplier */
BN_nnmod(bn_multiplier, bn_result, bn_prime, bn_ctx);
if (BN_is_zero(bn_multiplier)) {
ret = atom_error;
} else {
dlen = BN_num_bytes(bn_result);
ptr = enif_make_new_binary(env, dlen, &ret);
BN_bn2bin(bn_result, ptr);
}
BN_free(bn_result);
BN_CTX_free(bn_ctx);
BN_free(bn_prime);
BN_free(bn_generator);
BN_free(bn_multiplier);
BN_free(bn_exponent);
BN_free(bn_verifier);
return ret;
}
static ERL_NIF_TERM srp_user_secret_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (a, u, B, Multiplier, Prime, Exponent, Generator) */
/*
<premaster secret> = (B - (k * g^x)) ^ (a + (u * x)) % N
*/
BIGNUM *bn_exponent = NULL, *bn_a = NULL;
BIGNUM *bn_u = NULL, *bn_multiplier = NULL, *bn_exp2,
*bn_base, *bn_prime = NULL, *bn_generator = NULL,
*bn_B = NULL, *bn_result;
BN_CTX *bn_ctx;
unsigned char* ptr;
unsigned dlen;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!get_bn_from_bin(env, argv[0], &bn_a)
|| !get_bn_from_bin(env, argv[1], &bn_u)
|| !get_bn_from_bin(env, argv[2], &bn_B)
|| !get_bn_from_bin(env, argv[3], &bn_multiplier)
|| !get_bn_from_bin(env, argv[4], &bn_generator)
|| !get_bn_from_bin(env, argv[5], &bn_exponent)
|| !get_bn_from_bin(env, argv[6], &bn_prime))
{
if (bn_exponent) BN_free(bn_exponent);
if (bn_a) BN_free(bn_a);
if (bn_u) BN_free(bn_u);
if (bn_B) BN_free(bn_B);
if (bn_multiplier) BN_free(bn_multiplier);
if (bn_generator) BN_free(bn_generator);
if (bn_prime) BN_free(bn_prime);
return enif_make_badarg(env);
}
bn_ctx = BN_CTX_new();
bn_result = BN_new();
/* check that B % N != 0 */
BN_nnmod(bn_result, bn_B, bn_prime, bn_ctx);
if (BN_is_zero(bn_result)) {
BN_free(bn_exponent);
BN_free(bn_a);
BN_free(bn_generator);
BN_free(bn_prime);
BN_free(bn_u);
BN_free(bn_B);
BN_CTX_free(bn_ctx);
return atom_error;
}
/* (B - (k * g^x)) */
bn_base = BN_new();
BN_mod_exp(bn_result, bn_generator, bn_exponent, bn_prime, bn_ctx);
BN_mod_mul(bn_result, bn_multiplier, bn_result, bn_prime, bn_ctx);
BN_mod_sub(bn_base, bn_B, bn_result, bn_prime, bn_ctx);
/* a + (u * x) */
bn_exp2 = BN_new();
BN_mul(bn_result, bn_u, bn_exponent, bn_ctx);
BN_add(bn_exp2, bn_a, bn_result);
/* (B - (k * g^x)) ^ (a + (u * x)) % N */
BN_mod_exp(bn_result, bn_base, bn_exp2, bn_prime, bn_ctx);
dlen = BN_num_bytes(bn_result);
ptr = enif_make_new_binary(env, dlen, &ret);
BN_bn2bin(bn_result, ptr);
BN_free(bn_result);
BN_CTX_free(bn_ctx);
BN_free(bn_multiplier);
BN_free(bn_exp2);
BN_free(bn_u);
BN_free(bn_exponent);
BN_free(bn_a);
BN_free(bn_B);
BN_free(bn_base);
BN_free(bn_generator);
BN_free(bn_prime);
return ret;
}
static ERL_NIF_TERM srp_host_secret_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Verifier, b, u, A, Prime) */
/*
<premaster secret> = (A * v^u) ^ b % N
*/
BIGNUM *bn_b = NULL, *bn_verifier = NULL;
BIGNUM *bn_prime = NULL, *bn_A = NULL, *bn_u = NULL, *bn_base, *bn_result;
BN_CTX *bn_ctx;
unsigned char* ptr;
unsigned dlen;
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!get_bn_from_bin(env, argv[0], &bn_verifier)
|| !get_bn_from_bin(env, argv[1], &bn_b)
|| !get_bn_from_bin(env, argv[2], &bn_u)
|| !get_bn_from_bin(env, argv[3], &bn_A)
|| !get_bn_from_bin(env, argv[4], &bn_prime))
{
if (bn_verifier) BN_free(bn_verifier);
if (bn_b) BN_free(bn_b);
if (bn_u) BN_free(bn_u);
if (bn_A) BN_free(bn_A);
if (bn_prime) BN_free(bn_prime);
return enif_make_badarg(env);
}
bn_ctx = BN_CTX_new();
bn_result = BN_new();
/* check that A % N != 0 */
BN_nnmod(bn_result, bn_A, bn_prime, bn_ctx);
if (BN_is_zero(bn_result)) {
BN_free(bn_b);
BN_free(bn_verifier);
BN_free(bn_prime);
BN_free(bn_A);
BN_CTX_free(bn_ctx);
return atom_error;
}
/* (A * v^u) */
bn_base = BN_new();
BN_mod_exp(bn_base, bn_verifier, bn_u, bn_prime, bn_ctx);
BN_mod_mul(bn_base, bn_A, bn_base, bn_prime, bn_ctx);
/* (A * v^u) ^ b % N */
BN_mod_exp(bn_result, bn_base, bn_b, bn_prime, bn_ctx);
dlen = BN_num_bytes(bn_result);
ptr = enif_make_new_binary(env, dlen, &ret);
BN_bn2bin(bn_result, ptr);
BN_free(bn_result);
BN_CTX_free(bn_ctx);
BN_free(bn_u);
BN_free(bn_base);
BN_free(bn_verifier);
BN_free(bn_prime);
BN_free(bn_A);
BN_free(bn_b);
return ret;
}
static ERL_NIF_TERM bf_cfb64_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Ivec, Data, IsEncrypt) */
ErlNifBinary key_bin, ivec_bin, data_bin;
BF_KEY bf_key; /* blowfish key 8 */
unsigned char bf_tkey[8]; /* blowfish ivec */
int bf_n = 0; /* blowfish ivec pos */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| !enif_inspect_binary(env, argv[1], &ivec_bin)
|| ivec_bin.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[2], &data_bin)) {
return enif_make_badarg(env);
}
BF_set_key(&bf_key, key_bin.size, key_bin.data);
memcpy(bf_tkey, ivec_bin.data, 8);
BF_cfb64_encrypt(data_bin.data, enif_make_new_binary(env,data_bin.size,&ret),
data_bin.size, &bf_key, bf_tkey, &bf_n,
(argv[3] == atom_true ? BF_ENCRYPT : BF_DECRYPT));
CONSUME_REDS(env,data_bin);
return ret;
}
static ERL_NIF_TERM bf_cbc_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Ivec, Data, IsEncrypt) */
ErlNifBinary key_bin, ivec_bin, data_bin;
BF_KEY bf_key; /* blowfish key 8 */
unsigned char bf_tkey[8]; /* blowfish ivec */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| !enif_inspect_binary(env, argv[1], &ivec_bin)
|| ivec_bin.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[2], &data_bin)
|| data_bin.size % 8 != 0) {
return enif_make_badarg(env);
}
BF_set_key(&bf_key, key_bin.size, key_bin.data);
memcpy(bf_tkey, ivec_bin.data, 8);
BF_cbc_encrypt(data_bin.data, enif_make_new_binary(env,data_bin.size,&ret),
data_bin.size, &bf_key, bf_tkey,
(argv[3] == atom_true ? BF_ENCRYPT : BF_DECRYPT));
CONSUME_REDS(env,data_bin);
return ret;
}
static ERL_NIF_TERM bf_ecb_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, Data, IsEncrypt) */
ErlNifBinary key_bin, data_bin;
BF_KEY bf_key; /* blowfish key 8 */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)
|| data_bin.size < 8) {
return enif_make_badarg(env);
}
BF_set_key(&bf_key, key_bin.size, key_bin.data);
BF_ecb_encrypt(data_bin.data, enif_make_new_binary(env,data_bin.size,&ret),
&bf_key, (argv[2] == atom_true ? BF_ENCRYPT : BF_DECRYPT));
CONSUME_REDS(env,data_bin);
return ret;
}
static ERL_NIF_TERM blowfish_ofb64_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec, Data) */
ErlNifBinary key_bin, ivec_bin, data_bin;
BF_KEY bf_key; /* blowfish key 8 */
unsigned char bf_tkey[8]; /* blowfish ivec */
int bf_n = 0; /* blowfish ivec pos */
ERL_NIF_TERM ret;
CHECK_OSE_CRYPTO();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| !enif_inspect_binary(env, argv[1], &ivec_bin)
|| ivec_bin.size != 8
|| !enif_inspect_iolist_as_binary(env, argv[2], &data_bin)) {
return enif_make_badarg(env);
}
BF_set_key(&bf_key, key_bin.size, key_bin.data);
memcpy(bf_tkey, ivec_bin.data, 8);
BF_ofb64_encrypt(data_bin.data, enif_make_new_binary(env,data_bin.size,&ret),
data_bin.size, &bf_key, bf_tkey, &bf_n);
CONSUME_REDS(env,data_bin);
return ret;
}
#if defined(HAVE_EC)
static EC_KEY* ec_key_new(ErlNifEnv* env, ERL_NIF_TERM curve_arg)
{
EC_KEY *key = NULL;
int c_arity = -1;
const ERL_NIF_TERM* curve;
ErlNifBinary seed;
BIGNUM *p = NULL;
BIGNUM *a = NULL;
BIGNUM *b = NULL;
BIGNUM *bn_order = NULL;
BIGNUM *cofactor = NULL;
EC_GROUP *group = NULL;
EC_POINT *point = NULL;
/* {Field, Prime, Point, Order, CoFactor} = Curve */
if (enif_is_tuple(env, curve_arg)
&& enif_get_tuple(env,curve_arg,&c_arity,&curve)
&& c_arity == 5
&& get_bn_from_bin(env, curve[3], &bn_order)
&& (curve[4] != atom_none && get_bn_from_bin(env, curve[4], &cofactor))) {
int f_arity = -1;
const ERL_NIF_TERM* field;
int p_arity = -1;
const ERL_NIF_TERM* prime;
long field_bits;
/* {A, B, Seed} = Prime */
if (!enif_get_tuple(env,curve[1],&p_arity,&prime)
|| !get_bn_from_bin(env, prime[0], &a)
|| !get_bn_from_bin(env, prime[1], &b))
goto out_err;
if (!enif_get_tuple(env,curve[0],&f_arity,&field))
goto out_err;
if (f_arity == 2 && field[0] == atom_prime_field) {
/* {prime_field, Prime} */
if (!get_bn_from_bin(env, field[1], &p))
goto out_err;
if (BN_is_negative(p) || BN_is_zero(p))
goto out_err;
field_bits = BN_num_bits(p);
if (field_bits > OPENSSL_ECC_MAX_FIELD_BITS)
goto out_err;
/* create the EC_GROUP structure */
group = EC_GROUP_new_curve_GFp(p, a, b, NULL);
#if !defined(OPENSSL_NO_EC2M)
} else if (f_arity == 3 && field[0] == atom_characteristic_two_field) {
/* {characteristic_two_field, M, Basis} */
int b_arity = -1;
const ERL_NIF_TERM* basis;
unsigned int k1, k2, k3;
if ((p = BN_new()) == NULL)
goto out_err;
if (!enif_get_long(env, field[1], &field_bits)
|| field_bits > OPENSSL_ECC_MAX_FIELD_BITS)
goto out_err;
if (enif_get_tuple(env,field[2],&b_arity,&basis)) {
if (b_arity == 2
&& basis[0] == atom_tpbasis
&& enif_get_uint(env, basis[1], &k1)) {
/* {tpbasis, k} = Basis */
if (!(field_bits > k1 && k1 > 0))
goto out_err;
/* create the polynomial */
if (!BN_set_bit(p, (int)field_bits)
|| !BN_set_bit(p, (int)k1)
|| !BN_set_bit(p, 0))
goto out_err;
} else if (b_arity == 4
&& basis[0] == atom_ppbasis
&& enif_get_uint(env, basis[1], &k1)
&& enif_get_uint(env, basis[2], &k2)
&& enif_get_uint(env, basis[3], &k3)) {
/* {ppbasis, k1, k2, k3} = Basis */
if (!(field_bits > k3 && k3 > k2 && k2 > k1 && k1 > 0))
goto out_err;
/* create the polynomial */
if (!BN_set_bit(p, (int)field_bits)
|| !BN_set_bit(p, (int)k1)
|| !BN_set_bit(p, (int)k2)
|| !BN_set_bit(p, (int)k3)
|| !BN_set_bit(p, 0))
goto out_err;
} else
goto out_err;
} else if (field[2] == atom_onbasis) {
/* onbasis = Basis */
/* no parameters */
goto out_err;
} else
goto out_err;
group = EC_GROUP_new_curve_GF2m(p, a, b, NULL);
#endif
} else
goto out_err;
if (enif_inspect_binary(env, prime[2], &seed)) {
EC_GROUP_set_seed(group, seed.data, seed.size);
}
if (!term2point(env, curve[2], group, &point))
goto out_err;
if (BN_is_negative(bn_order)
|| BN_is_zero(bn_order)
|| BN_num_bits(bn_order) > (int)field_bits + 1)
goto out_err;
if (!EC_GROUP_set_generator(group, point, bn_order, cofactor))
goto out_err;
EC_GROUP_set_asn1_flag(group, 0x0);
key = EC_KEY_new();
if (!key)
goto out_err;
EC_KEY_set_group(key, group);
}
else {
goto out_err;
}
goto out;
out_err:
if (key) EC_KEY_free(key);
key = NULL;
out:
/* some OpenSSL structures are mem-dup'ed into the key,
so we have to free our copies here */
if (p) BN_free(p);
if (a) BN_free(a);
if (b) BN_free(b);
if (bn_order) BN_free(bn_order);
if (cofactor) BN_free(cofactor);
if (group) EC_GROUP_free(group);
if (point) EC_POINT_free(point);
return key;
}
static ERL_NIF_TERM bn2term(ErlNifEnv* env, const BIGNUM *bn)
{
unsigned dlen;
unsigned char* ptr;
ERL_NIF_TERM ret;
if (!bn)
return atom_undefined;
dlen = BN_num_bytes(bn);
ptr = enif_make_new_binary(env, dlen, &ret);
BN_bn2bin(bn, ptr);
ERL_VALGRIND_MAKE_MEM_DEFINED(ptr, dlen);
return ret;
}
static ERL_NIF_TERM point2term(ErlNifEnv* env,
const EC_GROUP *group,
const EC_POINT *point,
point_conversion_form_t form)
{
unsigned dlen;
ErlNifBinary bin;
dlen = EC_POINT_point2oct(group, point, form, NULL, 0, NULL);
if (dlen == 0)
return atom_undefined;
if (!enif_alloc_binary(dlen, &bin))
return enif_make_badarg(env);
if (!EC_POINT_point2oct(group, point, form, bin.data, bin.size, NULL)) {
enif_release_binary(&bin);
return enif_make_badarg(env);
}
ERL_VALGRIND_MAKE_MEM_DEFINED(bin.data, bin.size);
return enif_make_binary(env, &bin);
}
static int term2point(ErlNifEnv* env, ERL_NIF_TERM term,
EC_GROUP *group, EC_POINT **pptr)
{
int ret = 0;
ErlNifBinary bin;
EC_POINT *point;
if (!enif_inspect_binary(env,term,&bin)) {
return 0;
}
if ((*pptr = point = EC_POINT_new(group)) == NULL) {
return 0;
}
/* set the point conversion form */
EC_GROUP_set_point_conversion_form(group, (point_conversion_form_t)(bin.data[0] & ~0x01));
/* extract the ec point */
if (!EC_POINT_oct2point(group, point, bin.data, bin.size, NULL)) {
EC_POINT_free(point);
*pptr = NULL;
} else
ret = 1;
return ret;
}
static int get_ec_key(ErlNifEnv* env,
ERL_NIF_TERM curve, ERL_NIF_TERM priv, ERL_NIF_TERM pub,
EC_KEY** res)
{
EC_KEY *key = NULL;
BIGNUM *priv_key = NULL;
EC_POINT *pub_key = NULL;
EC_GROUP *group = NULL;
if (!(priv == atom_undefined || get_bn_from_bin(env, priv, &priv_key))
|| !(pub == atom_undefined || enif_is_binary(env, pub))) {
goto out_err;
}
key = ec_key_new(env, curve);
if (!key) {
goto out_err;
}
if (!group)
group = EC_GROUP_dup(EC_KEY_get0_group(key));
if (term2point(env, pub, group, &pub_key)) {
if (!EC_KEY_set_public_key(key, pub_key)) {
goto out_err;
}
}
if (priv != atom_undefined
&& !BN_is_zero(priv_key)) {
if (!EC_KEY_set_private_key(key, priv_key))
goto out_err;
/* calculate public key (if necessary) */
if (EC_KEY_get0_public_key(key) == NULL)
{
/* the public key was not included in the SEC1 private
* key => calculate the public key */
pub_key = EC_POINT_new(group);
if (pub_key == NULL
|| !EC_POINT_copy(pub_key, EC_GROUP_get0_generator(group))
|| !EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, NULL)
|| !EC_KEY_set_public_key(key, pub_key))
goto out_err;
}
}
goto out;
out_err:
if (key) EC_KEY_free(key);
key = NULL;
out:
/* some OpenSSL structures are mem-dup'ed into the key,
so we have to free our copies here */
if (priv_key) BN_clear_free(priv_key);
if (pub_key) EC_POINT_free(pub_key);
if (group) EC_GROUP_free(group);
if (!key)
return 0;
*res = key;
return 1;
}
#endif /* HAVE_EC */
static ERL_NIF_TERM ec_key_generate(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
#if defined(HAVE_EC)
EC_KEY *key;
const EC_GROUP *group;
const EC_POINT *public_key;
ERL_NIF_TERM priv_key;
ERL_NIF_TERM pub_key = atom_undefined;
CHECK_OSE_CRYPTO();
if (!get_ec_key(env, argv[0], argv[1], atom_undefined, &key))
goto badarg;
if (argv[1] == atom_undefined) {
if (!EC_KEY_generate_key(key))
goto badarg;
}
group = EC_KEY_get0_group(key);
public_key = EC_KEY_get0_public_key(key);
if (group && public_key) {
pub_key = point2term(env, group, public_key,
EC_KEY_get_conv_form(key));
}
priv_key = bn2term(env, EC_KEY_get0_private_key(key));
EC_KEY_free(key);
return enif_make_tuple2(env, pub_key, priv_key);
badarg:
if (key)
EC_KEY_free(key);
return enif_make_badarg(env);
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM ecdsa_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Data|{digest,Digest}, Curve, Key) */
#if defined(HAVE_EC)
ErlNifBinary data_bin, ret_bin;
unsigned char hmacbuf[SHA_DIGEST_LENGTH];
unsigned int dsa_s_len;
EC_KEY* key = NULL;
int i;
const ERL_NIF_TERM* tpl_terms;
int tpl_arity;
struct digest_type_t *digp;
unsigned char* digest;
CHECK_OSE_CRYPTO();
digp = get_digest_type(argv[0]);
if (!digp) {
return enif_make_badarg(env);
}
if (!digp->len) {
return atom_notsup;
}
if (!get_ec_key(env, argv[2], argv[3], atom_undefined, &key))
goto badarg;
if (enif_get_tuple(env, argv[1], &tpl_arity, &tpl_terms)) {
if (tpl_arity != 2 || tpl_terms[0] != atom_digest
|| !enif_inspect_binary(env, tpl_terms[1], &data_bin)
|| data_bin.size != digp->len) {
goto badarg;
}
digest = data_bin.data;
}
else {
if (!enif_inspect_binary(env,argv[1],&data_bin)) {
goto badarg;
}
digest = hmacbuf;
digp->funcp(data_bin.data, data_bin.size, digest);
}
enif_alloc_binary(ECDSA_size(key), &ret_bin);
i = ECDSA_sign(digp->NID_type, digest, digp->len,
ret_bin.data, &dsa_s_len, key);
EC_KEY_free(key);
if (i) {
if (dsa_s_len != ret_bin.size) {
enif_realloc_binary(&ret_bin, dsa_s_len);
}
return enif_make_binary(env, &ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
badarg:
if (key)
EC_KEY_free(key);
return enif_make_badarg(env);
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM ecdsa_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Data|{digest,Digest}, Signature, Curve, Key) */
#if defined(HAVE_EC)
ErlNifBinary data_bin, sign_bin;
unsigned char hmacbuf[SHA512_LEN];
int i;
EC_KEY* key = NULL;
const ERL_NIF_TERM type = argv[0];
const ERL_NIF_TERM* tpl_terms;
int tpl_arity;
struct digest_type_t* digp = NULL;
unsigned char* digest = NULL;
CHECK_OSE_CRYPTO();
digp = get_digest_type(type);
if (!digp) {
return enif_make_badarg(env);
}
if (!digp->len) {
return atom_notsup;
}
if (!enif_inspect_binary(env, argv[2], &sign_bin)
|| !get_ec_key(env, argv[3], atom_undefined, argv[4], &key))
goto badarg;
if (enif_get_tuple(env, argv[1], &tpl_arity, &tpl_terms)) {
if (tpl_arity != 2 || tpl_terms[0] != atom_digest
|| !enif_inspect_binary(env, tpl_terms[1], &data_bin)
|| data_bin.size != digp->len) {
goto badarg;
}
digest = data_bin.data;
}
else if (enif_inspect_binary(env, argv[1], &data_bin)) {
digest = hmacbuf;
digp->funcp(data_bin.data, data_bin.size, digest);
}
else {
goto badarg;
}
i = ECDSA_verify(digp->NID_type, digest, digp->len,
sign_bin.data, sign_bin.size, key);
EC_KEY_free(key);
return (i==1 ? atom_true : atom_false);
badarg:
if (key)
EC_KEY_free(key);
return enif_make_badarg(env);
#else
return atom_notsup;
#endif
}
/*
(_OthersPublicKey, _MyPrivateKey)
(_OthersPublicKey, _MyEC_Point)
*/
static ERL_NIF_TERM ecdh_compute_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
/* (OtherPublicKey, Curve, My) */
{
#if defined(HAVE_EC)
ERL_NIF_TERM ret;
unsigned char *p;
EC_KEY* key = NULL;
int field_size = 0;
int i;
EC_GROUP *group;
const BIGNUM *priv_key;
EC_POINT *my_ecpoint;
EC_KEY *other_ecdh = NULL;
CHECK_OSE_CRYPTO();
if (!get_ec_key(env, argv[1], argv[2], atom_undefined, &key))
return enif_make_badarg(env);
group = EC_GROUP_dup(EC_KEY_get0_group(key));
priv_key = EC_KEY_get0_private_key(key);
if (!term2point(env, argv[0], group, &my_ecpoint)) {
goto out_err;
}
if ((other_ecdh = EC_KEY_new()) == NULL
|| !EC_KEY_set_group(other_ecdh, group)
|| !EC_KEY_set_private_key(other_ecdh, priv_key))
goto out_err;
field_size = EC_GROUP_get_degree(group);
if (field_size <= 0)
goto out_err;
p = enif_make_new_binary(env, (field_size+7)/8, &ret);
i = ECDH_compute_key(p, (field_size+7)/8, my_ecpoint, other_ecdh, NULL);
if (i < 0)
goto out_err;
out:
if (group) EC_GROUP_free(group);
if (my_ecpoint) EC_POINT_free(my_ecpoint);
if (other_ecdh) EC_KEY_free(other_ecdh);
if (key) EC_KEY_free(key);
return ret;
out_err:
ret = enif_make_badarg(env);
goto out;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM rand_seed_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
ErlNifBinary seed_bin;
CHECK_OSE_CRYPTO();
if (!enif_inspect_binary(env, argv[0], &seed_bin))
return enif_make_badarg(env);
RAND_seed(seed_bin.data,seed_bin.size);
return atom_ok;
}
/* HMAC */
static void hmac_md5(unsigned char *key, int klen, unsigned char *dbuf, int dlen,
unsigned char *hmacbuf)
{
MD5_CTX ctx;
char ipad[HMAC_INT_LEN];
char opad[HMAC_INT_LEN];
unsigned char nkey[MD5_LEN];
int i;
/* Change key if longer than 64 bytes */
if (klen > HMAC_INT_LEN) {
MD5(key, klen, nkey);
key = nkey;
klen = MD5_LEN;
}
memset(ipad, '\0', sizeof(ipad));
memset(opad, '\0', sizeof(opad));
memcpy(ipad, key, klen);
memcpy(opad, key, klen);
for (i = 0; i < HMAC_INT_LEN; i++) {
ipad[i] ^= HMAC_IPAD;
opad[i] ^= HMAC_OPAD;
}
/* inner MD5 */
MD5_Init(&ctx);
MD5_Update(&ctx, ipad, HMAC_INT_LEN);
MD5_Update(&ctx, dbuf, dlen);
MD5_Final((unsigned char *) hmacbuf, &ctx);
/* outer MD5 */
MD5_Init(&ctx);
MD5_Update(&ctx, opad, HMAC_INT_LEN);
MD5_Update(&ctx, hmacbuf, MD5_LEN);
MD5_Final((unsigned char *) hmacbuf, &ctx);
}
static void hmac_sha1(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf)
{
SHA_CTX ctx;
char ipad[HMAC_INT_LEN];
char opad[HMAC_INT_LEN];
unsigned char nkey[SHA_LEN];
int i;
/* Change key if longer than 64 bytes */
if (klen > HMAC_INT_LEN) {
SHA1(key, klen, nkey);
key = nkey;
klen = SHA_LEN;
}
memset(ipad, '\0', sizeof(ipad));
memset(opad, '\0', sizeof(opad));
memcpy(ipad, key, klen);
memcpy(opad, key, klen);
for (i = 0; i < HMAC_INT_LEN; i++) {
ipad[i] ^= HMAC_IPAD;
opad[i] ^= HMAC_OPAD;
}
/* inner SHA */
SHA1_Init(&ctx);
SHA1_Update(&ctx, ipad, HMAC_INT_LEN);
SHA1_Update(&ctx, dbuf, dlen);
SHA1_Final((unsigned char *) hmacbuf, &ctx);
/* outer SHA */
SHA1_Init(&ctx);
SHA1_Update(&ctx, opad, HMAC_INT_LEN);
SHA1_Update(&ctx, hmacbuf, SHA_LEN);
SHA1_Final((unsigned char *) hmacbuf, &ctx);
}
#ifdef HAVE_SHA224
static void hmac_sha224(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf)
{
SHA256_CTX ctx;
char ipad[HMAC_INT_LEN];
char opad[HMAC_INT_LEN];
unsigned char nkey[SHA224_DIGEST_LENGTH];
int i;
/* Change key if longer than 64 bytes */
if (klen > HMAC_INT_LEN) {
SHA224(key, klen, nkey);
key = nkey;
klen = SHA224_DIGEST_LENGTH;
}
memset(ipad, '\0', sizeof(ipad));
memset(opad, '\0', sizeof(opad));
memcpy(ipad, key, klen);
memcpy(opad, key, klen);
for (i = 0; i < HMAC_INT_LEN; i++) {
ipad[i] ^= HMAC_IPAD;
opad[i] ^= HMAC_OPAD;
}
/* inner SHA */
SHA224_Init(&ctx);
SHA224_Update(&ctx, ipad, HMAC_INT_LEN);
SHA224_Update(&ctx, dbuf, dlen);
SHA224_Final((unsigned char *) hmacbuf, &ctx);
/* outer SHA */
SHA224_Init(&ctx);
SHA224_Update(&ctx, opad, HMAC_INT_LEN);
SHA224_Update(&ctx, hmacbuf, SHA224_DIGEST_LENGTH);
SHA224_Final((unsigned char *) hmacbuf, &ctx);
}
#endif
#ifdef HAVE_SHA256
static void hmac_sha256(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf)
{
SHA256_CTX ctx;
char ipad[HMAC_INT_LEN];
char opad[HMAC_INT_LEN];
unsigned char nkey[SHA256_DIGEST_LENGTH];
int i;
/* Change key if longer than 64 bytes */
if (klen > HMAC_INT_LEN) {
SHA256(key, klen, nkey);
key = nkey;
klen = SHA256_DIGEST_LENGTH;
}
memset(ipad, '\0', sizeof(ipad));
memset(opad, '\0', sizeof(opad));
memcpy(ipad, key, klen);
memcpy(opad, key, klen);
for (i = 0; i < HMAC_INT_LEN; i++) {
ipad[i] ^= HMAC_IPAD;
opad[i] ^= HMAC_OPAD;
}
/* inner SHA */
SHA256_Init(&ctx);
SHA256_Update(&ctx, ipad, HMAC_INT_LEN);
SHA256_Update(&ctx, dbuf, dlen);
SHA256_Final((unsigned char *) hmacbuf, &ctx);
/* outer SHA */
SHA256_Init(&ctx);
SHA256_Update(&ctx, opad, HMAC_INT_LEN);
SHA256_Update(&ctx, hmacbuf, SHA256_DIGEST_LENGTH);
SHA256_Final((unsigned char *) hmacbuf, &ctx);
}
#endif
#ifdef HAVE_SHA384
static void hmac_sha384(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf)
{
SHA512_CTX ctx;
char ipad[HMAC_INT2_LEN];
char opad[HMAC_INT2_LEN];
unsigned char nkey[SHA384_DIGEST_LENGTH];
int i;
/* Change key if longer than 64 bytes */
if (klen > HMAC_INT2_LEN) {
SHA384(key, klen, nkey);
key = nkey;
klen = SHA384_DIGEST_LENGTH;
}
memset(ipad, '\0', sizeof(ipad));
memset(opad, '\0', sizeof(opad));
memcpy(ipad, key, klen);
memcpy(opad, key, klen);
for (i = 0; i < HMAC_INT2_LEN; i++) {
ipad[i] ^= HMAC_IPAD;
opad[i] ^= HMAC_OPAD;
}
/* inner SHA */
SHA384_Init(&ctx);
SHA384_Update(&ctx, ipad, HMAC_INT2_LEN);
SHA384_Update(&ctx, dbuf, dlen);
SHA384_Final((unsigned char *) hmacbuf, &ctx);
/* outer SHA */
SHA384_Init(&ctx);
SHA384_Update(&ctx, opad, HMAC_INT2_LEN);
SHA384_Update(&ctx, hmacbuf, SHA384_DIGEST_LENGTH);
SHA384_Final((unsigned char *) hmacbuf, &ctx);
}
#endif
#ifdef HAVE_SHA512
static void hmac_sha512(unsigned char *key, int klen,
unsigned char *dbuf, int dlen,
unsigned char *hmacbuf)
{
SHA512_CTX ctx;
char ipad[HMAC_INT2_LEN];
char opad[HMAC_INT2_LEN];
unsigned char nkey[SHA512_DIGEST_LENGTH];
int i;
/* Change key if longer than 64 bytes */
if (klen > HMAC_INT2_LEN) {
SHA512(key, klen, nkey);
key = nkey;
klen = SHA512_DIGEST_LENGTH;
}
memset(ipad, '\0', sizeof(ipad));
memset(opad, '\0', sizeof(opad));
memcpy(ipad, key, klen);
memcpy(opad, key, klen);
for (i = 0; i < HMAC_INT2_LEN; i++) {
ipad[i] ^= HMAC_IPAD;
opad[i] ^= HMAC_OPAD;
}
/* inner SHA */
SHA512_Init(&ctx);
SHA512_Update(&ctx, ipad, HMAC_INT2_LEN);
SHA512_Update(&ctx, dbuf, dlen);
SHA512_Final((unsigned char *) hmacbuf, &ctx);
/* outer SHA */
SHA512_Init(&ctx);
SHA512_Update(&ctx, opad, HMAC_INT2_LEN);
SHA512_Update(&ctx, hmacbuf, SHA512_DIGEST_LENGTH);
SHA512_Final((unsigned char *) hmacbuf, &ctx);
}
#endif