/*
* %CopyrightBegin%
*
* Copyright Ericsson AB 2010-2016. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* %CopyrightEnd%
*/
/*
* Purpose: Dynamically loadable NIF library for cryptography.
* Based on OpenSSL.
*/
#ifdef __WIN32__
#include <windows.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <erl_nif.h>
#define OPENSSL_THREAD_DEFINES
#include <openssl/opensslconf.h>
#include <openssl/crypto.h>
#ifndef OPENSSL_NO_DES
#include <openssl/des.h>
#endif /* #ifndef OPENSSL_NO_DES */
/* #include <openssl/idea.h> This is not supported on the openssl OTP requires */
#include <openssl/dsa.h>
#include <openssl/rsa.h>
#include <openssl/aes.h>
#include <openssl/md5.h>
#include <openssl/md4.h>
#include <openssl/sha.h>
#include <openssl/ripemd.h>
#include <openssl/bn.h>
#include <openssl/objects.h>
#ifndef OPENSSL_NO_RC4
#include <openssl/rc4.h>
#endif /* OPENSSL_NO_RC4 */
#ifndef OPENSSL_NO_RC2
#include <openssl/rc2.h>
#endif
#include <openssl/blowfish.h>
#include <openssl/rand.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
/* Helper macro to construct a OPENSSL_VERSION_NUMBER.
* See openssl/opensslv.h
*/
#define PACKED_OPENSSL_VERSION(MAJ, MIN, FIX, P) \
((((((((MAJ << 8) | MIN) << 8 ) | FIX) << 8) | (P-'a'+1)) << 4) | 0xf)
#define PACKED_OPENSSL_VERSION_PLAIN(MAJ, MIN, FIX) \
PACKED_OPENSSL_VERSION(MAJ,MIN,FIX,('a'-1))
/* LibreSSL was cloned from OpenSSL 1.0.1g and claims to be API and BPI compatible
* with 1.0.1.
*
* LibreSSL has the same names on include files and symbols as OpenSSL, but defines
* the OPENSSL_VERSION_NUMBER to be >= 2.0.0
*
* Therefor works tests like this as intendend:
* OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
* (The test is for example "2.4.2" >= "1.0.0" although the test
* with the cloned OpenSSL test would be "1.0.1" >= "1.0.0")
*
* But tests like this gives wrong result:
* OPENSSL_VERSION_NUMBER < PACKED_OPENSSL_VERSION_PLAIN(1,1,0)
* (The test is false since "2.4.2" < "1.1.0". It should have been
* true because the LibreSSL API version is "1.0.1")
*
*/
#ifdef LIBRESSL_VERSION_NUMBER
/* A macro to test on in this file */
#define HAS_LIBRESSL
#endif
#ifdef HAS_LIBRESSL
/* LibreSSL dislikes FIPS */
# ifdef FIPS_SUPPORT
# undef FIPS_SUPPORT
# endif
/* LibreSSL wants the 1.0.1 API */
# define NEED_EVP_COMPATIBILITY_FUNCTIONS
#endif
#if OPENSSL_VERSION_NUMBER < PACKED_OPENSSL_VERSION_PLAIN(1,1,0)
# define NEED_EVP_COMPATIBILITY_FUNCTIONS
#endif
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
#include <openssl/modes.h>
#endif
#include "crypto_callback.h"
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(0,9,8) \
&& !defined(OPENSSL_NO_SHA224) && defined(NID_sha224) \
&& !defined(OPENSSL_NO_SHA256) /* disabled like this in my sha.h (?) */
# define HAVE_SHA224
#endif
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(0,9,8) \
&& !defined(OPENSSL_NO_SHA256) && defined(NID_sha256)
# define HAVE_SHA256
#endif
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(0,9,8) \
&& !defined(OPENSSL_NO_SHA384) && defined(NID_sha384)\
&& !defined(OPENSSL_NO_SHA512) /* disabled like this in my sha.h (?) */
# define HAVE_SHA384
#endif
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(0,9,8) \
&& !defined(OPENSSL_NO_SHA512) && defined(NID_sha512)
# define HAVE_SHA512
#endif
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION(0,9,7,'e')
# define HAVE_DES_ede3_cfb_encrypt
#endif
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION(0,9,8,'o') \
&& !defined(OPENSSL_NO_EC) \
&& !defined(OPENSSL_NO_ECDH) \
&& !defined(OPENSSL_NO_ECDSA)
# define HAVE_EC
#endif
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION(0,9,8,'c')
# define HAVE_AES_IGE
#endif
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,1)
# define HAVE_EVP_AES_CTR
# define HAVE_GCM
# define HAVE_CMAC
# if OPENSSL_VERSION_NUMBER < PACKED_OPENSSL_VERSION(1,0,1,'d')
# define HAVE_GCM_EVP_DECRYPT_BUG
# endif
#endif
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,1,0)
# ifndef HAS_LIBRESSL
# define HAVE_CHACHA20_POLY1305
# endif
#endif
#if OPENSSL_VERSION_NUMBER <= PACKED_OPENSSL_VERSION(0,9,8,'l')
# define HAVE_ECB_IVEC_BUG
#endif
#if defined(HAVE_CMAC)
#include <openssl/cmac.h>
#endif
#if defined(HAVE_EC)
#include <openssl/ec.h>
#include <openssl/ecdh.h>
#include <openssl/ecdsa.h>
#endif
#ifdef VALGRIND
# include <valgrind/memcheck.h>
/* libcrypto mixes supplied buffer contents into its entropy pool,
which makes valgrind complain about the use of uninitialized data.
We use this valgrind "request" to make sure that no such seemingly
undefined data is returned.
*/
# define ERL_VALGRIND_MAKE_MEM_DEFINED(ptr,size) \
VALGRIND_MAKE_MEM_DEFINED(ptr,size)
# define ERL_VALGRIND_ASSERT_MEM_DEFINED(Ptr,Size) \
do { \
int __erl_valgrind_mem_defined = VALGRIND_CHECK_MEM_IS_DEFINED((Ptr),(Size)); \
if (__erl_valgrind_mem_defined != 0) { \
fprintf(stderr,"\r\n####### VALGRIND_ASSSERT(%p,%ld) failed at %s:%d\r\n", \
(Ptr),(long)(Size), __FILE__, __LINE__); \
abort(); \
} \
} while (0)
#else
# define ERL_VALGRIND_MAKE_MEM_DEFINED(ptr,size)
# define ERL_VALGRIND_ASSERT_MEM_DEFINED(ptr,size)
#endif
#ifdef DEBUG
# define ASSERT(e) \
((void) ((e) ? 1 : (fprintf(stderr,"Assert '%s' failed at %s:%d\n",\
#e, __FILE__, __LINE__), abort(), 0)))
#else
# define ASSERT(e) ((void) 1)
#endif
#ifdef __GNUC__
# define INLINE __inline__
#elif defined(__WIN32__)
# define INLINE __forceinline
#else
# define INLINE
#endif
#define get_int32(s) ((((unsigned char*) (s))[0] << 24) | \
(((unsigned char*) (s))[1] << 16) | \
(((unsigned char*) (s))[2] << 8) | \
(((unsigned char*) (s))[3]))
#define put_int32(s,i) \
{ (s)[0] = (char)(((i) >> 24) & 0xff);\
(s)[1] = (char)(((i) >> 16) & 0xff);\
(s)[2] = (char)(((i) >> 8) & 0xff);\
(s)[3] = (char)((i) & 0xff);\
}
/* This shall correspond to the similar macro in crypto.erl */
/* Current value is: erlang:system_info(context_reductions) * 10 */
#define MAX_BYTES_TO_NIF 20000
#define CONSUME_REDS(NifEnv, Ibin) \
do { \
int _cost = ((Ibin).size * 100) / MAX_BYTES_TO_NIF;\
if (_cost) { \
(void) enif_consume_timeslice((NifEnv), \
(_cost > 100) ? 100 : _cost); \
} \
} while (0)
#ifdef NEED_EVP_COMPATIBILITY_FUNCTIONS
/*
* In OpenSSL 1.1.0, most structs are opaque. That means that
* the structs cannot be allocated as automatic variables on the
* C stack (because the size is unknown) and that it is necessary
* to use access functions.
*
* For backward compatibility to previous versions of OpenSSL, define
* on our versions of the new functions defined in 1.1.0 here, so that
* we don't have to sprinkle ifdefs throughout the code.
*/
static HMAC_CTX *HMAC_CTX_new(void);
static void HMAC_CTX_free(HMAC_CTX *ctx);
static HMAC_CTX *HMAC_CTX_new()
{
HMAC_CTX *ctx = CRYPTO_malloc(sizeof(HMAC_CTX), __FILE__, __LINE__);
HMAC_CTX_init(ctx);
return ctx;
}
static void HMAC_CTX_free(HMAC_CTX *ctx)
{
HMAC_CTX_cleanup(ctx);
return CRYPTO_free(ctx);
}
#define EVP_MD_CTX_new() EVP_MD_CTX_create()
#define EVP_MD_CTX_free(ctx) EVP_MD_CTX_destroy(ctx)
static INLINE void *BN_GENCB_get_arg(BN_GENCB *cb);
static INLINE void *BN_GENCB_get_arg(BN_GENCB *cb)
{
return cb->arg;
}
static INLINE int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d);
static INLINE void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d);
static INLINE int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q);
static INLINE void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q);
static INLINE int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp);
static INLINE void RSA_get0_crt_params(const RSA *r, const BIGNUM **dmp1, const BIGNUM **dmq1, const BIGNUM **iqmp);
static INLINE int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d)
{
r->n = n;
r->e = e;
r->d = d;
return 1;
}
static INLINE void RSA_get0_key(const RSA *r, const BIGNUM **n, const BIGNUM **e, const BIGNUM **d)
{
*n = r->n;
*e = r->e;
*d = r->d;
}
static INLINE int RSA_set0_factors(RSA *r, BIGNUM *p, BIGNUM *q)
{
r->p = p;
r->q = q;
return 1;
}
static INLINE void RSA_get0_factors(const RSA *r, const BIGNUM **p, const BIGNUM **q)
{
*p = r->p;
*q = r->q;
}
static INLINE int RSA_set0_crt_params(RSA *r, BIGNUM *dmp1, BIGNUM *dmq1, BIGNUM *iqmp)
{
r->dmp1 = dmp1;
r->dmq1 = dmq1;
r->iqmp = iqmp;
return 1;
}
static INLINE void RSA_get0_crt_params(const RSA *r, const BIGNUM **dmp1, const BIGNUM **dmq1, const BIGNUM **iqmp)
{
*dmp1 = r->dmp1;
*dmq1 = r->dmq1;
*iqmp = r->iqmp;
}
static INLINE int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key);
static INLINE int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g);
static INLINE int DSA_set0_key(DSA *d, BIGNUM *pub_key, BIGNUM *priv_key)
{
d->pub_key = pub_key;
d->priv_key = priv_key;
return 1;
}
static INLINE int DSA_set0_pqg(DSA *d, BIGNUM *p, BIGNUM *q, BIGNUM *g)
{
d->p = p;
d->q = q;
d->g = g;
return 1;
}
static INLINE int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key);
static INLINE int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g);
static INLINE int DH_set_length(DH *dh, long length);
static INLINE void DH_get0_pqg(const DH *dh,
const BIGNUM **p, const BIGNUM **q, const BIGNUM **g);
static INLINE void DH_get0_key(const DH *dh,
const BIGNUM **pub_key, const BIGNUM **priv_key);
static INLINE int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key)
{
dh->pub_key = pub_key;
dh->priv_key = priv_key;
return 1;
}
static INLINE int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g)
{
dh->p = p;
dh->q = q;
dh->g = g;
return 1;
}
static INLINE int DH_set_length(DH *dh, long length)
{
dh->length = length;
return 1;
}
static INLINE void
DH_get0_pqg(const DH *dh, const BIGNUM **p, const BIGNUM **q, const BIGNUM **g)
{
*p = dh->p;
*q = dh->q;
*g = dh->g;
}
static INLINE void
DH_get0_key(const DH *dh, const BIGNUM **pub_key, const BIGNUM **priv_key)
{
*pub_key = dh->pub_key;
*priv_key = dh->priv_key;
}
#else /* End of compatibility definitions. */
#define HAVE_OPAQUE_BN_GENCB
#endif
/* NIF interface declarations */
static int load(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info);
static int upgrade(ErlNifEnv* env, void** priv_data, void** old_priv_data, ERL_NIF_TERM load_info);
static void unload(ErlNifEnv* env, void* priv_data);
/* The NIFs: */
static ERL_NIF_TERM info_lib(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM info_fips(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM enable_fips_mode(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM algorithms(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hash_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hash_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hash_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hash_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hmac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hmac_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hmac_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM hmac_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM cmac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM block_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_cfb_8_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_cfb_128_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_ige_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_ctr_stream_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_ctr_stream_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM strong_rand_bytes_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM strong_rand_range_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rand_uniform_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM mod_exp_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dss_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rsa_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM do_exor(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rc4_set_key(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rc4_encrypt_with_state(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rsa_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dss_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rsa_public_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rsa_private_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rsa_generate_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dh_generate_parameters_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dh_check(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dh_generate_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM dh_compute_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM srp_value_B_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM srp_user_secret_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM srp_host_secret_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ec_key_generate(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ecdsa_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ecdsa_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM ecdh_compute_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM rand_seed_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_gcm_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM aes_gcm_decrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
#ifdef HAVE_GCM_EVP_DECRYPT_BUG
static ERL_NIF_TERM aes_gcm_decrypt_NO_EVP(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
#endif
static ERL_NIF_TERM chacha20_poly1305_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
static ERL_NIF_TERM chacha20_poly1305_decrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[]);
/* helpers */
static void init_algorithms_types(ErlNifEnv*);
static void init_digest_types(ErlNifEnv* env);
static void init_cipher_types(ErlNifEnv* env);
#ifdef HAVE_EC
static EC_KEY* ec_key_new(ErlNifEnv* env, ERL_NIF_TERM curve_arg);
static int term2point(ErlNifEnv* env, ERL_NIF_TERM term,
EC_GROUP *group, EC_POINT **pptr);
#endif
static ERL_NIF_TERM bin_from_bn(ErlNifEnv* env, const BIGNUM *bn);
static int library_refc = 0; /* number of users of this dynamic library */
static ErlNifFunc nif_funcs[] = {
{"info_lib", 0, info_lib},
{"info_fips", 0, info_fips},
{"enable_fips_mode", 1, enable_fips_mode},
{"algorithms", 0, algorithms},
{"hash_nif", 2, hash_nif},
{"hash_init_nif", 1, hash_init_nif},
{"hash_update_nif", 2, hash_update_nif},
{"hash_final_nif", 1, hash_final_nif},
{"hmac_nif", 3, hmac_nif},
{"hmac_nif", 4, hmac_nif},
{"hmac_init_nif", 2, hmac_init_nif},
{"hmac_update_nif", 2, hmac_update_nif},
{"hmac_final_nif", 1, hmac_final_nif},
{"hmac_final_nif", 2, hmac_final_nif},
{"cmac_nif", 3, cmac_nif},
{"block_crypt_nif", 5, block_crypt_nif},
{"block_crypt_nif", 4, block_crypt_nif},
{"aes_ige_crypt_nif", 4, aes_ige_crypt_nif},
{"aes_ctr_stream_init", 2, aes_ctr_stream_init},
{"aes_ctr_stream_encrypt", 2, aes_ctr_stream_encrypt},
{"aes_ctr_stream_decrypt", 2, aes_ctr_stream_encrypt},
{"strong_rand_bytes_nif", 1, strong_rand_bytes_nif},
{"strong_rand_range_nif", 1, strong_rand_range_nif},
{"rand_uniform_nif", 2, rand_uniform_nif},
{"mod_exp_nif", 4, mod_exp_nif},
{"dss_verify_nif", 4, dss_verify_nif},
{"rsa_verify_nif", 4, rsa_verify_nif},
{"do_exor", 2, do_exor},
{"rc4_set_key", 1, rc4_set_key},
{"rc4_encrypt_with_state", 2, rc4_encrypt_with_state},
{"rsa_sign_nif", 3, rsa_sign_nif},
{"dss_sign_nif", 3, dss_sign_nif},
{"rsa_public_crypt", 4, rsa_public_crypt},
{"rsa_private_crypt", 4, rsa_private_crypt},
{"rsa_generate_key_nif", 2, rsa_generate_key_nif},
{"dh_generate_parameters_nif", 2, dh_generate_parameters_nif},
{"dh_check", 1, dh_check},
{"dh_generate_key_nif", 4, dh_generate_key_nif},
{"dh_compute_key_nif", 3, dh_compute_key_nif},
{"srp_value_B_nif", 5, srp_value_B_nif},
{"srp_user_secret_nif", 7, srp_user_secret_nif},
{"srp_host_secret_nif", 5, srp_host_secret_nif},
{"ec_key_generate", 2, ec_key_generate},
{"ecdsa_sign_nif", 4, ecdsa_sign_nif},
{"ecdsa_verify_nif", 5, ecdsa_verify_nif},
{"ecdh_compute_key_nif", 3, ecdh_compute_key_nif},
{"rand_seed_nif", 1, rand_seed_nif},
{"aes_gcm_encrypt", 5, aes_gcm_encrypt},
{"aes_gcm_decrypt", 5, aes_gcm_decrypt},
{"chacha20_poly1305_encrypt", 4, chacha20_poly1305_encrypt},
{"chacha20_poly1305_decrypt", 5, chacha20_poly1305_decrypt}
};
ERL_NIF_INIT(crypto,nif_funcs,load,NULL,upgrade,unload)
#define MD5_CTX_LEN (sizeof(MD5_CTX))
#define MD4_CTX_LEN (sizeof(MD4_CTX))
#define RIPEMD160_CTX_LEN (sizeof(RIPEMD160_CTX))
static ERL_NIF_TERM atom_true;
static ERL_NIF_TERM atom_false;
static ERL_NIF_TERM atom_sha;
static ERL_NIF_TERM atom_error;
static ERL_NIF_TERM atom_rsa_pkcs1_padding;
static ERL_NIF_TERM atom_rsa_pkcs1_oaep_padding;
static ERL_NIF_TERM atom_rsa_no_padding;
static ERL_NIF_TERM atom_undefined;
static ERL_NIF_TERM atom_ok;
static ERL_NIF_TERM atom_not_prime;
static ERL_NIF_TERM atom_not_strong_prime;
static ERL_NIF_TERM atom_unable_to_check_generator;
static ERL_NIF_TERM atom_not_suitable_generator;
static ERL_NIF_TERM atom_check_failed;
static ERL_NIF_TERM atom_unknown;
static ERL_NIF_TERM atom_none;
static ERL_NIF_TERM atom_notsup;
static ERL_NIF_TERM atom_digest;
#ifdef FIPS_SUPPORT
static ERL_NIF_TERM atom_enabled;
static ERL_NIF_TERM atom_not_enabled;
#else
static ERL_NIF_TERM atom_not_supported;
#endif
#if defined(HAVE_EC)
static ERL_NIF_TERM atom_ec;
static ERL_NIF_TERM atom_prime_field;
static ERL_NIF_TERM atom_characteristic_two_field;
static ERL_NIF_TERM atom_tpbasis;
static ERL_NIF_TERM atom_ppbasis;
static ERL_NIF_TERM atom_onbasis;
#endif
static ERL_NIF_TERM atom_aes_cfb8;
static ERL_NIF_TERM atom_aes_cfb128;
#ifdef HAVE_ECB_IVEC_BUG
static ERL_NIF_TERM atom_aes_ecb;
static ERL_NIF_TERM atom_des_ecb;
static ERL_NIF_TERM atom_blowfish_ecb;
#endif
static ErlNifResourceType* hmac_context_rtype;
struct hmac_context
{
ErlNifMutex* mtx;
int alive;
HMAC_CTX* ctx;
};
static void hmac_context_dtor(ErlNifEnv* env, struct hmac_context*);
struct digest_type_t {
union {
const char* str; /* before init, NULL for end-of-table */
ERL_NIF_TERM atom; /* after init, 'false' for end-of-table */
}type;
union {
const EVP_MD* (*funcp)(void); /* before init, NULL if notsup */
const EVP_MD* p; /* after init, NULL if notsup */
}md;
};
struct digest_type_t digest_types[] =
{
{{"md4"}, {&EVP_md4}},
{{"md5"}, {&EVP_md5}},
{{"ripemd160"}, {&EVP_ripemd160}},
{{"sha"}, {&EVP_sha1}},
{{"sha224"},
#ifdef HAVE_SHA224
{&EVP_sha224}
#else
{NULL}
#endif
},
{{"sha256"},
#ifdef HAVE_SHA256
{&EVP_sha256}
#else
{NULL}
#endif
},
{{"sha384"},
#ifdef HAVE_SHA384
{&EVP_sha384}
#else
{NULL}
#endif
},
{{"sha512"},
#ifdef HAVE_SHA512
{&EVP_sha512}
#else
{NULL}
#endif
},
{{NULL}}
};
static struct digest_type_t* get_digest_type(ERL_NIF_TERM type);
struct cipher_type_t {
union {
const char* str; /* before init */
ERL_NIF_TERM atom; /* after init */
}type;
union {
const EVP_CIPHER* (*funcp)(void); /* before init, NULL if notsup */
const EVP_CIPHER* p; /* after init, NULL if notsup */
}cipher;
const size_t key_len; /* != 0 to also match on key_len */
};
#ifdef OPENSSL_NO_DES
#define COND_NO_DES_PTR(Ptr) (NULL)
#else
#define COND_NO_DES_PTR(Ptr) (Ptr)
#endif
struct cipher_type_t cipher_types[] =
{
{{"rc2_cbc"},
#ifndef OPENSSL_NO_RC2
{&EVP_rc2_cbc}
#else
{NULL}
#endif
},
{{"des_cbc"}, {COND_NO_DES_PTR(&EVP_des_cbc)}},
{{"des_cfb"}, {COND_NO_DES_PTR(&EVP_des_cfb8)}},
{{"des_ecb"}, {COND_NO_DES_PTR(&EVP_des_ecb)}},
{{"des_ede3_cbc"}, {COND_NO_DES_PTR(&EVP_des_ede3_cbc)}},
{{"des_ede3_cbf"}, /* Misspelled, retained */
#ifdef HAVE_DES_ede3_cfb_encrypt
{COND_NO_DES_PTR(&EVP_des_ede3_cfb8)}
#else
{NULL}
#endif
},
{{"des_ede3_cfb"},
#ifdef HAVE_DES_ede3_cfb_encrypt
{COND_NO_DES_PTR(&EVP_des_ede3_cfb8)}
#else
{NULL}
#endif
},
{{"blowfish_cbc"}, {&EVP_bf_cbc}},
{{"blowfish_cfb64"}, {&EVP_bf_cfb64}},
{{"blowfish_ofb64"}, {&EVP_bf_ofb}},
{{"blowfish_ecb"}, {&EVP_bf_ecb}},
{{"aes_cbc"}, {&EVP_aes_128_cbc}, 16},
{{"aes_cbc"}, {&EVP_aes_192_cbc}, 24},
{{"aes_cbc"}, {&EVP_aes_256_cbc}, 32},
{{"aes_cbc128"}, {&EVP_aes_128_cbc}},
{{"aes_cbc256"}, {&EVP_aes_256_cbc}},
{{"aes_cfb8"}, {&EVP_aes_128_cfb8}},
{{"aes_cfb128"}, {&EVP_aes_128_cfb128}},
{{"aes_ecb"}, {&EVP_aes_128_ecb}, 16},
{{"aes_ecb"}, {&EVP_aes_192_ecb}, 24},
{{"aes_ecb"}, {&EVP_aes_256_ecb}, 32},
{{NULL}}
};
static struct cipher_type_t* get_cipher_type(ERL_NIF_TERM type, size_t key_len);
/*
#define PRINTF_ERR0(FMT) enif_fprintf(stderr, FMT "\n")
#define PRINTF_ERR1(FMT, A1) enif_fprintf(stderr, FMT "\n", A1)
#define PRINTF_ERR2(FMT, A1, A2) enif_fprintf(stderr, FMT "\n", A1, A2)
*/
#define PRINTF_ERR0(FMT)
#define PRINTF_ERR1(FMT,A1)
#define PRINTF_ERR2(FMT,A1,A2)
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
/* Define resource types for OpenSSL context structures. */
static ErlNifResourceType* evp_md_ctx_rtype;
struct evp_md_ctx {
EVP_MD_CTX* ctx;
};
static void evp_md_ctx_dtor(ErlNifEnv* env, struct evp_md_ctx *ctx) {
EVP_MD_CTX_free(ctx->ctx);
}
#endif
#ifdef HAVE_EVP_AES_CTR
static ErlNifResourceType* evp_cipher_ctx_rtype;
struct evp_cipher_ctx {
EVP_CIPHER_CTX* ctx;
};
static void evp_cipher_ctx_dtor(ErlNifEnv* env, struct evp_cipher_ctx* ctx) {
EVP_CIPHER_CTX_free(ctx->ctx);
}
#endif
static int verify_lib_version(void)
{
const unsigned long libv = SSLeay();
const unsigned long hdrv = OPENSSL_VERSION_NUMBER;
# define MAJOR_VER(V) ((unsigned long)(V) >> (7*4))
if (MAJOR_VER(libv) != MAJOR_VER(hdrv)) {
PRINTF_ERR2("CRYPTO: INCOMPATIBLE SSL VERSION"
" lib=%lx header=%lx\n", libv, hdrv);
return 0;
}
return 1;
}
#ifdef FIPS_SUPPORT
/* In FIPS mode non-FIPS algorithms are disabled and return badarg. */
#define CHECK_NO_FIPS_MODE() { if (FIPS_mode()) return atom_notsup; }
#else
#define CHECK_NO_FIPS_MODE()
#endif
#ifdef HAVE_DYNAMIC_CRYPTO_LIB
# if defined(DEBUG)
static char crypto_callback_name[] = "crypto_callback.debug";
# elif defined(VALGRIND)
static char crypto_callback_name[] = "crypto_callback.valgrind";
# else
static char crypto_callback_name[] = "crypto_callback";
# endif
static int change_basename(ErlNifBinary* bin, char* buf, int bufsz, const char* newfile)
{
int i;
for (i = bin->size; i > 0; i--) {
if (bin->data[i-1] == '/')
break;
}
if (i + strlen(newfile) >= bufsz) {
PRINTF_ERR0("CRYPTO: lib name too long");
return 0;
}
memcpy(buf, bin->data, i);
strcpy(buf+i, newfile);
return 1;
}
static void error_handler(void* null, const char* errstr)
{
PRINTF_ERR1("CRYPTO LOADING ERROR: '%s'", errstr);
}
#endif /* HAVE_DYNAMIC_CRYPTO_LIB */
static int initialize(ErlNifEnv* env, ERL_NIF_TERM load_info)
{
#ifdef OPENSSL_THREADS
ErlNifSysInfo sys_info;
#endif
get_crypto_callbacks_t* funcp;
struct crypto_callbacks* ccb;
int nlocks = 0;
int tpl_arity;
const ERL_NIF_TERM* tpl_array;
int vernum;
ErlNifBinary lib_bin;
char lib_buf[1000];
if (!verify_lib_version())
return __LINE__;
/* load_info: {302, <<"/full/path/of/this/library">>,true|false} */
if (!enif_get_tuple(env, load_info, &tpl_arity, &tpl_array)
|| tpl_arity != 3
|| !enif_get_int(env, tpl_array[0], &vernum)
|| vernum != 302
|| !enif_inspect_binary(env, tpl_array[1], &lib_bin)) {
PRINTF_ERR1("CRYPTO: Invalid load_info '%T'", load_info);
return __LINE__;
}
hmac_context_rtype = enif_open_resource_type(env, NULL, "hmac_context",
(ErlNifResourceDtor*) hmac_context_dtor,
ERL_NIF_RT_CREATE|ERL_NIF_RT_TAKEOVER,
NULL);
if (!hmac_context_rtype) {
PRINTF_ERR0("CRYPTO: Could not open resource type 'hmac_context'");
return __LINE__;
}
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
evp_md_ctx_rtype = enif_open_resource_type(env, NULL, "EVP_MD_CTX",
(ErlNifResourceDtor*) evp_md_ctx_dtor,
ERL_NIF_RT_CREATE|ERL_NIF_RT_TAKEOVER,
NULL);
if (!evp_md_ctx_rtype) {
PRINTF_ERR0("CRYPTO: Could not open resource type 'EVP_MD_CTX'");
return __LINE__;
}
#endif
#ifdef HAVE_EVP_AES_CTR
evp_cipher_ctx_rtype = enif_open_resource_type(env, NULL, "EVP_CIPHER_CTX",
(ErlNifResourceDtor*) evp_cipher_ctx_dtor,
ERL_NIF_RT_CREATE|ERL_NIF_RT_TAKEOVER,
NULL);
if (!evp_cipher_ctx_rtype) {
PRINTF_ERR0("CRYPTO: Could not open resource type 'EVP_CIPHER_CTX'");
return __LINE__;
}
#endif
if (library_refc > 0) {
/* Repeated loading of this library (module upgrade).
* Atoms and callbacks are already set, we are done.
*/
return 0;
}
atom_true = enif_make_atom(env,"true");
atom_false = enif_make_atom(env,"false");
/* Enter FIPS mode */
if (tpl_array[2] == atom_true) {
#ifdef FIPS_SUPPORT
if (!FIPS_mode_set(1)) {
#else
{
#endif
PRINTF_ERR0("CRYPTO: Could not setup FIPS mode");
return 0;
}
} else if (tpl_array[2] != atom_false) {
PRINTF_ERR1("CRYPTO: Invalid load_info '%T'", load_info);
return 0;
}
atom_sha = enif_make_atom(env,"sha");
atom_error = enif_make_atom(env,"error");
atom_rsa_pkcs1_padding = enif_make_atom(env,"rsa_pkcs1_padding");
atom_rsa_pkcs1_oaep_padding = enif_make_atom(env,"rsa_pkcs1_oaep_padding");
atom_rsa_no_padding = enif_make_atom(env,"rsa_no_padding");
atom_undefined = enif_make_atom(env,"undefined");
atom_ok = enif_make_atom(env,"ok");
atom_not_prime = enif_make_atom(env,"not_prime");
atom_not_strong_prime = enif_make_atom(env,"not_strong_prime");
atom_unable_to_check_generator = enif_make_atom(env,"unable_to_check_generator");
atom_not_suitable_generator = enif_make_atom(env,"not_suitable_generator");
atom_check_failed = enif_make_atom(env,"check_failed");
atom_unknown = enif_make_atom(env,"unknown");
atom_none = enif_make_atom(env,"none");
atom_notsup = enif_make_atom(env,"notsup");
atom_digest = enif_make_atom(env,"digest");
#if defined(HAVE_EC)
atom_ec = enif_make_atom(env,"ec");
atom_prime_field = enif_make_atom(env,"prime_field");
atom_characteristic_two_field = enif_make_atom(env,"characteristic_two_field");
atom_tpbasis = enif_make_atom(env,"tpbasis");
atom_ppbasis = enif_make_atom(env,"ppbasis");
atom_onbasis = enif_make_atom(env,"onbasis");
#endif
atom_aes_cfb8 = enif_make_atom(env, "aes_cfb8");
atom_aes_cfb128 = enif_make_atom(env, "aes_cfb128");
#ifdef HAVE_ECB_IVEC_BUG
atom_aes_ecb = enif_make_atom(env, "aes_ecb");
atom_des_ecb = enif_make_atom(env, "des_ecb");
atom_blowfish_ecb = enif_make_atom(env, "blowfish_ecb");
#endif
#ifdef FIPS_SUPPORT
atom_enabled = enif_make_atom(env,"enabled");
atom_not_enabled = enif_make_atom(env,"not_enabled");
#else
atom_not_supported = enif_make_atom(env,"not_supported");
#endif
init_digest_types(env);
init_cipher_types(env);
init_algorithms_types(env);
#ifdef HAVE_DYNAMIC_CRYPTO_LIB
{
void* handle;
if (!change_basename(&lib_bin, lib_buf, sizeof(lib_buf), crypto_callback_name)) {
return __LINE__;
}
if (!(handle = enif_dlopen(lib_buf, &error_handler, NULL))) {
return __LINE__;
}
if (!(funcp = (get_crypto_callbacks_t*) enif_dlsym(handle, "get_crypto_callbacks",
&error_handler, NULL))) {
return __LINE__;
}
}
#else /* !HAVE_DYNAMIC_CRYPTO_LIB */
funcp = &get_crypto_callbacks;
#endif
#ifdef OPENSSL_THREADS
enif_system_info(&sys_info, sizeof(sys_info));
if (sys_info.scheduler_threads > 1) {
nlocks = CRYPTO_num_locks();
}
/* else no need for locks */
#endif
ccb = (*funcp)(nlocks);
if (!ccb || ccb->sizeof_me != sizeof(*ccb)) {
PRINTF_ERR0("Invalid 'crypto_callbacks'");
return __LINE__;
}
CRYPTO_set_mem_functions(ccb->crypto_alloc, ccb->crypto_realloc, ccb->crypto_free);
#ifdef OPENSSL_THREADS
if (nlocks > 0) {
CRYPTO_set_locking_callback(ccb->locking_function);
CRYPTO_set_id_callback(ccb->id_function);
CRYPTO_set_dynlock_create_callback(ccb->dyn_create_function);
CRYPTO_set_dynlock_lock_callback(ccb->dyn_lock_function);
CRYPTO_set_dynlock_destroy_callback(ccb->dyn_destroy_function);
}
#endif /* OPENSSL_THREADS */
return 0;
}
static int load(ErlNifEnv* env, void** priv_data, ERL_NIF_TERM load_info)
{
int errline = initialize(env, load_info);
if (errline) {
return errline;
}
*priv_data = NULL;
library_refc++;
return 0;
}
static int upgrade(ErlNifEnv* env, void** priv_data, void** old_priv_data,
ERL_NIF_TERM load_info)
{
int errline;
if (*old_priv_data != NULL) {
return __LINE__; /* Don't know how to do that */
}
if (*priv_data != NULL) {
return __LINE__; /* Don't know how to do that */
}
errline = initialize(env, load_info);
if (errline) {
return errline;
}
library_refc++;
return 0;
}
static void unload(ErlNifEnv* env, void* priv_data)
{
--library_refc;
}
static int algo_hash_cnt, algo_hash_fips_cnt;
static ERL_NIF_TERM algo_hash[8]; /* increase when extending the list */
static int algo_pubkey_cnt, algo_pubkey_fips_cnt;
static ERL_NIF_TERM algo_pubkey[7]; /* increase when extending the list */
static int algo_cipher_cnt, algo_cipher_fips_cnt;
static ERL_NIF_TERM algo_cipher[24]; /* increase when extending the list */
static void init_algorithms_types(ErlNifEnv* env)
{
// Validated algorithms first
algo_hash_cnt = 0;
algo_hash[algo_hash_cnt++] = atom_sha;
#ifdef HAVE_SHA224
algo_hash[algo_hash_cnt++] = enif_make_atom(env, "sha224");
#endif
#ifdef HAVE_SHA256
algo_hash[algo_hash_cnt++] = enif_make_atom(env, "sha256");
#endif
#ifdef HAVE_SHA384
algo_hash[algo_hash_cnt++] = enif_make_atom(env, "sha384");
#endif
#ifdef HAVE_SHA512
algo_hash[algo_hash_cnt++] = enif_make_atom(env, "sha512");
#endif
// Non-validated algorithms follow
algo_hash_fips_cnt = algo_hash_cnt;
algo_hash[algo_hash_cnt++] = enif_make_atom(env, "md4");
algo_hash[algo_hash_cnt++] = enif_make_atom(env, "md5");
algo_hash[algo_hash_cnt++] = enif_make_atom(env, "ripemd160");
algo_pubkey_cnt = 0;
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env, "rsa");
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env, "dss");
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env, "dh");
#if defined(HAVE_EC)
#if !defined(OPENSSL_NO_EC2M)
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env, "ec_gf2m");
#endif
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env, "ecdsa");
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env, "ecdh");
#endif
// Non-validated algorithms follow
algo_pubkey_fips_cnt = algo_pubkey_cnt;
algo_pubkey[algo_pubkey_cnt++] = enif_make_atom(env, "srp");
// Validated algorithms first
algo_cipher_cnt = 0;
#ifndef OPENSSL_NO_DES
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "des3_cbc");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "des_ede3");
#ifdef HAVE_DES_ede3_cfb_encrypt
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "des3_cbf");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "des3_cfb");
#endif
#endif
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "aes_cbc");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "aes_cbc128");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "aes_cfb8");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "aes_cfb128");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "aes_cbc256");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "aes_ctr");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env, "aes_ecb");
#if defined(HAVE_GCM)
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"aes_gcm");
#endif
// Non-validated algorithms follow
algo_cipher_fips_cnt = algo_cipher_cnt;
#ifdef HAVE_AES_IGE
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"aes_ige256");
#endif
#ifndef OPENSSL_NO_DES
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"des_cbc");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"des_cfb");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"des_ecb");
#endif
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"blowfish_cbc");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"blowfish_cfb64");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"blowfish_ofb64");
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"blowfish_ecb");
#ifndef OPENSSL_NO_RC2
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"rc2_cbc");
#endif
#ifndef OPENSSL_NO_RC4
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"rc4");
#endif
#if defined(HAVE_GCM)
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"aes_gcm");
#endif
#if defined(HAVE_CHACHA20_POLY1305)
algo_cipher[algo_cipher_cnt++] = enif_make_atom(env,"chacha20_poly1305");
#endif
ASSERT(algo_hash_cnt <= sizeof(algo_hash)/sizeof(ERL_NIF_TERM));
ASSERT(algo_pubkey_cnt <= sizeof(algo_pubkey)/sizeof(ERL_NIF_TERM));
ASSERT(algo_cipher_cnt <= sizeof(algo_cipher)/sizeof(ERL_NIF_TERM));
}
static ERL_NIF_TERM algorithms(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
#ifdef FIPS_SUPPORT
int fips_mode = FIPS_mode();
int hash_cnt = fips_mode ? algo_hash_fips_cnt : algo_hash_cnt;
int pubkey_cnt = fips_mode ? algo_pubkey_fips_cnt : algo_pubkey_cnt;
int cipher_cnt = fips_mode ? algo_cipher_fips_cnt : algo_cipher_cnt;
#else
int hash_cnt = algo_hash_cnt;
int pubkey_cnt = algo_pubkey_cnt;
int cipher_cnt = algo_cipher_cnt;
#endif
return enif_make_tuple3(env,
enif_make_list_from_array(env, algo_hash, hash_cnt),
enif_make_list_from_array(env, algo_pubkey, pubkey_cnt),
enif_make_list_from_array(env, algo_cipher, cipher_cnt));
}
static ERL_NIF_TERM info_lib(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
/* [{<<"OpenSSL">>,9470143,<<"OpenSSL 0.9.8k 25 Mar 2009">>}] */
static const char libname[] = "OpenSSL";
unsigned name_sz = strlen(libname);
const char* ver = SSLeay_version(SSLEAY_VERSION);
unsigned ver_sz = strlen(ver);
ERL_NIF_TERM name_term, ver_term;
int ver_num = OPENSSL_VERSION_NUMBER;
/* R16:
* Ignore library version number from SSLeay() and instead show header
* version. Otherwise user might try to call a function that is implemented
* by a newer library but not supported by the headers used at compile time.
* Example: DES_ede3_cfb_encrypt in 0.9.7i but not in 0.9.7d.
*
* Version string is still from library though.
*/
memcpy(enif_make_new_binary(env, name_sz, &name_term), libname, name_sz);
memcpy(enif_make_new_binary(env, ver_sz, &ver_term), ver, ver_sz);
return enif_make_list1(env, enif_make_tuple3(env, name_term,
enif_make_int(env, ver_num),
ver_term));
}
static ERL_NIF_TERM info_fips(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
#ifdef FIPS_SUPPORT
return FIPS_mode() ? atom_enabled : atom_not_enabled;
#else
return atom_not_supported;
#endif
}
static ERL_NIF_TERM enable_fips_mode(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Boolean) */
if (argv[0] == atom_true) {
#ifdef FIPS_SUPPORT
if (FIPS_mode_set(1)) {
return atom_true;
}
#endif
PRINTF_ERR0("CRYPTO: Could not setup FIPS mode");
return atom_false;
} else if (argv[0] == atom_false) {
#ifdef FIPS_SUPPORT
if (!FIPS_mode_set(0)) {
return atom_false;
}
#endif
return atom_true;
} else {
return enif_make_badarg(env);
}
}
static ERL_NIF_TERM make_badarg_maybe(ErlNifEnv* env)
{
ERL_NIF_TERM reason;
if (enif_has_pending_exception(env, &reason))
return reason; /* dummy return value ignored */
else
return enif_make_badarg(env);
}
static ERL_NIF_TERM hash_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Data) */
struct digest_type_t *digp = NULL;
const EVP_MD *md;
ErlNifBinary data;
ERL_NIF_TERM ret;
unsigned ret_size;
digp = get_digest_type(argv[0]);
if (!digp ||
!enif_inspect_iolist_as_binary(env, argv[1], &data)) {
return enif_make_badarg(env);
}
md = digp->md.p;
if (!md) {
return atom_notsup;
}
ret_size = (unsigned)EVP_MD_size(md);
ASSERT(0 < ret_size && ret_size <= EVP_MAX_MD_SIZE);
if (!EVP_Digest(data.data, data.size,
enif_make_new_binary(env, ret_size, &ret), &ret_size,
md, NULL)) {
return atom_notsup;
}
ASSERT(ret_size == (unsigned)EVP_MD_size(md));
CONSUME_REDS(env, data);
return ret;
}
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
static ERL_NIF_TERM hash_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type) */
struct digest_type_t *digp = NULL;
struct evp_md_ctx *ctx;
ERL_NIF_TERM ret;
digp = get_digest_type(argv[0]);
if (!digp) {
return enif_make_badarg(env);
}
if (!digp->md.p) {
return atom_notsup;
}
ctx = enif_alloc_resource(evp_md_ctx_rtype, sizeof(struct evp_md_ctx));
ctx->ctx = EVP_MD_CTX_new();
if (!EVP_DigestInit(ctx->ctx, digp->md.p)) {
enif_release_resource(ctx);
return atom_notsup;
}
ret = enif_make_resource(env, ctx);
enif_release_resource(ctx);
return ret;
}
static ERL_NIF_TERM hash_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
struct evp_md_ctx *ctx, *new_ctx;
ErlNifBinary data;
ERL_NIF_TERM ret;
if (!enif_get_resource(env, argv[0], evp_md_ctx_rtype, (void**)&ctx) ||
!enif_inspect_iolist_as_binary(env, argv[1], &data)) {
return enif_make_badarg(env);
}
new_ctx = enif_alloc_resource(evp_md_ctx_rtype, sizeof(struct evp_md_ctx));
new_ctx->ctx = EVP_MD_CTX_new();
if (!EVP_MD_CTX_copy(new_ctx->ctx, ctx->ctx) ||
!EVP_DigestUpdate(new_ctx->ctx, data.data, data.size)) {
enif_release_resource(new_ctx);
return atom_notsup;
}
ret = enif_make_resource(env, new_ctx);
enif_release_resource(new_ctx);
CONSUME_REDS(env, data);
return ret;
}
static ERL_NIF_TERM hash_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) */
struct evp_md_ctx *ctx;
EVP_MD_CTX *new_ctx;
ERL_NIF_TERM ret;
unsigned ret_size;
if (!enif_get_resource(env, argv[0], evp_md_ctx_rtype, (void**)&ctx)) {
return enif_make_badarg(env);
}
ret_size = (unsigned)EVP_MD_CTX_size(ctx->ctx);
ASSERT(0 < ret_size && ret_size <= EVP_MAX_MD_SIZE);
new_ctx = EVP_MD_CTX_new();
if (!EVP_MD_CTX_copy(new_ctx, ctx->ctx) ||
!EVP_DigestFinal(new_ctx,
enif_make_new_binary(env, ret_size, &ret),
&ret_size)) {
EVP_MD_CTX_free(new_ctx);
return atom_notsup;
}
EVP_MD_CTX_free(new_ctx);
ASSERT(ret_size == (unsigned)EVP_MD_CTX_size(ctx->ctx));
return ret;
}
#else /* if OPENSSL_VERSION_NUMBER < 1.0 */
static ERL_NIF_TERM hash_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type) */
typedef int (*init_fun)(unsigned char*);
struct digest_type_t *digp = NULL;
ERL_NIF_TERM ctx;
size_t ctx_size = 0;
init_fun ctx_init = 0;
digp = get_digest_type(argv[0]);
if (!digp) {
return enif_make_badarg(env);
}
if (!digp->md.p) {
return atom_notsup;
}
switch (EVP_MD_type(digp->md.p))
{
case NID_md4:
ctx_size = MD4_CTX_LEN;
ctx_init = (init_fun)(&MD4_Init);
break;
case NID_md5:
ctx_size = MD5_CTX_LEN;
ctx_init = (init_fun)(&MD5_Init);
break;
case NID_ripemd160:
ctx_size = RIPEMD160_CTX_LEN;
ctx_init = (init_fun)(&RIPEMD160_Init);
break;
case NID_sha1:
ctx_size = sizeof(SHA_CTX);
ctx_init = (init_fun)(&SHA1_Init);
break;
#ifdef HAVE_SHA224
case NID_sha224:
ctx_size = sizeof(SHA256_CTX);
ctx_init = (init_fun)(&SHA224_Init);
break;
#endif
#ifdef HAVE_SHA256
case NID_sha256:
ctx_size = sizeof(SHA256_CTX);
ctx_init = (init_fun)(&SHA256_Init);
break;
#endif
#ifdef HAVE_SHA384
case NID_sha384:
ctx_size = sizeof(SHA512_CTX);
ctx_init = (init_fun)(&SHA384_Init);
break;
#endif
#ifdef HAVE_SHA512
case NID_sha512:
ctx_size = sizeof(SHA512_CTX);
ctx_init = (init_fun)(&SHA512_Init);
break;
#endif
default:
return atom_notsup;
}
ASSERT(ctx_size);
ASSERT(ctx_init);
ctx_init(enif_make_new_binary(env, ctx_size, &ctx));
return enif_make_tuple2(env, argv[0], ctx);
}
static ERL_NIF_TERM hash_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* ({Type, Context}, Data) */
typedef int (*update_fun)(unsigned char*, const unsigned char*, size_t);
ERL_NIF_TERM new_ctx;
ErlNifBinary ctx, data;
const ERL_NIF_TERM *tuple;
int arity;
struct digest_type_t *digp = NULL;
unsigned char *ctx_buff;
size_t ctx_size = 0;
update_fun ctx_update = 0;
if (!enif_get_tuple(env, argv[0], &arity, &tuple) ||
arity != 2 ||
!(digp = get_digest_type(tuple[0])) ||
!enif_inspect_binary(env, tuple[1], &ctx) ||
!enif_inspect_iolist_as_binary(env, argv[1], &data)) {
return enif_make_badarg(env);
}
if (!digp->md.p) {
return atom_notsup;
}
switch (EVP_MD_type(digp->md.p))
{
case NID_md4:
ctx_size = MD4_CTX_LEN;
ctx_update = (update_fun)(&MD4_Update);
break;
case NID_md5:
ctx_size = MD5_CTX_LEN;
ctx_update = (update_fun)(&MD5_Update);
break;
case NID_ripemd160:
ctx_size = RIPEMD160_CTX_LEN;
ctx_update = (update_fun)(&RIPEMD160_Update);
break;
case NID_sha1:
ctx_size = sizeof(SHA_CTX);
ctx_update = (update_fun)(&SHA1_Update);
break;
#ifdef HAVE_SHA224
case NID_sha224:
ctx_size = sizeof(SHA256_CTX);
ctx_update = (update_fun)(&SHA224_Update);
break;
#endif
#ifdef HAVE_SHA256
case NID_sha256:
ctx_size = sizeof(SHA256_CTX);
ctx_update = (update_fun)(&SHA256_Update);
break;
#endif
#ifdef HAVE_SHA384
case NID_sha384:
ctx_size = sizeof(SHA512_CTX);
ctx_update = (update_fun)(&SHA384_Update);
break;
#endif
#ifdef HAVE_SHA512
case NID_sha512:
ctx_size = sizeof(SHA512_CTX);
ctx_update = (update_fun)(&SHA512_Update);
break;
#endif
default:
return atom_notsup;
}
ASSERT(ctx_size);
ASSERT(ctx_update);
if (ctx.size != ctx_size) {
return enif_make_badarg(env);
}
ctx_buff = enif_make_new_binary(env, ctx_size, &new_ctx);
memcpy(ctx_buff, ctx.data, ctx_size);
ctx_update(ctx_buff, data.data, data.size);
CONSUME_REDS(env, data);
return enif_make_tuple2(env, tuple[0], new_ctx);
}
static ERL_NIF_TERM hash_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* ({Type, Context}) */
typedef int (*final_fun)(unsigned char*, void*);
ERL_NIF_TERM ret;
ErlNifBinary ctx;
const ERL_NIF_TERM *tuple;
int arity;
struct digest_type_t *digp = NULL;
const EVP_MD *md;
void *new_ctx;
size_t ctx_size = 0;
final_fun ctx_final = 0;
if (!enif_get_tuple(env, argv[0], &arity, &tuple) ||
arity != 2 ||
!(digp = get_digest_type(tuple[0])) ||
!enif_inspect_binary(env, tuple[1], &ctx)) {
return enif_make_badarg(env);
}
md = digp->md.p;
if (!md) {
return atom_notsup;
}
switch (EVP_MD_type(md))
{
case NID_md4:
ctx_size = MD4_CTX_LEN;
ctx_final = (final_fun)(&MD4_Final);
break;
case NID_md5:
ctx_size = MD5_CTX_LEN;
ctx_final = (final_fun)(&MD5_Final);
break;
case NID_ripemd160:
ctx_size = RIPEMD160_CTX_LEN;
ctx_final = (final_fun)(&RIPEMD160_Final);
break;
case NID_sha1:
ctx_size = sizeof(SHA_CTX);
ctx_final = (final_fun)(&SHA1_Final);
break;
#ifdef HAVE_SHA224
case NID_sha224:
ctx_size = sizeof(SHA256_CTX);
ctx_final = (final_fun)(&SHA224_Final);
break;
#endif
#ifdef HAVE_SHA256
case NID_sha256:
ctx_size = sizeof(SHA256_CTX);
ctx_final = (final_fun)(&SHA256_Final);
break;
#endif
#ifdef HAVE_SHA384
case NID_sha384:
ctx_size = sizeof(SHA512_CTX);
ctx_final = (final_fun)(&SHA384_Final);
break;
#endif
#ifdef HAVE_SHA512
case NID_sha512:
ctx_size = sizeof(SHA512_CTX);
ctx_final = (final_fun)(&SHA512_Final);
break;
#endif
default:
return atom_notsup;
}
ASSERT(ctx_size);
ASSERT(ctx_final);
if (ctx.size != ctx_size) {
return enif_make_badarg(env);
}
new_ctx = enif_alloc(ctx_size);
memcpy(new_ctx, ctx.data, ctx_size);
ctx_final(enif_make_new_binary(env, (size_t)EVP_MD_size(md), &ret),
new_ctx);
enif_free(new_ctx);
return ret;
}
#endif /* OPENSSL_VERSION_NUMBER < 1.0 */
static ERL_NIF_TERM hmac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Key, Data) or (Type, Key, Data, MacSize) */
struct digest_type_t *digp = NULL;
ErlNifBinary key, data;
unsigned char buff[EVP_MAX_MD_SIZE];
unsigned size = 0, req_size = 0;
ERL_NIF_TERM ret;
digp = get_digest_type(argv[0]);
if (!digp ||
!enif_inspect_iolist_as_binary(env, argv[1], &key) ||
!enif_inspect_iolist_as_binary(env, argv[2], &data) ||
(argc == 4 && !enif_get_uint(env, argv[3], &req_size))) {
return enif_make_badarg(env);
}
if (!digp->md.p ||
!HMAC(digp->md.p,
key.data, key.size,
data.data, data.size,
buff, &size)) {
return atom_notsup;
}
ASSERT(0 < size && size <= EVP_MAX_MD_SIZE);
CONSUME_REDS(env, data);
if (argc == 4) {
if (req_size <= size) {
size = req_size;
}
else {
return enif_make_badarg(env);
}
}
memcpy(enif_make_new_binary(env, size, &ret), buff, size);
return ret;
}
static void hmac_context_dtor(ErlNifEnv* env, struct hmac_context *obj)
{
if (obj->alive) {
HMAC_CTX_free(obj->ctx);
obj->alive = 0;
}
enif_mutex_destroy(obj->mtx);
}
static ERL_NIF_TERM hmac_init_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Key) */
struct digest_type_t *digp = NULL;
ErlNifBinary key;
ERL_NIF_TERM ret;
struct hmac_context *obj;
digp = get_digest_type(argv[0]);
if (!digp ||
!enif_inspect_iolist_as_binary(env, argv[1], &key)) {
return enif_make_badarg(env);
}
if (!digp->md.p) {
return atom_notsup;
}
obj = enif_alloc_resource(hmac_context_rtype, sizeof(struct hmac_context));
obj->mtx = enif_mutex_create("crypto.hmac");
obj->alive = 1;
obj->ctx = HMAC_CTX_new();
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
// Check the return value of HMAC_Init: it may fail in FIPS mode
// for disabled algorithms
if (!HMAC_Init_ex(obj->ctx, key.data, key.size, digp->md.p, NULL)) {
enif_release_resource(obj);
return atom_notsup;
}
#else
HMAC_Init_ex(obj->ctx, key.data, key.size, digp->md.p, NULL);
#endif
ret = enif_make_resource(env, obj);
enif_release_resource(obj);
return ret;
}
static ERL_NIF_TERM hmac_update_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
ErlNifBinary data;
struct hmac_context* obj;
if (!enif_get_resource(env, argv[0], hmac_context_rtype, (void**)&obj)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data)) {
return enif_make_badarg(env);
}
enif_mutex_lock(obj->mtx);
if (!obj->alive) {
enif_mutex_unlock(obj->mtx);
return enif_make_badarg(env);
}
HMAC_Update(obj->ctx, data.data, data.size);
enif_mutex_unlock(obj->mtx);
CONSUME_REDS(env,data);
return argv[0];
}
static ERL_NIF_TERM hmac_final_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context) or (Context, HashLen) */
ERL_NIF_TERM ret;
struct hmac_context* obj;
unsigned char mac_buf[EVP_MAX_MD_SIZE];
unsigned char * mac_bin;
unsigned int req_len = 0;
unsigned int mac_len;
if (!enif_get_resource(env,argv[0],hmac_context_rtype, (void**)&obj)
|| (argc == 2 && !enif_get_uint(env, argv[1], &req_len))) {
return enif_make_badarg(env);
}
enif_mutex_lock(obj->mtx);
if (!obj->alive) {
enif_mutex_unlock(obj->mtx);
return enif_make_badarg(env);
}
HMAC_Final(obj->ctx, mac_buf, &mac_len);
HMAC_CTX_free(obj->ctx);
obj->alive = 0;
enif_mutex_unlock(obj->mtx);
if (argc == 2 && req_len < mac_len) {
/* Only truncate to req_len bytes if asked. */
mac_len = req_len;
}
mac_bin = enif_make_new_binary(env, mac_len, &ret);
memcpy(mac_bin, mac_buf, mac_len);
return ret;
}
static ERL_NIF_TERM cmac_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Key, Data) */
#if defined(HAVE_CMAC)
struct cipher_type_t *cipherp = NULL;
const EVP_CIPHER *cipher;
CMAC_CTX *ctx;
ErlNifBinary key;
ErlNifBinary data;
ERL_NIF_TERM ret;
size_t ret_size;
if (!enif_inspect_iolist_as_binary(env, argv[1], &key)
|| !(cipherp = get_cipher_type(argv[0], key.size))
|| !enif_inspect_iolist_as_binary(env, argv[2], &data)) {
return enif_make_badarg(env);
}
cipher = cipherp->cipher.p;
if (!cipher) {
return enif_raise_exception(env, atom_notsup);
}
ctx = CMAC_CTX_new();
if (!CMAC_Init(ctx, key.data, key.size, cipher, NULL)) {
CMAC_CTX_free(ctx);
return atom_notsup;
}
if (!CMAC_Update(ctx, data.data, data.size) ||
!CMAC_Final(ctx,
enif_make_new_binary(env, EVP_CIPHER_block_size(cipher), &ret),
&ret_size)) {
CMAC_CTX_free(ctx);
return atom_notsup;
}
ASSERT(ret_size == (unsigned)EVP_CIPHER_block_size(cipher));
CMAC_CTX_free(ctx);
CONSUME_REDS(env, data);
return ret;
#else
/* The CMAC functionality was introduced in OpenSSL 1.0.1
* Although OTP requires at least version 0.9.8, the versions 0.9.8 and 1.0.0 are
* no longer maintained. */
return atom_notsup;
#endif
}
static ERL_NIF_TERM block_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Key, Ivec, Text, IsEncrypt) or (Type, Key, Text, IsEncrypt) */
struct cipher_type_t *cipherp = NULL;
const EVP_CIPHER *cipher;
ErlNifBinary key, ivec, text;
EVP_CIPHER_CTX* ctx;
ERL_NIF_TERM ret;
unsigned char *out;
int ivec_size, out_size = 0;
if (!enif_inspect_iolist_as_binary(env, argv[1], &key)
|| !(cipherp = get_cipher_type(argv[0], key.size))
|| !enif_inspect_iolist_as_binary(env, argv[argc - 2], &text)) {
return enif_make_badarg(env);
}
cipher = cipherp->cipher.p;
if (!cipher) {
return enif_raise_exception(env, atom_notsup);
}
if (argv[0] == atom_aes_cfb8
&& (key.size == 24 || key.size == 32)) {
/* Why do EVP_CIPHER_CTX_set_key_length() fail on these key sizes?
* Fall back on low level API
*/
return aes_cfb_8_crypt(env, argc-1, argv+1);
}
else if (argv[0] == atom_aes_cfb128
&& (key.size == 24 || key.size == 32)) {
/* Why do EVP_CIPHER_CTX_set_key_length() fail on these key sizes?
* Fall back on low level API
*/
return aes_cfb_128_crypt_nif(env, argc-1, argv+1);
}
ivec_size = EVP_CIPHER_iv_length(cipher);
#ifdef HAVE_ECB_IVEC_BUG
if (argv[0] == atom_aes_ecb || argv[0] == atom_blowfish_ecb ||
argv[0] == atom_des_ecb)
ivec_size = 0; /* 0.9.8l returns faulty ivec_size */
#endif
if (text.size % EVP_CIPHER_block_size(cipher) != 0 ||
(ivec_size == 0 ? argc != 4
: (argc != 5 ||
!enif_inspect_iolist_as_binary(env, argv[2], &ivec) ||
ivec.size != ivec_size))) {
return enif_make_badarg(env);
}
out = enif_make_new_binary(env, text.size, &ret);
ctx = EVP_CIPHER_CTX_new();
if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL,
(argv[argc - 1] == atom_true)) ||
!EVP_CIPHER_CTX_set_key_length(ctx, key.size) ||
!(EVP_CIPHER_type(cipher) != NID_rc2_cbc ||
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_SET_RC2_KEY_BITS, key.size * 8, NULL)) ||
!EVP_CipherInit_ex(ctx, NULL, NULL,
key.data, ivec_size ? ivec.data : NULL, -1) ||
!EVP_CIPHER_CTX_set_padding(ctx, 0)) {
EVP_CIPHER_CTX_free(ctx);
return enif_raise_exception(env, atom_notsup);
}
if (text.size > 0 && /* OpenSSL 0.9.8h asserts text.size > 0 */
(!EVP_CipherUpdate(ctx, out, &out_size, text.data, text.size)
|| (ASSERT(out_size == text.size), 0)
|| !EVP_CipherFinal_ex(ctx, out + out_size, &out_size))) {
EVP_CIPHER_CTX_free(ctx);
return enif_raise_exception(env, atom_notsup);
}
ASSERT(out_size == 0);
EVP_CIPHER_CTX_free(ctx);
CONSUME_REDS(env, text);
return ret;
}
static ERL_NIF_TERM aes_cfb_8_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec, Data, IsEncrypt) */
ErlNifBinary key, ivec, text;
AES_KEY aes_key;
unsigned char ivec_clone[16]; /* writable copy */
int new_ivlen = 0;
ERL_NIF_TERM ret;
CHECK_NO_FIPS_MODE();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| !(key.size == 16 || key.size == 24 || key.size == 32)
|| !enif_inspect_binary(env, argv[1], &ivec) || ivec.size != 16
|| !enif_inspect_iolist_as_binary(env, argv[2], &text)) {
return enif_make_badarg(env);
}
memcpy(ivec_clone, ivec.data, 16);
AES_set_encrypt_key(key.data, key.size * 8, &aes_key);
AES_cfb8_encrypt((unsigned char *) text.data,
enif_make_new_binary(env, text.size, &ret),
text.size, &aes_key, ivec_clone, &new_ivlen,
(argv[3] == atom_true));
CONSUME_REDS(env,text);
return ret;
}
static ERL_NIF_TERM aes_cfb_128_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec, Data, IsEncrypt) */
ErlNifBinary key, ivec, text;
AES_KEY aes_key;
unsigned char ivec_clone[16]; /* writable copy */
int new_ivlen = 0;
ERL_NIF_TERM ret;
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| !(key.size == 16 || key.size == 24 || key.size == 32)
|| !enif_inspect_binary(env, argv[1], &ivec) || ivec.size != 16
|| !enif_inspect_iolist_as_binary(env, argv[2], &text)) {
return enif_make_badarg(env);
}
memcpy(ivec_clone, ivec.data, 16);
AES_set_encrypt_key(key.data, key.size * 8, &aes_key);
AES_cfb128_encrypt((unsigned char *) text.data,
enif_make_new_binary(env, text.size, &ret),
text.size, &aes_key, ivec_clone, &new_ivlen,
(argv[3] != atom_true));
CONSUME_REDS(env,text);
return ret;
}
static ERL_NIF_TERM aes_ige_crypt_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec, Data, IsEncrypt) */
#ifdef HAVE_AES_IGE
ErlNifBinary key_bin, ivec_bin, data_bin;
AES_KEY aes_key;
unsigned char ivec[32];
int i;
unsigned char* ret_ptr;
ERL_NIF_TERM ret;
CHECK_NO_FIPS_MODE();
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| (key_bin.size != 16 && key_bin.size != 32)
|| !enif_inspect_binary(env, argv[1], &ivec_bin)
|| ivec_bin.size != 32
|| !enif_inspect_iolist_as_binary(env, argv[2], &data_bin)
|| data_bin.size % 16 != 0) {
return enif_make_badarg(env);
}
if (argv[3] == atom_true) {
i = AES_ENCRYPT;
AES_set_encrypt_key(key_bin.data, key_bin.size*8, &aes_key);
}
else {
i = AES_DECRYPT;
AES_set_decrypt_key(key_bin.data, key_bin.size*8, &aes_key);
}
ret_ptr = enif_make_new_binary(env, data_bin.size, &ret);
memcpy(ivec, ivec_bin.data, 32); /* writable copy */
AES_ige_encrypt(data_bin.data, ret_ptr, data_bin.size, &aes_key, ivec, i);
CONSUME_REDS(env,data_bin);
return ret;
#else
return atom_notsup;
#endif
}
/* Initializes state for ctr streaming (de)encryption
*/
#ifdef HAVE_EVP_AES_CTR
static ERL_NIF_TERM aes_ctr_stream_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec) */
ErlNifBinary key_bin, ivec_bin;
struct evp_cipher_ctx *ctx;
const EVP_CIPHER *cipher;
ERL_NIF_TERM ret;
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| !enif_inspect_binary(env, argv[1], &ivec_bin)
|| ivec_bin.size != 16) {
return enif_make_badarg(env);
}
switch (key_bin.size)
{
case 16: cipher = EVP_aes_128_ctr(); break;
case 24: cipher = EVP_aes_192_ctr(); break;
case 32: cipher = EVP_aes_256_ctr(); break;
default: return enif_make_badarg(env);
}
ctx = enif_alloc_resource(evp_cipher_ctx_rtype, sizeof(struct evp_cipher_ctx));
ctx->ctx = EVP_CIPHER_CTX_new();
EVP_CipherInit_ex(ctx->ctx, cipher, NULL,
key_bin.data, ivec_bin.data, 1);
EVP_CIPHER_CTX_set_padding(ctx->ctx, 0);
ret = enif_make_resource(env, ctx);
enif_release_resource(ctx);
return ret;
}
static ERL_NIF_TERM aes_ctr_stream_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Context, Data) */
struct evp_cipher_ctx *ctx, *new_ctx;
ErlNifBinary data_bin;
ERL_NIF_TERM ret, cipher_term;
unsigned char *out;
int outl = 0;
if (!enif_get_resource(env, argv[0], evp_cipher_ctx_rtype, (void**)&ctx)
|| !enif_inspect_iolist_as_binary(env, argv[1], &data_bin)) {
return enif_make_badarg(env);
}
new_ctx = enif_alloc_resource(evp_cipher_ctx_rtype, sizeof(struct evp_cipher_ctx));
new_ctx->ctx = EVP_CIPHER_CTX_new();
EVP_CIPHER_CTX_copy(new_ctx->ctx, ctx->ctx);
out = enif_make_new_binary(env, data_bin.size, &cipher_term);
EVP_CipherUpdate(new_ctx->ctx, out, &outl, data_bin.data, data_bin.size);
ASSERT(outl == data_bin.size);
ret = enif_make_tuple2(env, enif_make_resource(env, new_ctx), cipher_term);
enif_release_resource(new_ctx);
CONSUME_REDS(env,data_bin);
return ret;
}
#else /* if not HAVE_EVP_AES_CTR */
static ERL_NIF_TERM aes_ctr_stream_init(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key, IVec) */
ErlNifBinary key_bin, ivec_bin;
ERL_NIF_TERM ecount_bin;
if (!enif_inspect_iolist_as_binary(env, argv[0], &key_bin)
|| !enif_inspect_binary(env, argv[1], &ivec_bin)
|| !(key_bin.size == 16 || key_bin.size == 24 || key_bin.size ==32)
|| ivec_bin.size != 16) {
return enif_make_badarg(env);
}
memset(enif_make_new_binary(env, AES_BLOCK_SIZE, &ecount_bin),
0, AES_BLOCK_SIZE);
return enif_make_tuple4(env, argv[0], argv[1], ecount_bin, enif_make_int(env, 0));
}
static ERL_NIF_TERM aes_ctr_stream_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* ({Key, IVec, ECount, Num}, Data) */
ErlNifBinary key_bin, ivec_bin, text_bin, ecount_bin;
AES_KEY aes_key;
unsigned int num;
ERL_NIF_TERM ret, num2_term, cipher_term, ivec2_term, ecount2_term, new_state_term;
int state_arity;
const ERL_NIF_TERM *state_term;
unsigned char * ivec2_buf;
unsigned char * ecount2_buf;
if (!enif_get_tuple(env, argv[0], &state_arity, &state_term)
|| state_arity != 4
|| !enif_inspect_iolist_as_binary(env, state_term[0], &key_bin)
|| AES_set_encrypt_key(key_bin.data, key_bin.size*8, &aes_key) != 0
|| !enif_inspect_binary(env, state_term[1], &ivec_bin) || ivec_bin.size != 16
|| !enif_inspect_binary(env, state_term[2], &ecount_bin) || ecount_bin.size != AES_BLOCK_SIZE
|| !enif_get_uint(env, state_term[3], &num)
|| !enif_inspect_iolist_as_binary(env, argv[1], &text_bin)) {
return enif_make_badarg(env);
}
ivec2_buf = enif_make_new_binary(env, ivec_bin.size, &ivec2_term);
ecount2_buf = enif_make_new_binary(env, ecount_bin.size, &ecount2_term);
memcpy(ivec2_buf, ivec_bin.data, 16);
memcpy(ecount2_buf, ecount_bin.data, ecount_bin.size);
AES_ctr128_encrypt((unsigned char *) text_bin.data,
enif_make_new_binary(env, text_bin.size, &cipher_term),
text_bin.size, &aes_key, ivec2_buf, ecount2_buf, &num);
num2_term = enif_make_uint(env, num);
new_state_term = enif_make_tuple4(env, state_term[0], ivec2_term, ecount2_term, num2_term);
ret = enif_make_tuple2(env, new_state_term, cipher_term);
CONSUME_REDS(env,text_bin);
return ret;
}
#endif /* !HAVE_EVP_AES_CTR */
static ERL_NIF_TERM aes_gcm_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key,Iv,AAD,In) */
#if defined(HAVE_GCM)
EVP_CIPHER_CTX *ctx;
const EVP_CIPHER *cipher = NULL;
ErlNifBinary key, iv, aad, in;
unsigned int tag_len;
unsigned char *outp, *tagp;
ERL_NIF_TERM out, out_tag;
int len;
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| (key.size != 16 && key.size != 24 && key.size != 32)
|| !enif_inspect_binary(env, argv[1], &iv) || iv.size == 0
|| !enif_inspect_iolist_as_binary(env, argv[2], &aad)
|| !enif_inspect_iolist_as_binary(env, argv[3], &in)
|| !enif_get_uint(env, argv[4], &tag_len) || tag_len < 1 || tag_len > 16) {
return enif_make_badarg(env);
}
if (key.size == 16)
cipher = EVP_aes_128_gcm();
else if (key.size == 24)
cipher = EVP_aes_192_gcm();
else if (key.size == 32)
cipher = EVP_aes_256_gcm();
ctx = EVP_CIPHER_CTX_new();
if (EVP_EncryptInit_ex(ctx, cipher, NULL, NULL, NULL) != 1)
goto out_err;
EVP_CIPHER_CTX_set_padding(ctx, 0);
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, iv.size, NULL) != 1)
goto out_err;
if (EVP_EncryptInit_ex(ctx, NULL, NULL, key.data, iv.data) != 1)
goto out_err;
if (EVP_EncryptUpdate(ctx, NULL, &len, aad.data, aad.size) != 1)
goto out_err;
outp = enif_make_new_binary(env, in.size, &out);
if (EVP_EncryptUpdate(ctx, outp, &len, in.data, in.size) != 1)
goto out_err;
if (EVP_EncryptFinal_ex(ctx, outp+len, &len) != 1)
goto out_err;
tagp = enif_make_new_binary(env, tag_len, &out_tag);
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_GET_TAG, tag_len, tagp) != 1)
goto out_err;
EVP_CIPHER_CTX_free(ctx);
CONSUME_REDS(env, in);
return enif_make_tuple2(env, out, out_tag);
out_err:
EVP_CIPHER_CTX_free(ctx);
return atom_error;
#else
return enif_raise_exception(env, atom_notsup);
#endif
}
static ERL_NIF_TERM aes_gcm_decrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key,Iv,AAD,In,Tag) */
#if defined(HAVE_GCM_EVP_DECRYPT_BUG)
return aes_gcm_decrypt_NO_EVP(env, argc, argv);
#elif defined(HAVE_GCM)
EVP_CIPHER_CTX *ctx;
const EVP_CIPHER *cipher = NULL;
ErlNifBinary key, iv, aad, in, tag;
unsigned char *outp;
ERL_NIF_TERM out;
int len;
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| (key.size != 16 && key.size != 24 && key.size != 32)
|| !enif_inspect_binary(env, argv[1], &iv) || iv.size == 0
|| !enif_inspect_iolist_as_binary(env, argv[2], &aad)
|| !enif_inspect_iolist_as_binary(env, argv[3], &in)
|| !enif_inspect_iolist_as_binary(env, argv[4], &tag)) {
return enif_make_badarg(env);
}
if (key.size == 16)
cipher = EVP_aes_128_gcm();
else if (key.size == 24)
cipher = EVP_aes_192_gcm();
else if (key.size == 32)
cipher = EVP_aes_256_gcm();
ctx = EVP_CIPHER_CTX_new();
if (EVP_DecryptInit_ex(ctx, cipher, NULL, NULL, NULL) != 1)
goto out_err;
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_IVLEN, iv.size, NULL) != 1)
goto out_err;
if (EVP_DecryptInit_ex(ctx, NULL, NULL, key.data, iv.data) != 1)
goto out_err;
if (EVP_DecryptUpdate(ctx, NULL, &len, aad.data, aad.size) != 1)
goto out_err;
outp = enif_make_new_binary(env, in.size, &out);
if (EVP_DecryptUpdate(ctx, outp, &len, in.data, in.size) != 1)
goto out_err;
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_GCM_SET_TAG, tag.size, tag.data) != 1)
goto out_err;
if (EVP_DecryptFinal_ex(ctx, outp+len, &len) != 1)
goto out_err;
EVP_CIPHER_CTX_free(ctx);
CONSUME_REDS(env, in);
return out;
out_err:
EVP_CIPHER_CTX_free(ctx);
return atom_error;
#else
return enif_raise_exception(env, atom_notsup);
#endif
}
#ifdef HAVE_GCM_EVP_DECRYPT_BUG
static ERL_NIF_TERM aes_gcm_decrypt_NO_EVP(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
GCM128_CONTEXT *ctx;
ErlNifBinary key, iv, aad, in, tag;
AES_KEY aes_key;
unsigned char *outp;
ERL_NIF_TERM out;
if (!enif_inspect_iolist_as_binary(env, argv[0], &key)
|| AES_set_encrypt_key(key.data, key.size*8, &aes_key) != 0
|| !enif_inspect_binary(env, argv[1], &iv) || iv.size == 0
|| !enif_inspect_iolist_as_binary(env, argv[2], &aad)
|| !enif_inspect_iolist_as_binary(env, argv[3], &in)
|| !enif_inspect_iolist_as_binary(env, argv[4], &tag)) {
return enif_make_badarg(env);
}
if (!(ctx = CRYPTO_gcm128_new(&aes_key, (block128_f)AES_encrypt)))
return atom_error;
CRYPTO_gcm128_setiv(ctx, iv.data, iv.size);
if (CRYPTO_gcm128_aad(ctx, aad.data, aad.size))
goto out_err;
outp = enif_make_new_binary(env, in.size, &out);
/* decrypt */
if (CRYPTO_gcm128_decrypt(ctx, in.data, outp, in.size))
goto out_err;
/* calculate and check the tag */
if (CRYPTO_gcm128_finish(ctx, tag.data, tag.size))
goto out_err;
CRYPTO_gcm128_release(ctx);
CONSUME_REDS(env, in);
return out;
out_err:
CRYPTO_gcm128_release(ctx);
return atom_error;
}
#endif /* HAVE_GCM_EVP_DECRYPT_BUG */
static ERL_NIF_TERM chacha20_poly1305_encrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key,Iv,AAD,In) */
#if defined(HAVE_CHACHA20_POLY1305)
EVP_CIPHER_CTX *ctx;
const EVP_CIPHER *cipher = NULL;
ErlNifBinary key, iv, aad, in;
unsigned char *outp, *tagp;
ERL_NIF_TERM out, out_tag;
int len;
if (!enif_inspect_iolist_as_binary(env, argv[0], &key) || key.size != 32
|| !enif_inspect_binary(env, argv[1], &iv) || iv.size == 0 || iv.size > 16
|| !enif_inspect_iolist_as_binary(env, argv[2], &aad)
|| !enif_inspect_iolist_as_binary(env, argv[3], &in)) {
return enif_make_badarg(env);
}
cipher = EVP_chacha20_poly1305();
ctx = EVP_CIPHER_CTX_new();
if (EVP_EncryptInit_ex(ctx, cipher, NULL, NULL, NULL) != 1)
goto out_err;
EVP_CIPHER_CTX_set_padding(ctx, 0);
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, iv.size, NULL) != 1)
goto out_err;
if (EVP_EncryptInit_ex(ctx, NULL, NULL, key.data, iv.data) != 1)
goto out_err;
if (EVP_EncryptUpdate(ctx, NULL, &len, aad.data, aad.size) != 1)
goto out_err;
outp = enif_make_new_binary(env, in.size, &out);
if (EVP_EncryptUpdate(ctx, outp, &len, in.data, in.size) != 1)
goto out_err;
if (EVP_EncryptFinal_ex(ctx, outp+len, &len) != 1)
goto out_err;
tagp = enif_make_new_binary(env, 16, &out_tag);
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, 16, tagp) != 1)
goto out_err;
EVP_CIPHER_CTX_free(ctx);
CONSUME_REDS(env, in);
return enif_make_tuple2(env, out, out_tag);
out_err:
EVP_CIPHER_CTX_free(ctx);
return atom_error;
#else
return enif_raise_exception(env, atom_notsup);
#endif
}
static ERL_NIF_TERM chacha20_poly1305_decrypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key,Iv,AAD,In,Tag) */
#if defined(HAVE_CHACHA20_POLY1305)
EVP_CIPHER_CTX *ctx;
const EVP_CIPHER *cipher = NULL;
ErlNifBinary key, iv, aad, in, tag;
unsigned char *outp;
ERL_NIF_TERM out;
int len;
if (!enif_inspect_iolist_as_binary(env, argv[0], &key) || key.size != 32
|| !enif_inspect_binary(env, argv[1], &iv) || iv.size == 0 || iv.size > 16
|| !enif_inspect_iolist_as_binary(env, argv[2], &aad)
|| !enif_inspect_iolist_as_binary(env, argv[3], &in)
|| !enif_inspect_iolist_as_binary(env, argv[4], &tag) || tag.size != 16) {
return enif_make_badarg(env);
}
cipher = EVP_chacha20_poly1305();
ctx = EVP_CIPHER_CTX_new();
if (EVP_DecryptInit_ex(ctx, cipher, NULL, NULL, NULL) != 1)
goto out_err;
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, iv.size, NULL) != 1)
goto out_err;
if (EVP_DecryptInit_ex(ctx, NULL, NULL, key.data, iv.data) != 1)
goto out_err;
if (EVP_DecryptUpdate(ctx, NULL, &len, aad.data, aad.size) != 1)
goto out_err;
outp = enif_make_new_binary(env, in.size, &out);
if (EVP_DecryptUpdate(ctx, outp, &len, in.data, in.size) != 1)
goto out_err;
if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, tag.size, tag.data) != 1)
goto out_err;
if (EVP_DecryptFinal_ex(ctx, outp+len, &len) != 1)
goto out_err;
EVP_CIPHER_CTX_free(ctx);
CONSUME_REDS(env, in);
return out;
out_err:
EVP_CIPHER_CTX_free(ctx);
return atom_error;
#else
return enif_raise_exception(env, atom_notsup);
#endif
}
static ERL_NIF_TERM strong_rand_bytes_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Bytes) */
unsigned bytes;
unsigned char* data;
ERL_NIF_TERM ret;
if (!enif_get_uint(env, argv[0], &bytes)) {
return enif_make_badarg(env);
}
data = enif_make_new_binary(env, bytes, &ret);
if ( RAND_bytes(data, bytes) != 1) {
return atom_false;
}
ERL_VALGRIND_MAKE_MEM_DEFINED(data, bytes);
return ret;
}
static int get_bn_from_mpint(ErlNifEnv* env, ERL_NIF_TERM term, BIGNUM** bnp)
{
ErlNifBinary bin;
int sz;
if (!enif_inspect_binary(env,term,&bin)) {
return 0;
}
ERL_VALGRIND_ASSERT_MEM_DEFINED(bin.data, bin.size);
sz = bin.size - 4;
if (sz < 0 || get_int32(bin.data) != sz) {
return 0;
}
*bnp = BN_bin2bn(bin.data+4, sz, NULL);
return 1;
}
static int get_bn_from_bin(ErlNifEnv* env, ERL_NIF_TERM term, BIGNUM** bnp)
{
ErlNifBinary bin;
if (!enif_inspect_binary(env,term,&bin)) {
return 0;
}
ERL_VALGRIND_ASSERT_MEM_DEFINED(bin.data, bin.size);
*bnp = BN_bin2bn(bin.data, bin.size, NULL);
return 1;
}
static ERL_NIF_TERM bin_from_bn(ErlNifEnv* env, const BIGNUM *bn)
{
int bn_len;
unsigned char *bin_ptr;
ERL_NIF_TERM term;
/* Copy the bignum into an erlang binary. */
bn_len = BN_num_bytes(bn);
bin_ptr = enif_make_new_binary(env, bn_len, &term);
BN_bn2bin(bn, bin_ptr);
return term;
}
static ERL_NIF_TERM strong_rand_range_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Range) */
BIGNUM *bn_range, *bn_rand;
ERL_NIF_TERM ret;
if(!get_bn_from_bin(env, argv[0], &bn_range)) {
return enif_make_badarg(env);
}
bn_rand = BN_new();
if (BN_rand_range(bn_rand, bn_range) != 1) {
ret = atom_false;
}
else {
ret = bin_from_bn(env, bn_rand);
}
BN_free(bn_rand);
BN_free(bn_range);
return ret;
}
static ERL_NIF_TERM rand_uniform_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Lo,Hi) */
BIGNUM *bn_from = NULL, *bn_to, *bn_rand;
unsigned char* data;
unsigned dlen;
ERL_NIF_TERM ret;
if (!get_bn_from_mpint(env, argv[0], &bn_from)
|| !get_bn_from_mpint(env, argv[1], &bn_rand)) {
if (bn_from) BN_free(bn_from);
return enif_make_badarg(env);
}
bn_to = BN_new();
BN_sub(bn_to, bn_rand, bn_from);
BN_pseudo_rand_range(bn_rand, bn_to);
BN_add(bn_rand, bn_rand, bn_from);
dlen = BN_num_bytes(bn_rand);
data = enif_make_new_binary(env, dlen+4, &ret);
put_int32(data, dlen);
BN_bn2bin(bn_rand, data+4);
ERL_VALGRIND_MAKE_MEM_DEFINED(data+4, dlen);
BN_free(bn_rand);
BN_free(bn_from);
BN_free(bn_to);
return ret;
}
static ERL_NIF_TERM mod_exp_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Base,Exponent,Modulo,bin_hdr) */
BIGNUM *bn_base=NULL, *bn_exponent=NULL, *bn_modulo=NULL, *bn_result;
BN_CTX *bn_ctx;
unsigned char* ptr;
unsigned dlen;
unsigned bin_hdr; /* return type: 0=plain binary, 4: mpint */
unsigned extra_byte;
ERL_NIF_TERM ret;
if (!get_bn_from_bin(env, argv[0], &bn_base)
|| !get_bn_from_bin(env, argv[1], &bn_exponent)
|| !get_bn_from_bin(env, argv[2], &bn_modulo)
|| !enif_get_uint(env,argv[3],&bin_hdr) || (bin_hdr & ~4)) {
if (bn_base) BN_free(bn_base);
if (bn_exponent) BN_free(bn_exponent);
if (bn_modulo) BN_free(bn_modulo);
return enif_make_badarg(env);
}
bn_result = BN_new();
bn_ctx = BN_CTX_new();
BN_mod_exp(bn_result, bn_base, bn_exponent, bn_modulo, bn_ctx);
dlen = BN_num_bytes(bn_result);
extra_byte = bin_hdr && BN_is_bit_set(bn_result, dlen*8-1);
ptr = enif_make_new_binary(env, bin_hdr+extra_byte+dlen, &ret);
if (bin_hdr) {
put_int32(ptr, extra_byte+dlen);
ptr[4] = 0; /* extra zeroed byte to ensure a positive mpint */
ptr += bin_hdr + extra_byte;
}
BN_bn2bin(bn_result, ptr);
BN_free(bn_result);
BN_CTX_free(bn_ctx);
BN_free(bn_modulo);
BN_free(bn_exponent);
BN_free(bn_base);
return ret;
}
static ERL_NIF_TERM dss_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (sha, Digest, Signature,Key=[P, Q, G, Y]) */
ErlNifBinary digest_bin, sign_bin;
BIGNUM *dsa_p = NULL, *dsa_q = NULL, *dsa_g = NULL, *dsa_y = NULL;
ERL_NIF_TERM head, tail;
DSA *dsa;
int i;
if (argv[0] != atom_sha
|| !enif_inspect_binary(env, argv[1], &digest_bin)
|| digest_bin.size != SHA_DIGEST_LENGTH
|| !enif_inspect_binary(env, argv[2], &sign_bin)
|| !enif_get_list_cell(env, argv[3], &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_q)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_g)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_y)
|| !enif_is_empty_list(env,tail)) {
if (dsa_p) BN_free(dsa_p);
if (dsa_q) BN_free(dsa_q);
if (dsa_g) BN_free(dsa_g);
if (dsa_y) BN_free(dsa_y);
return enif_make_badarg(env);
}
dsa = DSA_new();
DSA_set0_pqg(dsa, dsa_p, dsa_q, dsa_g);
DSA_set0_key(dsa, dsa_y, NULL);
i = DSA_verify(0, digest_bin.data, SHA_DIGEST_LENGTH,
sign_bin.data, sign_bin.size, dsa);
DSA_free(dsa);
return(i > 0) ? atom_true : atom_false;
}
static void init_digest_types(ErlNifEnv* env)
{
struct digest_type_t* p = digest_types;
for (p = digest_types; p->type.str; p++) {
p->type.atom = enif_make_atom(env, p->type.str);
if (p->md.funcp)
p->md.p = p->md.funcp();
}
p->type.atom = atom_false; /* end marker */
}
static void init_cipher_types(ErlNifEnv* env)
{
struct cipher_type_t* p = cipher_types;
for (p = cipher_types; p->type.str; p++) {
p->type.atom = enif_make_atom(env, p->type.str);
if (p->cipher.funcp)
p->cipher.p = p->cipher.funcp();
}
p->type.atom = atom_false; /* end marker */
}
static struct digest_type_t* get_digest_type(ERL_NIF_TERM type)
{
struct digest_type_t* p = NULL;
for (p = digest_types; p->type.atom != atom_false; p++) {
if (type == p->type.atom) {
return p;
}
}
return NULL;
}
static struct cipher_type_t* get_cipher_type(ERL_NIF_TERM type, size_t key_len)
{
struct cipher_type_t* p = NULL;
for (p = cipher_types; p->type.atom != atom_false; p++) {
if (type == p->type.atom && (!p->key_len || key_len == p->key_len)) {
return p;
}
}
return NULL;
}
static ERL_NIF_TERM rsa_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Digest, Signature, Key=[E,N]) */
ErlNifBinary digest_bin, sign_bin;
ERL_NIF_TERM head, tail, ret;
int i;
RSA *rsa;
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
EVP_PKEY *pkey;
EVP_PKEY_CTX *ctx;
#endif
const EVP_MD *md;
const ERL_NIF_TERM type = argv[0];
struct digest_type_t *digp = NULL;
BIGNUM *rsa_e;
BIGNUM *rsa_n;
digp = get_digest_type(type);
if (!digp) {
return enif_make_badarg(env);
}
md = digp->md.p;
if (!md) {
return atom_notsup;
}
rsa = RSA_new();
if (!enif_inspect_binary(env, argv[1], &digest_bin)
|| digest_bin.size != EVP_MD_size(md)
|| !enif_inspect_binary(env, argv[2], &sign_bin)
|| !enif_get_list_cell(env, argv[3], &head, &tail)
|| !get_bn_from_bin(env, head, &rsa_e)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &rsa_n)
|| !enif_is_empty_list(env, tail)) {
ret = enif_make_badarg(env);
goto done;
}
(void) RSA_set0_key(rsa, rsa_n, rsa_e, NULL);
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
pkey = EVP_PKEY_new();
EVP_PKEY_set1_RSA(pkey, rsa);
ctx = EVP_PKEY_CTX_new(pkey, NULL);
EVP_PKEY_verify_init(ctx);
EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING);
EVP_PKEY_CTX_set_signature_md(ctx, md);
i = EVP_PKEY_verify(ctx, sign_bin.data, sign_bin.size,
digest_bin.data, digest_bin.size);
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_free(pkey);
#else
i = RSA_verify(md->type, digest_bin.data, EVP_MD_size(md),
sign_bin.data, sign_bin.size, rsa);
#endif
ret = (i==1 ? atom_true : atom_false);
done:
RSA_free(rsa);
return ret;
}
static ERL_NIF_TERM do_exor(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data1, Data2) */
ErlNifBinary d1, d2;
unsigned char* ret_ptr;
int i;
ERL_NIF_TERM ret;
if (!enif_inspect_iolist_as_binary(env,argv[0], &d1)
|| !enif_inspect_iolist_as_binary(env,argv[1], &d2)
|| d1.size != d2.size) {
return enif_make_badarg(env);
}
ret_ptr = enif_make_new_binary(env, d1.size, &ret);
for (i=0; i<d1.size; i++) {
ret_ptr[i] = d1.data[i] ^ d2.data[i];
}
CONSUME_REDS(env,d1);
return ret;
}
static ERL_NIF_TERM rc4_set_key(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Key) */
#ifndef OPENSSL_NO_RC4
ErlNifBinary key;
ERL_NIF_TERM ret;
CHECK_NO_FIPS_MODE();
if (!enif_inspect_iolist_as_binary(env,argv[0], &key)) {
return enif_make_badarg(env);
}
RC4_set_key((RC4_KEY*)enif_make_new_binary(env, sizeof(RC4_KEY), &ret),
key.size, key.data);
return ret;
#else
return enif_raise_exception(env, atom_notsup);
#endif
}
static ERL_NIF_TERM rc4_encrypt_with_state(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (State, Data) */
#ifndef OPENSSL_NO_RC4
ErlNifBinary state, data;
RC4_KEY* rc4_key;
ERL_NIF_TERM new_state, new_data;
CHECK_NO_FIPS_MODE();
if (!enif_inspect_iolist_as_binary(env,argv[0], &state)
|| state.size != sizeof(RC4_KEY)
|| !enif_inspect_iolist_as_binary(env,argv[1], &data)) {
return enif_make_badarg(env);
}
rc4_key = (RC4_KEY*)enif_make_new_binary(env, sizeof(RC4_KEY), &new_state);
memcpy(rc4_key, state.data, sizeof(RC4_KEY));
RC4(rc4_key, data.size, data.data,
enif_make_new_binary(env, data.size, &new_data));
CONSUME_REDS(env,data);
return enif_make_tuple2(env,new_state,new_data);
#else
return enif_raise_exception(env, atom_notsup);
#endif
}
static int get_rsa_private_key(ErlNifEnv* env, ERL_NIF_TERM key, RSA *rsa)
{
/* key=[E,N,D]|[E,N,D,P1,P2,E1,E2,C] */
ERL_NIF_TERM head, tail;
BIGNUM *e, *n, *d;
BIGNUM *p, *q;
BIGNUM *dmp1, *dmq1, *iqmp;
if (!enif_get_list_cell(env, key, &head, &tail)
|| !get_bn_from_bin(env, head, &e)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &n)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &d)) {
return 0;
}
(void) RSA_set0_key(rsa, n, e, d);
if (enif_is_empty_list(env, tail)) {
return 1;
}
if (!enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &q)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dmp1)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dmq1)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &iqmp)
|| !enif_is_empty_list(env, tail)) {
return 0;
}
(void) RSA_set0_factors(rsa, p, q);
(void) RSA_set0_crt_params(rsa, dmp1, dmq1, iqmp);
return 1;
}
static ERL_NIF_TERM rsa_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Digest, Key=[E,N,D]|[E,N,D,P1,P2,E1,E2,C]) */
ErlNifBinary digest_bin, ret_bin;
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
EVP_PKEY *pkey;
EVP_PKEY_CTX *ctx;
size_t rsa_s_len;
#else
unsigned rsa_s_len, len;
#endif
RSA *rsa;
int i;
struct digest_type_t *digp;
const EVP_MD *md;
digp = get_digest_type(argv[0]);
if (!digp) {
return enif_make_badarg(env);
}
md = digp->md.p;
if (!md) {
return atom_notsup;
}
if (!enif_inspect_binary(env,argv[1],&digest_bin)
|| digest_bin.size != EVP_MD_size(md)) {
return enif_make_badarg(env);
}
rsa = RSA_new();
if (!get_rsa_private_key(env, argv[2], rsa)) {
RSA_free(rsa);
return enif_make_badarg(env);
}
#if OPENSSL_VERSION_NUMBER >= PACKED_OPENSSL_VERSION_PLAIN(1,0,0)
pkey = EVP_PKEY_new();
EVP_PKEY_set1_RSA(pkey, rsa);
rsa_s_len=(size_t)EVP_PKEY_size(pkey);
enif_alloc_binary(rsa_s_len, &ret_bin);
ctx = EVP_PKEY_CTX_new(pkey, NULL);
EVP_PKEY_sign_init(ctx);
EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING);
EVP_PKEY_CTX_set_signature_md(ctx, md);
i = EVP_PKEY_sign(ctx, ret_bin.data, &rsa_s_len,
digest_bin.data, digest_bin.size);
ASSERT(i<=0 || rsa_s_len <= ret_bin.size);
EVP_PKEY_CTX_free(ctx);
EVP_PKEY_free(pkey);
#else
enif_alloc_binary(RSA_size(rsa), &ret_bin);
len = EVP_MD_size(md);
ERL_VALGRIND_ASSERT_MEM_DEFINED(digest_bin.data, len);
i = RSA_sign(md->type, digest_bin.data, len,
ret_bin.data, &rsa_s_len, rsa);
#endif
RSA_free(rsa);
if (i > 0) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, rsa_s_len);
if (rsa_s_len != ret_bin.size) {
enif_realloc_binary(&ret_bin, rsa_s_len);
ERL_VALGRIND_ASSERT_MEM_DEFINED(ret_bin.data, rsa_s_len);
}
return enif_make_binary(env,&ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
}
static ERL_NIF_TERM dss_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (sha, Digest, Key=[P,Q,G,PrivKey]) */
ErlNifBinary digest_bin, ret_bin;
ERL_NIF_TERM head, tail;
unsigned int dsa_s_len;
DSA* dsa;
BIGNUM *dsa_p = NULL, *dsa_q = NULL, *dsa_g = NULL;
BIGNUM *dummy_pub_key, *priv_key = NULL;
int i;
if (argv[0] != atom_sha
|| !enif_inspect_binary(env, argv[1], &digest_bin)
|| digest_bin.size != SHA_DIGEST_LENGTH) {
return enif_make_badarg(env);
}
if (!enif_get_list_cell(env, argv[2], &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_q)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dsa_g)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &priv_key)
|| !enif_is_empty_list(env,tail)) {
if (dsa_p) BN_free(dsa_p);
if (dsa_q) BN_free(dsa_q);
if (dsa_g) BN_free(dsa_g);
if (priv_key) BN_free(priv_key);
return enif_make_badarg(env);
}
/* Note: DSA_set0_key() does not allow setting only the
* private key, although DSA_sign() does not use the
* public key. Work around this limitation by setting
* the public key to a copy of the private key.
*/
dummy_pub_key = BN_dup(priv_key);
dsa = DSA_new();
DSA_set0_pqg(dsa, dsa_p, dsa_q, dsa_g);
DSA_set0_key(dsa, dummy_pub_key, priv_key);
enif_alloc_binary(DSA_size(dsa), &ret_bin);
i = DSA_sign(NID_sha1, digest_bin.data, SHA_DIGEST_LENGTH,
ret_bin.data, &dsa_s_len, dsa);
DSA_free(dsa);
if (i) {
if (dsa_s_len != ret_bin.size) {
enif_realloc_binary(&ret_bin, dsa_s_len);
}
return enif_make_binary(env, &ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
}
static int rsa_pad(ERL_NIF_TERM term, int* padding)
{
if (term == atom_rsa_pkcs1_padding) {
*padding = RSA_PKCS1_PADDING;
}
else if (term == atom_rsa_pkcs1_oaep_padding) {
*padding = RSA_PKCS1_OAEP_PADDING;
}
else if (term == atom_rsa_no_padding) {
*padding = RSA_NO_PADDING;
}
else {
return 0;
}
return 1;
}
static ERL_NIF_TERM rsa_public_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data, PublKey=[E,N], Padding, IsEncrypt) */
ErlNifBinary data_bin, ret_bin;
ERL_NIF_TERM head, tail;
int padding, i;
RSA* rsa;
BIGNUM *e, *n;
rsa = RSA_new();
if (!enif_inspect_binary(env, argv[0], &data_bin)
|| !enif_get_list_cell(env, argv[1], &head, &tail)
|| !get_bn_from_bin(env, head, &e)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &n)
|| !enif_is_empty_list(env,tail)
|| !rsa_pad(argv[2], &padding)) {
RSA_free(rsa);
return enif_make_badarg(env);
}
(void) RSA_set0_key(rsa, n, e, NULL);
enif_alloc_binary(RSA_size(rsa), &ret_bin);
if (argv[3] == atom_true) {
ERL_VALGRIND_ASSERT_MEM_DEFINED(data_bin.data,data_bin.size);
i = RSA_public_encrypt(data_bin.size, data_bin.data,
ret_bin.data, rsa, padding);
if (i > 0) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, i);
}
}
else {
i = RSA_public_decrypt(data_bin.size, data_bin.data,
ret_bin.data, rsa, padding);
if (i > 0) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, i);
enif_realloc_binary(&ret_bin, i);
}
}
RSA_free(rsa);
if (i > 0) {
return enif_make_binary(env,&ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
}
static ERL_NIF_TERM rsa_private_crypt(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Data, Key=[E,N,D]|[E,N,D,P1,P2,E1,E2,C], Padding, IsEncrypt) */
ErlNifBinary data_bin, ret_bin;
int padding, i;
RSA* rsa;
rsa = RSA_new();
if (!enif_inspect_binary(env, argv[0], &data_bin)
|| !get_rsa_private_key(env, argv[1], rsa)
|| !rsa_pad(argv[2], &padding)) {
RSA_free(rsa);
return enif_make_badarg(env);
}
enif_alloc_binary(RSA_size(rsa), &ret_bin);
if (argv[3] == atom_true) {
ERL_VALGRIND_ASSERT_MEM_DEFINED(data_bin.data,data_bin.size);
i = RSA_private_encrypt(data_bin.size, data_bin.data,
ret_bin.data, rsa, padding);
if (i > 0) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, i);
}
}
else {
i = RSA_private_decrypt(data_bin.size, data_bin.data,
ret_bin.data, rsa, padding);
if (i > 0) {
ERL_VALGRIND_MAKE_MEM_DEFINED(ret_bin.data, i);
enif_realloc_binary(&ret_bin, i);
}
}
RSA_free(rsa);
if (i > 0) {
return enif_make_binary(env,&ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
}
/* Creates a term which can be parsed by get_rsa_private_key(). This is a list of plain integer binaries (not mpints). */
static ERL_NIF_TERM put_rsa_private_key(ErlNifEnv* env, const RSA *rsa)
{
ERL_NIF_TERM result[8];
const BIGNUM *n, *e, *d, *p, *q, *dmp1, *dmq1, *iqmp;
/* Return at least [E,N,D] */
n = NULL; e = NULL; d = NULL;
RSA_get0_key(rsa, &n, &e, &d);
result[0] = bin_from_bn(env, e); // Exponent E
result[1] = bin_from_bn(env, n); // Modulus N = p*q
result[2] = bin_from_bn(env, d); // Exponent D
/* Check whether the optional additional parameters are available */
p = NULL; q = NULL;
RSA_get0_factors(rsa, &p, &q);
dmp1 = NULL; dmq1 = NULL; iqmp = NULL;
RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
if (p && q && dmp1 && dmq1 && iqmp) {
result[3] = bin_from_bn(env, p); // Factor p
result[4] = bin_from_bn(env, q); // Factor q
result[5] = bin_from_bn(env, dmp1); // D mod (p-1)
result[6] = bin_from_bn(env, dmq1); // D mod (q-1)
result[7] = bin_from_bn(env, iqmp); // (1/q) mod p
return enif_make_list_from_array(env, result, 8);
} else {
return enif_make_list_from_array(env, result, 3);
}
}
static int check_erlang_interrupt(int maj, int min, BN_GENCB *ctxt)
{
ErlNifEnv *env = BN_GENCB_get_arg(ctxt);
if (!enif_is_current_process_alive(env)) {
return 0;
} else {
return 1;
}
}
static ERL_NIF_TERM rsa_generate_key(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (ModulusSize, PublicExponent) */
int modulus_bits;
BIGNUM *pub_exp, *three;
RSA *rsa;
int success;
ERL_NIF_TERM result;
BN_GENCB *intr_cb;
#ifndef HAVE_OPAQUE_BN_GENCB
BN_GENCB intr_cb_buf;
#endif
if (!enif_get_int(env, argv[0], &modulus_bits) || modulus_bits < 256) {
return enif_make_badarg(env);
}
if (!get_bn_from_bin(env, argv[1], &pub_exp)) {
return enif_make_badarg(env);
}
/* Make sure the public exponent is large enough (at least 3).
* Without this, RSA_generate_key_ex() can run forever. */
three = BN_new();
BN_set_word(three, 3);
success = BN_cmp(pub_exp, three);
BN_free(three);
if (success < 0) {
BN_free(pub_exp);
return enif_make_badarg(env);
}
/* For large keys, prime generation can take many seconds. Set up
* the callback which we use to test whether the process has been
* interrupted. */
#ifdef HAVE_OPAQUE_BN_GENCB
intr_cb = BN_GENCB_new();
#else
intr_cb = &intr_cb_buf;
#endif
BN_GENCB_set(intr_cb, check_erlang_interrupt, env);
rsa = RSA_new();
success = RSA_generate_key_ex(rsa, modulus_bits, pub_exp, intr_cb);
BN_free(pub_exp);
#ifdef HAVE_OPAQUE_BN_GENCB
BN_GENCB_free(intr_cb);
#endif
if (!success) {
RSA_free(rsa);
return atom_error;
}
result = put_rsa_private_key(env, rsa);
RSA_free(rsa);
return result;
}
static ERL_NIF_TERM rsa_generate_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
/* RSA key generation can take a long time (>1 sec for a large
* modulus), so schedule it as a CPU-bound operation. */
return enif_schedule_nif(env, "rsa_generate_key",
ERL_NIF_DIRTY_JOB_CPU_BOUND,
rsa_generate_key, argc, argv);
}
static ERL_NIF_TERM dh_generate_parameters_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (PrimeLen, Generator) */
int prime_len, generator;
DH* dh_params;
int p_len, g_len;
unsigned char *p_ptr, *g_ptr;
ERL_NIF_TERM ret_p, ret_g;
const BIGNUM *dh_p, *dh_q, *dh_g;
if (!enif_get_int(env, argv[0], &prime_len)
|| !enif_get_int(env, argv[1], &generator)) {
return enif_make_badarg(env);
}
dh_params = DH_generate_parameters(prime_len, generator, NULL, NULL);
if (dh_params == NULL) {
return atom_error;
}
DH_get0_pqg(dh_params, &dh_p, &dh_q, &dh_g);
DH_free(dh_params);
p_len = BN_num_bytes(dh_p);
g_len = BN_num_bytes(dh_g);
p_ptr = enif_make_new_binary(env, p_len, &ret_p);
g_ptr = enif_make_new_binary(env, g_len, &ret_g);
BN_bn2bin(dh_p, p_ptr);
BN_bn2bin(dh_g, g_ptr);
ERL_VALGRIND_MAKE_MEM_DEFINED(p_ptr, p_len);
ERL_VALGRIND_MAKE_MEM_DEFINED(g_ptr, g_len);
return enif_make_list2(env, ret_p, ret_g);
}
static ERL_NIF_TERM dh_check(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* ([PrimeLen, Generator]) */
DH* dh_params;
int i;
ERL_NIF_TERM ret, head, tail;
BIGNUM *dh_p, *dh_g;
if (!enif_get_list_cell(env, argv[0], &head, &tail)
|| !get_bn_from_bin(env, head, &dh_p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dh_g)
|| !enif_is_empty_list(env,tail)) {
return enif_make_badarg(env);
}
dh_params = DH_new();
DH_set0_pqg(dh_params, dh_p, NULL, dh_g);
if (DH_check(dh_params, &i)) {
if (i == 0) ret = atom_ok;
else if (i & DH_CHECK_P_NOT_PRIME) ret = atom_not_prime;
else if (i & DH_CHECK_P_NOT_SAFE_PRIME) ret = atom_not_strong_prime;
else if (i & DH_UNABLE_TO_CHECK_GENERATOR) ret = atom_unable_to_check_generator;
else if (i & DH_NOT_SUITABLE_GENERATOR) ret = atom_not_suitable_generator;
else ret = enif_make_tuple2(env, atom_unknown, enif_make_uint(env, i));
}
else { /* Check Failed */
ret = enif_make_tuple2(env, atom_error, atom_check_failed);
}
DH_free(dh_params);
return ret;
}
static ERL_NIF_TERM dh_generate_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (PrivKey|undefined, DHParams=[P,G], Mpint, Len|0) */
DH* dh_params;
int pub_len, prv_len;
unsigned char *pub_ptr, *prv_ptr;
ERL_NIF_TERM ret, ret_pub, ret_prv, head, tail;
int mpint; /* 0 or 4 */
BIGNUM *priv_key = NULL;
BIGNUM *dh_p = NULL, *dh_g = NULL;
unsigned long len = 0;
if (!(get_bn_from_bin(env, argv[0], &priv_key)
|| argv[0] == atom_undefined)
|| !enif_get_list_cell(env, argv[1], &head, &tail)
|| !get_bn_from_bin(env, head, &dh_p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dh_g)
|| !enif_is_empty_list(env, tail)
|| !enif_get_int(env, argv[2], &mpint) || (mpint & ~4)
|| !enif_get_ulong(env, argv[3], &len) ) {
if (priv_key) BN_free(priv_key);
if (dh_p) BN_free(dh_p);
if (dh_g) BN_free(dh_g);
return enif_make_badarg(env);
}
dh_params = DH_new();
DH_set0_key(dh_params, NULL, priv_key);
DH_set0_pqg(dh_params, dh_p, NULL, dh_g);
if (len) {
if (len < BN_num_bits(dh_p))
DH_set_length(dh_params, len);
else {
DH_free(dh_params);
return enif_make_badarg(env);
}
}
if (DH_generate_key(dh_params)) {
const BIGNUM *pub_key, *priv_key;
DH_get0_key(dh_params, &pub_key, &priv_key);
pub_len = BN_num_bytes(pub_key);
prv_len = BN_num_bytes(priv_key);
pub_ptr = enif_make_new_binary(env, pub_len+mpint, &ret_pub);
prv_ptr = enif_make_new_binary(env, prv_len+mpint, &ret_prv);
if (mpint) {
put_int32(pub_ptr, pub_len); pub_ptr += 4;
put_int32(prv_ptr, prv_len); prv_ptr += 4;
}
BN_bn2bin(pub_key, pub_ptr);
BN_bn2bin(priv_key, prv_ptr);
ERL_VALGRIND_MAKE_MEM_DEFINED(pub_ptr, pub_len);
ERL_VALGRIND_MAKE_MEM_DEFINED(prv_ptr, prv_len);
ret = enif_make_tuple2(env, ret_pub, ret_prv);
}
else {
ret = atom_error;
}
DH_free(dh_params);
return ret;
}
static ERL_NIF_TERM dh_compute_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (OthersPublicKey, MyPrivateKey, DHParams=[P,G]) */
DH* dh_params;
BIGNUM *dummy_pub_key = NULL, *priv_key = NULL;
BIGNUM *other_pub_key;
BIGNUM *dh_p = NULL, *dh_g = NULL;
int i;
ErlNifBinary ret_bin;
ERL_NIF_TERM ret, head, tail;
dh_params = DH_new();
if (!get_bn_from_bin(env, argv[0], &other_pub_key)
|| !get_bn_from_bin(env, argv[1], &priv_key)
|| !enif_get_list_cell(env, argv[2], &head, &tail)
|| !get_bn_from_bin(env, head, &dh_p)
|| !enif_get_list_cell(env, tail, &head, &tail)
|| !get_bn_from_bin(env, head, &dh_g)
|| !enif_is_empty_list(env, tail)) {
if (dh_p) BN_free(dh_p);
if (dh_g) BN_free(dh_g);
ret = enif_make_badarg(env);
}
else {
/* Note: DH_set0_key() does not allow setting only the
* private key, although DH_compute_key() does not use the
* public key. Work around this limitation by setting
* the public key to a copy of the private key.
*/
dummy_pub_key = BN_dup(priv_key);
DH_set0_key(dh_params, dummy_pub_key, priv_key);
DH_set0_pqg(dh_params, dh_p, NULL, dh_g);
enif_alloc_binary(DH_size(dh_params), &ret_bin);
i = DH_compute_key(ret_bin.data, other_pub_key, dh_params);
if (i > 0) {
if (i != ret_bin.size) {
enif_realloc_binary(&ret_bin, i);
}
ret = enif_make_binary(env, &ret_bin);
}
else {
enif_release_binary(&ret_bin);
ret = atom_error;
}
}
if (other_pub_key) BN_free(other_pub_key);
DH_free(dh_params);
return ret;
}
static ERL_NIF_TERM srp_value_B_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Multiplier, Verifier, Generator, Exponent, Prime) */
BIGNUM *bn_verifier = NULL;
BIGNUM *bn_exponent = NULL, *bn_generator = NULL, *bn_prime = NULL, *bn_multiplier = NULL, *bn_result;
BN_CTX *bn_ctx;
unsigned char* ptr;
unsigned dlen;
ERL_NIF_TERM ret;
CHECK_NO_FIPS_MODE();
if (!get_bn_from_bin(env, argv[0], &bn_multiplier)
|| !get_bn_from_bin(env, argv[1], &bn_verifier)
|| !get_bn_from_bin(env, argv[2], &bn_generator)
|| !get_bn_from_bin(env, argv[3], &bn_exponent)
|| !get_bn_from_bin(env, argv[4], &bn_prime)) {
if (bn_multiplier) BN_free(bn_multiplier);
if (bn_verifier) BN_free(bn_verifier);
if (bn_generator) BN_free(bn_generator);
if (bn_exponent) BN_free(bn_exponent);
if (bn_prime) BN_free(bn_prime);
return enif_make_badarg(env);
}
bn_result = BN_new();
bn_ctx = BN_CTX_new();
/* B = k*v + g^b % N */
/* k * v */
BN_mod_mul(bn_multiplier, bn_multiplier, bn_verifier, bn_prime, bn_ctx);
/* g^b % N */
BN_mod_exp(bn_result, bn_generator, bn_exponent, bn_prime, bn_ctx);
/* k*v + g^b % N */
BN_mod_add(bn_result, bn_result, bn_multiplier, bn_prime, bn_ctx);
/* check that B % N != 0, reuse bn_multiplier */
BN_nnmod(bn_multiplier, bn_result, bn_prime, bn_ctx);
if (BN_is_zero(bn_multiplier)) {
ret = atom_error;
} else {
dlen = BN_num_bytes(bn_result);
ptr = enif_make_new_binary(env, dlen, &ret);
BN_bn2bin(bn_result, ptr);
}
BN_free(bn_result);
BN_CTX_free(bn_ctx);
BN_free(bn_prime);
BN_free(bn_generator);
BN_free(bn_multiplier);
BN_free(bn_exponent);
BN_free(bn_verifier);
return ret;
}
static ERL_NIF_TERM srp_user_secret_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (a, u, B, Multiplier, Prime, Exponent, Generator) */
/*
<premaster secret> = (B - (k * g^x)) ^ (a + (u * x)) % N
*/
BIGNUM *bn_exponent = NULL, *bn_a = NULL;
BIGNUM *bn_u = NULL, *bn_multiplier = NULL, *bn_exp2,
*bn_base, *bn_prime = NULL, *bn_generator = NULL,
*bn_B = NULL, *bn_result;
BN_CTX *bn_ctx;
unsigned char* ptr;
unsigned dlen;
ERL_NIF_TERM ret;
CHECK_NO_FIPS_MODE();
if (!get_bn_from_bin(env, argv[0], &bn_a)
|| !get_bn_from_bin(env, argv[1], &bn_u)
|| !get_bn_from_bin(env, argv[2], &bn_B)
|| !get_bn_from_bin(env, argv[3], &bn_multiplier)
|| !get_bn_from_bin(env, argv[4], &bn_generator)
|| !get_bn_from_bin(env, argv[5], &bn_exponent)
|| !get_bn_from_bin(env, argv[6], &bn_prime))
{
if (bn_exponent) BN_free(bn_exponent);
if (bn_a) BN_free(bn_a);
if (bn_u) BN_free(bn_u);
if (bn_B) BN_free(bn_B);
if (bn_multiplier) BN_free(bn_multiplier);
if (bn_generator) BN_free(bn_generator);
if (bn_prime) BN_free(bn_prime);
return enif_make_badarg(env);
}
bn_ctx = BN_CTX_new();
bn_result = BN_new();
/* check that B % N != 0 */
BN_nnmod(bn_result, bn_B, bn_prime, bn_ctx);
if (BN_is_zero(bn_result)) {
BN_free(bn_exponent);
BN_free(bn_a);
BN_free(bn_generator);
BN_free(bn_prime);
BN_free(bn_u);
BN_free(bn_B);
BN_CTX_free(bn_ctx);
return atom_error;
}
/* (B - (k * g^x)) */
bn_base = BN_new();
BN_mod_exp(bn_result, bn_generator, bn_exponent, bn_prime, bn_ctx);
BN_mod_mul(bn_result, bn_multiplier, bn_result, bn_prime, bn_ctx);
BN_mod_sub(bn_base, bn_B, bn_result, bn_prime, bn_ctx);
/* a + (u * x) */
bn_exp2 = BN_new();
BN_mul(bn_result, bn_u, bn_exponent, bn_ctx);
BN_add(bn_exp2, bn_a, bn_result);
/* (B - (k * g^x)) ^ (a + (u * x)) % N */
BN_mod_exp(bn_result, bn_base, bn_exp2, bn_prime, bn_ctx);
dlen = BN_num_bytes(bn_result);
ptr = enif_make_new_binary(env, dlen, &ret);
BN_bn2bin(bn_result, ptr);
BN_free(bn_result);
BN_CTX_free(bn_ctx);
BN_free(bn_multiplier);
BN_free(bn_exp2);
BN_free(bn_u);
BN_free(bn_exponent);
BN_free(bn_a);
BN_free(bn_B);
BN_free(bn_base);
BN_free(bn_generator);
BN_free(bn_prime);
return ret;
}
static ERL_NIF_TERM srp_host_secret_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Verifier, b, u, A, Prime) */
/*
<premaster secret> = (A * v^u) ^ b % N
*/
BIGNUM *bn_b = NULL, *bn_verifier = NULL;
BIGNUM *bn_prime = NULL, *bn_A = NULL, *bn_u = NULL, *bn_base, *bn_result;
BN_CTX *bn_ctx;
unsigned char* ptr;
unsigned dlen;
ERL_NIF_TERM ret;
CHECK_NO_FIPS_MODE();
if (!get_bn_from_bin(env, argv[0], &bn_verifier)
|| !get_bn_from_bin(env, argv[1], &bn_b)
|| !get_bn_from_bin(env, argv[2], &bn_u)
|| !get_bn_from_bin(env, argv[3], &bn_A)
|| !get_bn_from_bin(env, argv[4], &bn_prime))
{
if (bn_verifier) BN_free(bn_verifier);
if (bn_b) BN_free(bn_b);
if (bn_u) BN_free(bn_u);
if (bn_A) BN_free(bn_A);
if (bn_prime) BN_free(bn_prime);
return enif_make_badarg(env);
}
bn_ctx = BN_CTX_new();
bn_result = BN_new();
/* check that A % N != 0 */
BN_nnmod(bn_result, bn_A, bn_prime, bn_ctx);
if (BN_is_zero(bn_result)) {
BN_free(bn_b);
BN_free(bn_verifier);
BN_free(bn_prime);
BN_free(bn_A);
BN_CTX_free(bn_ctx);
return atom_error;
}
/* (A * v^u) */
bn_base = BN_new();
BN_mod_exp(bn_base, bn_verifier, bn_u, bn_prime, bn_ctx);
BN_mod_mul(bn_base, bn_A, bn_base, bn_prime, bn_ctx);
/* (A * v^u) ^ b % N */
BN_mod_exp(bn_result, bn_base, bn_b, bn_prime, bn_ctx);
dlen = BN_num_bytes(bn_result);
ptr = enif_make_new_binary(env, dlen, &ret);
BN_bn2bin(bn_result, ptr);
BN_free(bn_result);
BN_CTX_free(bn_ctx);
BN_free(bn_u);
BN_free(bn_base);
BN_free(bn_verifier);
BN_free(bn_prime);
BN_free(bn_A);
BN_free(bn_b);
return ret;
}
#if defined(HAVE_EC)
static EC_KEY* ec_key_new(ErlNifEnv* env, ERL_NIF_TERM curve_arg)
{
EC_KEY *key = NULL;
int c_arity = -1;
const ERL_NIF_TERM* curve;
ErlNifBinary seed;
BIGNUM *p = NULL;
BIGNUM *a = NULL;
BIGNUM *b = NULL;
BIGNUM *bn_order = NULL;
BIGNUM *cofactor = NULL;
EC_GROUP *group = NULL;
EC_POINT *point = NULL;
/* {Field, Prime, Point, Order, CoFactor} = Curve */
if (enif_get_tuple(env,curve_arg,&c_arity,&curve)
&& c_arity == 5
&& get_bn_from_bin(env, curve[3], &bn_order)
&& (curve[4] != atom_none && get_bn_from_bin(env, curve[4], &cofactor))) {
int f_arity = -1;
const ERL_NIF_TERM* field;
int p_arity = -1;
const ERL_NIF_TERM* prime;
long field_bits;
/* {A, B, Seed} = Prime */
if (!enif_get_tuple(env,curve[1],&p_arity,&prime)
|| !get_bn_from_bin(env, prime[0], &a)
|| !get_bn_from_bin(env, prime[1], &b))
goto out_err;
if (!enif_get_tuple(env,curve[0],&f_arity,&field))
goto out_err;
if (f_arity == 2 && field[0] == atom_prime_field) {
/* {prime_field, Prime} */
if (!get_bn_from_bin(env, field[1], &p))
goto out_err;
if (BN_is_negative(p) || BN_is_zero(p))
goto out_err;
field_bits = BN_num_bits(p);
if (field_bits > OPENSSL_ECC_MAX_FIELD_BITS)
goto out_err;
/* create the EC_GROUP structure */
group = EC_GROUP_new_curve_GFp(p, a, b, NULL);
} else if (f_arity == 3 && field[0] == atom_characteristic_two_field) {
#if defined(OPENSSL_NO_EC2M)
enif_raise_exception(env, atom_notsup);
goto out_err;
#else
/* {characteristic_two_field, M, Basis} */
int b_arity = -1;
const ERL_NIF_TERM* basis;
unsigned int k1, k2, k3;
if ((p = BN_new()) == NULL)
goto out_err;
if (!enif_get_long(env, field[1], &field_bits)
|| field_bits > OPENSSL_ECC_MAX_FIELD_BITS)
goto out_err;
if (enif_get_tuple(env,field[2],&b_arity,&basis)) {
if (b_arity == 2
&& basis[0] == atom_tpbasis
&& enif_get_uint(env, basis[1], &k1)) {
/* {tpbasis, k} = Basis */
if (!(field_bits > k1 && k1 > 0))
goto out_err;
/* create the polynomial */
if (!BN_set_bit(p, (int)field_bits)
|| !BN_set_bit(p, (int)k1)
|| !BN_set_bit(p, 0))
goto out_err;
} else if (b_arity == 4
&& basis[0] == atom_ppbasis
&& enif_get_uint(env, basis[1], &k1)
&& enif_get_uint(env, basis[2], &k2)
&& enif_get_uint(env, basis[3], &k3)) {
/* {ppbasis, k1, k2, k3} = Basis */
if (!(field_bits > k3 && k3 > k2 && k2 > k1 && k1 > 0))
goto out_err;
/* create the polynomial */
if (!BN_set_bit(p, (int)field_bits)
|| !BN_set_bit(p, (int)k1)
|| !BN_set_bit(p, (int)k2)
|| !BN_set_bit(p, (int)k3)
|| !BN_set_bit(p, 0))
goto out_err;
} else
goto out_err;
} else if (field[2] == atom_onbasis) {
/* onbasis = Basis */
/* no parameters */
goto out_err;
} else
goto out_err;
group = EC_GROUP_new_curve_GF2m(p, a, b, NULL);
#endif
} else
goto out_err;
if (!group)
goto out_err;
if (enif_inspect_binary(env, prime[2], &seed)) {
EC_GROUP_set_seed(group, seed.data, seed.size);
}
if (!term2point(env, curve[2], group, &point))
goto out_err;
if (BN_is_negative(bn_order)
|| BN_is_zero(bn_order)
|| BN_num_bits(bn_order) > (int)field_bits + 1)
goto out_err;
if (!EC_GROUP_set_generator(group, point, bn_order, cofactor))
goto out_err;
EC_GROUP_set_asn1_flag(group, 0x0);
key = EC_KEY_new();
if (!key)
goto out_err;
EC_KEY_set_group(key, group);
}
else {
goto out_err;
}
goto out;
out_err:
if (key) EC_KEY_free(key);
key = NULL;
out:
/* some OpenSSL structures are mem-dup'ed into the key,
so we have to free our copies here */
if (p) BN_free(p);
if (a) BN_free(a);
if (b) BN_free(b);
if (bn_order) BN_free(bn_order);
if (cofactor) BN_free(cofactor);
if (group) EC_GROUP_free(group);
if (point) EC_POINT_free(point);
return key;
}
static ERL_NIF_TERM bn2term(ErlNifEnv* env, const BIGNUM *bn)
{
unsigned dlen;
unsigned char* ptr;
ERL_NIF_TERM ret;
if (!bn)
return atom_undefined;
dlen = BN_num_bytes(bn);
ptr = enif_make_new_binary(env, dlen, &ret);
BN_bn2bin(bn, ptr);
ERL_VALGRIND_MAKE_MEM_DEFINED(ptr, dlen);
return ret;
}
static ERL_NIF_TERM point2term(ErlNifEnv* env,
const EC_GROUP *group,
const EC_POINT *point,
point_conversion_form_t form)
{
unsigned dlen;
ErlNifBinary bin;
dlen = EC_POINT_point2oct(group, point, form, NULL, 0, NULL);
if (dlen == 0)
return atom_undefined;
if (!enif_alloc_binary(dlen, &bin))
return enif_make_badarg(env);
if (!EC_POINT_point2oct(group, point, form, bin.data, bin.size, NULL)) {
enif_release_binary(&bin);
return enif_make_badarg(env);
}
ERL_VALGRIND_MAKE_MEM_DEFINED(bin.data, bin.size);
return enif_make_binary(env, &bin);
}
static int term2point(ErlNifEnv* env, ERL_NIF_TERM term,
EC_GROUP *group, EC_POINT **pptr)
{
int ret = 0;
ErlNifBinary bin;
EC_POINT *point;
if (!enif_inspect_binary(env,term,&bin)) {
return 0;
}
if ((*pptr = point = EC_POINT_new(group)) == NULL) {
return 0;
}
/* set the point conversion form */
EC_GROUP_set_point_conversion_form(group, (point_conversion_form_t)(bin.data[0] & ~0x01));
/* extract the ec point */
if (!EC_POINT_oct2point(group, point, bin.data, bin.size, NULL)) {
EC_POINT_free(point);
*pptr = NULL;
} else
ret = 1;
return ret;
}
static int get_ec_key(ErlNifEnv* env,
ERL_NIF_TERM curve, ERL_NIF_TERM priv, ERL_NIF_TERM pub,
EC_KEY** res)
{
EC_KEY *key = NULL;
BIGNUM *priv_key = NULL;
EC_POINT *pub_key = NULL;
EC_GROUP *group = NULL;
if (!(priv == atom_undefined || get_bn_from_bin(env, priv, &priv_key))
|| !(pub == atom_undefined || enif_is_binary(env, pub))) {
goto out_err;
}
key = ec_key_new(env, curve);
if (!key) {
goto out_err;
}
if (!group)
group = EC_GROUP_dup(EC_KEY_get0_group(key));
if (term2point(env, pub, group, &pub_key)) {
if (!EC_KEY_set_public_key(key, pub_key)) {
goto out_err;
}
}
if (priv != atom_undefined
&& !BN_is_zero(priv_key)) {
if (!EC_KEY_set_private_key(key, priv_key))
goto out_err;
/* calculate public key (if necessary) */
if (EC_KEY_get0_public_key(key) == NULL)
{
/* the public key was not included in the SEC1 private
* key => calculate the public key */
pub_key = EC_POINT_new(group);
if (pub_key == NULL
|| !EC_POINT_copy(pub_key, EC_GROUP_get0_generator(group))
|| !EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, NULL)
|| !EC_KEY_set_public_key(key, pub_key))
goto out_err;
}
}
goto out;
out_err:
if (key) EC_KEY_free(key);
key = NULL;
out:
/* some OpenSSL structures are mem-dup'ed into the key,
so we have to free our copies here */
if (priv_key) BN_clear_free(priv_key);
if (pub_key) EC_POINT_free(pub_key);
if (group) EC_GROUP_free(group);
if (!key)
return 0;
*res = key;
return 1;
}
#endif /* HAVE_EC */
static ERL_NIF_TERM ec_key_generate(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
#if defined(HAVE_EC)
EC_KEY *key = NULL;
const EC_GROUP *group;
const EC_POINT *public_key;
ERL_NIF_TERM priv_key;
ERL_NIF_TERM pub_key = atom_undefined;
if (!get_ec_key(env, argv[0], argv[1], atom_undefined, &key))
goto badarg;
if (argv[1] == atom_undefined) {
if (!EC_KEY_generate_key(key))
goto badarg;
}
group = EC_KEY_get0_group(key);
public_key = EC_KEY_get0_public_key(key);
if (group && public_key) {
pub_key = point2term(env, group, public_key,
EC_KEY_get_conv_form(key));
}
priv_key = bn2term(env, EC_KEY_get0_private_key(key));
EC_KEY_free(key);
return enif_make_tuple2(env, pub_key, priv_key);
badarg:
if (key)
EC_KEY_free(key);
return make_badarg_maybe(env);
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM ecdsa_sign_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Digest, Curve, Key) */
#if defined(HAVE_EC)
ErlNifBinary digest_bin, ret_bin;
unsigned int dsa_s_len;
EC_KEY* key = NULL;
int i, len;
struct digest_type_t *digp;
const EVP_MD *md;
digp = get_digest_type(argv[0]);
if (!digp) {
return enif_make_badarg(env);
}
md = digp->md.p;
if (!md) {
return atom_notsup;
}
len = EVP_MD_size(md);
if (!enif_inspect_binary(env,argv[1],&digest_bin)
|| digest_bin.size != len
|| !get_ec_key(env, argv[2], argv[3], atom_undefined, &key))
goto badarg;
enif_alloc_binary(ECDSA_size(key), &ret_bin);
i = ECDSA_sign(EVP_MD_type(md), digest_bin.data, len,
ret_bin.data, &dsa_s_len, key);
EC_KEY_free(key);
if (i) {
if (dsa_s_len != ret_bin.size) {
enif_realloc_binary(&ret_bin, dsa_s_len);
}
return enif_make_binary(env, &ret_bin);
}
else {
enif_release_binary(&ret_bin);
return atom_error;
}
badarg:
if (key)
EC_KEY_free(key);
return make_badarg_maybe(env);
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM ecdsa_verify_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{/* (Type, Digest, Signature, Curve, Key) */
#if defined(HAVE_EC)
ErlNifBinary digest_bin, sign_bin;
int i, len;
EC_KEY* key = NULL;
const ERL_NIF_TERM type = argv[0];
struct digest_type_t *digp = NULL;
const EVP_MD *md;
digp = get_digest_type(type);
if (!digp) {
return enif_make_badarg(env);
}
md = digp->md.p;
if (!md) {
return atom_notsup;
}
len = EVP_MD_size(md);
if (!enif_inspect_binary(env, argv[1], &digest_bin)
|| digest_bin.size != len
|| !enif_inspect_binary(env, argv[2], &sign_bin)
|| !get_ec_key(env, argv[3], atom_undefined, argv[4], &key))
goto badarg;
i = ECDSA_verify(EVP_MD_type(md), digest_bin.data, len,
sign_bin.data, sign_bin.size, key);
EC_KEY_free(key);
return (i==1 ? atom_true : atom_false);
badarg:
if (key)
EC_KEY_free(key);
return make_badarg_maybe(env);
#else
return atom_notsup;
#endif
}
/*
(_OthersPublicKey, _MyPrivateKey)
(_OthersPublicKey, _MyEC_Point)
*/
static ERL_NIF_TERM ecdh_compute_key_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
/* (OtherPublicKey, Curve, My) */
{
#if defined(HAVE_EC)
ERL_NIF_TERM ret;
unsigned char *p;
EC_KEY* key = NULL;
int field_size = 0;
int i;
EC_GROUP *group;
const BIGNUM *priv_key;
EC_POINT *my_ecpoint;
EC_KEY *other_ecdh = NULL;
if (!get_ec_key(env, argv[1], argv[2], atom_undefined, &key))
return make_badarg_maybe(env);
group = EC_GROUP_dup(EC_KEY_get0_group(key));
priv_key = EC_KEY_get0_private_key(key);
if (!term2point(env, argv[0], group, &my_ecpoint)) {
goto out_err;
}
if ((other_ecdh = EC_KEY_new()) == NULL
|| !EC_KEY_set_group(other_ecdh, group)
|| !EC_KEY_set_private_key(other_ecdh, priv_key))
goto out_err;
field_size = EC_GROUP_get_degree(group);
if (field_size <= 0)
goto out_err;
p = enif_make_new_binary(env, (field_size+7)/8, &ret);
i = ECDH_compute_key(p, (field_size+7)/8, my_ecpoint, other_ecdh, NULL);
if (i < 0)
goto out_err;
out:
if (group) EC_GROUP_free(group);
if (my_ecpoint) EC_POINT_free(my_ecpoint);
if (other_ecdh) EC_KEY_free(other_ecdh);
if (key) EC_KEY_free(key);
return ret;
out_err:
ret = enif_make_badarg(env);
goto out;
#else
return atom_notsup;
#endif
}
static ERL_NIF_TERM rand_seed_nif(ErlNifEnv* env, int argc, const ERL_NIF_TERM argv[])
{
ErlNifBinary seed_bin;
if (!enif_inspect_binary(env, argv[0], &seed_bin))
return enif_make_badarg(env);
RAND_seed(seed_bin.data,seed_bin.size);
return atom_ok;
}