<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>1999</year><year>2018</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>crypto</title>
</header>
<module since="">crypto</module>
<modulesummary>Crypto Functions</modulesummary>
<description>
<p>This module provides a set of cryptographic functions.
</p>
<taglist>
<tag>Hash functions</tag>
<item>
<p></p>
<taglist>
<tag>SHA1, SHA2</tag>
<item>
<url href="https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf">
Secure Hash Standard [FIPS PUB 180-4]
</url>
</item>
<tag>SHA3</tag>
<item>
<url href="https://www.nist.gov/publications/sha-3-standard-permutation-based-hash-and-extendable-output-functions?pub_id=919061">
SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions [FIPS PUB 202]
</url>
</item>
<tag>BLAKE2</tag>
<item>
<url href="https://blake2.net/">BLAKE2 — fast secure hashing</url>
</item>
<tag>MD5</tag>
<item>
<url href="http://www.ietf.org/rfc/rfc1321.txt">The MD5 Message Digest Algorithm [RFC 1321]</url>
</item>
<tag>MD4</tag>
<item>
<url href="http://www.ietf.org/rfc/rfc1320.txt">The MD4 Message Digest Algorithm [RFC 1320]</url>
</item>
</taglist>
<p></p>
</item>
<tag>MACs - Message Authentication Codes</tag>
<item>
<p></p>
<taglist>
<tag>Hmac functions</tag>
<item>
<url href="http://www.ietf.org/rfc/rfc2104.txt">
Keyed-Hashing for Message Authentication [RFC 2104]
</url>
</item>
<tag>Cmac functions</tag>
<item>
<url href="http://www.ietf.org/rfc/rfc4493.txt">
The AES-CMAC Algorithm [RFC 4493]
</url>
</item>
<tag>POLY1305</tag>
<item>
<url href="http://www.ietf.org/rfc/rfc7539.txt">
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]
</url>
</item>
</taglist>
<p></p>
</item>
<tag>Symmetric Ciphers</tag>
<item>
<p></p>
<taglist>
<tag>DES, 3DES and AES</tag>
<item>
<url href="https://csrc.nist.gov/projects/block-cipher-techniques">Block Cipher Techniques [NIST]</url>
</item>
<tag>Blowfish</tag>
<item>
<url href="https://www.schneier.com/academic/archives/1994/09/description_of_a_new.html">
Fast Software Encryption, Cambridge Security Workshop Proceedings (December 1993), Springer-Verlag, 1994, pp. 191-204.
</url>
</item>
<tag>Chacha20</tag>
<item>
<url href="http://www.ietf.org/rfc/rfc7539.txt">
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]
</url>
</item>
<tag>Chacha20_poly1305</tag>
<item>
<url href="http://www.ietf.org/rfc/rfc7539.txt">
ChaCha20 and Poly1305 for IETF Protocols [RFC 7539]
</url>
</item>
</taglist>
<p></p>
</item>
<tag>Modes</tag>
<item>
<p></p>
<taglist>
<tag>ECB, CBC, CFB, OFB and CTR</tag>
<item>
<url href="https://csrc.nist.gov/publications/detail/sp/800-38a/final">
Recommendation for Block Cipher Modes of Operation: Methods and Techniques [NIST SP 800-38A]
</url>
</item>
<tag>GCM</tag>
<item>
<url href="https://csrc.nist.gov/publications/detail/sp/800-38d/final">
Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC [NIST SP 800-38D]
</url>
</item>
<tag>CCM</tag>
<item>
<url href="https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf">
Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality [NIST SP 800-38C]
</url>
</item>
</taglist>
<p></p>
</item>
<tag>Asymetric Ciphers - Public Key Techniques</tag>
<item>
<p></p>
<taglist>
<tag>RSA</tag>
<item>
<url href="http://www.ietf.org/rfc/rfc3447.txt">
PKCS #1: RSA Cryptography Specifications [RFC 3447]
</url>
</item>
<tag>DSS</tag>
<item>
<url href="https://csrc.nist.gov/publications/detail/fips/186/4/final">
Digital Signature Standard (DSS) [FIPS 186-4]
</url>
</item>
<tag>ECDSA</tag>
<item>
<url href="http://csrc.nist.gov/groups/STM/cavp/documents/dss2/ecdsa2vs.pdf">
Elliptic Curve Digital Signature Algorithm [ECDSA]
</url>
</item>
<tag>SRP</tag>
<item>
<url href="http://www.ietf.org/rfc/rfc2945.txt">
The SRP Authentication and Key Exchange System [RFC 2945]
</url>
</item>
</taglist>
<p></p>
</item>
</taglist>
<note>
<p>The actual supported algorithms and features depends on their availability in the actual libcrypto used.
See the <seealso marker="crypto:crypto_app">crypto (App)</seealso> about dependencies.
</p>
<p>Enabling FIPS mode will also disable algorithms and features.
</p>
</note>
<p>The <seealso marker="users_guide">CRYPTO User's Guide</seealso> has more information on
FIPS, Engines and Algorithm Details like key lengths.
</p>
</description>
<datatypes>
<datatype_title>Ciphers</datatype_title>
<datatype>
<name name="cipher"/>
<name name="stream_cipher"/>
<name name="block_cipher"/>
<desc>
<p>Ciphers known byt the CRYPTO application. Note that this list might be reduced if the
underlying libcrypto does not support all of them.</p>
</desc>
</datatype>
<datatype>
<name name="stream_cipher_iv"/>
<name name="stream_cipher_no_iv"/>
<desc>
<p>Stream ciphers for
<seealso marker="#stream_init-3">stream_init/3</seealso> and
<seealso marker="#stream_init-2">stream_init/2</seealso> .
</p>
</desc>
</datatype>
<datatype>
<name name="block_cipher_iv"/>
<name name="cbc_cipher"/>
<name name="cfb_cipher"/>
<desc>
<p>Block ciphers with initialization vector for
<seealso marker="#block_encrypt-4">block_encrypt/4</seealso> and
<seealso marker="#block_decrypt-4">block_decrypt/4</seealso> .
</p>
</desc>
</datatype>
<datatype>
<name name="alias_cfb"/>
<name name="alias_cbc"/>
<desc>
<p>Names that are replaced by more common names. They may deprecated in futer releases.</p>
<p><c>des3_cbc</c> and <c>des_ede3</c> should be replaced by <c>des_ede3_cbc</c></p>
<p><c>des_ede3_cbf</c>, <c>des3_cbf</c> and <c>des3_cfb</c> should be replaced by <c>des_ede3_cfb</c>.</p>
<p><c>aes_cbc128</c> should be replaced by <c>aes_128_cbc</c>.</p>
<p><c>aes_cbc256</c> should be replaced by <c>aes_256_cbc</c>.</p>
</desc>
</datatype>
<datatype>
<name name="block_cipher_no_iv"/>
<name name="ecb_cipher"/>
<desc>
<p>Block ciphers without initialization vector for
<seealso marker="#block_encrypt-3">block_encrypt/3</seealso> and
<seealso marker="#block_decrypt-3">block_decrypt/3</seealso> .
</p>
</desc>
</datatype>
<datatype>
<name name="aead_cipher"/>
<desc>
<p>Ciphers with simultaneous MAC-calculation or MAC-checking.
<seealso marker="#block_encrypt-4">block_encrypt/4</seealso> and
<seealso marker="#block_decrypt-4">block_decrypt/4</seealso> .
</p>
</desc>
</datatype>
<datatype_title>Digests</datatype_title>
<datatype>
<name name="sha1"/>
<name name="sha2"/>
<name name="sha3"/>
<name name="blake2"/>
<desc>
</desc>
</datatype>
<datatype>
<name name="compatibility_only_hash"/>
<desc>
<p>The <c>compatibility_only_hash()</c> algorithms are recommended only for compatibility with existing applications.</p>
</desc>
</datatype>
<datatype>
<name name="rsa_digest_type"/>
<desc>
</desc>
</datatype>
<datatype>
<name name="dss_digest_type"/>
<desc>
</desc>
</datatype>
<datatype>
<name name="ecdsa_digest_type"/>
<desc>
</desc>
</datatype>
<datatype_title>Elliptic Curves</datatype_title>
<datatype>
<name name="ec_named_curve"/>
<name name="edwards_curve_dh"/>
<name name="edwards_curve_ed"/>
<desc>
<p>Note that some curves are disabled if FIPS is enabled.</p>
</desc>
</datatype>
<datatype>
<name name="ec_explicit_curve"/>
<name name="ec_field"/>
<name name="ec_curve"/>
<desc>
<p>Parametric curve definition.</p>
</desc>
</datatype>
<datatype>
<name name="ec_prime_field"/>
<name name="ec_characteristic_two_field"/>
<name name="ec_basis"/>
<desc>
<p>Curve definition details.</p>
</desc>
</datatype>
<datatype_title>Keys</datatype_title>
<datatype>
<name name="key"/>
<name name="des3_key"/>
<desc>
<p>For keylengths, iv-sizes and blocksizes see the
<seealso marker="crypto:algorithm_details#ciphers">User's Guide</seealso>.
</p>
<p>A key for des3 is a list of three iolists</p>
</desc>
</datatype>
<datatype>
<name name="key_integer"/>
<desc>
<p>Always <c>binary()</c> when used as return value</p>
</desc>
</datatype>
<datatype_title>Public/Private Keys</datatype_title>
<datatype>
<name name="rsa_public"/>
<name name="rsa_private"/>
<name name="rsa_params"/>
<desc>
<code>rsa_public() = [E, N]</code>
<code>rsa_private() = [E, N, D] | [E, N, D, P1, P2, E1, E2, C]</code>
<p>Where E is the public exponent, N is public modulus and D is
the private exponent. The longer key format contains redundant
information that will make the calculation faster. P1,P2 are first
and second prime factors. E1,E2 are first and second exponents. C
is the CRT coefficient. Terminology is taken from <url href="http://www.ietf.org/rfc/rfc3477.txt"> RFC 3447</url>.</p>
</desc>
</datatype>
<datatype>
<name name="dss_public"/>
<name name="dss_private"/>
<desc>
<code>dss_public() = [P, Q, G, Y] </code>
<p>Where P, Q and G are the dss parameters and Y is the public key.</p>
<code>dss_private() = [P, Q, G, X] </code>
<p>Where P, Q and G are the dss parameters and X is the private key.</p>
</desc>
</datatype>
<datatype>
<name name="ecdsa_public"/>
<name name="ecdsa_private"/>
<name name="ecdsa_params"/>
<desc>
</desc>
</datatype>
<datatype>
<name name="eddsa_public"/>
<name name="eddsa_private"/>
<name name="eddsa_params"/>
<desc>
</desc>
</datatype>
<datatype>
<name name="srp_public"/>
<name name="srp_private"/>
<desc>
<code>srp_public() = key_integer() </code>
<p>Where is <c>A</c> or <c>B</c> from <url href="http://srp.stanford.edu/design.html">SRP design</url></p>
<code>srp_private() = key_integer() </code>
<p>Where is <c>a</c> or <c>b</c> from <url href="http://srp.stanford.edu/design.html">SRP design</url></p>
</desc>
</datatype>
<datatype>
<name name="srp_gen_params"/>
<name name="srp_comp_params"/>
<desc>
<marker id="type-srp_user_gen_params"/>
<code>srp_user_gen_params() = [DerivedKey::binary(), Prime::binary(), Generator::binary(), Version::atom()]</code>
<marker id="type-srp_host_gen_params"/>
<code>srp_host_gen_params() = [Verifier::binary(), Prime::binary(), Version::atom() ]</code>
<marker id="type-srp_user_comp_params"/>
<code>srp_user_comp_params() = [DerivedKey::binary(), Prime::binary(), Generator::binary(), Version::atom() | ScramblerArg::list()]</code>
<marker id="type-srp_host_comp_params"/>
<code>srp_host_comp_params() = [Verifier::binary(), Prime::binary(), Version::atom() | ScramblerArg::list()]</code>
<p>Where Verifier is <c>v</c>, Generator is <c>g</c> and Prime is<c> N</c>, DerivedKey is <c>X</c>, and Scrambler is
<c>u</c> (optional will be generated if not provided) from <url href="http://srp.stanford.edu/design.html">SRP design</url>
Version = '3' | '6' | '6a'
</p>
</desc>
</datatype>
<datatype_title>Public Key Ciphers</datatype_title>
<datatype>
<name name="pk_encrypt_decrypt_algs"/>
<desc>
<p>Algorithms for public key encrypt/decrypt. Only RSA is supported.</p>
</desc>
</datatype>
<datatype>
<name name="pk_encrypt_decrypt_opts"/>
<name name="rsa_opt"/>
<name name="rsa_padding"/>
<desc>
<p>Options for public key encrypt/decrypt. Only RSA is supported.</p>
<warning>
<!-- In RefMan rsa_opt(), rsa_sign_verify_opt() and User's man RSA -->
<p>The RSA options are experimental.
</p>
<p>The exact set of options and there syntax <em>may</em> be changed
without prior notice.</p>
</warning>
</desc>
</datatype>
<datatype>
<name name="rsa_compat_opts"/>
<desc>
<p>Those option forms are kept only for compatibility and should not be used in new code.</p>
</desc>
</datatype>
<datatype_title>Public Key Sign and Verify</datatype_title>
<datatype>
<name name="pk_sign_verify_algs"/>
<desc>
<p>Algorithms for sign and verify.</p>
</desc>
</datatype>
<datatype>
<name name="pk_sign_verify_opts"/>
<name name="rsa_sign_verify_opt"/>
<name name="rsa_sign_verify_padding"/>
<desc>
<p>Options for sign and verify.</p>
<warning>
<!-- In RefMan rsa_opt(), rsa_sign_verify_opt() and User's man RSA -->
<p>The RSA options are experimental.
</p>
<p>The exact set of options and there syntax <em>may</em> be changed
without prior notice.</p>
</warning>
</desc>
</datatype>
<datatype_title>Diffie-Hellman Keys and parameters</datatype_title>
<datatype>
<name name="dh_public"/>
<name name="dh_private"/>
<desc>
</desc>
</datatype>
<datatype>
<name name="dh_params"/>
<desc>
<code>dh_params() = [P, G] | [P, G, PrivateKeyBitLength]</code>
</desc>
</datatype>
<datatype>
<name name="ecdh_public"/>
<name name="ecdh_private"/>
<name name="ecdh_params"/>
<desc>
</desc>
</datatype>
<datatype_title>Types for Engines</datatype_title>
<datatype>
<name name="engine_key_ref"/>
<name name="engine_ref"/>
<desc>
<p>The result of a call to <seealso marker="#engine_load-3">engine_load/3</seealso>.
</p>
</desc>
</datatype>
<datatype>
<name name="key_id"/>
<desc>
<p>Identifies the key to be used. The format depends on the loaded engine. It is passed to
the <c>ENGINE_load_(private|public)_key</c> functions in libcrypto.
</p>
</desc>
</datatype>
<datatype>
<name name="password"/>
<desc>
<p>The password of the key stored in an engine.
</p>
</desc>
</datatype>
<datatype>
<name name="engine_method_type"/>
</datatype>
<datatype>
<name name="engine_cmnd"/>
<desc>
<p>Pre and Post commands for <seealso marker="#engine_load-3">engine_load/3 and /4</seealso>.
</p>
</desc>
</datatype>
<datatype_title>Internal data types</datatype_title>
<datatype>
<name name="stream_state"/>
<name name="hmac_state"/>
<name name="hash_state"/>
<desc>
<p>Contexts with an internal state that should not be manipulated but passed between function calls.
</p>
</desc>
</datatype>
</datatypes>
<!--================ FUNCTIONS ================-->
<funcs>
<func>
<name name="block_encrypt" arity="3" since="OTP 18.0"/>
<fsummary>Encrypt <c>PlainText</c> according to <c>Type</c> block cipher</fsummary>
<desc>
<p>Encrypt <c>PlainText</c> according to <c>Type</c> block cipher.</p>
<p>May raise exception <c>error:notsup</c> in case the chosen <c>Type</c>
is not supported by the underlying libcrypto implementation.</p>
<p>For keylengths and blocksizes see the
<seealso marker="crypto:algorithm_details#ciphers">User's Guide</seealso>.
</p>
</desc>
</func>
<func>
<name name="block_decrypt" arity="3" since="OTP 18.0"/>
<fsummary>Decrypt <c>CipherText</c> according to <c>Type</c> block cipher</fsummary>
<desc>
<p>Decrypt <c>CipherText</c> according to <c>Type</c> block cipher.</p>
<p>May raise exception <c>error:notsup</c> in case the chosen <c>Type</c>
is not supported by the underlying libcrypto implementation.</p>
<p>For keylengths and blocksizes see the
<seealso marker="crypto:algorithm_details#ciphers">User's Guide</seealso>.
</p>
</desc>
</func>
<func>
<name since="OTP R16B01">block_encrypt(Type, Key, Ivec, PlainText) -> CipherText</name>
<name since="OTP R16B01">block_encrypt(AeadType, Key, Ivec, {AAD, PlainText}) -> {CipherText, CipherTag}</name>
<name since="OTP R16B01">block_encrypt(aes_gcm | aes_ccm, Key, Ivec, {AAD, PlainText, TagLength}) -> {CipherText, CipherTag}</name>
<fsummary>Encrypt <c>PlainText</c> according to <c>Type</c> block cipher</fsummary>
<type>
<v>Type = <seealso marker="#type-block_cipher_iv">block_cipher_iv()</seealso></v>
<v>AeadType = <seealso marker="#type-aead_cipher">aead_cipher()</seealso></v>
<v>Key = <seealso marker="#type-key">key()</seealso> | <seealso marker="#type-des3_key">des3_key()</seealso></v>
<v>PlainText = iodata()</v>
<v>AAD = IVec = CipherText = CipherTag = binary()</v>
<v>TagLength = 1..16</v>
</type>
<desc>
<p>Encrypt <c>PlainText</c> according to <c>Type</c> block cipher.
<c>IVec</c> is an arbitrary initializing vector.</p>
<p>In AEAD (Authenticated Encryption with Associated Data) mode, encrypt
<c>PlainText</c>according to <c>Type</c> block cipher and calculate
<c>CipherTag</c> that also authenticates the <c>AAD</c> (Associated Authenticated Data).</p>
<p>May raise exception <c>error:notsup</c> in case the chosen <c>Type</c>
is not supported by the underlying libcrypto implementation.</p>
<p>For keylengths, iv-sizes and blocksizes see the
<seealso marker="crypto:algorithm_details#ciphers">User's Guide</seealso>.
</p>
</desc>
</func>
<func>
<name since="OTP R16B01">block_decrypt(Type, Key, Ivec, CipherText) -> PlainText</name>
<name since="OTP R16B01">block_decrypt(AeadType, Key, Ivec, {AAD, CipherText, CipherTag}) -> PlainText | error</name>
<fsummary>Decrypt <c>CipherText</c> according to <c>Type</c> block cipher</fsummary>
<type>
<v>Type = <seealso marker="#type-block_cipher_iv">block_cipher_iv()</seealso></v>
<v>AeadType = <seealso marker="#type-aead_cipher">aead_cipher()</seealso></v>
<v>Key = <seealso marker="#type-key">key()</seealso> | <seealso marker="#type-des3_key">des3_key()</seealso></v>
<v>PlainText = iodata()</v>
<v>AAD = IVec = CipherText = CipherTag = binary()</v>
</type>
<desc>
<p>Decrypt <c>CipherText</c> according to <c>Type</c> block cipher.
<c>IVec</c> is an arbitrary initializing vector.</p>
<p>In AEAD (Authenticated Encryption with Associated Data) mode, decrypt
<c>CipherText</c>according to <c>Type</c> block cipher and check the authenticity
the <c>PlainText</c> and <c>AAD</c> (Associated Authenticated Data) using the
<c>CipherTag</c>. May return <c>error</c> if the decryption or validation fail's</p>
<p>May raise exception <c>error:notsup</c> in case the chosen <c>Type</c>
is not supported by the underlying libcrypto implementation.</p>
<p>For keylengths, iv-sizes and blocksizes see the
<seealso marker="crypto:algorithm_details#ciphers">User's Guide</seealso>.
</p>
</desc>
</func>
<func>
<name name="bytes_to_integer" arity="1" since="OTP R16B01"/>
<fsummary>Convert binary representation, of an integer, to an Erlang integer.</fsummary>
<desc>
<p>Convert binary representation, of an integer, to an Erlang integer.
</p>
</desc>
</func>
<func>
<name name="compute_key" arity="4" since="OTP R16B01"/>
<fsummary>Computes the shared secret</fsummary>
<desc>
<p>Computes the shared secret from the private key and the other party's public key.
See also <seealso marker="public_key:public_key#compute_key-2">public_key:compute_key/2</seealso>
</p>
</desc>
</func>
<func>
<name name="exor" arity="2" since=""/>
<fsummary>XOR data</fsummary>
<desc>
<p>Performs bit-wise XOR (exclusive or) on the data supplied.</p>
</desc>
</func>
<func>
<name name="generate_key" arity="2" since="OTP R16B01"/>
<name name="generate_key" arity="3" since="OTP R16B01"/>
<fsummary>Generates a public key of type <c>Type</c></fsummary>
<desc>
<p>Generates a public key of type <c>Type</c>.
See also <seealso marker="public_key:public_key#generate_key-1">public_key:generate_key/1</seealso>.
May raise exception:
</p>
<list type="bulleted">
<item><c>error:badarg</c>: an argument is of wrong type or has an illegal value,</item>
<item><c>error:low_entropy</c>: the random generator failed due to lack of secure "randomness",</item>
<item><c>error:computation_failed</c>: the computation fails of another reason than <c>low_entropy</c>.</item>
</list>
<note>
<p>RSA key generation is only available if the runtime was
built with dirty scheduler support. Otherwise, attempting to
generate an RSA key will raise exception <c>error:notsup</c>.</p>
</note>
</desc>
</func>
<func>
<name name="hash" arity="2" since="OTP R15B02"/>
<fsummary></fsummary>
<desc>
<p>Computes a message digest of type <c>Type</c> from <c>Data</c>.</p>
<p>May raise exception <c>error:notsup</c> in case the chosen <c>Type</c>
is not supported by the underlying libcrypto implementation.</p>
</desc>
</func>
<func>
<name name="hash_init" arity="1" since="OTP R15B02"/>
<fsummary></fsummary>
<desc>
<p>Initializes the context for streaming hash operations. <c>Type</c> determines
which digest to use. The returned context should be used as argument
to <seealso marker="#hash_update-2">hash_update</seealso>.</p>
<p>May raise exception <c>error:notsup</c> in case the chosen <c>Type</c>
is not supported by the underlying libcrypto implementation.</p>
</desc>
</func>
<func>
<name name="hash_update" arity="2" since="OTP R15B02"/>
<fsummary></fsummary>
<desc>
<p>Updates the digest represented by <c>Context</c> using the given <c>Data</c>. <c>Context</c>
must have been generated using <seealso marker="#hash_init-1">hash_init</seealso>
or a previous call to this function. <c>Data</c> can be any length. <c>NewContext</c>
must be passed into the next call to <c>hash_update</c>
or <seealso marker="#hash_final-1">hash_final</seealso>.</p>
</desc>
</func>
<func>
<name name="hash_final" arity="1" since="OTP R15B02"/>
<fsummary></fsummary>
<desc>
<p>Finalizes the hash operation referenced by <c>Context</c> returned
from a previous call to <seealso marker="#hash_update-2">hash_update</seealso>.
The size of <c>Digest</c> is determined by the type of hash
function used to generate it.</p>
</desc>
</func>
<func>
<name name="hmac" arity="3" since="OTP R16B"/>
<name name="hmac" arity="4" since="OTP R16B"/>
<fsummary></fsummary>
<desc>
<p>Computes a HMAC of type <c>Type</c> from <c>Data</c> using
<c>Key</c> as the authentication key.</p> <p><c>MacLength</c>
will limit the size of the resultant <c>Mac</c>.</p>
</desc>
</func>
<func>
<name name="hmac_init" arity="2" since="OTP R14B03"/>
<fsummary></fsummary>
<desc>
<p>Initializes the context for streaming HMAC operations. <c>Type</c> determines
which hash function to use in the HMAC operation. <c>Key</c> is the authentication
key. The key can be any length.</p>
</desc>
</func>
<func>
<name name="hmac_update" arity="2" since="OTP R14B03"/>
<fsummary></fsummary>
<desc>
<p>Updates the HMAC represented by <c>Context</c> using the given <c>Data</c>. <c>Context</c>
must have been generated using an HMAC init function (such as
<seealso marker="#hmac_init-2">hmac_init</seealso>). <c>Data</c> can be any length. <c>NewContext</c>
must be passed into the next call to <c>hmac_update</c>
or to one of the functions <seealso marker="#hmac_final-1">hmac_final</seealso> and
<seealso marker="#hmac_final_n-2">hmac_final_n</seealso>
</p>
<warning><p>Do not use a <c>Context</c> as argument in more than one
call to hmac_update or hmac_final. The semantics of reusing old contexts
in any way is undefined and could even crash the VM in earlier releases.
The reason for this limitation is a lack of support in the underlying
libcrypto API.</p></warning>
</desc>
</func>
<func>
<name name="hmac_final" arity="1" since="OTP R14B03"/>
<fsummary></fsummary>
<desc>
<p>Finalizes the HMAC operation referenced by <c>Context</c>. The size of the resultant MAC is
determined by the type of hash function used to generate it.</p>
</desc>
</func>
<func>
<name name="hmac_final_n" arity="2" since="OTP R14B03"/>
<fsummary></fsummary>
<desc>
<p>Finalizes the HMAC operation referenced by <c>Context</c>. <c>HashLen</c> must be greater than
zero. <c>Mac</c> will be a binary with at most <c>HashLen</c> bytes. Note that if HashLen is greater than the actual number of bytes returned from the underlying hash, the returned hash will have fewer than <c>HashLen</c> bytes.</p>
</desc>
</func>
<func>
<name name="cmac" arity="3" since="OTP 20.0"/>
<name name="cmac" arity="4" since="OTP 20.0"/>
<fsummary>Calculates the Cipher-based Message Authentication Code.</fsummary>
<desc>
<p>Computes a CMAC of type <c>Type</c> from <c>Data</c> using
<c>Key</c> as the authentication key.</p> <p><c>MacLength</c>
will limit the size of the resultant <c>Mac</c>.</p>
</desc>
</func>
<func>
<name name="info_fips" arity="0" since="OTP 20.0"/>
<fsummary>Provides information about the FIPS operating status.</fsummary>
<desc>
<p>Provides information about the FIPS operating status of
crypto and the underlying libcrypto library. If crypto was built
with FIPS support this can be either <c>enabled</c> (when
running in FIPS mode) or <c>not_enabled</c>. For other builds
this value is always <c>not_supported</c>.
</p>
<p>See <seealso marker="#enable_fips_mode-1">enable_fips_mode/1</seealso> about how to enable
FIPS mode.
</p>
<warning>
<p>In FIPS mode all non-FIPS compliant algorithms are
disabled and raise exception <c>error:notsup</c>. Check
<seealso marker="#supports-0">supports</seealso> that in
FIPS mode returns the restricted list of available
algorithms.</p>
</warning>
</desc>
</func>
<func>
<name name="enable_fips_mode" arity="1" since="OTP 21.1"/>
<fsummary>Change FIPS mode.</fsummary>
<desc>
<p>Enables (<c>Enable = true</c>) or disables (<c>Enable = false</c>) FIPS mode. Returns <c>true</c> if
the operation was successful or <c>false</c> otherwise.
</p>
<p>Note that to enable FIPS mode succesfully, OTP must be built with the configure option <c>--enable-fips</c>,
and the underlying libcrypto must also support FIPS.
</p>
<p>See also <seealso marker="#info_fips-0">info_fips/0</seealso>.
</p>
</desc>
</func>
<func>
<name name="info_lib" arity="0" since=""/>
<fsummary>Provides information about the libraries used by crypto.</fsummary>
<desc>
<p>Provides the name and version of the libraries used by crypto.</p>
<p><c>Name</c> is the name of the library. <c>VerNum</c> is
the numeric version according to the library's own versioning
scheme. <c>VerStr</c> contains a text variant of the version.</p>
<pre>
> <input>info_lib().</input>
[{<<"OpenSSL">>,269484095,<<"OpenSSL 1.1.0c 10 Nov 2016"">>}]
</pre>
<note><p>
From OTP R16 the <em>numeric version</em> represents the version of the OpenSSL
<em>header files</em> (<c>openssl/opensslv.h</c>) used when crypto was compiled.
The text variant represents the libcrypto library used at runtime.
In earlier OTP versions both numeric and text was taken from the library.
</p></note>
</desc>
</func>
<func>
<name name="mod_pow" arity="3" since="OTP R16B01"/>
<fsummary>Computes the function: N^P mod M</fsummary>
<desc>
<p>Computes the function <c>N^P mod M</c>.</p>
</desc>
</func>
<func>
<name name="next_iv" arity="2" since="OTP R16B01"/>
<name name="next_iv" arity="3" since="OTP R16B01"/>
<fsummary></fsummary>
<desc>
<p>Returns the initialization vector to be used in the next
iteration of encrypt/decrypt of type <c>Type</c>. <c>Data</c> is the
encrypted data from the previous iteration step. The <c>IVec</c>
argument is only needed for <c>des_cfb</c> as the vector used
in the previous iteration step.</p>
</desc>
</func>
<func>
<name name="poly1305" arity="2" since="OTP 21.1"/>
<fsummary></fsummary>
<desc>
<p>Computes a POLY1305 message authentication code (<c>Mac</c>) from <c>Data</c> using
<c>Key</c> as the authentication key.</p>
</desc>
</func>
<func>
<name name="private_decrypt" arity="4" since="OTP R16B01"/>
<fsummary>Decrypts CipherText using the private Key.</fsummary>
<desc>
<p>Decrypts the <c>CipherText</c>, encrypted with
<seealso marker="#public_encrypt-4">public_encrypt/4</seealso> (or equivalent function)
using the <c>PrivateKey</c>, and returns the
plaintext (message digest). This is a low level signature verification operation
used for instance by older versions of the SSL protocol.
See also <seealso marker="public_key:public_key#decrypt_private-2">public_key:decrypt_private/[2,3]</seealso>
</p>
</desc>
</func>
<func>
<name name="private_encrypt" arity="4" since="OTP R16B01"/>
<fsummary>Encrypts PlainText using the private Key.</fsummary>
<desc>
<p>Encrypts the <c>PlainText</c> using the <c>PrivateKey</c>
and returns the ciphertext. This is a low level signature operation
used for instance by older versions of the SSL protocol. See
also <seealso
marker="public_key:public_key#encrypt_private-2">public_key:encrypt_private/[2,3]</seealso>
</p>
</desc>
</func>
<func>
<name name="public_decrypt" arity="4" since="OTP R16B01"/>
<fsummary>Decrypts CipherText using the public Key.</fsummary>
<desc>
<p>Decrypts the <c>CipherText</c>, encrypted with
<seealso marker="#private_encrypt-4">private_encrypt/4</seealso>(or equivalent function)
using the <c>PrivateKey</c>, and returns the
plaintext (message digest). This is a low level signature verification operation
used for instance by older versions of the SSL protocol.
See also <seealso marker="public_key:public_key#decrypt_public-2">public_key:decrypt_public/[2,3]</seealso>
</p>
</desc>
</func>
<func>
<name name="public_encrypt" arity="4" since="OTP R16B01"/>
<fsummary>Encrypts PlainText using the public Key.</fsummary>
<desc>
<p>Encrypts the <c>PlainText</c> (message digest) using the <c>PublicKey</c>
and returns the <c>CipherText</c>. This is a low level signature operation
used for instance by older versions of the SSL protocol. See also <seealso
marker="public_key:public_key#encrypt_public-2">public_key:encrypt_public/[2,3]</seealso>
</p>
</desc>
</func>
<func>
<name name="rand_seed" arity="1" since="OTP 17.0"/>
<fsummary>Set the seed for random bytes generation</fsummary>
<desc>
<p>Set the seed for PRNG to the given binary. This calls the
RAND_seed function from openssl. Only use this if the system
you are running on does not have enough "randomness" built in.
Normally this is when
<seealso marker="#strong_rand_bytes/1">strong_rand_bytes/1</seealso>
raises <c>error:low_entropy</c></p>
</desc>
</func>
<func>
<name since="">rand_uniform(Lo, Hi) -> N</name>
<fsummary>Generate a random number</fsummary>
<type>
<v>Lo, Hi, N = integer()</v>
</type>
<desc>
<p>Generate a random number <c><![CDATA[N, Lo =< N < Hi.]]></c> Uses the
<c>crypto</c> library pseudo-random number generator.
<c>Hi</c> must be larger than <c>Lo</c>.</p>
</desc>
</func>
<func>
<name name="start" arity="0" since=""/>
<fsummary> Equivalent to application:start(crypto). </fsummary>
<desc>
<p> Equivalent to application:start(crypto).</p>
</desc>
</func>
<func>
<name name="stop" arity="0" since=""/>
<fsummary> Equivalent to application:stop(crypto).</fsummary>
<desc>
<p> Equivalent to application:stop(crypto).</p>
</desc>
</func>
<func>
<name name="strong_rand_bytes" arity="1" since="OTP R14B03"/>
<fsummary>Generate a binary of random bytes</fsummary>
<desc>
<p>Generates N bytes randomly uniform 0..255, and returns the
result in a binary. Uses a cryptographically secure prng seeded and
periodically mixed with operating system provided entropy. By default
this is the <c>RAND_bytes</c> method from OpenSSL.</p>
<p>May raise exception <c>error:low_entropy</c> in case the random generator
failed due to lack of secure "randomness".</p>
</desc>
</func>
<func>
<name name="rand_seed" arity="0" since="OTP 20.0"/>
<fsummary>Strong random number generation plugin state</fsummary>
<desc>
<p>
Creates state object for
<seealso marker="stdlib:rand">random number generation</seealso>,
in order to generate cryptographically strong random numbers
(based on OpenSSL's <c>BN_rand_range</c>),
and saves it in the process dictionary before returning it as well.
See also
<seealso marker="stdlib:rand#seed-1">rand:seed/1</seealso> and
<seealso marker="#rand_seed_s-0">rand_seed_s/0</seealso>.
</p>
<p>
When using the state object from this function the
<seealso marker="stdlib:rand">rand</seealso> functions using it
may raise exception <c>error:low_entropy</c> in case the random generator
failed due to lack of secure "randomness".
</p>
<p><em>Example</em></p>
<pre>
_ = crypto:rand_seed(),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[</pre>
</desc>
</func>
<func>
<name name="rand_seed_s" arity="0" since="OTP 20.0"/>
<fsummary>Strong random number generation plugin state</fsummary>
<desc>
<p>
Creates state object for
<seealso marker="stdlib:rand">random number generation</seealso>,
in order to generate cryptographically strongly random numbers
(based on OpenSSL's <c>BN_rand_range</c>).
See also
<seealso marker="stdlib:rand#seed_s-1">rand:seed_s/1</seealso>.
</p>
<p>
When using the state object from this function the
<seealso marker="stdlib:rand">rand</seealso> functions using it
may raise exception <c>error:low_entropy</c> in case the random generator
failed due to lack of secure "randomness".
</p>
<note>
<p>
The state returned from this function cannot be used
to get a reproducable random sequence as from
the other
<seealso marker="stdlib:rand">rand</seealso>
functions,
since reproducability does not match cryptographically safe.
</p>
<p>
The only supported usage is to generate one distinct
random sequence from this start state.
</p>
</note>
</desc>
</func>
<func>
<name since="OTP 21.0">rand_seed_alg(Alg) -> rand:state()</name>
<fsummary>Strong random number generation plugin state</fsummary>
<type>
<v>Alg = crypto | crypto_cache</v>
</type>
<desc>
<marker id="rand_seed_alg-1" />
<p>
Creates state object for
<seealso marker="stdlib:rand">random number generation</seealso>,
in order to generate cryptographically strong random numbers,
and saves it in the process dictionary before returning it as well.
See also
<seealso marker="stdlib:rand#seed-1">rand:seed/1</seealso> and
<seealso marker="#rand_seed_alg_s-1">rand_seed_alg_s/1</seealso>.
</p>
<p>
When using the state object from this function the
<seealso marker="stdlib:rand">rand</seealso> functions using it
may raise exception <c>error:low_entropy</c> in case the random generator
failed due to lack of secure "randomness".
</p>
<p><em>Example</em></p>
<pre>
_ = crypto:rand_seed_alg(crypto_cache),
_IntegerValue = rand:uniform(42), % [1; 42]
_FloatValue = rand:uniform(). % [0.0; 1.0[</pre>
</desc>
</func>
<func>
<name since="OTP-22.0">rand_seed_alg(Alg, Seed) -> rand:state()</name>
<fsummary>Strong random number generation plugin state</fsummary>
<type>
<v>Alg = crypto_aes</v>
</type>
<desc>
<marker id="rand_seed_alg-2" />
<p>
Creates a state object for
<seealso marker="stdlib:rand">random number generation</seealso>,
in order to generate cryptographically unpredictable random numbers,
and saves it in the process dictionary before returning it as well.
See also
<seealso marker="#rand_seed_alg_s-2">rand_seed_alg_s/2</seealso>.
</p>
<p><em>Example</em></p>
<pre>
_ = crypto:rand_seed_alg(crypto_aes, "my seed"),
IntegerValue = rand:uniform(42), % [1; 42]
FloatValue = rand:uniform(), % [0.0; 1.0[
_ = crypto:rand_seed_alg(crypto_aes, "my seed"),
IntegerValue = rand:uniform(42), % Same values
FloatValue = rand:uniform(). % again
</pre>
</desc>
</func>
<func>
<name since="OTP 21.0">rand_seed_alg_s(Alg) -> rand:state()</name>
<fsummary>Strong random number generation plugin state</fsummary>
<type>
<v>Alg = crypto | crypto_cache</v>
</type>
<desc>
<marker id="rand_seed_alg_s-1" />
<p>
Creates state object for
<seealso marker="stdlib:rand">random number generation</seealso>,
in order to generate cryptographically strongly random numbers.
See also
<seealso marker="stdlib:rand#seed_s-1">rand:seed_s/1</seealso>.
</p>
<p>
If <c>Alg</c> is <c>crypto</c> this function behaves exactly like
<seealso marker="#rand_seed_s-0">rand_seed_s/0</seealso>.
</p>
<p>
If <c>Alg</c> is <c>crypto_cache</c> this function
fetches random data with OpenSSL's <c>RAND_bytes</c>
and caches it for speed using an internal word size
of 56 bits that makes calculations fast on 64 bit machines.
</p>
<p>
When using the state object from this function the
<seealso marker="stdlib:rand">rand</seealso> functions using it
may raise exception <c>error:low_entropy</c> in case the random generator
failed due to lack of secure "randomness".
</p>
<p>
The cache size can be changed from its default value using the
<seealso marker="crypto_app">
crypto app's
</seealso> configuration parameter <c>rand_cache_size</c>.
</p>
<p>
When using the state object from this function the
<seealso marker="stdlib:rand">rand</seealso> functions using it
may throw exception <c>low_entropy</c> in case the random generator
failed due to lack of secure "randomness".
</p>
<note>
<p>
The state returned from this function cannot be used
to get a reproducable random sequence as from
the other
<seealso marker="stdlib:rand">rand</seealso>
functions,
since reproducability does not match cryptographically safe.
</p>
<p>
In fact since random data is cached some numbers may
get reproduced if you try, but this is unpredictable.
</p>
<p>
The only supported usage is to generate one distinct
random sequence from this start state.
</p>
</note>
</desc>
</func>
<func>
<name since="OTP 22.0">rand_seed_alg_s(Alg, Seed) -> rand:state()</name>
<fsummary>Strong random number generation plugin state</fsummary>
<type>
<v>Alg = crypto_aes</v>
</type>
<desc>
<marker id="rand_seed_alg_s-2" />
<p>
Creates a state object for
<seealso marker="stdlib:rand">random number generation</seealso>,
in order to generate cryptographically unpredictable random numbers.
See also
<seealso marker="#rand_seed_alg-1">rand_seed_alg/1</seealso>.
</p>
<p>
To get a long period the Xoroshiro928 generator from the
<seealso marker="stdlib:rand">rand</seealso>
module is used as a counter (with period 2^928 - 1)
and the generator states are scrambled through AES
to create 58-bit pseudo random values.
</p>
<p>
The result should be statistically completely unpredictable
random values, since the scrambling is cryptographically strong
and the period is ridiculously long. But the generated numbers
are not to be regarded as cryptographically strong since
there is no re-keying schedule.
</p>
<list type="bulleted">
<item>
<p>
If you need cryptographically strong random numbers use
<seealso marker="#rand_seed_alg_s-1">rand_seed_alg_s/1</seealso>
with <c>Alg =:= crypto</c> or <c>Alg =:= crypto_cache</c>.
</p>
</item>
<item>
<p>
If you need to be able to repeat the sequence use this function.
</p>
</item>
<item>
<p>
If you do not need the statistical quality of this function,
there are faster algorithms in the
<seealso marker="stdlib:rand">rand</seealso>
module.
</p>
</item>
</list>
<p>
Thanks to the used generator the state object supports the
<seealso marker="stdlib:rand#jump-0"><c>rand:jump/0,1</c></seealso>
function with distance 2^512.
</p>
<p>
Numbers are generated in batches and cached for speed reasons.
The cache size can be changed from its default value using the
<seealso marker="crypto_app">
crypto app's
</seealso> configuration parameter <c>rand_cache_size</c>.
</p>
</desc>
</func>
<func>
<name name="stream_init" arity="2" since="OTP R16B01"/>
<fsummary></fsummary>
<desc>
<p>Initializes the state for use in RC4 stream encryption
<seealso marker="#stream_encrypt-2">stream_encrypt</seealso> and
<seealso marker="#stream_decrypt-2">stream_decrypt</seealso></p>
<p>For keylengths see the
<seealso marker="crypto:algorithm_details#stream-ciphers">User's Guide</seealso>.
</p>
</desc>
</func>
<func>
<name name="stream_init" arity="3" since="OTP R16B01"/>
<fsummary></fsummary>
<desc>
<p>Initializes the state for use in streaming AES encryption using Counter mode (CTR).
<c>Key</c> is the AES key and must be either 128, 192, or 256 bits long. <c>IVec</c> is
an arbitrary initializing vector of 128 bits (16 bytes). This state is for use with
<seealso marker="#stream_encrypt-2">stream_encrypt</seealso> and
<seealso marker="#stream_decrypt-2">stream_decrypt</seealso>.</p>
<p>For keylengths and iv-sizes see the
<seealso marker="crypto:algorithm_details#stream-ciphers">User's Guide</seealso>.
</p>
</desc>
</func>
<func>
<name name="stream_encrypt" arity="2" since="OTP R16B01"/>
<fsummary></fsummary>
<desc>
<p>Encrypts <c>PlainText</c> according to the stream cipher <c>Type</c> specified in stream_init/3.
<c>Text</c> can be any number of bytes. The initial <c>State</c> is created using
<seealso marker="#stream_init-2">stream_init</seealso>.
<c>NewState</c> must be passed into the next call to <c>stream_encrypt</c>.</p>
</desc>
</func>
<func>
<name name="stream_decrypt" arity="2" since="OTP R16B01"/>
<fsummary></fsummary>
<desc>
<p>Decrypts <c>CipherText</c> according to the stream cipher <c>Type</c> specified in stream_init/3.
<c>PlainText</c> can be any number of bytes. The initial <c>State</c> is created using
<seealso marker="#stream_init-2">stream_init</seealso>.
<c>NewState</c> must be passed into the next call to <c>stream_decrypt</c>.</p>
</desc>
</func>
<func>
<name name="supports" arity="0" since="OTP R16B01"/>
<fsummary>Provide a list of available crypto algorithms.</fsummary>
<desc>
<p> Can be used to determine which crypto algorithms that are supported
by the underlying libcrypto library</p>
<p>Note: the <c>rsa_opts</c> entry is in an experimental state and may change or be removed without notice.
No guarantee for the accuarcy of the rsa option's value list should be assumed.
</p>
</desc>
</func>
<func>
<name name="ec_curves" arity="0" since="OTP 17.0"/>
<fsummary>Provide a list of available named elliptic curves.</fsummary>
<desc>
<p>Can be used to determine which named elliptic curves are supported.</p>
</desc>
</func>
<func>
<name name="ec_curve" arity="1" since="OTP 17.0"/>
<fsummary>Get the defining parameters of a elliptic curve.</fsummary>
<desc>
<p>Return the defining parameters of a elliptic curve.</p>
</desc>
</func>
<func>
<name name="sign" arity="4" since="OTP R16B01"/>
<name name="sign" arity="5" since="OTP 20.1"/>
<fsummary> Create digital signature.</fsummary>
<desc>
<p>Creates a digital signature.</p>
<p>The msg is either the binary "cleartext" data to be
signed or it is the hashed value of "cleartext" i.e. the
digest (plaintext).</p>
<p>Algorithm <c>dss</c> can only be used together with digest type
<c>sha</c>.</p>
<p>See also <seealso marker="public_key:public_key#sign-3">public_key:sign/3</seealso>.</p>
</desc>
</func>
<func>
<name name="verify" arity="5" since="OTP R16B01"/>
<name name="verify" arity="6" since="OTP 20.1"/>
<fsummary>Verifies a digital signature.</fsummary>
<desc>
<p>Verifies a digital signature</p>
<p>The msg is either the binary "cleartext" data to be
signed or it is the hashed value of "cleartext" i.e. the
digest (plaintext).</p>
<p>Algorithm <c>dss</c> can only be used together with digest type
<c>sha</c>.</p>
<p>See also <seealso marker="public_key:public_key#verify-4">public_key:verify/4</seealso>.</p>
</desc>
</func>
<!-- Engine functions -->
<func>
<name name="privkey_to_pubkey" arity="2" since="OTP 20.2"/>
<fsummary>Fetches a public key from an Engine stored private key.</fsummary>
<desc>
<p>Fetches the corresponding public key from a private key stored in an Engine.
The key must be of the type indicated by the Type parameter.
</p>
</desc>
</func>
<func>
<name name="engine_get_all_methods" arity="0" since="OTP 20.2"/>
<fsummary>Return list of all possible engine methods</fsummary>
<desc>
<p>
Returns a list of all possible engine methods.
</p>
<p>
May raise exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
</desc>
</func>
<func>
<name name="engine_load" arity="3" since="OTP 20.2"/>
<fsummary>Dynamical load an encryption engine</fsummary>
<desc>
<p>
Loads the OpenSSL engine given by <c>EngineId</c> if it is available and then returns ok and
an engine handle. This function is the same as calling <c>engine_load/4</c> with
<c>EngineMethods</c> set to a list of all the possible methods. An error tuple is
returned if the engine can't be loaded.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
</desc>
</func>
<func>
<name name="engine_load" arity="4" since="OTP 20.2"/>
<fsummary>Dynamical load an encryption engine</fsummary>
<desc>
<p>
Loads the OpenSSL engine given by <c>EngineId</c> if it is available and then returns ok and
an engine handle. An error tuple is returned if the engine can't be loaded.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
</desc>
</func>
<func>
<name name="engine_unload" arity="1" since="OTP 20.2"/>
<fsummary>Dynamical load an encryption engine</fsummary>
<desc>
<p>
Unloads the OpenSSL engine given by <c>Engine</c>.
An error tuple is returned if the engine can't be unloaded.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameter is in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
</desc>
</func>
<func>
<name name="engine_by_id" arity="1" since="OTP 21.0.6"/>
<fsummary>Get a reference to an already loaded engine</fsummary>
<desc>
<p>
Get a reference to an already loaded engine with <c>EngineId</c>.
An error tuple is returned if the engine can't be unloaded.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameter is in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
</desc>
</func>
<func>
<name name="engine_ctrl_cmd_string" arity="3" since="OTP 20.2"/>
<fsummary>Sends ctrl commands to an OpenSSL engine</fsummary>
<desc>
<p>
Sends ctrl commands to the OpenSSL engine given by <c>Engine</c>.
This function is the same as calling <c>engine_ctrl_cmd_string/4</c> with
<c>Optional</c> set to <c>false</c>.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
</desc>
</func>
<func>
<name name="engine_ctrl_cmd_string" arity="4" since="OTP 20.2"/>
<fsummary>Sends ctrl commands to an OpenSSL engine</fsummary>
<desc>
<p>
Sends ctrl commands to the OpenSSL engine given by <c>Engine</c>.
<c>Optional</c> is a boolean argument that can relax the semantics of the function.
If set to <c>true</c> it will only return failure if the ENGINE supported the given
command name but failed while executing it, if the ENGINE doesn't support the command
name it will simply return success without doing anything. In this case we assume
the user is only supplying commands specific to the given ENGINE so we set this to
<c>false</c>.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
</desc>
</func>
<func>
<name name="engine_add" arity="1" since="OTP 21.0.6"/>
<fsummary>Add engine to OpenSSL internal list</fsummary>
<desc>
<p>Add the engine to OpenSSL's internal list.</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
</desc>
</func>
<func>
<name name="engine_remove" arity="1" since="OTP 21.0.6"/>
<fsummary>Remove engine to OpenSSL internal list</fsummary>
<desc>
<p>Remove the engine from OpenSSL's internal list.</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
</desc>
</func>
<func>
<name name="engine_get_id" arity="1" since="OTP 21.0.6"/>
<fsummary>Fetch engine ID</fsummary>
<desc>
<p>Return the ID for the engine, or an empty binary if there is no id set.</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
</desc>
</func>
<func>
<name name="engine_get_name" arity="1" since="OTP 21.0.6"/>
<fsummary>Fetch engine name</fsummary>
<desc>
<p>Return the name (eg a description) for the engine, or an empty binary if there is no name set.</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
</desc>
</func>
<func>
<name name="engine_list" arity="0" since="OTP 20.2"/>
<fsummary>List the known engine ids</fsummary>
<desc>
<p>List the id's of all engines in OpenSSL's internal list.</p>
<p>
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
<p>
May raise exception <c>error:notsup</c> in case engine functionality is not supported by the underlying
OpenSSL implementation.
</p>
</desc>
</func>
<func>
<name name="ensure_engine_loaded" arity="2" since="OTP 21.0.6"/>
<fsummary>Ensure encryption engine just loaded once</fsummary>
<desc>
<p>
Loads the OpenSSL engine given by <c>EngineId</c> and the path to the dynamic library
implementing the engine. This function is the same as calling <c>ensure_engine_loaded/3</c> with
<c>EngineMethods</c> set to a list of all the possible methods. An error tuple is
returned if the engine can't be loaded.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
</desc>
</func>
<func>
<name name="ensure_engine_loaded" arity="3" since="OTP 21.0.6"/>
<fsummary>Ensure encryption engine just loaded once</fsummary>
<desc>
<p>
Loads the OpenSSL engine given by <c>EngineId</c> and the path to the dynamic library
implementing the engine. This function differs from the normal engine_load in that sense it
also add the engine id to the internal list in OpenSSL. Then in the following calls to the function
it just fetch the reference to the engine instead of loading it again.
An error tuple is returned if the engine can't be loaded.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
</desc>
</func>
<func>
<name name="ensure_engine_unloaded" arity="1" since="OTP 21.0.6"/>
<fsummary>Unload an engine loaded with the ensure function</fsummary>
<desc>
<p>
Unloads an engine loaded with the <c>ensure_engine_loaded</c> function.
It both removes the label from the OpenSSL internal engine list and unloads the engine.
This function is the same as calling <c>ensure_engine_unloaded/2</c> with
<c>EngineMethods</c> set to a list of all the possible methods. An error tuple is
returned if the engine can't be unloaded.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
</desc>
</func>
<func>
<name name="ensure_engine_unloaded" arity="2" since="OTP 21.0.6"/>
<fsummary>Unload an engine loaded with the ensure function</fsummary>
<desc>
<p>
Unloads an engine loaded with the <c>ensure_engine_loaded</c> function.
It both removes the label from the OpenSSL internal engine list and unloads the engine.
An error tuple is returned if the engine can't be unloaded.
</p>
<p>
The function raises a <c>error:badarg</c> if the parameters are in wrong format.
It may also raise the exception <c>error:notsup</c> in case there is
no engine support in the underlying OpenSSL implementation.
</p>
<p>
See also the chapter <seealso marker="crypto:engine_load#engine_load">Engine Load</seealso>
in the User's Guide.
</p>
</desc>
</func>
</funcs>
</erlref>