<?xml version="1.0" encoding="latin1" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>1998</year><year>2009</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>int</title>
<prepared></prepared>
<docno></docno>
<date></date>
<rev></rev>
</header>
<module>int</module>
<modulesummary>Interpreter Interface</modulesummary>
<description>
<p>The Erlang interpreter provides mechanisms for breakpoints and
stepwise execution of code. It is mainly intended to be used by
the <em>Debugger</em>, see Debugger User's Guide and
<c>debugger(3)</c>.</p>
<p>From the shell, it is possible to:</p>
<list>
<item>Specify which modules should be interpreted.</item>
<item>Specify breakpoints.</item>
<item>Monitor the current status of all processes executing code
in interpreted modules, also processes at other Erlang nodes.
</item>
</list>
<p>By <em>attaching to</em> a process executing interpreted code, it
is possible to examine variable bindings and order stepwise
execution. This is done by sending and receiving information
to/from the process via a third process, called the meta process.
It is possible to implement your own attached process. See
<c>int.erl</c> for available functions and <c>dbg_ui_trace.erl</c>
for possible messages.</p>
<p>The interpreter depends on the Kernel, STDLIB and GS
applications, which means modules belonging to any of these
applications are not allowed to be interpreted as it could lead
to a deadlock or emulator crash. This also applies to modules
belonging to the Debugger application itself.</p>
</description>
<section>
<title>Breakpoints</title>
<p>Breakpoints are specified on a line basis. When a process
executing code in an interpreted module reaches a breakpoint, it
will stop. This means that that a breakpoint must be set at an
executable line, that is, a line of code containing an executable
expression.</p>
<p>A breakpoint have a status, a trigger action and may have a
condition associated with it. The status is either <em>active</em>
or <em>inactive</em>. An inactive breakpoint is ignored. When a
breakpoint is reached, the trigger action specifies if
the breakpoint should continue to be active (<em>enable</em>), if
it should become inactive (<em>disable</em>), or if it should be
removed (<em>delete</em>). A condition is a tuple
<c>{Module,Name}</c>. When the breakpoint is reached,
<c>Module:Name(Bindings)</c> is called. If this evaluates to
<c>true</c>, execution will stop. If this evaluates to
<c>false</c>, the breakpoint is ignored. <c>Bindings</c> contains
the current variable bindings, use <c>get_binding</c> to retrieve
the value for a given variable.</p>
<p>By default, a breakpoint is active, has trigger action
<c>enable</c> and has no condition associated with it. For more
detailed information about breakpoints, refer to Debugger User's
Guide.</p>
</section>
<funcs>
<func>
<name>i(AbsModule) -> {module,Module} | error</name>
<name>i(AbsModules) -> ok</name>
<name>ni(AbsModule) -> {module,Module} | error</name>
<name>ni(AbsModules) -> ok</name>
<fsummary>Interpret a module</fsummary>
<type>
<v>AbsModules = [AbsModule]</v>
<v>AbsModule = Module | File | [Module | File]</v>
<v> Module = atom()</v>
<v> File = string()</v>
</type>
<desc>
<p>Interprets the specified module(s). <c>i/1</c> interprets
the module only at the current node. <c>ni/1</c> interprets
the module at all known nodes.</p>
<p>A module may be given by its module name (atom) or by its
file name. If given by its module name, the object code
<c>Module.beam</c> is searched for in the current path.
The source code <c>Module.erl</c> is searched for first in
the same directory as the object code, then in a <c>src</c>
directory next to it.</p>
<p>If given by its file name, the file name may include a path
and the <c>.erl</c> extension may be omitted. The object code
<c>Module.beam</c> is searched for first in the same directory
as the source code, then in an <c>ebin</c> directory next to
it, and then in the current path.</p>
<note>
<p>The interpreter needs both the source code and the object
code, and the object code <em>must</em> include debug
information. That is, only modules compiled with the option
<c>debug_info</c> set can be interpreted.</p>
</note>
<p>The functions returns <c>{module,Module}</c> if the module
was interpreted, or <c>error</c> if it was not.</p>
<p>The argument may also be a list of modules/file names, in
which case the function tries to interpret each module as
specified above. The function then always returns <c>ok</c>,
but prints some information to stdout if a module could not be
interpreted.</p>
</desc>
</func>
<func>
<name>n(AbsModule) -> ok</name>
<name>nn(AbsModule) -> ok</name>
<fsummary>Stop interpreting a module</fsummary>
<type>
<v>AbsModule = Module | File | [Module | File]</v>
<v> Module = atom()</v>
<v> File = string()</v>
</type>
<desc>
<p>Stops interpreting the specified module. <c>n/1</c> stops
interpreting the module only at the current node. <c>nn/1</c>
stops interpreting the module at all known nodes.</p>
<p>As for <c>i/1</c> and <c>ni/1</c>, a module may be given by
either its module name or its file name.</p>
</desc>
</func>
<func>
<name>interpreted() -> [Module]</name>
<fsummary>Get all interpreted modules</fsummary>
<type>
<v>Module = atom()</v>
</type>
<desc>
<p>Returns a list with all interpreted modules.</p>
</desc>
</func>
<func>
<name>file(Module) -> File | {error,not_loaded}</name>
<fsummary>Get the file name for an interpreted module</fsummary>
<type>
<v>Module = atom()</v>
<v>File = string()</v>
</type>
<desc>
<p>Returns the source code file name <c>File</c> for an
interpreted module <c>Module</c>.</p>
</desc>
</func>
<func>
<name>interpretable(AbsModule) -> true | {error,Reason}</name>
<fsummary>Check if a module is possible to interpret</fsummary>
<type>
<v>AbsModule = Module | File</v>
<v> Module = atom()</v>
<v> File = string()</v>
<v>Reason = no_src | no_beam | no_debug_info | badarg
| {app,App}</v>
<v> App = atom()</v>
</type>
<desc>
<p>Checks if a module is possible to interpret. The module can
be given by its module name <c>Module</c> or its source file
name <c>File</c>. If given by a module name, the module is
searched for in the code path.</p>
<p>The function returns <c>true</c> if both source code and
object code for the module is found, the module has been
compiled with the option <c>debug_info</c> set and does not
belong to any of the applications Kernel, STDLIB, GS or
Debugger itself.</p>
<p>The function returns <c>{error,Reason}</c> if the module for
some reason is not possible to interpret.</p>
<p><c>Reason</c> is <c>no_src</c> if no source code is found or
<c>no_beam</c> if no object code is found. It is assumed that
the source- and object code are located either in the same
directory, or in <c>src</c> and <c>ebin</c> directories next
to each other.</p>
<p><c>Reason</c> is <c>no_debug_info</c> if the module has not
been compiled with the option <c>debug_info</c> set.</p>
<p><c>Reason</c> is <c>badarg</c> if <c>AbsModule</c> is not
found. This could be because the specified file does not
exist, or because <c>code:which/1</c> does not return a
beam file name, which is the case not only for non-existing
modules but also for modules which are preloaded or cover
compiled.</p>
<p><c>Reason</c> is <c>{app,App}</c> where <c>App</c> is
<c>kernel</c>, <c>stdlib</c>, <c>gs</c> or <c>debugger</c> if
<c>AbsModule</c> belongs to one of these applications.</p>
<p>Note that the function can return <c>true</c> for a module
which in fact is not interpretable in the case where
the module is marked as sticky or resides in a directory
marked as sticky, as this is not discovered until
the interpreter actually tries to load the module.</p>
</desc>
</func>
<func>
<name>auto_attach() -> false | {Flags,Function}</name>
<name>auto_attach(false)</name>
<name>auto_attach(Flags, Function)</name>
<fsummary>Get/set when and how to attach to a process</fsummary>
<type>
<v>Flags = [init | break | exit]</v>
<v>Function = {Module,Name,Args}</v>
<v> Module = Name = atom()</v>
<v> Args = [term()]</v>
</type>
<desc>
<p>Gets and sets when and how to automatically attach to a
process executing code in interpreted modules. <c>false</c>
means never automatically attach, this is the default.
Otherwise automatic attach is defined by a list of flags and
a function. The following flags may be specified:</p>
<list>
<item><c>init</c> - attach when a process for the very first
time calls an interpreted function.</item>
<item><c>break</c> - attach whenever a process reaches a
breakpoint.</item>
<item><c>exit</c> - attach when a process terminates.</item>
</list>
<p>When the specified event occurs, the function <c>Function</c>
will be called as:</p>
<pre>
spawn(Module, Name, [Pid | Args])
</pre>
<p><c>Pid</c> is the pid of the process executing interpreted
code.</p>
</desc>
</func>
<func>
<name>stack_trace() -> Flag</name>
<name>stack_trace(Flag)</name>
<fsummary>Get/set if and how to save call frames</fsummary>
<type>
<v>Flag = all | no_tail | false</v>
</type>
<desc>
<p>Gets and sets how to save call frames in the stack. Saving
call frames makes it possible to inspect the call chain of a
process, and is also used to emulate the stack trace if an
error (an exception of class error) occurs.</p>
<list>
<item><c>all</c> - save information about all current calls,
that is, function calls that have not yet returned a value.
This is the default.</item>
<item><c>no_tail</c> - save information about current calls,
but discard previous information when a tail recursive call
is made. This option consumes less memory and may be
necessary to use for processes with long lifetimes and many
tail recursive calls.</item>
<item><c>false</c> - do not save any information about current
calls.</item>
</list>
</desc>
</func>
<func>
<name>break(Module, Line) -> ok | {error,break_exists}</name>
<fsummary>Create a breakpoint</fsummary>
<type>
<v>Module = atom()</v>
<v>Line = int()</v>
</type>
<desc>
<p>Creates a breakpoint at <c>Line</c> in <c>Module</c>.</p>
</desc>
</func>
<func>
<name>delete_break(Module, Line) -> ok</name>
<fsummary>Delete a breakpoint</fsummary>
<type>
<v>Module = atom()</v>
<v>Line = int()</v>
</type>
<desc>
<p>Deletes the breakpoint located at <c>Line</c> in
<c>Module</c>.</p>
</desc>
</func>
<func>
<name>break_in(Module, Name, Arity) -> ok
| {error,function_not_found}</name>
<fsummary>Create breakpoints in the specified function</fsummary>
<type>
<v>Module = Name = atom()</v>
<v>Arity = int()</v>
</type>
<desc>
<p>Creates a breakpoint at the first line of every clause of
the <c>Module:Name/Arity</c> function.</p>
</desc>
</func>
<func>
<name>del_break_in(Module, Name, Arity) -> ok
| {error,function_not_found}</name>
<fsummary>Delete breakpoints from the specified function
</fsummary>
<type>
<v>Module = Name = atom()</v>
<v>Arity = int()</v>
</type>
<desc>
<p>Deletes the breakpoints at the first line of every clause of
the <c>Module:Name/Arity</c> function.
</p>
</desc>
</func>
<func>
<name>no_break() -> ok</name>
<name>no_break(Module) -> ok</name>
<fsummary>Delete all breakpoints</fsummary>
<desc>
<p>Deletes all breakpoints, or all breakpoints in <c>Module</c>.
</p>
</desc>
</func>
<func>
<name>disable_break(Module, Line) -> ok</name>
<fsummary>Make a breakpoint inactive</fsummary>
<type>
<v>Module = atom()</v>
<v>Line = int()</v>
</type>
<desc>
<p>Makes the breakpoint at <c>Line</c> in <c>Module</c>
inactive.</p>
</desc>
</func>
<func>
<name>enable_break(Module, Line) -> ok</name>
<fsummary>Make a breakpoint active</fsummary>
<type>
<v>Module = atom()</v>
<v>Line = int()</v>
</type>
<desc>
<p>Makes the breakpoint at <c>Line</c> in <c>Module</c> active.
</p>
</desc>
</func>
<func>
<name>action_at_break(Module, Line, Action) -> ok</name>
<fsummary>Set the trigger action of a breakpoint</fsummary>
<type>
<v>Module = atom()</v>
<v>Line = int()</v>
<v>Action = enable | disable | delete</v>
</type>
<desc>
<p>Sets the trigger action of the breakpoint at <c>Line</c> in
<c>Module</c> to <c>Action</c>.</p>
</desc>
</func>
<func>
<name>test_at_break(Module, Line, Function) -> ok</name>
<fsummary>Set the conditional test of a breakpoint</fsummary>
<type>
<v>Module = atom()</v>
<v>Line = int()</v>
<v>Function = {Module,Name}</v>
<v> Name = atom()</v>
</type>
<desc>
<p>Sets the conditional test of the breakpoint at <c>Line</c> in
<c>Module</c> to <c>Function</c>. The function must
fulfill the requirements specified in the section
<em>Breakpoints</em> above.</p>
</desc>
</func>
<func>
<name>get_binding(Var, Bindings) -> {value,Value} | unbound</name>
<fsummary>Retrieve a variable binding</fsummary>
<type>
<v>Var = atom()</v>
<v>Bindings = term()</v>
<v>Value = term()</v>
</type>
<desc>
<p>Retrieves the binding of <c>Var</c>. This function is
intended to be used by the conditional function of a
breakpoint.</p>
</desc>
</func>
<func>
<name>all_breaks() -> [Break]</name>
<name>all_breaks(Module) -> [Break]</name>
<fsummary>Get all breakpoints</fsummary>
<type>
<v>Break = {Point,Options}</v>
<v> Point = {Module,Line}</v>
<v> Module = atom()</v>
<v> Line = int()</v>
<v> Options = [Status,Trigger,null,Cond|]</v>
<v> Status = active | inactive</v>
<v> Trigger = enable | disable | delete</v>
<v> Cond = null | Function</v>
<v> Function = {Module,Name}</v>
<v> Name = atom()</v>
</type>
<desc>
<p>Gets all breakpoints, or all breakpoints in <c>Module</c>.
</p>
</desc>
</func>
<func>
<name>snapshot() -> [Snapshot]</name>
<fsummary>Get information about all processes executing interpreted
code</fsummary>
<type>
<v>Snapshot = {Pid, Function, Status, Info}</v>
<v> Pid = pid()</v>
<v> Function = {Module,Name,Args}</v>
<v> Module = Name = atom()</v>
<v> Args = [term()]</v>
<v> Status = idle | running | waiting | break | exit
| no_conn</v>
<v> Info = {} | {Module,Line} | ExitReason</v>
<v> Line = int()</v>
<v> ExitReason = term()</v>
</type>
<desc>
<p>Gets information about all processes executing interpreted code.
</p>
<list>
<item><c>Pid</c> - process identifier.</item>
<item><c>Function</c> - first interpreted function called by
the process.</item>
<item><c>Status</c> - current status of the process.</item>
<item><c>Info</c> - additional information.</item>
</list>
<p><c>Status</c> is one of:</p>
<list>
<item><c>idle</c> - the process is no longer executing
interpreted code. <c>Info={}</c>.</item>
<item><c>running</c> - the process is running. <c>Info={}</c>.
</item>
<item><c>waiting</c> - the process is waiting at a
<c>receive</c>. <c>Info={}</c>.</item>
<item><c>break</c> - process execution has been stopped,
normally at a breakpoint. <c>Info={Module,Line}</c>.</item>
<item><c>exit</c> - the process has terminated.
<c>Info=ExitReason</c>.</item>
<item><c>no_conn</c> - the connection is down to the node
where the process is running. <c>Info={}</c>.</item>
</list>
</desc>
</func>
<func>
<name>clear() -> ok</name>
<fsummary>Clear information about processes executing interpreted
code</fsummary>
<desc>
<p>Clears information about processes executing interpreted code
by removing all information about terminated processes.</p>
</desc>
</func>
<func>
<name>continue(Pid) -> ok | {error,not_interpreted}</name>
<name>continue(X,Y,Z) -> ok | {error,not_interpreted}</name>
<fsummary>Resume process execution</fsummary>
<type>
<v>Pid = pid()</v>
<v>X = Y = Z = int()</v>
</type>
<desc>
<p>Resume process execution for <c>Pid</c>, or for
<c>c:pid(X,Y,Z)</c>.</p>
</desc>
</func>
</funcs>
</erlref>