%% -*- erlang-indent-level: 2 -*-
%%--------------------------------------------------------------------
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2006-2012. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%%-------------------------------------------------------------------
%%% File : dialyzer_dataflow.erl
%%% Author : Tobias Lindahl <[email protected]>
%%% Description :
%%%
%%% Created : 19 Apr 2005 by Tobias Lindahl <[email protected]>
%%%-------------------------------------------------------------------
-module(dialyzer_dataflow).
-export([get_fun_types/4, get_warnings/5, format_args/3]).
%% Data structure interfaces.
-export([state__add_warning/2, state__cleanup/1,
state__get_callgraph/1, state__get_races/1,
state__get_records/1, state__put_callgraph/2,
state__put_races/2, state__records_only/1]).
%% Debug and test interfaces.
-export([get_top_level_signatures/2, pp/1]).
-export_type([state/0]).
-include("dialyzer.hrl").
-import(erl_types,
[any_none/1, t_any/0, t_atom/0, t_atom/1, t_atom_vals/1,
t_binary/0, t_boolean/0,
t_bitstr/0, t_bitstr/2, t_bitstr_concat/1, t_bitstr_match/2,
t_cons/0, t_cons/2, t_cons_hd/1, t_cons_tl/1, t_contains_opaque/1,
t_find_opaque_mismatch/2, t_float/0, t_from_range/2, t_from_term/1,
t_fun/0, t_fun/2, t_fun_args/1, t_fun_range/1,
t_inf/2, t_inf/3, t_inf_lists/2, t_inf_lists/3, t_inf_lists_masked/3,
t_integer/0, t_integers/1,
t_is_any/1, t_is_atom/1, t_is_atom/2, t_is_boolean/1, t_is_equal/2,
t_is_integer/1, t_is_nil/1, t_is_none/1, t_is_none_or_unit/1,
t_is_number/1, t_is_reference/1, t_is_pid/1, t_is_port/1,
t_is_subtype/2, t_is_unit/1,
t_limit/2, t_list/0, t_maybe_improper_list/0, t_module/0,
t_none/0, t_non_neg_integer/0, t_number/0, t_number_vals/1,
t_opaque_match_atom/2, t_opaque_match_record/2,
t_opaque_matching_structure/2,
t_pid/0, t_port/0, t_product/1, t_reference/0,
t_sup/1, t_sup/2, t_subtract/2, t_to_string/2, t_to_tlist/1,
t_tuple/0, t_tuple/1, t_tuple_args/1, t_tuple_subtypes/1,
t_unit/0, t_unopaque/1]).
%%-define(DEBUG, true).
%%-define(DEBUG_PP, true).
%%-define(DOT, true).
-ifdef(DEBUG).
-import(erl_types, [t_to_string/1]).
-define(debug(S_, L_), io:format(S_, L_)).
-else.
-define(debug(S_, L_), ok).
-endif.
%%--------------------------------------------------------------------
-define(no_arg, no_arg).
-define(TYPE_LIMIT, 3).
-record(state, {callgraph :: dialyzer_callgraph:callgraph(),
envs :: dict(),
fun_tab :: dict(),
plt :: dialyzer_plt:plt(),
opaques :: [erl_types:erl_type()],
races = dialyzer_races:new() :: dialyzer_races:races(),
records = dict:new() :: dict(),
tree_map :: dict(),
warning_mode = false :: boolean(),
warnings = [] :: [dial_warning()],
work :: {[_], [_], set()},
module :: module(),
behaviour_api_dict = [] ::
dialyzer_behaviours:behaviour_api_dict()}).
-record(map, {dict = dict:new() :: dict(),
subst = dict:new() :: dict(),
modified = [] :: [Key :: term()],
modified_stack = [] :: [{[Key :: term()],reference()}],
ref = undefined :: reference() | undefined}).
%% Exported Types
-opaque state() :: #state{}.
%%--------------------------------------------------------------------
-spec get_warnings(cerl:c_module(), dialyzer_plt:plt(),
dialyzer_callgraph:callgraph(), dict(), set()) ->
{[dial_warning()], dict()}.
get_warnings(Tree, Plt, Callgraph, Records, NoWarnUnused) ->
State1 = analyze_module(Tree, Plt, Callgraph, Records, true),
State2 = find_mismatched_record_patterns(Tree, State1),
State3 =
state__renew_warnings(state__get_warnings(State2, NoWarnUnused), State2),
State4 = state__get_race_warnings(State3),
{State4#state.warnings, state__all_fun_types(State4)}.
-spec get_fun_types(cerl:c_module(), dialyzer_plt:plt(),
dialyzer_callgraph:callgraph(), dict()) ->
{dict(), dialyzer_callgraph:callgraph()}.
get_fun_types(Tree, Plt, Callgraph, Records) ->
State = analyze_module(Tree, Plt, Callgraph, Records, false),
{state__all_fun_types(State), State#state.callgraph}.
%%--------------------------------------------------------------------
-spec pp(file:filename()) -> 'ok'.
pp(File) ->
{ok, Code} = dialyzer_utils:get_core_from_src(File, [no_copt]),
Plt = get_def_plt(),
AnnTree = annotate_module(Code, Plt),
io:put_chars(cerl_prettypr:format(AnnTree, [{hook, cerl_typean:pp_hook()}])),
io:nl().
%%--------------------------------------------------------------------
%% This is used in the testsuite.
-spec get_top_level_signatures(cerl:c_module(), dict()) ->
[{{atom(), arity()}, erl_types:erl_type()}].
get_top_level_signatures(Code, Records) ->
{Tree, _} = cerl_trees:label(cerl:from_records(Code)),
Callgraph0 = dialyzer_callgraph:new(),
Callgraph1 = dialyzer_callgraph:scan_core_tree(Tree, Callgraph0),
{Callgraph2, _} = dialyzer_callgraph:remove_external(Callgraph1),
Callgraph = dialyzer_callgraph:finalize(Callgraph2),
to_dot(Callgraph),
Plt = get_def_plt(),
FunTypes = get_fun_types(Tree, Plt, Callgraph, Records),
FunTypes1 = lists:foldl(fun({V, F}, Acc) ->
Label = get_label(F),
case dict:find(Label, Acc) of
error ->
Arity = cerl:fname_arity(V),
Type = t_fun(lists:duplicate(Arity,
t_none()),
t_none()),
dict:store(Label, Type, Acc);
{ok, _} -> Acc
end
end, FunTypes, cerl:module_defs(Tree)),
dialyzer_callgraph:delete(Callgraph),
Sigs = [{{cerl:fname_id(V), cerl:fname_arity(V)},
dict:fetch(get_label(F), FunTypes1)}
|| {V, F} <- cerl:module_defs(Tree)],
ordsets:from_list(Sigs).
get_def_plt() ->
try
dialyzer_plt:from_file(dialyzer_plt:get_default_plt())
catch
throw:{dialyzer_error, _} -> dialyzer_plt:new()
end.
%%% ===========================================================================
%%%
%%% Annotate all top level funs.
%%%
%%% ===========================================================================
annotate_module(Code, Plt) ->
{Tree, _} = cerl_trees:label(cerl:from_records(Code)),
Callgraph0 = dialyzer_callgraph:new(),
Callgraph1 = dialyzer_callgraph:scan_core_tree(Tree, Callgraph0),
{Callgraph2, _} = dialyzer_callgraph:remove_external(Callgraph1),
Callgraph = dialyzer_callgraph:finalize(Callgraph2),
State = analyze_module(Tree, Plt, Callgraph),
Res = annotate(Tree, State),
dialyzer_callgraph:delete(Callgraph),
Res.
annotate(Tree, State) ->
case cerl:subtrees(Tree) of
[] -> set_type(Tree, State);
List ->
NewSubTrees = [[annotate(Subtree, State) || Subtree <- Group]
|| Group <- List],
NewTree = cerl:update_tree(Tree, NewSubTrees),
set_type(NewTree, State)
end.
set_type(Tree, State) ->
case cerl:type(Tree) of
'fun' ->
Type = state__fun_type(Tree, State),
case t_is_any(Type) of
true ->
cerl:set_ann(Tree, delete_ann(typesig, cerl:get_ann(Tree)));
false ->
cerl:set_ann(Tree, append_ann(typesig, Type, cerl:get_ann(Tree)))
end;
apply ->
case state__find_apply_return(Tree, State) of
unknown -> Tree;
ReturnType ->
case t_is_any(ReturnType) of
true ->
cerl:set_ann(Tree, delete_ann(type, cerl:get_ann(Tree)));
false ->
cerl:set_ann(Tree, append_ann(type, ReturnType,
cerl:get_ann(Tree)))
end
end;
_ ->
Tree
end.
append_ann(Tag, Val, [X | Xs]) ->
if tuple_size(X) >= 1, element(1, X) =:= Tag ->
append_ann(Tag, Val, Xs);
true ->
[X | append_ann(Tag, Val, Xs)]
end;
append_ann(Tag, Val, []) ->
[{Tag, Val}].
delete_ann(Tag, [X | Xs]) ->
if tuple_size(X) >= 1, element(1, X) =:= Tag ->
delete_ann(Tag, Xs);
true ->
[X | delete_ann(Tag, Xs)]
end;
delete_ann(_, []) ->
[].
%%% ===========================================================================
%%%
%%% The analysis.
%%%
%%% ===========================================================================
analyze_module(Tree, Plt, Callgraph) ->
analyze_module(Tree, Plt, Callgraph, dict:new(), false).
analyze_module(Tree, Plt, Callgraph, Records, GetWarnings) ->
debug_pp(Tree, false),
Module = cerl:atom_val(cerl:module_name(Tree)),
RaceDetection = dialyzer_callgraph:get_race_detection(Callgraph),
BehaviourTranslations =
case RaceDetection of
true -> dialyzer_behaviours:translatable_behaviours(Tree);
false -> []
end,
TopFun = cerl:ann_c_fun([{label, top}], [], Tree),
State =
state__new(Callgraph, TopFun, Plt, Module, Records, BehaviourTranslations),
State1 = state__race_analysis(not GetWarnings, State),
State2 = analyze_loop(State1),
case GetWarnings of
true ->
State3 = state__set_warning_mode(State2),
State4 = analyze_loop(State3),
%% EXPERIMENTAL: Turn all behaviour API calls into calls to the
%% respective callback module's functions.
case BehaviourTranslations of
[] -> dialyzer_races:race(State4);
Behaviours ->
Digraph = dialyzer_callgraph:get_digraph(State4#state.callgraph),
TranslatedCallgraph =
dialyzer_behaviours:translate_callgraph(Behaviours, Module,
Callgraph),
St =
dialyzer_races:race(State4#state{callgraph = TranslatedCallgraph}),
FinalCallgraph = dialyzer_callgraph:put_digraph(Digraph,
St#state.callgraph),
St#state{callgraph = FinalCallgraph}
end;
false ->
State2
end.
analyze_loop(State) ->
case state__get_work(State) of
none -> State;
{Fun, NewState1} ->
{ArgTypes, IsCalled} = state__get_args_and_status(Fun, NewState1),
case not IsCalled of
true ->
?debug("Not handling (not called) ~w: ~s\n",
[state__lookup_name(get_label(Fun), State),
t_to_string(t_product(ArgTypes))]),
analyze_loop(NewState1);
false ->
case state__fun_env(Fun, NewState1) of
none ->
?debug("Not handling (no env) ~w: ~s\n",
[state__lookup_name(get_label(Fun), State),
t_to_string(t_product(ArgTypes))]),
analyze_loop(NewState1);
Map ->
?debug("Handling fun ~p: ~s\n",
[state__lookup_name(get_label(Fun), State),
t_to_string(state__fun_type(Fun, NewState1))]),
Vars = cerl:fun_vars(Fun),
Map1 = enter_type_lists(Vars, ArgTypes, Map),
Body = cerl:fun_body(Fun),
FunLabel = get_label(Fun),
IsRaceAnalysisEnabled = is_race_analysis_enabled(State),
NewState3 =
case IsRaceAnalysisEnabled of
true ->
NewState2 = state__renew_curr_fun(
state__lookup_name(FunLabel, NewState1), FunLabel,
NewState1),
state__renew_race_list([], 0, NewState2);
false -> NewState1
end,
{NewState4, _Map2, BodyType} =
traverse(Body, Map1, NewState3),
?debug("Done analyzing: ~w:~s\n",
[state__lookup_name(get_label(Fun), State),
t_to_string(t_fun(ArgTypes, BodyType))]),
NewState5 =
case IsRaceAnalysisEnabled of
true -> renew_race_code(NewState4);
false -> NewState4
end,
NewState6 =
state__update_fun_entry(Fun, ArgTypes, BodyType, NewState5),
?debug("done adding stuff for ~w\n",
[state__lookup_name(get_label(Fun), State)]),
analyze_loop(NewState6)
end
end
end.
traverse(Tree, Map, State) ->
?debug("Handling ~p\n", [cerl:type(Tree)]),
%%debug_pp_map(Map),
case cerl:type(Tree) of
alias ->
%% This only happens when checking for illegal record patterns
%% so the handling is a bit rudimentary.
traverse(cerl:alias_pat(Tree), Map, State);
apply ->
handle_apply(Tree, Map, State);
binary ->
Segs = cerl:binary_segments(Tree),
{State1, Map1, SegTypes} = traverse_list(Segs, Map, State),
{State1, Map1, t_bitstr_concat(SegTypes)};
bitstr ->
handle_bitstr(Tree, Map, State);
call ->
handle_call(Tree, Map, State);
'case' ->
handle_case(Tree, Map, State);
'catch' ->
{State1, _Map1, _} = traverse(cerl:catch_body(Tree), Map, State),
{State1, Map, t_any()};
cons ->
handle_cons(Tree, Map, State);
'fun' ->
Type = state__fun_type(Tree, State),
case state__warning_mode(State) of
true -> {State, Map, Type};
false ->
State2 = state__add_work(get_label(Tree), State),
State3 = state__update_fun_env(Tree, Map, State2),
{State3, Map, Type}
end;
'let' ->
handle_let(Tree, Map, State);
letrec ->
Defs = cerl:letrec_defs(Tree),
Body = cerl:letrec_body(Tree),
%% By not including the variables in scope we can assure that we
%% will get the current function type when using the variables.
FoldFun = fun({Var, Fun}, {AccState, AccMap}) ->
{NewAccState, NewAccMap0, FunType} =
traverse(Fun, AccMap, AccState),
NewAccMap = enter_type(Var, FunType, NewAccMap0),
{NewAccState, NewAccMap}
end,
{State1, Map1} = lists:foldl(FoldFun, {State, Map}, Defs),
traverse(Body, Map1, State1);
literal ->
%% This is needed for finding records
case cerl:unfold_literal(Tree) of
Tree ->
Type = literal_type(Tree),
NewType =
case erl_types:t_opaque_match_atom(Type, State#state.opaques) of
[Opaque] -> Opaque;
_ -> Type
end,
{State, Map, NewType};
NewTree -> traverse(NewTree, Map, State)
end;
module ->
handle_module(Tree, Map, State);
primop ->
Type =
case cerl:atom_val(cerl:primop_name(Tree)) of
match_fail -> t_none();
raise -> t_none();
bs_init_writable -> t_from_term(<<>>);
Other -> erlang:error({'Unsupported primop', Other})
end,
{State, Map, Type};
'receive' ->
handle_receive(Tree, Map, State);
seq ->
Arg = cerl:seq_arg(Tree),
Body = cerl:seq_body(Tree),
{State1, Map1, ArgType} = SMA = traverse(Arg, Map, State),
case t_is_none_or_unit(ArgType) of
true ->
SMA;
false ->
State2 =
case (t_is_any(ArgType) orelse t_is_simple(ArgType)
orelse is_call_to_send(Arg)) of
true -> % do not warn in these cases
State1;
false ->
state__add_warning(State1, ?WARN_UNMATCHED_RETURN, Arg,
{unmatched_return,
[format_type(ArgType, State1)]})
end,
traverse(Body, Map1, State2)
end;
'try' ->
handle_try(Tree, Map, State);
tuple ->
handle_tuple(Tree, Map, State);
values ->
Elements = cerl:values_es(Tree),
{State1, Map1, EsType} = traverse_list(Elements, Map, State),
Type = t_product(EsType),
{State1, Map1, Type};
var ->
?debug("Looking up unknown variable: ~p\n", [Tree]),
case state__lookup_type_for_rec_var(Tree, State) of
error ->
LType = lookup_type(Tree, Map),
Opaques = State#state.opaques,
case t_opaque_match_record(LType, Opaques) of
[Opaque] -> {State, Map, Opaque};
_ ->
case t_opaque_match_atom(LType, Opaques) of
[Opaque] -> {State, Map, Opaque};
_ -> {State, Map, LType}
end
end;
{ok, Type} -> {State, Map, Type}
end;
Other ->
erlang:error({'Unsupported type', Other})
end.
traverse_list(Trees, Map, State) ->
traverse_list(Trees, Map, State, []).
traverse_list([Tree|Tail], Map, State, Acc) ->
{State1, Map1, Type} = traverse(Tree, Map, State),
traverse_list(Tail, Map1, State1, [Type|Acc]);
traverse_list([], Map, State, Acc) ->
{State, Map, lists:reverse(Acc)}.
%%________________________________________
%%
%% Special instructions
%%
handle_apply(Tree, Map, State) ->
Args = cerl:apply_args(Tree),
Op = cerl:apply_op(Tree),
{State1, Map1, ArgTypes} = traverse_list(Args, Map, State),
{State2, Map2, OpType} = traverse(Op, Map1, State1),
case any_none(ArgTypes) of
true ->
{State2, Map2, t_none()};
false ->
{CallSitesKnown, FunList} =
case state__lookup_call_site(Tree, State2) of
error -> {false, []};
{ok, [external]} -> {false, []};
{ok, List} -> {true, List}
end,
case CallSitesKnown of
false ->
Arity = length(Args),
OpType1 = t_inf(OpType, t_fun(Arity, t_any())),
case t_is_none(OpType1) of
true ->
Msg = {fun_app_no_fun,
[format_cerl(Op), format_type(OpType, State2), Arity]},
State3 = state__add_warning(State2, ?WARN_FAILING_CALL,
Tree, Msg),
{State3, Map2, t_none()};
false ->
NewArgs = t_inf_lists(ArgTypes, t_fun_args(OpType1)),
case any_none(NewArgs) of
true ->
Msg = {fun_app_args,
[format_args(Args, ArgTypes, State),
format_type(OpType, State)]},
State3 = state__add_warning(State2, ?WARN_FAILING_CALL,
Tree, Msg),
{State3, enter_type(Op, OpType1, Map2), t_none()};
false ->
Map3 = enter_type_lists(Args, NewArgs, Map2),
Range0 = t_fun_range(OpType1),
Range =
case t_is_unit(Range0) of
true -> t_none();
false -> Range0
end,
{State2, enter_type(Op, OpType1, Map3), Range}
end
end;
true ->
FunInfoList = [{local, state__fun_info(Fun, State)}
|| Fun <- FunList],
handle_apply_or_call(FunInfoList, Args, ArgTypes, Map2, Tree, State1)
end
end.
handle_apply_or_call(FunInfoList, Args, ArgTypes, Map, Tree, State) ->
None = t_none(),
handle_apply_or_call(FunInfoList, Args, ArgTypes, Map, Tree, State,
[None || _ <- ArgTypes], None).
handle_apply_or_call([{local, external}|Left], Args, ArgTypes, Map, Tree, State,
_AccArgTypes, _AccRet) ->
handle_apply_or_call(Left, Args, ArgTypes, Map, Tree, State,
ArgTypes, t_any());
handle_apply_or_call([{TypeOfApply, {Fun, Sig, Contr, LocalRet}}|Left],
Args, ArgTypes, Map, Tree,
#state{opaques = Opaques} = State, AccArgTypes, AccRet) ->
Any = t_any(),
AnyArgs = [Any || _ <- Args],
GenSig = {AnyArgs, fun(_) -> t_any() end},
{CArgs, CRange} =
case Contr of
{value, #contract{args = As} = C} ->
{As, fun(FunArgs) ->
dialyzer_contracts:get_contract_return(C, FunArgs)
end};
none -> GenSig
end,
{BifArgs, BifRange} =
case TypeOfApply of
remote ->
{M, F, A} = Fun,
case erl_bif_types:is_known(M, F, A) of
true ->
IsBIF = true,
BArgs = erl_bif_types:arg_types(M, F, A),
BRange =
fun(FunArgs) ->
ArgPos = erl_bif_types:structure_inspecting_args(M, F, A),
NewFunArgs =
case ArgPos =:= [] of
true -> FunArgs;
false -> % some positions need to be un-opaqued
N = length(FunArgs),
PFs = lists:zip(lists:seq(1, N), FunArgs),
[case ordsets:is_element(P, ArgPos) of
true -> erl_types:t_unopaque(FArg, Opaques);
false -> FArg
end || {P, FArg} <- PFs]
end,
erl_bif_types:type(M, F, A, NewFunArgs)
end,
{BArgs, BRange};
false -> IsBIF = false, GenSig
end;
local -> IsBIF = false, GenSig
end,
{SigArgs, SigRange} =
%% if there is hard-coded or contract information with opaque types,
%% the checking for possible type violations needs to take place w.r.t.
%% this information and not w.r.t. the structure-based success typing.
case prefer_opaque_types(CArgs, BifArgs) of
true -> {AnyArgs, t_any()}; % effectively forgets the success typing
false ->
case Sig of
{value, {SR, SA}} -> {SA, SR};
none -> {AnyArgs, t_any()}
end
end,
ArgModeMask = [case lists:member(Arg, Opaques) of
true -> opaque;
false -> structured
end || Arg <- ArgTypes],
NewArgsSig = t_inf_lists_masked(SigArgs, ArgTypes, ArgModeMask),
NewArgsContract = t_inf_lists_masked(CArgs, ArgTypes, ArgModeMask),
NewArgsBif = t_inf_lists_masked(BifArgs, ArgTypes, ArgModeMask),
NewArgTypes0 = t_inf_lists_masked(NewArgsSig, NewArgsContract, ArgModeMask),
NewArgTypes = t_inf_lists_masked(NewArgTypes0, NewArgsBif, ArgModeMask),
BifRet = BifRange(NewArgTypes),
{TmpArgTypes, TmpArgsContract} =
case (TypeOfApply =:= remote) andalso (not IsBIF) of
true ->
List1 = lists:zip(CArgs, NewArgTypes),
List2 = lists:zip(CArgs, NewArgsContract),
{[erl_types:t_unopaque_on_mismatch(T1, T2, Opaques)
|| {T1, T2} <- List1],
[erl_types:t_unopaque_on_mismatch(T1, T2, Opaques)
|| {T1, T2} <- List2]};
false -> {NewArgTypes, NewArgsContract}
end,
ContrRet = CRange(TmpArgTypes),
RetMode =
case t_contains_opaque(ContrRet) orelse t_contains_opaque(BifRet) of
true -> opaque;
false -> structured
end,
RetWithoutContr = t_inf(SigRange, BifRet, RetMode),
RetWithoutLocal = t_inf(ContrRet, RetWithoutContr, RetMode),
?debug("--------------------------------------------------------\n", []),
?debug("Fun: ~p\n", [Fun]),
?debug("Args: ~s\n", [erl_types:t_to_string(t_product(ArgTypes))]),
?debug("NewArgsSig: ~s\n", [erl_types:t_to_string(t_product(NewArgsSig))]),
?debug("NewArgsContract: ~s\n",
[erl_types:t_to_string(t_product(NewArgsContract))]),
?debug("NewArgsBif: ~s\n", [erl_types:t_to_string(t_product(NewArgsBif))]),
?debug("NewArgTypes: ~s\n", [erl_types:t_to_string(t_product(NewArgTypes))]),
?debug("RetWithoutContr: ~s\n",[erl_types:t_to_string(RetWithoutContr)]),
?debug("RetWithoutLocal: ~s\n", [erl_types:t_to_string(RetWithoutLocal)]),
?debug("BifRet: ~s\n", [erl_types:t_to_string(BifRange(NewArgTypes))]),
?debug("ContrRet: ~s\n", [erl_types:t_to_string(CRange(TmpArgTypes))]),
?debug("SigRet: ~s\n", [erl_types:t_to_string(SigRange)]),
State1 =
case is_race_analysis_enabled(State) of
true ->
Ann = cerl:get_ann(Tree),
File = get_file(Ann),
Line = abs(get_line(Ann)),
%% EXPERIMENTAL: Turn a behaviour's API call into a call to the
%% respective callback module's function.
Module = State#state.module,
BehApiDict = State#state.behaviour_api_dict,
{RealFun, RealArgTypes, RealArgs} =
case dialyzer_behaviours:translate_behaviour_api_call(Fun, ArgTypes,
Args, Module,
BehApiDict) of
plain_call -> {Fun, ArgTypes, Args};
BehaviourAPI -> BehaviourAPI
end,
dialyzer_races:store_race_call(RealFun, RealArgTypes, RealArgs,
{File, Line}, State);
false -> State
end,
FailedConj = any_none([RetWithoutLocal|NewArgTypes]),
IsFailBif = t_is_none(BifRange(BifArgs)),
IsFailSig = t_is_none(SigRange),
State2 =
case FailedConj andalso not (IsFailBif orelse IsFailSig) of
true ->
case t_is_none(RetWithoutLocal) andalso
not t_is_none(RetWithoutContr) andalso
not any_none(NewArgTypes) of
true ->
{value, C1} = Contr,
Contract = dialyzer_contracts:contract_to_string(C1),
{M1, F1, A1} = state__lookup_name(Fun, State),
ArgStrings = format_args(Args, ArgTypes, State),
CRet = erl_types:t_to_string(RetWithoutContr),
%% This Msg will be post_processed by dialyzer_succ_typings
Msg =
{contract_range, [Contract, M1, F1, A1, ArgStrings, CRet]},
state__add_warning(State1, ?WARN_CONTRACT_RANGE, Tree, Msg);
false ->
FailedSig = any_none(NewArgsSig),
FailedContract =
any_none([CRange(TmpArgsContract)|NewArgsContract]),
FailedBif = any_none([BifRange(NewArgsBif)|NewArgsBif]),
InfSig = t_inf(t_fun(SigArgs, SigRange),
t_fun(BifArgs, BifRange(BifArgs))),
FailReason =
apply_fail_reason(FailedSig, FailedBif, FailedContract),
Msg = get_apply_fail_msg(Fun, Args, ArgTypes, NewArgTypes, InfSig,
Contr, CArgs, State1, FailReason),
WarnType = case Msg of
{call, _} -> ?WARN_FAILING_CALL;
{apply, _} -> ?WARN_FAILING_CALL;
{call_with_opaque, _} -> ?WARN_OPAQUE;
{call_without_opaque, _} -> ?WARN_OPAQUE;
{opaque_type_test, _} -> ?WARN_OPAQUE
end,
state__add_warning(State1, WarnType, Tree, Msg)
end;
false -> State1
end,
State3 =
case TypeOfApply of
local ->
case state__is_escaping(Fun, State2) of
true -> State2;
false ->
ForwardArgs = [t_limit(X, ?TYPE_LIMIT) || X <- ArgTypes],
forward_args(Fun, ForwardArgs, State2)
end;
remote ->
add_bif_warnings(Fun, NewArgTypes, Tree, State2)
end,
NewAccArgTypes =
case FailedConj of
true -> AccArgTypes;
false -> [t_sup(X, Y) || {X, Y} <- lists:zip(NewArgTypes, AccArgTypes)]
end,
TotalRet =
case t_is_none(LocalRet) andalso t_is_unit(RetWithoutLocal) of
true -> RetWithoutLocal;
false -> t_inf(RetWithoutLocal, LocalRet, opaque)
end,
NewAccRet = t_sup(AccRet, TotalRet),
?debug("NewAccRet: ~s\n", [t_to_string(NewAccRet)]),
handle_apply_or_call(Left, Args, ArgTypes, Map, Tree,
State3, NewAccArgTypes, NewAccRet);
handle_apply_or_call([], Args, _ArgTypes, Map, _Tree, State,
AccArgTypes, AccRet) ->
NewMap = enter_type_lists(Args, AccArgTypes, Map),
{State, NewMap, AccRet}.
apply_fail_reason(FailedSig, FailedBif, FailedContract) ->
if
(FailedSig orelse FailedBif) andalso (not FailedContract) -> only_sig;
FailedContract andalso (not (FailedSig orelse FailedBif)) -> only_contract;
true -> both
end.
get_apply_fail_msg(Fun, Args, ArgTypes, NewArgTypes,
Sig, Contract, ContrArgs, State, FailReason) ->
ArgStrings = format_args(Args, ArgTypes, State),
ContractInfo =
case Contract of
{value, #contract{} = C} ->
{dialyzer_contracts:is_overloaded(C),
dialyzer_contracts:contract_to_string(C)};
none -> {false, none}
end,
EnumArgTypes =
case NewArgTypes of
[] -> [];
_ -> lists:zip(lists:seq(1, length(NewArgTypes)), NewArgTypes)
end,
ArgNs = [Arg || {Arg, Type} <- EnumArgTypes, t_is_none(Type)],
case state__lookup_name(Fun, State) of
{M, F, _A} ->
case is_opaque_type_test_problem(Fun, NewArgTypes, State) of
true ->
[Opaque] = NewArgTypes,
{opaque_type_test, [atom_to_list(F), erl_types:t_to_string(Opaque)]};
false ->
SigArgs = t_fun_args(Sig),
case is_opaque_related_problem(ArgNs, ArgTypes) of
true -> %% an opaque term is used where a structured term is expected
ExpectedArgs =
case FailReason of
only_sig -> SigArgs;
_ -> ContrArgs
end,
{call_with_opaque, [M, F, ArgStrings, ArgNs, ExpectedArgs]};
false ->
case is_opaque_related_problem(ArgNs, SigArgs) orelse
is_opaque_related_problem(ArgNs, ContrArgs) of
true -> %% a structured term is used where an opaque is expected
ExpectedTriples =
case FailReason of
only_sig -> expected_arg_triples(ArgNs, SigArgs, State);
_ -> expected_arg_triples(ArgNs, ContrArgs, State)
end,
{call_without_opaque, [M, F, ArgStrings, ExpectedTriples]};
false -> %% there is a structured term clash in some argument
{call, [M, F, ArgStrings,
ArgNs, FailReason,
format_sig_args(Sig, State),
format_type(t_fun_range(Sig), State),
ContractInfo]}
end
end
end;
Label when is_integer(Label) ->
{apply, [ArgStrings,
ArgNs, FailReason,
format_sig_args(Sig, State),
format_type(t_fun_range(Sig), State),
ContractInfo]}
end.
%% returns 'true' if we are running with opaque on (not checked yet),
%% and there is either a contract or hard-coded type information with
%% opaque types
%% TODO: check that we are running with opaque types
%% TODO: check the return type also
prefer_opaque_types(CArgs, BifArgs) ->
t_contains_opaque(t_product(CArgs))
orelse t_contains_opaque(t_product(BifArgs)).
is_opaque_related_problem(ArgNs, ArgTypes) ->
Fun = fun (N) -> erl_types:t_contains_opaque(lists:nth(N, ArgTypes)) end,
ArgNs =/= [] andalso lists:all(Fun, ArgNs).
is_opaque_type_test_problem(Fun, ArgTypes, State) ->
case Fun of
{erlang, FN, 1} when FN =:= is_atom; FN =:= is_boolean;
FN =:= is_binary; FN =:= is_bitstring;
FN =:= is_float; FN =:= is_function;
FN =:= is_integer; FN =:= is_list;
FN =:= is_number; FN =:= is_pid; FN =:= is_port;
FN =:= is_reference; FN =:= is_tuple ->
[Type] = ArgTypes,
erl_types:t_is_opaque(Type) andalso
not lists:member(Type, State#state.opaques);
_ -> false
end.
expected_arg_triples(ArgNs, ArgTypes, State) ->
[begin
Arg = lists:nth(N, ArgTypes),
{N, Arg, format_type(Arg, State)}
end || N <- ArgNs].
add_bif_warnings({erlang, Op, 2}, [T1, T2] = Ts, Tree, State)
when Op =:= '=:='; Op =:= '==' ->
Type1 = erl_types:t_unopaque(T1, State#state.opaques),
Type2 = erl_types:t_unopaque(T2, State#state.opaques),
Inf = t_inf(T1, T2),
Inf1 = t_inf(Type1, Type2),
case t_is_none(Inf) andalso t_is_none(Inf1) andalso(not any_none(Ts))
andalso (not is_int_float_eq_comp(T1, Op, T2)) of
true ->
Args = case erl_types:t_is_opaque(T1) of
true -> [format_type(T2, State), Op, format_type(T1, State)];
false -> [format_type(T1, State), Op, format_type(T2, State)]
end,
case any_opaque(Ts) of
true ->
state__add_warning(State, ?WARN_OPAQUE, Tree, {opaque_eq, Args});
false ->
state__add_warning(State, ?WARN_MATCHING, Tree, {exact_eq, Args})
end;
false ->
State
end;
add_bif_warnings({erlang, Op, 2}, [T1, T2] = Ts, Tree, State)
when Op =:= '=/='; Op =:= '/=' ->
Inf = t_inf(T1, T2),
case t_is_none(Inf) andalso (not any_none(Ts))
andalso (not is_int_float_eq_comp(T1, Op, T2)) andalso any_opaque(Ts) of
true ->
Args = case erl_types:t_is_opaque(T1) of
true -> [format_type(T2, State), Op, format_type(T1, State)];
false -> [format_type(T1, State), Op, format_type(T2, State)]
end,
state__add_warning(State, ?WARN_OPAQUE, Tree, {opaque_neq, Args});
false ->
State
end;
add_bif_warnings(_, _, _, State) ->
State.
is_int_float_eq_comp(T1, Op, T2) ->
(Op =:= '==' orelse Op =:= '/=') andalso
((erl_types:t_is_float(T1) andalso erl_types:t_is_integer(T2)) orelse
(erl_types:t_is_integer(T1) andalso erl_types:t_is_float(T2))).
%%----------------------------------------
handle_bitstr(Tree, Map, State) ->
%% Construction of binaries.
Size = cerl:bitstr_size(Tree),
Val = cerl:bitstr_val(Tree),
BitstrType = cerl:concrete(cerl:bitstr_type(Tree)),
{State1, Map1, SizeType0} = traverse(Size, Map, State),
{State2, Map2, ValType0} = traverse(Val, Map1, State1),
case cerl:bitstr_bitsize(Tree) of
BitSz when BitSz =:= all orelse BitSz =:= utf ->
ValType =
case BitSz of
all ->
true = (BitstrType =:= binary),
t_inf(ValType0, t_bitstr());
utf ->
true = lists:member(BitstrType, [utf8, utf16, utf32]),
t_inf(ValType0, t_integer())
end,
Map3 = enter_type(Val, ValType, Map2),
case t_is_none(ValType) of
true ->
Msg = {bin_construction, ["value",
format_cerl(Val), format_cerl(Tree),
format_type(ValType0, State2)]},
State3 = state__add_warning(State2, ?WARN_BIN_CONSTRUCTION, Val, Msg),
{State3, Map3, t_none()};
false ->
{State2, Map3, t_bitstr()}
end;
BitSz when is_integer(BitSz) orelse BitSz =:= any ->
SizeType = t_inf(SizeType0, t_non_neg_integer()),
ValType =
case BitstrType of
binary -> t_inf(ValType0, t_bitstr());
float -> t_inf(ValType0, t_number());
integer -> t_inf(ValType0, t_integer())
end,
case any_none([SizeType, ValType]) of
true ->
{Msg, Offending} =
case t_is_none(SizeType) of
true ->
{{bin_construction,
["size", format_cerl(Size), format_cerl(Tree),
format_type(SizeType0, State2)]},
Size};
false ->
{{bin_construction,
["value", format_cerl(Val), format_cerl(Tree),
format_type(ValType0, State2)]},
Val}
end,
State3 = state__add_warning(State2, ?WARN_BIN_CONSTRUCTION,
Offending, Msg),
{State3, Map2, t_none()};
false ->
UnitVal = cerl:concrete(cerl:bitstr_unit(Tree)),
Type =
case t_number_vals(SizeType) of
[OneSize] -> t_bitstr(0, OneSize * UnitVal);
_ ->
MinSize = erl_types:number_min(SizeType),
t_bitstr(UnitVal, UnitVal * MinSize)
end,
Map3 = enter_type_lists([Val, Size, Tree],
[ValType, SizeType, Type], Map2),
{State2, Map3, Type}
end
end.
%%----------------------------------------
handle_call(Tree, Map, State) ->
M = cerl:call_module(Tree),
F = cerl:call_name(Tree),
Args = cerl:call_args(Tree),
MFAList = [M, F|Args],
{State1, Map1, [MType0, FType0|As]} = traverse_list(MFAList, Map, State),
%% Module and function names should be treated as *structured terms*
%% even if they happen to be identical to an atom (or tuple) which
%% is also involved in the definition of an opaque data type.
MType = t_inf(t_module(), t_unopaque(MType0)),
FType = t_inf(t_atom(), t_unopaque(FType0)),
Map2 = enter_type_lists([M, F], [MType, FType], Map1),
case any_none([MType, FType|As]) of
true ->
State2 =
case t_is_none(MType) andalso (not t_is_none(MType0)) of
true -> % This is a problem we just detected; not a known one
MS = format_cerl(M),
Msg = {app_call, [MS, format_cerl(F),
format_args(Args, As, State1),
MS, format_type(t_module(), State1),
format_type(MType0, State1)]},
state__add_warning(State1, ?WARN_FAILING_CALL, Tree, Msg);
false ->
case t_is_none(FType) andalso (not t_is_none(FType0)) of
true ->
FS = format_cerl(F),
Msg = {app_call, [format_cerl(M), FS,
format_args(Args, As, State1),
FS, format_type(t_atom(), State1),
format_type(FType0, State1)]},
state__add_warning(State1, ?WARN_FAILING_CALL, Tree, Msg);
false -> State1
end
end,
{State2, Map2, t_none()};
false ->
case t_is_atom(MType) of
true ->
%% XXX: Consider doing this for all combinations of MF
case {t_atom_vals(MType), t_atom_vals(FType)} of
{[MAtom], [FAtom]} ->
FunInfo = [{remote, state__fun_info({MAtom, FAtom, length(Args)},
State1)}],
handle_apply_or_call(FunInfo, Args, As, Map2, Tree, State1);
{_MAtoms, _FAtoms} ->
{State1, Map2, t_any()}
end;
false ->
{State1, Map2, t_any()}
end
end.
%%----------------------------------------
handle_case(Tree, Map, State) ->
Arg = cerl:case_arg(Tree),
Clauses = filter_match_fail(cerl:case_clauses(Tree)),
{State1, Map1, ArgType} = SMA = traverse(Arg, Map, State),
case t_is_none_or_unit(ArgType) of
true -> SMA;
false ->
State2 =
case is_race_analysis_enabled(State) of
true ->
{RaceList, RaceListSize} = get_race_list_and_size(State1),
state__renew_race_list([beg_case|RaceList],
RaceListSize + 1, State1);
false -> State1
end,
Map2 = join_maps_begin(Map1),
{MapList, State3, Type} =
handle_clauses(Clauses, Arg, ArgType, ArgType, State2,
[], Map2, [], []),
Map3 = join_maps_end(MapList, Map2),
debug_pp_map(Map2),
{State3, Map3, Type}
end.
%%----------------------------------------
handle_cons(Tree, Map, State) ->
Hd = cerl:cons_hd(Tree),
Tl = cerl:cons_tl(Tree),
{State1, Map1, HdType} = traverse(Hd, Map, State),
{State2, Map2, TlType} = traverse(Tl, Map1, State1),
State3 =
case t_is_none(t_inf(TlType, t_list())) of
true ->
Msg = {improper_list_constr, [format_type(TlType, State2)]},
state__add_warning(State2, ?WARN_NON_PROPER_LIST, Tree, Msg);
false ->
State2
end,
Type = t_cons(HdType, TlType),
{State3, Map2, Type}.
%%----------------------------------------
handle_let(Tree, Map, State) ->
IsRaceAnalysisEnabled = is_race_analysis_enabled(State),
Arg = cerl:let_arg(Tree),
Vars = cerl:let_vars(Tree),
{Map0, State0} =
case cerl:is_c_var(Arg) of
true ->
[Var] = Vars,
{enter_subst(Var, Arg, Map),
case IsRaceAnalysisEnabled of
true ->
{RaceList, RaceListSize} = get_race_list_and_size(State),
state__renew_race_list(
[dialyzer_races:let_tag_new(Var, Arg)|RaceList],
RaceListSize + 1, State);
false -> State
end};
false -> {Map, State}
end,
Body = cerl:let_body(Tree),
{State1, Map1, ArgTypes} = SMA = traverse(Arg, Map0, State0),
State2 =
case IsRaceAnalysisEnabled andalso cerl:is_c_call(Arg) of
true ->
Mod = cerl:call_module(Arg),
Name = cerl:call_name(Arg),
case cerl:is_literal(Mod) andalso
cerl:concrete(Mod) =:= ets andalso
cerl:is_literal(Name) andalso
cerl:concrete(Name) =:= new of
true -> renew_race_public_tables(Vars, State1);
false -> State1
end;
false -> State1
end,
case t_is_none_or_unit(ArgTypes) of
true -> SMA;
false ->
Map2 = enter_type_lists(Vars, t_to_tlist(ArgTypes), Map1),
traverse(Body, Map2, State2)
end.
%%----------------------------------------
handle_module(Tree, Map, State) ->
%% By not including the variables in scope we can assure that we
%% will get the current function type when using the variables.
Defs = cerl:module_defs(Tree),
PartFun = fun({_Var, Fun}) ->
state__is_escaping(get_label(Fun), State)
end,
{Defs1, Defs2} = lists:partition(PartFun, Defs),
Letrec = cerl:c_letrec(Defs1, cerl:c_int(42)),
{State1, Map1, _FunTypes} = traverse(Letrec, Map, State),
%% Also add environments for the other top-level functions.
VarTypes = [{Var, state__fun_type(Fun, State1)} || {Var, Fun} <- Defs],
EnvMap = enter_type_list(VarTypes, Map),
FoldFun = fun({_Var, Fun}, AccState) ->
state__update_fun_env(Fun, EnvMap, AccState)
end,
State2 = lists:foldl(FoldFun, State1, Defs2),
{State2, Map1, t_any()}.
%%----------------------------------------
handle_receive(Tree, Map, State) ->
Clauses = filter_match_fail(cerl:receive_clauses(Tree)),
Timeout = cerl:receive_timeout(Tree),
State1 =
case is_race_analysis_enabled(State) of
true ->
{RaceList, RaceListSize} = get_race_list_and_size(State),
state__renew_race_list([beg_case|RaceList],
RaceListSize + 1, State);
false -> State
end,
{MapList, State2, ReceiveType} =
handle_clauses(Clauses, ?no_arg, t_any(), t_any(), State1, [], Map,
[], []),
Map1 = join_maps(MapList, Map),
{State3, Map2, TimeoutType} = traverse(Timeout, Map1, State2),
case (t_is_atom(TimeoutType) andalso
(t_atom_vals(TimeoutType) =:= ['infinity'])) of
true ->
{State3, Map2, ReceiveType};
false ->
Action = cerl:receive_action(Tree),
{State4, Map3, ActionType} = traverse(Action, Map, State3),
Map4 = join_maps([Map3, Map1], Map),
Type = t_sup(ReceiveType, ActionType),
{State4, Map4, Type}
end.
%%----------------------------------------
handle_try(Tree, Map, State) ->
Arg = cerl:try_arg(Tree),
EVars = cerl:try_evars(Tree),
Vars = cerl:try_vars(Tree),
Body = cerl:try_body(Tree),
Handler = cerl:try_handler(Tree),
{State1, Map1, ArgType} = traverse(Arg, Map, State),
Map2 = mark_as_fresh(Vars, Map1),
{SuccState, SuccMap, SuccType} =
case bind_pat_vars(Vars, t_to_tlist(ArgType), [], Map2, State1) of
{error, _, _, _, _} ->
{State1, map__new(), t_none()};
{SuccMap1, VarTypes} ->
%% Try to bind the argument. Will only succeed if
%% it is a simple structured term.
SuccMap2 =
case bind_pat_vars_reverse([Arg], [t_product(VarTypes)], [],
SuccMap1, State1) of
{error, _, _, _, _} -> SuccMap1;
{SM, _} -> SM
end,
traverse(Body, SuccMap2, State1)
end,
ExcMap1 = mark_as_fresh(EVars, Map),
{State2, ExcMap2, HandlerType} = traverse(Handler, ExcMap1, SuccState),
TryType = t_sup(SuccType, HandlerType),
{State2, join_maps([ExcMap2, SuccMap], Map1), TryType}.
%%----------------------------------------
handle_tuple(Tree, Map, State) ->
Elements = cerl:tuple_es(Tree),
{State1, Map1, EsType} = traverse_list(Elements, Map, State),
TupleType = t_tuple(EsType),
case t_is_none(TupleType) of
true ->
{State1, Map1, t_none()};
false ->
%% Let's find out if this is a record or opaque construction.
case Elements of
[Tag|Left] ->
case cerl:is_c_atom(Tag) of
true ->
TagVal = cerl:atom_val(Tag),
case t_opaque_match_record(TupleType, State1#state.opaques) of
[Opaque] ->
RecStruct = t_opaque_matching_structure(TupleType, Opaque),
RecFields = t_tuple_args(RecStruct),
case bind_pat_vars(Elements, RecFields, [], Map1, State1) of
{error, _, ErrorPat, ErrorType, _} ->
Msg = {record_constr,
[TagVal, format_patterns(ErrorPat),
format_type(ErrorType, State1)]},
State2 = state__add_warning(State1, ?WARN_MATCHING,
Tree, Msg),
{State2, Map1, t_none()};
{Map2, _ETypes} ->
{State1, Map2, Opaque}
end;
_ ->
case state__lookup_record(TagVal, length(Left), State1) of
error -> {State1, Map1, TupleType};
{ok, RecType} ->
InfTupleType = t_inf(RecType, TupleType),
case t_is_none(InfTupleType) of
true ->
RecC = format_type(TupleType, State1),
FieldDiffs = format_field_diffs(TupleType, State1),
Msg = {record_constr, [RecC, FieldDiffs]},
State2 = state__add_warning(State1, ?WARN_MATCHING,
Tree, Msg),
{State2, Map1, t_none()};
false ->
case bind_pat_vars(Elements, t_tuple_args(RecType),
[], Map1, State1) of
{error, bind, ErrorPat, ErrorType, _} ->
Msg = {record_constr,
[TagVal, format_patterns(ErrorPat),
format_type(ErrorType, State1)]},
State2 = state__add_warning(State1, ?WARN_MATCHING,
Tree, Msg),
{State2, Map1, t_none()};
{Map2, ETypes} ->
{State1, Map2, t_tuple(ETypes)}
end
end
end
end;
false ->
{State1, Map1, t_tuple(EsType)}
end;
[] ->
{State1, Map1, t_tuple([])}
end
end.
%%----------------------------------------
%% Clauses
%%
handle_clauses([C|Left], Arg, ArgType, OrigArgType, State, CaseTypes, MapIn,
Acc, ClauseAcc) ->
IsRaceAnalysisEnabled = is_race_analysis_enabled(State),
State1 =
case IsRaceAnalysisEnabled of
true ->
{RaceList, RaceListSize} = get_race_list_and_size(State),
state__renew_race_list(
[dialyzer_races:beg_clause_new(Arg, cerl:clause_pats(C),
cerl:clause_guard(C))|
RaceList], RaceListSize + 1,
State);
false -> State
end,
{State2, ClauseMap, BodyType, NewArgType} =
do_clause(C, Arg, ArgType, OrigArgType, MapIn, State1),
{NewClauseAcc, State3} =
case IsRaceAnalysisEnabled of
true ->
{RaceList1, RaceListSize1} = get_race_list_and_size(State2),
EndClause = dialyzer_races:end_clause_new(Arg, cerl:clause_pats(C),
cerl:clause_guard(C)),
{[EndClause|ClauseAcc],
state__renew_race_list([EndClause|RaceList1],
RaceListSize1 + 1, State2)};
false -> {ClauseAcc, State2}
end,
{NewCaseTypes, NewAcc} =
case t_is_none(BodyType) of
true -> {CaseTypes, Acc};
false -> {[BodyType|CaseTypes], [ClauseMap|Acc]}
end,
handle_clauses(Left, Arg, NewArgType, OrigArgType, State3,
NewCaseTypes, MapIn, NewAcc, NewClauseAcc);
handle_clauses([], _Arg, _ArgType, _OrigArgType, State, CaseTypes, _MapIn, Acc,
ClauseAcc) ->
State1 =
case is_race_analysis_enabled(State) of
true ->
{RaceList, RaceListSize} = get_race_list_and_size(State),
state__renew_race_list(
[dialyzer_races:end_case_new(ClauseAcc)|RaceList],
RaceListSize + 1, State);
false -> State
end,
{lists:reverse(Acc), State1, t_sup(CaseTypes)}.
do_clause(C, Arg, ArgType0, OrigArgType, Map, State) ->
Pats = cerl:clause_pats(C),
Guard = cerl:clause_guard(C),
Body = cerl:clause_body(C),
State1 =
case is_race_analysis_enabled(State) of
true ->
state__renew_fun_args(Pats, State);
false -> State
end,
Map0 = mark_as_fresh(Pats, Map),
Map1 = if Arg =:= ?no_arg -> Map0;
true -> bind_subst(Arg, Pats, Map0)
end,
BindRes =
case t_is_none(ArgType0) of
true ->
{error, bind, Pats, ArgType0, ArgType0};
false ->
ArgTypes =
case t_is_any(ArgType0) of
true -> [ArgType0 || _ <- Pats];
false -> t_to_tlist(ArgType0)
end,
bind_pat_vars(Pats, ArgTypes, [], Map1, State1)
end,
case BindRes of
{error, ErrorType, NewPats, Type, OpaqueTerm} ->
?debug("Failed binding pattern: ~s\nto ~s\n",
[cerl_prettypr:format(C), format_type(ArgType0, State1)]),
case state__warning_mode(State1) of
false ->
{State1, Map, t_none(), ArgType0};
true ->
PatString =
case ErrorType of
bind -> format_patterns(Pats);
record -> format_patterns(Pats);
opaque -> format_patterns(NewPats)
end,
{Msg, Force} =
case t_is_none(ArgType0) of
true ->
PatTypes = [PatString, format_type(OrigArgType, State1)],
%% See if this is covered by an earlier clause or if it
%% simply cannot match
OrigArgTypes =
case t_is_any(OrigArgType) of
true -> Any = t_any(), [Any || _ <- Pats];
false -> t_to_tlist(OrigArgType)
end,
Tag =
case bind_pat_vars(Pats, OrigArgTypes, [], Map1, State1) of
{error, bind, _, _, _} -> pattern_match;
{error, record, _, _, _} -> record_match;
{error, opaque, _, _, _} -> opaque_match;
{_, _} -> pattern_match_cov
end,
{{Tag, PatTypes}, false};
false ->
%% Try to find out if this is a default clause in a list
%% comprehension and supress this. A real Hack(tm)
Force0 =
case is_compiler_generated(cerl:get_ann(C)) of
true ->
case Pats of
[Pat] ->
case cerl:is_c_cons(Pat) of
true ->
not (cerl:is_c_var(cerl:cons_hd(Pat)) andalso
cerl:is_c_var(cerl:cons_tl(Pat)) andalso
cerl:is_literal(Guard) andalso
(cerl:concrete(Guard) =:= true));
false ->
true
end;
[Pat0, Pat1] -> % binary comprehension
case cerl:is_c_cons(Pat0) of
true ->
not (cerl:is_c_var(cerl:cons_hd(Pat0)) andalso
cerl:is_c_var(cerl:cons_tl(Pat0)) andalso
cerl:is_c_var(Pat1) andalso
cerl:is_literal(Guard) andalso
(cerl:concrete(Guard) =:= true));
false ->
true
end;
_ -> true
end;
false ->
true
end,
PatTypes = case ErrorType of
bind -> [PatString, format_type(ArgType0, State1)];
record -> [PatString, format_type(Type, State1)];
opaque -> [PatString, format_type(Type, State1),
format_type(OpaqueTerm, State1)]
end,
FailedTag = case ErrorType of
bind -> pattern_match;
record -> record_match;
opaque -> opaque_match
end,
{{FailedTag, PatTypes}, Force0}
end,
WarnType = case Msg of
{opaque_match, _} -> ?WARN_OPAQUE;
{pattern_match, _} -> ?WARN_MATCHING;
{record_match, _} -> ?WARN_MATCHING;
{pattern_match_cov, _} -> ?WARN_MATCHING
end,
{state__add_warning(State1, WarnType, C, Msg, Force),
Map, t_none(), ArgType0}
end;
{Map2, PatTypes} ->
Map3 =
case Arg =:= ?no_arg of
true -> Map2;
false ->
%% Try to bind the argument. Will only succeed if
%% it is a simple structured term.
case bind_pat_vars_reverse([Arg], [t_product(PatTypes)],
[], Map2, State1) of
{error, _, _, _, _} -> Map2;
{NewMap, _} -> NewMap
end
end,
NewArgType =
case Arg =:= ?no_arg of
true -> ArgType0;
false ->
GenType = dialyzer_typesig:get_safe_underapprox(Pats, Guard),
t_subtract(t_product(t_to_tlist(ArgType0)), GenType)
end,
case bind_guard(Guard, Map3, State1) of
{error, Reason} ->
?debug("Failed guard: ~s\n",
[cerl_prettypr:format(C, [{hook, cerl_typean:pp_hook()}])]),
PatString = format_patterns(Pats),
DefaultMsg =
case Pats =:= [] of
true -> {guard_fail, []};
false ->
{guard_fail_pat, [PatString, format_type(ArgType0, State1)]}
end,
State2 =
case Reason of
none -> state__add_warning(State1, ?WARN_MATCHING, C, DefaultMsg);
{FailGuard, Msg} ->
case is_compiler_generated(cerl:get_ann(FailGuard)) of
false ->
WarnType = case Msg of
{guard_fail, _} -> ?WARN_MATCHING;
{neg_guard_fail, _} -> ?WARN_MATCHING;
{opaque_guard, _} -> ?WARN_OPAQUE
end,
state__add_warning(State1, WarnType, FailGuard, Msg);
true ->
state__add_warning(State1, ?WARN_MATCHING, C, Msg)
end
end,
{State2, Map, t_none(), NewArgType};
Map4 ->
{RetState, RetMap, BodyType} = traverse(Body, Map4, State1),
{RetState, RetMap, BodyType, NewArgType}
end
end.
bind_subst(Arg, Pats, Map) ->
case cerl:type(Arg) of
values ->
bind_subst_list(cerl:values_es(Arg), Pats, Map);
var ->
[Pat] = Pats,
enter_subst(Arg, Pat, Map);
_ ->
Map
end.
bind_subst_list([Arg|ArgLeft], [Pat|PatLeft], Map) ->
NewMap =
case {cerl:type(Arg), cerl:type(Pat)} of
{var, var} -> enter_subst(Arg, Pat, Map);
{var, alias} -> enter_subst(Arg, cerl:alias_pat(Pat), Map);
{literal, literal} -> Map;
{T, T} -> bind_subst_list(lists:flatten(cerl:subtrees(Arg)),
lists:flatten(cerl:subtrees(Pat)),
Map);
_ -> Map
end,
bind_subst_list(ArgLeft, PatLeft, NewMap);
bind_subst_list([], [], Map) ->
Map.
%%----------------------------------------
%% Patterns
%%
bind_pat_vars(Pats, Types, Acc, Map, State) ->
try
bind_pat_vars(Pats, Types, Acc, Map, State, false)
catch
throw:Error ->
%% Error = {error, bind | opaque | record, ErrorPats, ErrorType}
Error
end.
bind_pat_vars_reverse(Pats, Types, Acc, Map, State) ->
try
bind_pat_vars(Pats, Types, Acc, Map, State, true)
catch
throw:Error ->
%% Error = {error, bind | opaque | record, ErrorPats, ErrorType}
Error
end.
bind_pat_vars([Pat|PatLeft], [Type|TypeLeft], Acc, Map, State, Rev) ->
?debug("Binding pat: ~w to ~s\n", [cerl:type(Pat), format_type(Type, State)]),
{NewMap, TypeOut} =
case cerl:type(Pat) of
alias ->
AliasPat = cerl:alias_pat(Pat),
Var = cerl:alias_var(Pat),
Map1 = enter_subst(Var, AliasPat, Map),
{Map2, [PatType]} = bind_pat_vars([AliasPat], [Type], [],
Map1, State, Rev),
{enter_type(Var, PatType, Map2), PatType};
binary ->
%% Cannot bind the binary if we are in reverse match since
%% binary patterns and binary construction are not symmetric.
case Rev of
true -> {Map, t_bitstr()};
false ->
BinType = t_inf(t_bitstr(), Type),
case t_is_none(BinType) of
true -> bind_error([Pat], Type, t_none(), bind);
false ->
Segs = cerl:binary_segments(Pat),
{Map1, SegTypes} = bind_bin_segs(Segs, BinType, Map, State),
{Map1, t_bitstr_concat(SegTypes)}
end
end;
cons ->
Cons = t_inf(Type, t_cons()),
case t_is_none(Cons) of
true ->
bind_opaque_pats(t_cons(), Type, Pat, Map, State, Rev);
false ->
{Map1, [HdType, TlType]} =
bind_pat_vars([cerl:cons_hd(Pat), cerl:cons_tl(Pat)],
[t_cons_hd(Cons), t_cons_tl(Cons)],
[], Map, State, Rev),
{Map1, t_cons(HdType, TlType)}
end;
literal ->
Literal = literal_type(Pat),
LiteralOrOpaque =
case t_opaque_match_atom(Literal, State#state.opaques) of
[Opaque] -> Opaque;
_ -> Literal
end,
case t_is_none(t_inf(LiteralOrOpaque, Type)) of
true ->
bind_opaque_pats(Literal, Type, Pat, Map, State, Rev);
false -> {Map, LiteralOrOpaque}
end;
tuple ->
Es = cerl:tuple_es(Pat),
{TypedRecord, Prototype} =
case Es of
[] -> {false, t_tuple([])};
[Tag|Left] ->
case cerl:is_c_atom(Tag) of
true ->
TagAtom = cerl:atom_val(Tag),
case state__lookup_record(TagAtom, length(Left), State) of
error -> {false, t_tuple(length(Es))};
{ok, Record} ->
[_Head|AnyTail] = [t_any() || _ <- Es],
UntypedRecord = t_tuple([t_atom(TagAtom)|AnyTail]),
{not erl_types:t_is_equal(Record, UntypedRecord), Record}
end;
false -> {false, t_tuple(length(Es))}
end
end,
Tuple = t_inf(Prototype, Type),
case t_is_none(Tuple) of
true ->
bind_opaque_pats(Prototype, Type, Pat, Map, State, Rev);
false ->
SubTuples = t_tuple_subtypes(Tuple),
%% Need to call the top function to get the try-catch wrapper
MapJ = join_maps_begin(Map),
Results =
case Rev of
true ->
[bind_pat_vars_reverse(Es, t_tuple_args(SubTuple), [],
MapJ, State)
|| SubTuple <- SubTuples];
false ->
[bind_pat_vars(Es, t_tuple_args(SubTuple), [], MapJ, State)
|| SubTuple <- SubTuples]
end,
case lists:keyfind(opaque, 2, Results) of
{error, opaque, _PatList, _Type, Opaque} ->
bind_error([Pat], Tuple, Opaque, opaque);
false ->
case [M || {M, _} <- Results, M =/= error] of
[] ->
case TypedRecord of
true -> bind_error([Pat], Tuple, Prototype, record);
false -> bind_error([Pat], Tuple, t_none(), bind)
end;
Maps ->
Map1 = join_maps_end(Maps, MapJ),
TupleType = t_sup([t_tuple(EsTypes)
|| {M, EsTypes} <- Results, M =/= error]),
{Map1, TupleType}
end
end
end;
values ->
Es = cerl:values_es(Pat),
{Map1, EsTypes} =
bind_pat_vars(Es, t_to_tlist(Type), [], Map, State, Rev),
{Map1, t_product(EsTypes)};
var ->
Opaques = State#state.opaques,
VarType1 =
case state__lookup_type_for_rec_var(Pat, State) of
error ->
LType = lookup_type(Pat, Map),
case t_opaque_match_record(LType, Opaques) of
[Opaque] -> Opaque;
_ ->
case t_opaque_match_atom(LType, Opaques) of
[Opaque] -> Opaque;
_ -> LType
end
end;
{ok, RecType} -> RecType
end,
%% Must do inf when binding args to pats. Vars in pats are fresh.
VarType2 = t_inf(VarType1, Type),
VarType3 =
case Opaques =/= [] of
true ->
case t_opaque_match_record(VarType2, Opaques) of
[OpaqueRec] -> OpaqueRec;
_ ->
case t_opaque_match_atom(VarType2, Opaques) of
[OpaqueAtom] -> OpaqueAtom;
_ -> VarType2
end
end;
false -> VarType2
end,
case t_is_none(VarType3) of
true ->
case t_find_opaque_mismatch(VarType1, Type) of
{ok, T1, T2} ->
bind_error([Pat], T1, T2, opaque);
error ->
bind_error([Pat], Type, t_none(), bind)
end;
false ->
Map1 = enter_type(Pat, VarType3, Map),
{Map1, VarType3}
end;
_Other ->
%% Catch all is needed when binding args to pats
?debug("Failed match for ~p\n", [_Other]),
bind_error([Pat], Type, t_none(), bind)
end,
bind_pat_vars(PatLeft, TypeLeft, [TypeOut|Acc], NewMap, State, Rev);
bind_pat_vars([], [], Acc, Map, _State, _Rev) ->
{Map, lists:reverse(Acc)}.
bind_bin_segs(BinSegs, BinType, Map, State) ->
bind_bin_segs(BinSegs, BinType, [], Map, State).
bind_bin_segs([Seg|Segs], BinType, Acc, Map, State) ->
Val = cerl:bitstr_val(Seg),
SegType = cerl:concrete(cerl:bitstr_type(Seg)),
UnitVal = cerl:concrete(cerl:bitstr_unit(Seg)),
case cerl:bitstr_bitsize(Seg) of
all ->
binary = SegType, [] = Segs, %% just an assert
T = t_inf(t_bitstr(UnitVal, 0), BinType),
{Map1, [Type]} = bind_pat_vars([Val], [T], [], Map, State, false),
bind_bin_segs(Segs, t_bitstr(0, 0), [Type|Acc], Map1, State);
utf -> % XXX: possibly can be strengthened
true = lists:member(SegType, [utf8, utf16, utf32]),
{Map1, [_]} = bind_pat_vars([Val], [t_integer()], [], Map, State, false),
Type = t_binary(),
bind_bin_segs(Segs, BinType, [Type|Acc], Map1, State);
BitSz when is_integer(BitSz) orelse BitSz =:= any ->
Size = cerl:bitstr_size(Seg),
{Map1, [SizeType]} =
bind_pat_vars([Size], [t_non_neg_integer()], [], Map, State, false),
Type =
case t_number_vals(SizeType) of
[OneSize] -> t_bitstr(0, UnitVal * OneSize);
_ ->
MinSize = erl_types:number_min(SizeType),
t_bitstr(UnitVal, UnitVal * MinSize)
end,
ValConstr =
case SegType of
binary -> Type; %% The same constraints as for the whole bitstr
float -> t_float();
integer ->
case t_number_vals(SizeType) of
unknown -> t_integer();
List ->
SizeVal = lists:max(List),
Flags = cerl:concrete(cerl:bitstr_flags(Seg)),
N = SizeVal * UnitVal,
case lists:member(signed, Flags) of
true -> t_from_range(-(1 bsl (N - 1)), 1 bsl (N - 1) - 1);
false -> t_from_range(0, 1 bsl N - 1)
end
end
end,
{Map2, [_]} = bind_pat_vars([Val], [ValConstr], [], Map1, State, false),
NewBinType = t_bitstr_match(Type, BinType),
case t_is_none(NewBinType) of
true -> bind_error([Seg], BinType, t_none(), bind);
false -> bind_bin_segs(Segs, NewBinType, [Type|Acc], Map2, State)
end
end;
bind_bin_segs([], _BinType, Acc, Map, _State) ->
{Map, lists:reverse(Acc)}.
bind_error(Pats, Type, OpaqueType, Error) ->
throw({error, Error, Pats, Type, OpaqueType}).
bind_opaque_pats(GenType, Type, Pat, Map, State, Rev) ->
case t_find_opaque_mismatch(GenType, Type) of
{ok, T1, T2} ->
case lists:member(T2, State#state.opaques) of
true ->
NewType = erl_types:t_struct_from_opaque(Type, [T2]),
{Map1, _} =
bind_pat_vars([Pat], [NewType], [], Map, State, Rev),
{Map1, T2};
false -> bind_error([Pat], T1, T2, opaque)
end;
error -> bind_error([Pat], Type, t_none(), bind)
end.
%%----------------------------------------
%% Guards
%%
bind_guard(Guard, Map, State) ->
try bind_guard(Guard, Map, dict:new(), pos, State) of
{Map1, _Type} -> Map1
catch
throw:{fail, Warning} -> {error, Warning};
throw:{fatal_fail, Warning} -> {error, Warning}
end.
bind_guard(Guard, Map, Env, Eval, State) ->
?debug("Handling ~w guard: ~s\n",
[Eval, cerl_prettypr:format(Guard, [{noann, true}])]),
case cerl:type(Guard) of
binary ->
{Map, t_binary()};
'case' ->
Arg = cerl:case_arg(Guard),
Clauses = cerl:case_clauses(Guard),
bind_guard_case_clauses(Arg, Clauses, Map, Env, Eval, State);
cons ->
Hd = cerl:cons_hd(Guard),
Tl = cerl:cons_tl(Guard),
{Map1, HdType} = bind_guard(Hd, Map, Env, dont_know, State),
{Map2, TlType} = bind_guard(Tl, Map1, Env, dont_know, State),
{Map2, t_cons(HdType, TlType)};
literal ->
{Map, literal_type(Guard)};
'try' ->
Arg = cerl:try_arg(Guard),
[Var] = cerl:try_vars(Guard),
%%?debug("Storing: ~w\n", [Var]),
NewEnv = dict:store(get_label(Var), Arg, Env),
bind_guard(cerl:try_body(Guard), Map, NewEnv, Eval, State);
tuple ->
Es0 = cerl:tuple_es(Guard),
{Map1, Es} = bind_guard_list(Es0, Map, Env, dont_know, State),
{Map1, t_tuple(Es)};
'let' ->
Arg = cerl:let_arg(Guard),
[Var] = cerl:let_vars(Guard),
%%?debug("Storing: ~w\n", [Var]),
NewEnv = dict:store(get_label(Var), Arg, Env),
bind_guard(cerl:let_body(Guard), Map, NewEnv, Eval, State);
values ->
Es = cerl:values_es(Guard),
List = [bind_guard(V, Map, Env, dont_know, State) || V <- Es],
Type = t_product([T || {_, T} <- List]),
{Map, Type};
var ->
?debug("Looking for var(~w)...", [cerl_trees:get_label(Guard)]),
case dict:find(get_label(Guard), Env) of
error ->
?debug("Did not find it\n", []),
Type = lookup_type(Guard, Map),
Constr =
case Eval of
pos -> t_atom(true);
neg -> t_atom(false);
dont_know -> Type
end,
Inf = t_inf(Constr, Type),
{enter_type(Guard, Inf, Map), Inf};
{ok, Tree} ->
?debug("Found it\n", []),
{Map1, Type} = bind_guard(Tree, Map, Env, Eval, State),
{enter_type(Guard, Type, Map1), Type}
end;
call ->
handle_guard_call(Guard, Map, Env, Eval, State)
end.
handle_guard_call(Guard, Map, Env, Eval, State) ->
MFA = {cerl:atom_val(cerl:call_module(Guard)),
cerl:atom_val(cerl:call_name(Guard)),
cerl:call_arity(Guard)},
case MFA of
{erlang, F, 1} when F =:= is_atom; F =:= is_boolean;
F =:= is_binary; F =:= is_bitstring;
F =:= is_float; F =:= is_function;
F =:= is_integer; F =:= is_list;
F =:= is_number; F =:= is_pid; F =:= is_port;
F =:= is_reference; F =:= is_tuple ->
handle_guard_type_test(Guard, F, Map, Env, Eval, State);
{erlang, is_function, 2} ->
handle_guard_is_function(Guard, Map, Env, Eval, State);
MFA when (MFA =:= {erlang, internal_is_record, 3}) or
(MFA =:= {erlang, is_record, 3}) ->
handle_guard_is_record(Guard, Map, Env, Eval, State);
{erlang, '=:=', 2} ->
handle_guard_eqeq(Guard, Map, Env, Eval, State);
{erlang, '==', 2} ->
handle_guard_eq(Guard, Map, Env, Eval, State);
{erlang, 'and', 2} ->
handle_guard_and(Guard, Map, Env, Eval, State);
{erlang, 'or', 2} ->
handle_guard_or(Guard, Map, Env, Eval, State);
{erlang, 'not', 1} ->
handle_guard_not(Guard, Map, Env, Eval, State);
{erlang, Comp, 2} when Comp =:= '<'; Comp =:= '=<';
Comp =:= '>'; Comp =:= '>=' ->
handle_guard_comp(Guard, Comp, Map, Env, Eval, State);
_ ->
handle_guard_gen_fun(MFA, Guard, Map, Env, Eval, State)
end.
handle_guard_gen_fun({M, F, A}, Guard, Map, Env, Eval, State) ->
Args = cerl:call_args(Guard),
{Map1, As0} = bind_guard_list(Args, Map, Env, dont_know, State),
MapFun = fun(Type) ->
case lists:member(Type, State#state.opaques) of
true -> erl_types:t_opaque_structure(Type);
false -> Type
end
end,
As = lists:map(MapFun, As0),
Mode = case As =:= As0 of
true -> structured;
false -> opaque
end,
BifRet = erl_bif_types:type(M, F, A, As),
case t_is_none(BifRet) of
true ->
%% Is this an error-bif?
case t_is_none(erl_bif_types:type(M, F, A)) of
true -> signal_guard_fail(Eval, Guard, As, State);
false -> signal_guard_fatal_fail(Eval, Guard, As, State)
end;
false ->
BifArgs = case erl_bif_types:arg_types(M, F, A) of
unknown -> lists:duplicate(A, t_any());
List -> List
end,
Map2 = enter_type_lists(Args, t_inf_lists(BifArgs, As0, Mode), Map1),
Ret =
case Eval of
pos -> t_inf(t_atom(true), BifRet);
neg -> t_inf(t_atom(false), BifRet);
dont_know -> BifRet
end,
case t_is_none(Ret) of
true ->
case Eval =:= pos of
true -> signal_guard_fail(Eval, Guard, As, State);
false -> throw({fail, none})
end;
false -> {Map2, Ret}
end
end.
handle_guard_type_test(Guard, F, Map, Env, Eval, State) ->
[Arg] = cerl:call_args(Guard),
{Map1, ArgType} = bind_guard(Arg, Map, Env, dont_know, State),
case bind_type_test(Eval, F, ArgType, State) of
error ->
?debug("Type test: ~w failed\n", [F]),
signal_guard_fail(Eval, Guard, [ArgType], State);
{ok, NewArgType, Ret} ->
?debug("Type test: ~w succeeded, NewType: ~s, Ret: ~s\n",
[F, t_to_string(NewArgType), t_to_string(Ret)]),
{enter_type(Arg, NewArgType, Map1), Ret}
end.
bind_type_test(Eval, TypeTest, ArgType, State) ->
Type = case TypeTest of
is_atom -> t_atom();
is_boolean -> t_boolean();
is_binary -> t_binary();
is_bitstring -> t_bitstr();
is_float -> t_float();
is_function -> t_fun();
is_integer -> t_integer();
is_list -> t_maybe_improper_list();
is_number -> t_number();
is_pid -> t_pid();
is_port -> t_port();
is_reference -> t_reference();
is_tuple -> t_tuple()
end,
Mode = determine_mode(ArgType, State#state.opaques),
case Eval of
pos ->
Inf = t_inf(Type, ArgType, Mode),
case t_is_none(Inf) of
true -> error;
false -> {ok, Inf, t_atom(true)}
end;
neg ->
case Mode of
opaque ->
Struct = erl_types:t_opaque_structure(ArgType),
case t_is_none(t_subtract(Struct, Type)) of
true -> error;
false -> {ok, ArgType, t_atom(false)}
end;
structured ->
Sub = t_subtract(ArgType, Type),
case t_is_none(Sub) of
true -> error;
false -> {ok, Sub, t_atom(false)}
end
end;
dont_know ->
{ok, ArgType, t_boolean()}
end.
handle_guard_comp(Guard, Comp, Map, Env, Eval, State) ->
Args = cerl:call_args(Guard),
[Arg1, Arg2] = Args,
{Map1, ArgTypes} = bind_guard_list(Args, Map, Env, dont_know, State),
[Type1, Type2] = ArgTypes,
IsInt1 = t_is_integer(Type1),
IsInt2 = t_is_integer(Type2),
case {cerl:type(Arg1), cerl:type(Arg2)} of
{literal, literal} ->
case erlang:Comp(cerl:concrete(Arg1), cerl:concrete(Arg2)) of
true when Eval =:= pos -> {Map, t_atom(true)};
true when Eval =:= dont_know -> {Map, t_atom(true)};
true when Eval =:= neg -> {Map, t_atom(true)};
false when Eval =:= pos ->
signal_guard_fail(Eval, Guard, ArgTypes, State);
false when Eval =:= dont_know -> {Map, t_atom(false)};
false when Eval =:= neg -> {Map, t_atom(false)}
end;
{literal, var} when IsInt1 andalso IsInt2 andalso (Eval =:= pos) ->
case bind_comp_literal_var(Arg1, Arg2, Type2, Comp, Map1) of
error -> signal_guard_fail(Eval, Guard, ArgTypes, State);
{ok, NewMap} -> {NewMap, t_atom(true)}
end;
{var, literal} when IsInt1 andalso IsInt2 andalso (Eval =:= pos) ->
case bind_comp_literal_var(Arg2, Arg1, Type1, invert_comp(Comp), Map1) of
error -> signal_guard_fail(Eval, Guard, ArgTypes, State);
{ok, NewMap} -> {NewMap, t_atom(true)}
end;
{_, _} ->
handle_guard_gen_fun({erlang, Comp, 2}, Guard, Map, Env, Eval, State)
end.
invert_comp('=<') -> '>=';
invert_comp('<') -> '>';
invert_comp('>=') -> '=<';
invert_comp('>') -> '<'.
bind_comp_literal_var(Lit, Var, VarType, CompOp, Map) ->
LitVal = cerl:concrete(Lit),
NewVarType =
case t_number_vals(VarType) of
unknown ->
Range =
case CompOp of
'=<' -> t_from_range(LitVal, pos_inf);
'<' -> t_from_range(LitVal + 1, pos_inf);
'>=' -> t_from_range(neg_inf, LitVal);
'>' -> t_from_range(neg_inf, LitVal - 1)
end,
t_inf(Range, VarType);
NumberVals ->
NewNumberVals = [X || X <- NumberVals, erlang:CompOp(LitVal, X)],
t_integers(NewNumberVals)
end,
case t_is_none(NewVarType) of
true -> error;
false -> {ok, enter_type(Var, NewVarType, Map)}
end.
handle_guard_is_function(Guard, Map, Env, Eval, State) ->
Args = cerl:call_args(Guard),
{Map1, ArgTypes0} = bind_guard_list(Args, Map, Env, dont_know, State),
[FunType0, ArityType0] = ArgTypes0,
ArityType = t_inf(ArityType0, t_integer()),
case t_is_none(ArityType) of
true -> signal_guard_fail(Eval, Guard, ArgTypes0, State);
false ->
FunTypeConstr =
case t_number_vals(ArityType) of
unknown -> t_fun();
Vals ->
t_sup([t_fun(lists:duplicate(X, t_any()), t_any()) || X <- Vals])
end,
FunType = t_inf(FunType0, FunTypeConstr),
case t_is_none(FunType) of
true ->
case Eval of
pos -> signal_guard_fail(Eval, Guard, ArgTypes0, State);
neg -> {Map1, t_atom(false)};
dont_know -> {Map1, t_atom(false)}
end;
false ->
case Eval of
pos -> {enter_type_lists(Args, [FunType, ArityType], Map1),
t_atom(true)};
neg -> {Map1, t_atom(false)};
dont_know -> {Map1, t_boolean()}
end
end
end.
handle_guard_is_record(Guard, Map, Env, Eval, State) ->
Args = cerl:call_args(Guard),
[Rec, Tag0, Arity0] = Args,
Tag = cerl:atom_val(Tag0),
Arity = cerl:int_val(Arity0),
{Map1, RecType} = bind_guard(Rec, Map, Env, dont_know, State),
ArityMin1 = Arity - 1,
TupleType =
case state__lookup_record(Tag, ArityMin1, State) of
error -> t_tuple([t_atom(Tag)|lists:duplicate(ArityMin1, t_any())]);
{ok, Prototype} -> Prototype
end,
Mode = determine_mode(RecType, State#state.opaques),
NewTupleType =
case t_opaque_match_record(TupleType, State#state.opaques) of
[Opaque] -> Opaque;
_ -> TupleType
end,
Type = t_inf(NewTupleType, RecType, Mode),
case t_is_none(Type) of
true ->
case Eval of
pos -> signal_guard_fail(Eval, Guard,
[RecType, t_from_term(Tag),
t_from_term(Arity)],
State);
neg -> {Map1, t_atom(false)};
dont_know -> {Map1, t_atom(false)}
end;
false ->
case Eval of
pos -> {enter_type(Rec, Type, Map1), t_atom(true)};
neg -> {Map1, t_atom(false)};
dont_know -> {Map1, t_boolean()}
end
end.
handle_guard_eq(Guard, Map, Env, Eval, State) ->
[Arg1, Arg2] = cerl:call_args(Guard),
case {cerl:type(Arg1), cerl:type(Arg2)} of
{literal, literal} ->
case cerl:concrete(Arg1) =:= cerl:concrete(Arg2) of
true ->
if
Eval =:= pos -> {Map, t_atom(true)};
Eval =:= neg ->
ArgTypes = [t_from_term(cerl:concrete(Arg1)),
t_from_term(cerl:concrete(Arg2))],
signal_guard_fail(Eval, Guard, ArgTypes, State);
Eval =:= dont_know -> {Map, t_atom(true)}
end;
false ->
if
Eval =:= neg -> {Map, t_atom(false)};
Eval =:= dont_know -> {Map, t_atom(false)};
Eval =:= pos ->
ArgTypes = [t_from_term(cerl:concrete(Arg1)),
t_from_term(cerl:concrete(Arg2))],
signal_guard_fail(Eval, Guard, ArgTypes, State)
end
end;
{literal, _} when Eval =:= pos ->
case cerl:concrete(Arg1) of
Atom when is_atom(Atom) ->
bind_eqeq_guard_lit_other(Guard, Arg1, Arg2, Map, Env, State);
[] ->
bind_eqeq_guard_lit_other(Guard, Arg1, Arg2, Map, Env, State);
_ ->
bind_eq_guard(Guard, Arg1, Arg2, Map, Env, Eval, State)
end;
{_, literal} when Eval =:= pos ->
case cerl:concrete(Arg2) of
Atom when is_atom(Atom) ->
bind_eqeq_guard_lit_other(Guard, Arg2, Arg1, Map, Env, State);
[] ->
bind_eqeq_guard_lit_other(Guard, Arg2, Arg1, Map, Env, State);
_ ->
bind_eq_guard(Guard, Arg1, Arg2, Map, Env, Eval, State)
end;
{_, _} ->
bind_eq_guard(Guard, Arg1, Arg2, Map, Env, Eval, State)
end.
bind_eq_guard(Guard, Arg1, Arg2, Map, Env, Eval, State) ->
{Map1, Type1} = bind_guard(Arg1, Map, Env, dont_know, State),
{Map2, Type2} = bind_guard(Arg2, Map1, Env, dont_know, State),
case (t_is_nil(Type1) orelse t_is_nil(Type2) orelse
t_is_atom(Type1) orelse t_is_atom(Type2)) of
true -> bind_eqeq_guard(Guard, Arg1, Arg2, Map, Env, Eval, State);
false ->
case Eval of
pos -> {Map2, t_atom(true)};
neg -> {Map2, t_atom(false)};
dont_know -> {Map2, t_boolean()}
end
end.
handle_guard_eqeq(Guard, Map, Env, Eval, State) ->
[Arg1, Arg2] = cerl:call_args(Guard),
case {cerl:type(Arg1), cerl:type(Arg2)} of
{literal, literal} ->
case cerl:concrete(Arg1) =:= cerl:concrete(Arg2) of
true ->
if Eval =:= neg ->
ArgTypes = [t_from_term(cerl:concrete(Arg1)),
t_from_term(cerl:concrete(Arg2))],
signal_guard_fail(Eval, Guard, ArgTypes, State);
Eval =:= pos -> {Map, t_atom(true)};
Eval =:= dont_know -> {Map, t_atom(true)}
end;
false ->
if Eval =:= neg -> {Map, t_atom(false)};
Eval =:= dont_know -> {Map, t_atom(false)};
Eval =:= pos ->
ArgTypes = [t_from_term(cerl:concrete(Arg1)),
t_from_term(cerl:concrete(Arg2))],
signal_guard_fail(Eval, Guard, ArgTypes, State)
end
end;
{literal, _} when Eval =:= pos ->
bind_eqeq_guard_lit_other(Guard, Arg1, Arg2, Map, Env, State);
{_, literal} when Eval =:= pos ->
bind_eqeq_guard_lit_other(Guard, Arg2, Arg1, Map, Env, State);
{_, _} ->
bind_eqeq_guard(Guard, Arg1, Arg2, Map, Env, Eval, State)
end.
bind_eqeq_guard(Guard, Arg1, Arg2, Map, Env, Eval, State) ->
{Map1, Type1} = bind_guard(Arg1, Map, Env, dont_know, State),
{Map2, Type2} = bind_guard(Arg2, Map1, Env, dont_know, State),
?debug("Types are:~s =:= ~s\n", [t_to_string(Type1),
t_to_string(Type2)]),
Inf = t_inf(Type1, Type2),
case t_is_none(Inf) of
true ->
case Eval of
neg -> {Map2, t_atom(false)};
dont_know -> {Map2, t_atom(false)};
pos -> signal_guard_fail(Eval, Guard, [Type1, Type2], State)
end;
false ->
case Eval of
pos ->
case {cerl:type(Arg1), cerl:type(Arg2)} of
{var, var} ->
Map3 = enter_subst(Arg1, Arg2, Map2),
Map4 = enter_type(Arg2, Inf, Map3),
{Map4, t_atom(true)};
{var, _} ->
Map3 = enter_type(Arg1, Inf, Map2),
{Map3, t_atom(true)};
{_, var} ->
Map3 = enter_type(Arg2, Inf, Map2),
{Map3, t_atom(true)};
{_, _} ->
{Map2, t_atom(true)}
end;
neg ->
{Map2, t_atom(false)};
dont_know ->
{Map2, t_boolean()}
end
end.
bind_eqeq_guard_lit_other(Guard, Arg1, Arg2, Map, Env, State) ->
Eval = dont_know,
case cerl:concrete(Arg1) of
true ->
{_, Type} = MT = bind_guard(Arg2, Map, Env, pos, State),
case t_is_atom(true, Type) of
true -> MT;
false ->
{_, Type0} = bind_guard(Arg2, Map, Env, Eval, State),
signal_guard_fail(Eval, Guard, [Type0, t_atom(true)], State)
end;
false ->
{Map1, Type} = bind_guard(Arg2, Map, Env, neg, State),
case t_is_atom(false, Type) of
true -> {Map1, t_atom(true)};
false ->
{_, Type0} = bind_guard(Arg2, Map, Env, Eval, State),
signal_guard_fail(Eval, Guard, [Type0, t_atom(false)], State)
end;
Term ->
LitType = t_from_term(Term),
{Map1, Type} = bind_guard(Arg2, Map, Env, Eval, State),
case t_is_subtype(LitType, Type) of
false -> signal_guard_fail(Eval, Guard, [Type, LitType], State);
true ->
case cerl:is_c_var(Arg2) of
true -> {enter_type(Arg2, LitType, Map1), t_atom(true)};
false -> {Map1, t_atom(true)}
end
end
end.
handle_guard_and(Guard, Map, Env, Eval, State) ->
[Arg1, Arg2] = cerl:call_args(Guard),
case Eval of
pos ->
{Map1, Type1} = bind_guard(Arg1, Map, Env, Eval, State),
case t_is_atom(true, Type1) of
false -> signal_guard_fail(Eval, Guard, [Type1, t_any()], State);
true ->
{Map2, Type2} = bind_guard(Arg2, Map1, Env, Eval, State),
case t_is_atom(true, Type2) of
false -> signal_guard_fail(Eval, Guard, [Type1, Type2], State);
true -> {Map2, t_atom(true)}
end
end;
neg ->
MapJ = join_maps_begin(Map),
{Map1, Type1} =
try bind_guard(Arg1, MapJ, Env, neg, State)
catch throw:{fail, _} -> bind_guard(Arg2, MapJ, Env, pos, State)
end,
{Map2, Type2} =
try bind_guard(Arg2, MapJ, Env, neg, State)
catch throw:{fail, _} -> bind_guard(Arg1, MapJ, Env, pos, State)
end,
case t_is_atom(false, Type1) orelse t_is_atom(false, Type2) of
true -> {join_maps_end([Map1, Map2], MapJ), t_atom(false)};
false -> signal_guard_fail(Eval, Guard, [Type1, Type2], State)
end;
dont_know ->
MapJ = join_maps_begin(Map),
{Map1, Type1} = bind_guard(Arg1, MapJ, Env, dont_know, State),
{Map2, Type2} = bind_guard(Arg2, MapJ, Env, dont_know, State),
Bool1 = t_inf(Type1, t_boolean()),
Bool2 = t_inf(Type2, t_boolean()),
case t_is_none(Bool1) orelse t_is_none(Bool2) of
true -> throw({fatal_fail, none});
false ->
NewMap = join_maps_end([Map1, Map2], MapJ),
NewType =
case {t_atom_vals(Bool1), t_atom_vals(Bool2)} of
{['true'] , ['true'] } -> t_atom(true);
{['false'], _ } -> t_atom(false);
{_ , ['false']} -> t_atom(false);
{_ , _ } -> t_boolean()
end,
{NewMap, NewType}
end
end.
handle_guard_or(Guard, Map, Env, Eval, State) ->
[Arg1, Arg2] = cerl:call_args(Guard),
case Eval of
pos ->
MapJ = join_maps_begin(Map),
{Map1, Bool1} =
try bind_guard(Arg1, MapJ, Env, pos, State)
catch
throw:{fail,_} -> bind_guard(Arg1, MapJ, Env, dont_know, State)
end,
{Map2, Bool2} =
try bind_guard(Arg2, MapJ, Env, pos, State)
catch
throw:{fail,_} -> bind_guard(Arg2, MapJ, Env, dont_know, State)
end,
case ((t_is_atom(true, Bool1) andalso t_is_boolean(Bool2))
orelse
(t_is_atom(true, Bool2) andalso t_is_boolean(Bool1))) of
true -> {join_maps_end([Map1, Map2], MapJ), t_atom(true)};
false -> signal_guard_fail(Eval, Guard, [Bool1, Bool2], State)
end;
neg ->
{Map1, Type1} = bind_guard(Arg1, Map, Env, neg, State),
case t_is_atom(false, Type1) of
false -> signal_guard_fail(Eval, Guard, [Type1, t_any()], State);
true ->
{Map2, Type2} = bind_guard(Arg2, Map1, Env, neg, State),
case t_is_atom(false, Type2) of
false -> signal_guard_fail(Eval, Guard, [Type1, Type2], State);
true -> {Map2, t_atom(false)}
end
end;
dont_know ->
MapJ = join_maps_begin(Map),
{Map1, Type1} = bind_guard(Arg1, MapJ, Env, dont_know, State),
{Map2, Type2} = bind_guard(Arg2, MapJ, Env, dont_know, State),
Bool1 = t_inf(Type1, t_boolean()),
Bool2 = t_inf(Type2, t_boolean()),
case t_is_none(Bool1) orelse t_is_none(Bool2) of
true -> throw({fatal_fail, none});
false ->
NewMap = join_maps_end([Map1, Map2], MapJ),
NewType =
case {t_atom_vals(Bool1), t_atom_vals(Bool2)} of
{['false'], ['false']} -> t_atom(false);
{['true'] , _ } -> t_atom(true);
{_ , ['true'] } -> t_atom(true);
{_ , _ } -> t_boolean()
end,
{NewMap, NewType}
end
end.
handle_guard_not(Guard, Map, Env, Eval, State) ->
[Arg] = cerl:call_args(Guard),
case Eval of
neg ->
{Map1, Type} = bind_guard(Arg, Map, Env, pos, State),
case t_is_atom(true, Type) of
true -> {Map1, t_atom(false)};
false ->
{_, Type0} = bind_guard(Arg, Map, Env, Eval, State),
signal_guard_fail(Eval, Guard, [Type0], State)
end;
pos ->
{Map1, Type} = bind_guard(Arg, Map, Env, neg, State),
case t_is_atom(false, Type) of
true -> {Map1, t_atom(true)};
false ->
{_, Type0} = bind_guard(Arg, Map, Env, Eval, State),
signal_guard_fail(Eval, Guard, [Type0], State)
end;
dont_know ->
{Map1, Type} = bind_guard(Arg, Map, Env, dont_know, State),
Bool = t_inf(Type, t_boolean()),
case t_is_none(Bool) of
true -> throw({fatal_fail, none});
false ->
case t_atom_vals(Bool) of
['true'] -> {Map1, t_atom(false)};
['false'] -> {Map1, t_atom(true)};
[_, _] -> {Map1, Bool}
end
end
end.
bind_guard_list(Guards, Map, Env, Eval, State) ->
bind_guard_list(Guards, Map, Env, Eval, State, []).
bind_guard_list([G|Gs], Map, Env, Eval, State, Acc) ->
{Map1, T} = bind_guard(G, Map, Env, Eval, State),
bind_guard_list(Gs, Map1, Env, Eval, State, [T|Acc]);
bind_guard_list([], Map, _Env, _Eval, _State, Acc) ->
{Map, lists:reverse(Acc)}.
-type eval() :: 'pos' | 'neg' | 'dont_know'.
-spec signal_guard_fail(eval(), cerl:c_call(), [erl_types:erl_type()],
state()) -> no_return().
signal_guard_fail(Eval, Guard, ArgTypes, State) ->
Args = cerl:call_args(Guard),
F = cerl:atom_val(cerl:call_name(Guard)),
MFA = {cerl:atom_val(cerl:call_module(Guard)), F, length(Args)},
Msg =
case is_infix_op(MFA) of
true ->
[ArgType1, ArgType2] = ArgTypes,
[Arg1, Arg2] = Args,
Kind =
case Eval of
neg -> neg_guard_fail;
pos -> guard_fail;
dont_know -> guard_fail
end,
{Kind, [format_args_1([Arg1], [ArgType1], State),
atom_to_list(F),
format_args_1([Arg2], [ArgType2], State)]};
false ->
mk_guard_msg(Eval, F, Args, ArgTypes, State)
end,
throw({fail, {Guard, Msg}}).
is_infix_op({erlang, '=:=', 2}) -> true;
is_infix_op({erlang, '==', 2}) -> true;
is_infix_op({erlang, '=/=', 2}) -> true;
is_infix_op({erlang, '=/', 2}) -> true;
is_infix_op({erlang, '<', 2}) -> true;
is_infix_op({erlang, '=<', 2}) -> true;
is_infix_op({erlang, '>', 2}) -> true;
is_infix_op({erlang, '>=', 2}) -> true;
is_infix_op({M, F, A}) when is_atom(M), is_atom(F),
is_integer(A), 0 =< A, A =< 255 -> false.
-spec signal_guard_fatal_fail(eval(), cerl:c_call(), [erl_types:erl_type()],
state()) -> no_return().
signal_guard_fatal_fail(Eval, Guard, ArgTypes, State) ->
Args = cerl:call_args(Guard),
F = cerl:atom_val(cerl:call_name(Guard)),
Msg = mk_guard_msg(Eval, F, Args, ArgTypes, State),
throw({fatal_fail, {Guard, Msg}}).
mk_guard_msg(Eval, F, Args, ArgTypes, State) ->
FArgs = [F, format_args(Args, ArgTypes, State)],
case any_has_opaque_subtype(ArgTypes) of
true -> {opaque_guard, FArgs};
false ->
case Eval of
neg -> {neg_guard_fail, FArgs};
pos -> {guard_fail, FArgs};
dont_know -> {guard_fail, FArgs}
end
end.
bind_guard_case_clauses(Arg, Clauses, Map0, Env, Eval, State) ->
Clauses1 = filter_fail_clauses(Clauses),
Map = join_maps_begin(Map0),
{GenMap, GenArgType} = bind_guard(Arg, Map, Env, dont_know, State),
bind_guard_case_clauses(GenArgType, GenMap, Arg, Clauses1, Map, Env, Eval,
t_none(), [], State).
filter_fail_clauses([Clause|Left]) ->
case (cerl:clause_pats(Clause) =:= []) of
true ->
Body = cerl:clause_body(Clause),
case cerl:is_literal(Body) andalso (cerl:concrete(Body) =:= fail) of
true -> filter_fail_clauses(Left);
false -> [Clause|filter_fail_clauses(Left)]
end;
false ->
[Clause|filter_fail_clauses(Left)]
end;
filter_fail_clauses([]) ->
[].
bind_guard_case_clauses(GenArgType, GenMap, ArgExpr, [Clause|Left],
Map, Env, Eval, AccType, AccMaps, State) ->
Pats = cerl:clause_pats(Clause),
{NewMap0, ArgType} =
case Pats of
[Pat] ->
case cerl:is_literal(Pat) of
true ->
try
case cerl:concrete(Pat) of
true -> bind_guard(ArgExpr, Map, Env, pos, State);
false -> bind_guard(ArgExpr, Map, Env, neg, State);
_ -> {GenMap, GenArgType}
end
catch
throw:{fail, _} -> {none, GenArgType}
end;
false ->
{GenMap, GenArgType}
end;
_ -> {GenMap, GenArgType}
end,
NewMap1 =
case Pats =:= [] of
true -> NewMap0;
false ->
case t_is_none(ArgType) of
true -> none;
false ->
ArgTypes = case t_is_any(ArgType) of
true -> Any = t_any(), [Any || _ <- Pats];
false -> t_to_tlist(ArgType)
end,
case bind_pat_vars(Pats, ArgTypes, [], NewMap0, State) of
{error, _, _, _, _} -> none;
{PatMap, _PatTypes} -> PatMap
end
end
end,
Guard = cerl:clause_guard(Clause),
GenPatType = dialyzer_typesig:get_safe_underapprox(Pats, Guard),
NewGenArgType = t_subtract(GenArgType, GenPatType),
case (NewMap1 =:= none) orelse t_is_none(GenArgType) of
true ->
bind_guard_case_clauses(NewGenArgType, GenMap, ArgExpr, Left, Map, Env,
Eval, AccType, AccMaps, State);
false ->
{NewAccType, NewAccMaps} =
try
{NewMap2, GuardType} = bind_guard(Guard, NewMap1, Env, pos, State),
case t_is_none(t_inf(t_atom(true), GuardType)) of
true -> throw({fail, none});
false -> ok
end,
{NewMap3, CType} = bind_guard(cerl:clause_body(Clause), NewMap2,
Env, Eval, State),
case Eval of
pos ->
case t_is_atom(true, CType) of
true -> ok;
false -> throw({fail, none})
end;
neg ->
case t_is_atom(false, CType) of
true -> ok;
false -> throw({fail, none})
end;
dont_know ->
ok
end,
{t_sup(AccType, CType), [NewMap3|AccMaps]}
catch
throw:{fail, _What} -> {AccType, AccMaps}
end,
bind_guard_case_clauses(NewGenArgType, GenMap, ArgExpr, Left, Map, Env,
Eval, NewAccType, NewAccMaps, State)
end;
bind_guard_case_clauses(_GenArgType, _GenMap, _ArgExpr, [], Map, _Env, _Eval,
AccType, AccMaps, _State) ->
case t_is_none(AccType) of
true -> throw({fail, none});
false -> {join_maps_end(AccMaps, Map), AccType}
end.
%%% ===========================================================================
%%%
%%% Maps and types.
%%%
%%% ===========================================================================
map__new() ->
#map{}.
%% join_maps_begin pushes 'modified' to the stack; join_maps pops
%% 'modified' from the stack.
join_maps_begin(#map{modified = M, modified_stack = S, ref = Ref} = Map) ->
Map#map{ref = make_ref(), modified = [], modified_stack = [{M,Ref} | S]}.
join_maps_end(Maps, MapOut) ->
#map{ref = Ref, modified_stack = [{M1,R1} | S]} = MapOut,
true = lists:all(fun(M) -> M#map.ref =:= Ref end, Maps), % sanity
Keys0 = lists:usort(lists:append([M#map.modified || M <- Maps])),
#map{dict = Dict, subst = Subst} = MapOut,
Keys = [Key ||
Key <- Keys0,
dict:is_key(Key, Dict) orelse dict:is_key(Key, Subst)],
Out = case Maps of
[] -> join_maps(Maps, MapOut);
_ -> join_maps(Keys, Maps, MapOut)
end,
debug_join_check(Maps, MapOut, Out),
Out#map{ref = R1,
modified = Out#map.modified ++ M1, % duplicates possible
modified_stack = S}.
join_maps(Maps, MapOut) ->
#map{dict = Dict, subst = Subst} = MapOut,
Keys = ordsets:from_list(dict:fetch_keys(Dict) ++ dict:fetch_keys(Subst)),
join_maps(Keys, Maps, MapOut).
join_maps([Key|Left], Maps, MapOut) ->
Type = join_maps_one_key(Maps, Key, t_none()),
case t_is_equal(lookup_type(Key, MapOut), Type) of
true -> join_maps(Left, Maps, MapOut);
false -> join_maps(Left, Maps, enter_type(Key, Type, MapOut))
end;
join_maps([], _Maps, MapOut) ->
MapOut.
join_maps_one_key([Map|Left], Key, AccType) ->
case t_is_any(AccType) of
true ->
%% We can stop here
AccType;
false ->
join_maps_one_key(Left, Key, t_sup(lookup_type(Key, Map), AccType))
end;
join_maps_one_key([], _Key, AccType) ->
AccType.
-ifdef(DEBUG).
debug_join_check(Maps, MapOut, Out) ->
#map{dict = Dict, subst = Subst} = Out,
#map{dict = Dict2, subst = Subst2} = join_maps(Maps, MapOut),
F = fun(D) -> lists:keysort(1, dict:to_list(D)) end,
[throw({bug, join_maps}) ||
F(Dict) =/= F(Dict2) orelse F(Subst) =/= F(Subst2)].
-else.
debug_join_check(_Maps, _MapOut, _Out) -> ok.
-endif.
enter_type_lists([Key|KeyTail], [Val|ValTail], Map) ->
Map1 = enter_type(Key, Val, Map),
enter_type_lists(KeyTail, ValTail, Map1);
enter_type_lists([], [], Map) ->
Map.
enter_type_list([{Key, Val}|Left], Map) ->
Map1 = enter_type(Key, Val, Map),
enter_type_list(Left, Map1);
enter_type_list([], Map) ->
Map.
enter_type(Key, Val, MS) ->
case cerl:is_literal(Key) of
true -> MS;
false ->
case cerl:is_c_values(Key) of
true ->
Keys = cerl:values_es(Key),
case t_is_any(Val) orelse t_is_none(Val) of
true ->
enter_type_lists(Keys, [Val || _ <- Keys], MS);
false ->
enter_type_lists(Keys, t_to_tlist(Val), MS)
end;
false ->
#map{dict = Dict, subst = Subst} = MS,
KeyLabel = get_label(Key),
case dict:find(KeyLabel, Subst) of
{ok, NewKey} ->
?debug("Binding ~p to ~p\n", [KeyLabel, NewKey]),
enter_type(NewKey, Val, MS);
error ->
?debug("Entering ~p :: ~s\n", [KeyLabel, t_to_string(Val)]),
case dict:find(KeyLabel, Dict) of
{ok, Val} -> MS;
{ok, _OldVal} -> store_map(KeyLabel, Val, MS);
error -> store_map(KeyLabel, Val, MS)
end
end
end
end.
store_map(Key, Val, #map{dict = Dict, ref = undefined} = Map) ->
Map#map{dict = dict:store(Key, Val, Dict)};
store_map(Key, Val, #map{dict = Dict, modified = Mod} = Map) ->
Map#map{dict = dict:store(Key, Val, Dict), modified = [Key | Mod]}.
enter_subst(Key, Val, #map{subst = Subst} = MS) ->
KeyLabel = get_label(Key),
case cerl:is_literal(Val) of
true ->
store_map(KeyLabel, literal_type(Val), MS);
false ->
case cerl:is_c_var(Val) of
false -> MS;
true ->
ValLabel = get_label(Val),
case dict:find(ValLabel, Subst) of
{ok, NewVal} ->
enter_subst(Key, NewVal, MS);
error ->
if KeyLabel =:= ValLabel -> MS;
true ->
?debug("Subst: storing ~p = ~p\n", [KeyLabel, ValLabel]),
store_subst(KeyLabel, ValLabel, MS)
end
end
end
end.
store_subst(Key, Val, #map{subst = S, ref = undefined} = Map) ->
Map#map{subst = dict:store(Key, Val, S)};
store_subst(Key, Val, #map{subst = S, modified = Mod} = Map) ->
Map#map{subst = dict:store(Key, Val, S), modified = [Key | Mod]}.
lookup_type(Key, #map{dict = Dict, subst = Subst}) ->
lookup(Key, Dict, Subst, t_none()).
lookup(Key, Dict, Subst, AnyNone) ->
case cerl:is_literal(Key) of
true -> literal_type(Key);
false ->
Label = get_label(Key),
case dict:find(Label, Subst) of
{ok, NewKey} -> lookup(NewKey, Dict, Subst, AnyNone);
error ->
case dict:find(Label, Dict) of
{ok, Val} -> Val;
error -> AnyNone
end
end
end.
lookup_fun_sig(Fun, Callgraph, Plt) ->
MFAorLabel =
case dialyzer_callgraph:lookup_name(Fun, Callgraph) of
error -> Fun;
{ok, MFA} -> MFA
end,
dialyzer_plt:lookup(Plt, MFAorLabel).
literal_type(Lit) ->
t_from_term(cerl:concrete(Lit)).
mark_as_fresh([Tree|Left], Map) ->
SubTrees1 = lists:append(cerl:subtrees(Tree)),
{SubTrees2, Map1} =
case cerl:type(Tree) of
bitstr ->
%% The Size field is not fresh.
{SubTrees1 -- [cerl:bitstr_size(Tree)], Map};
var ->
{SubTrees1, enter_type(Tree, t_any(), Map)};
_ ->
{SubTrees1, Map}
end,
mark_as_fresh(SubTrees2 ++ Left, Map1);
mark_as_fresh([], Map) ->
Map.
-ifdef(DEBUG).
debug_pp_map(#map{dict = Dict}=Map) ->
Keys = dict:fetch_keys(Dict),
io:format("Map:\n", []),
lists:foreach(fun (Key) ->
io:format("\t~w :: ~s\n",
[Key, t_to_string(lookup_type(Key, Map))])
end, Keys),
ok.
-else.
debug_pp_map(_Map) -> ok.
-endif.
%%% ===========================================================================
%%%
%%% Utilities
%%%
%%% ===========================================================================
get_label(L) when is_integer(L) ->
L;
get_label(T) ->
cerl_trees:get_label(T).
t_is_simple(ArgType) ->
t_is_atom(ArgType) orelse t_is_number(ArgType) orelse t_is_port(ArgType)
orelse t_is_pid(ArgType) orelse t_is_reference(ArgType)
orelse t_is_nil(ArgType).
%% t_is_structured(ArgType) ->
%% case t_is_nil(ArgType) of
%% true -> false;
%% false ->
%% SType = t_inf(t_sup([t_list(), t_tuple(), t_binary()]), ArgType),
%% t_is_equal(ArgType, SType)
%% end.
is_call_to_send(Tree) ->
case cerl:is_c_call(Tree) of
false -> false;
true ->
Mod = cerl:call_module(Tree),
Name = cerl:call_name(Tree),
Arity = cerl:call_arity(Tree),
cerl:is_c_atom(Mod)
andalso cerl:is_c_atom(Name)
andalso (cerl:atom_val(Name) =:= '!')
andalso (cerl:atom_val(Mod) =:= erlang)
andalso (Arity =:= 2)
end.
any_opaque(Ts) ->
lists:any(fun erl_types:t_is_opaque/1, Ts).
any_has_opaque_subtype(Ts) ->
lists:any(fun erl_types:t_has_opaque_subtype/1, Ts).
filter_match_fail([Clause] = Cls) ->
Body = cerl:clause_body(Clause),
case cerl:type(Body) of
primop ->
case cerl:atom_val(cerl:primop_name(Body)) of
match_fail -> [];
raise -> [];
_ -> Cls
end;
_ -> Cls
end;
filter_match_fail([H|T]) ->
[H|filter_match_fail(T)];
filter_match_fail([]) ->
%% This can actually happen, for example in
%% receive after 1 -> ok end
[].
determine_mode(Type, Opaques) ->
case lists:member(Type, Opaques) of
true -> opaque;
false -> structured
end.
%%% ===========================================================================
%%%
%%% The State.
%%%
%%% ===========================================================================
state__new(Callgraph, Tree, Plt, Module, Records, BehaviourTranslations) ->
Opaques = erl_types:module_builtin_opaques(Module) ++
erl_types:t_opaque_from_records(Records),
TreeMap = build_tree_map(Tree),
Funs = dict:fetch_keys(TreeMap),
FunTab = init_fun_tab(Funs, dict:new(), TreeMap, Callgraph, Plt, Opaques),
ExportedFuns =
[Fun || Fun <- Funs--[top], dialyzer_callgraph:is_escaping(Fun, Callgraph)],
Work = init_work(ExportedFuns),
Env = lists:foldl(fun(Fun, Env) -> dict:store(Fun, map__new(), Env) end,
dict:new(), Funs),
#state{callgraph = Callgraph, envs = Env, fun_tab = FunTab, opaques = Opaques,
plt = Plt, races = dialyzer_races:new(), records = Records,
warning_mode = false, warnings = [], work = Work, tree_map = TreeMap,
module = Module, behaviour_api_dict = BehaviourTranslations}.
state__warning_mode(#state{warning_mode = WM}) ->
WM.
state__set_warning_mode(#state{tree_map = TreeMap, fun_tab = FunTab,
races = Races} = State) ->
?debug("==========\nStarting warning pass\n==========\n", []),
Funs = dict:fetch_keys(TreeMap),
State#state{work = init_work([top|Funs--[top]]),
fun_tab = FunTab, warning_mode = true,
races = dialyzer_races:put_race_analysis(true, Races)}.
state__race_analysis(Analysis, #state{races = Races} = State) ->
State#state{races = dialyzer_races:put_race_analysis(Analysis, Races)}.
state__renew_curr_fun(CurrFun, CurrFunLabel,
#state{races = Races} = State) ->
State#state{races = dialyzer_races:put_curr_fun(CurrFun, CurrFunLabel,
Races)}.
state__renew_fun_args(Args, #state{races = Races} = State) ->
case state__warning_mode(State) of
true -> State;
false ->
State#state{races = dialyzer_races:put_fun_args(Args, Races)}
end.
state__renew_race_list(RaceList, RaceListSize,
#state{races = Races} = State) ->
State#state{races = dialyzer_races:put_race_list(RaceList, RaceListSize,
Races)}.
state__renew_warnings(Warnings, State) ->
State#state{warnings = Warnings}.
-spec state__add_warning(dial_warning(), state()) -> state().
state__add_warning(Warn, #state{warnings = Warnings} = State) ->
State#state{warnings = [Warn|Warnings]}.
state__add_warning(State, Tag, Tree, Msg) ->
state__add_warning(State, Tag, Tree, Msg, false).
state__add_warning(#state{warning_mode = false} = State, _, _, _, _) ->
State;
state__add_warning(#state{warnings = Warnings, warning_mode = true} = State,
Tag, Tree, Msg, Force) ->
Ann = cerl:get_ann(Tree),
case Force of
true ->
Warn = {Tag, {get_file(Ann), abs(get_line(Ann))}, Msg},
State#state{warnings = [Warn|Warnings]};
false ->
case is_compiler_generated(Ann) of
true -> State;
false ->
Warn = {Tag, {get_file(Ann), get_line(Ann)}, Msg},
State#state{warnings = [Warn|Warnings]}
end
end.
state__get_race_warnings(#state{races = Races} = State) ->
{Races1, State1} = dialyzer_races:get_race_warnings(Races, State),
State1#state{races = Races1}.
state__get_warnings(#state{tree_map = TreeMap, fun_tab = FunTab,
callgraph = Callgraph, plt = Plt} = State,
NoWarnUnused) ->
FoldFun =
fun({top, _}, AccState) -> AccState;
({FunLbl, Fun}, AccState) ->
{NotCalled, Ret} =
case dict:fetch(get_label(Fun), FunTab) of
{not_handled, {_Args0, Ret0}} -> {true, Ret0};
{_Args0, Ret0} -> {false, Ret0}
end,
case NotCalled of
true ->
{Warn, Msg} =
case dialyzer_callgraph:lookup_name(FunLbl, Callgraph) of
error -> {true, {unused_fun, []}};
{ok, {_M, F, A} = MFA} ->
{not sets:is_element(MFA, NoWarnUnused),
{unused_fun, [F, A]}}
end,
case Warn of
true -> state__add_warning(AccState, ?WARN_NOT_CALLED, Fun, Msg);
false -> AccState
end;
false ->
{Name, Contract} =
case dialyzer_callgraph:lookup_name(FunLbl, Callgraph) of
error -> {[], none};
{ok, {_M, F, A} = MFA} ->
{[F, A], dialyzer_plt:lookup_contract(Plt, MFA)}
end,
case t_is_none(Ret) of
true ->
%% Check if the function has a contract that allows this.
Warn =
case Contract of
none -> not parent_allows_this(FunLbl, State);
{value, C} ->
GenRet = dialyzer_contracts:get_contract_return(C),
not t_is_unit(GenRet)
end,
case Warn of
true ->
case classify_returns(Fun) of
no_match ->
Msg = {no_return, [no_match|Name]},
state__add_warning(AccState, ?WARN_RETURN_NO_RETURN,
Fun, Msg);
only_explicit ->
Msg = {no_return, [only_explicit|Name]},
state__add_warning(AccState, ?WARN_RETURN_ONLY_EXIT,
Fun, Msg);
only_normal ->
Msg = {no_return, [only_normal|Name]},
state__add_warning(AccState, ?WARN_RETURN_NO_RETURN,
Fun, Msg);
both ->
Msg = {no_return, [both|Name]},
state__add_warning(AccState, ?WARN_RETURN_NO_RETURN,
Fun, Msg)
end;
false ->
AccState
end;
false ->
AccState
end
end
end,
#state{warnings = Warn} = lists:foldl(FoldFun, State, dict:to_list(TreeMap)),
Warn.
state__is_escaping(Fun, #state{callgraph = Callgraph}) ->
dialyzer_callgraph:is_escaping(Fun, Callgraph).
state__lookup_type_for_rec_var(Var, #state{callgraph = Callgraph} = State) ->
Label = get_label(Var),
case dialyzer_callgraph:lookup_rec_var(Label, Callgraph) of
error -> error;
{ok, MFA} ->
{ok, FunLabel} = dialyzer_callgraph:lookup_label(MFA, Callgraph),
{ok, state__fun_type(FunLabel, State)}
end.
state__lookup_name({_, _, _} = MFA, #state{}) ->
MFA;
state__lookup_name(top, #state{}) ->
top;
state__lookup_name(Fun, #state{callgraph = Callgraph}) ->
case dialyzer_callgraph:lookup_name(Fun, Callgraph) of
{ok, MFA} -> MFA;
error -> Fun
end.
state__lookup_record(Tag, Arity, #state{records = Records}) ->
case erl_types:lookup_record(Tag, Arity, Records) of
{ok, Fields} ->
{ok, t_tuple([t_atom(Tag)|
[FieldType || {_FieldName, FieldType} <- Fields]])};
error ->
error
end.
state__get_args_and_status(Tree, #state{fun_tab = FunTab}) ->
Fun = get_label(Tree),
case dict:find(Fun, FunTab) of
{ok, {not_handled, {ArgTypes, _}}} -> {ArgTypes, false};
{ok, {ArgTypes, _}} -> {ArgTypes, true}
end.
build_tree_map(Tree) ->
Fun =
fun(T, Dict) ->
case cerl:is_c_fun(T) of
true ->
dict:store(get_label(T), T, Dict);
false ->
Dict
end
end,
cerl_trees:fold(Fun, dict:new(), Tree).
init_fun_tab([top|Left], Dict, TreeMap, Callgraph, Plt, Opaques) ->
NewDict = dict:store(top, {[], t_none()}, Dict),
init_fun_tab(Left, NewDict, TreeMap, Callgraph, Plt, Opaques);
init_fun_tab([Fun|Left], Dict, TreeMap, Callgraph, Plt, Opaques) ->
Arity = cerl:fun_arity(dict:fetch(Fun, TreeMap)),
FunEntry =
case dialyzer_callgraph:is_escaping(Fun, Callgraph) of
true ->
Args = lists:duplicate(Arity, t_any()),
case lookup_fun_sig(Fun, Callgraph, Plt) of
none -> {Args, t_unit()};
{value, {RetType, _}} ->
case t_is_none(RetType) of
true -> {Args, t_none()};
false -> {Args, t_unit()}
end
end;
false -> {not_handled, {lists:duplicate(Arity, t_none()), t_unit()}}
end,
NewDict = dict:store(Fun, FunEntry, Dict),
init_fun_tab(Left, NewDict, TreeMap, Callgraph, Plt, Opaques);
init_fun_tab([], Dict, _TreeMap, _Callgraph, _Plt, _Opaques) ->
?debug("DICT:~p\n",[dict:to_list(Dict)]),
Dict.
state__update_fun_env(Tree, Map, #state{envs = Envs} = State) ->
NewEnvs = dict:store(get_label(Tree), Map, Envs),
State#state{envs = NewEnvs}.
state__fun_env(Tree, #state{envs = Envs}) ->
Fun = get_label(Tree),
case dict:find(Fun, Envs) of
error -> none;
{ok, Map} -> Map
end.
state__clean_not_called(#state{fun_tab = FunTab} = State) ->
NewFunTab =
dict:map(fun(top, Entry) -> Entry;
(_Fun, {not_handled, {Args, _}}) -> {Args, t_none()};
(_Fun, Entry) -> Entry
end, FunTab),
State#state{fun_tab = NewFunTab}.
state__all_fun_types(State) ->
#state{fun_tab = FunTab} = state__clean_not_called(State),
Tab1 = dict:erase(top, FunTab),
dict:map(fun(_Fun, {Args, Ret}) -> t_fun(Args, Ret)end, Tab1).
state__fun_type(Fun, #state{fun_tab = FunTab}) ->
Label =
if is_integer(Fun) -> Fun;
true -> get_label(Fun)
end,
Entry = dict:find(Label, FunTab),
?debug("FunType ~p:~p\n",[Label, Entry]),
case Entry of
{ok, {not_handled, {A, R}}} ->
t_fun(A, R);
{ok, {A, R}} ->
t_fun(A, R)
end.
state__update_fun_entry(Tree, ArgTypes, Out0,
#state{fun_tab=FunTab, callgraph=CG, plt=Plt} = State)->
Fun = get_label(Tree),
Out1 =
if Fun =:= top -> Out0;
true ->
case lookup_fun_sig(Fun, CG, Plt) of
{value, {SigRet, _}} -> t_inf(SigRet, Out0, opaque);
none -> Out0
end
end,
Out = t_limit(Out1, ?TYPE_LIMIT),
case dict:find(Fun, FunTab) of
{ok, {ArgTypes, OldOut}} ->
case t_is_equal(OldOut, Out) of
true ->
?debug("Fixpoint for ~w: ~s\n",
[state__lookup_name(Fun, State),
t_to_string(t_fun(ArgTypes, Out))]),
State;
false ->
NewEntry = {ArgTypes, Out},
?debug("New Entry for ~w: ~s\n",
[state__lookup_name(Fun, State),
t_to_string(t_fun(ArgTypes, Out))]),
NewFunTab = dict:store(Fun, NewEntry, FunTab),
State1 = State#state{fun_tab = NewFunTab},
state__add_work_from_fun(Tree, State1)
end;
{ok, {NewArgTypes, _OldOut}} ->
%% Can only happen in self-recursive functions. Only update the out type.
NewEntry = {NewArgTypes, Out},
?debug("New Entry for ~w: ~s\n",
[state__lookup_name(Fun, State),
t_to_string(t_fun(NewArgTypes, Out))]),
NewFunTab = dict:store(Fun, NewEntry, FunTab),
State1 = State#state{fun_tab = NewFunTab},
state__add_work_from_fun(Tree, State1)
end.
state__add_work_from_fun(_Tree, #state{warning_mode = true} = State) ->
State;
state__add_work_from_fun(Tree, #state{callgraph = Callgraph,
tree_map = TreeMap} = State) ->
case get_label(Tree) of
top -> State;
Label when is_integer(Label) ->
case dialyzer_callgraph:in_neighbours(Label, Callgraph) of
none -> State;
MFAList ->
LabelList = [dialyzer_callgraph:lookup_label(MFA, Callgraph)
|| MFA <- MFAList],
%% Must filter the result for results in this module.
FilteredList = [L || {ok, L} <- LabelList, dict:is_key(L, TreeMap)],
?debug("~w: Will try to add:~w\n",
[state__lookup_name(get_label(Tree), State), MFAList]),
lists:foldl(fun(L, AccState) ->
state__add_work(L, AccState)
end, State, FilteredList)
end
end.
state__add_work(external, State) ->
State;
state__add_work(top, State) ->
State;
state__add_work(Fun, #state{work = Work} = State) ->
NewWork = add_work(Fun, Work),
State#state{work = NewWork}.
state__get_work(#state{work = Work, tree_map = TreeMap} = State) ->
case get_work(Work) of
none -> none;
{Fun, NewWork} ->
{dict:fetch(Fun, TreeMap), State#state{work = NewWork}}
end.
state__lookup_call_site(Tree, #state{callgraph = Callgraph}) ->
Label = get_label(Tree),
dialyzer_callgraph:lookup_call_site(Label, Callgraph).
state__fun_info(external, #state{}) ->
external;
state__fun_info({_, _, _} = MFA, #state{plt = PLT}) ->
{MFA,
dialyzer_plt:lookup(PLT, MFA),
dialyzer_plt:lookup_contract(PLT, MFA),
t_any()};
state__fun_info(Fun, #state{callgraph = CG, fun_tab = FunTab, plt = PLT}) ->
{Sig, Contract} =
case dialyzer_callgraph:lookup_name(Fun, CG) of
error ->
{dialyzer_plt:lookup(PLT, Fun), none};
{ok, MFA} ->
{dialyzer_plt:lookup(PLT, MFA), dialyzer_plt:lookup_contract(PLT, MFA)}
end,
LocalRet =
case dict:fetch(Fun, FunTab) of
{not_handled, {_Args, Ret}} -> Ret;
{_Args, Ret} -> Ret
end,
?debug("LocalRet: ~s\n", [t_to_string(LocalRet)]),
{Fun, Sig, Contract, LocalRet}.
state__find_apply_return(Tree, #state{callgraph = Callgraph} = State) ->
Apply = get_label(Tree),
case dialyzer_callgraph:lookup_call_site(Apply, Callgraph) of
error ->
unknown;
{ok, List} ->
case lists:member(external, List) of
true -> t_any();
false ->
FunTypes = [state__fun_type(F, State) || F <- List],
Returns = [t_fun_range(F) || F <- FunTypes],
t_sup(Returns)
end
end.
forward_args(Fun, ArgTypes, #state{work = Work, fun_tab = FunTab} = State) ->
{OldArgTypes, OldOut, Fixpoint} =
case dict:find(Fun, FunTab) of
{ok, {not_handled, {OldArgTypes0, OldOut0}}} ->
{OldArgTypes0, OldOut0, false};
{ok, {OldArgTypes0, OldOut0}} ->
{OldArgTypes0, OldOut0,
t_is_subtype(t_product(ArgTypes), t_product(OldArgTypes0))}
end,
case Fixpoint of
true -> State;
false ->
NewArgTypes = [t_sup(X, Y) || {X, Y} <- lists:zip(ArgTypes, OldArgTypes)],
NewWork = add_work(Fun, Work),
?debug("~w: forwarding args ~s\n",
[state__lookup_name(Fun, State),
t_to_string(t_product(NewArgTypes))]),
NewFunTab = dict:store(Fun, {NewArgTypes, OldOut}, FunTab),
State#state{work = NewWork, fun_tab = NewFunTab}
end.
-spec state__cleanup(state()) -> state().
state__cleanup(#state{callgraph = Callgraph,
races = Races,
records = Records}) ->
#state{callgraph = dialyzer_callgraph:cleanup(Callgraph),
races = dialyzer_races:cleanup(Races),
records = Records}.
-spec state__get_callgraph(state()) -> dialyzer_callgraph:callgraph().
state__get_callgraph(#state{callgraph = Callgraph}) ->
Callgraph.
-spec state__get_races(state()) -> dialyzer_races:races().
state__get_races(#state{races = Races}) ->
Races.
-spec state__get_records(state()) -> dict().
state__get_records(#state{records = Records}) ->
Records.
-spec state__put_callgraph(dialyzer_callgraph:callgraph(), state()) ->
state().
state__put_callgraph(Callgraph, State) ->
State#state{callgraph = Callgraph}.
-spec state__put_races(dialyzer_races:races(), state()) -> state().
state__put_races(Races, State) ->
State#state{races = Races}.
-spec state__records_only(state()) -> state().
state__records_only(#state{records = Records}) ->
#state{records = Records}.
%%% ===========================================================================
%%%
%%% Races
%%%
%%% ===========================================================================
is_race_analysis_enabled(#state{races = Races, callgraph = Callgraph}) ->
RaceDetection = dialyzer_callgraph:get_race_detection(Callgraph),
RaceAnalysis = dialyzer_races:get_race_analysis(Races),
RaceDetection andalso RaceAnalysis.
get_race_list_and_size(#state{races = Races}) ->
dialyzer_races:get_race_list_and_size(Races).
renew_race_code(#state{races = Races, callgraph = Callgraph,
warning_mode = WarningMode} = State) ->
case WarningMode of
true -> State;
false ->
NewCallgraph = dialyzer_callgraph:renew_race_code(Races, Callgraph),
State#state{callgraph = NewCallgraph}
end.
renew_race_public_tables([Var], #state{races = Races, callgraph = Callgraph,
warning_mode = WarningMode} = State) ->
case WarningMode of
true -> State;
false ->
Table = dialyzer_races:get_new_table(Races),
case Table of
no_t -> State;
_Other ->
VarLabel = get_label(Var),
NewCallgraph =
dialyzer_callgraph:renew_race_public_tables(VarLabel, Callgraph),
State#state{callgraph = NewCallgraph}
end
end.
%%% ===========================================================================
%%%
%%% Worklist
%%%
%%% ===========================================================================
init_work(List) ->
{List, [], sets:from_list(List)}.
get_work({[], [], _Set}) ->
none;
get_work({[H|T], Rev, Set}) ->
{H, {T, Rev, sets:del_element(H, Set)}};
get_work({[], Rev, Set}) ->
get_work({lists:reverse(Rev), [], Set}).
add_work(New, {List, Rev, Set} = Work) ->
case sets:is_element(New, Set) of
true -> Work;
false -> {List, [New|Rev], sets:add_element(New, Set)}
end.
%%% ===========================================================================
%%%
%%% Utilities.
%%%
%%% ===========================================================================
get_line([Line|_]) when is_integer(Line) -> Line;
get_line([_|Tail]) -> get_line(Tail);
get_line([]) -> -1.
get_file([]) -> [];
get_file([{file, File}|_]) -> File;
get_file([_|Tail]) -> get_file(Tail).
is_compiler_generated(Ann) ->
lists:member(compiler_generated, Ann) orelse (get_line(Ann) < 1).
-spec format_args([cerl:cerl()], [erl_types:erl_type()], state()) ->
nonempty_string().
format_args([], [], _State) ->
"()";
format_args(ArgList, TypeList, State) ->
"(" ++ format_args_1(ArgList, TypeList, State) ++ ")".
format_args_1([Arg], [Type], State) ->
format_arg(Arg) ++ format_type(Type, State);
format_args_1([Arg|Args], [Type|Types], State) ->
String =
case cerl:is_literal(Arg) of
true -> format_cerl(Arg);
false -> format_arg(Arg) ++ format_type(Type, State)
end,
String ++ "," ++ format_args_1(Args, Types, State).
format_arg(Arg) ->
Default = "",
case cerl:is_c_var(Arg) of
true ->
case cerl:var_name(Arg) of
Atom when is_atom(Atom) ->
case atom_to_list(Atom) of
"cor"++_ -> Default;
"rec"++_ -> Default;
Name -> Name ++ "::"
end;
_What -> Default
end;
false ->
Default
end.
-spec format_type(erl_types:erl_type(), state()) -> string().
format_type(Type, #state{records = R}) ->
t_to_string(Type, R).
-spec format_field_diffs(erl_types:erl_type(), state()) -> string().
format_field_diffs(RecConstruction, #state{records = R}) ->
erl_types:record_field_diffs_to_string(RecConstruction, R).
-spec format_sig_args(erl_types:erl_type(), state()) -> string().
format_sig_args(Type, #state{records = R}) ->
SigArgs = t_fun_args(Type),
case SigArgs of
[] -> "()";
[SArg|SArgs] ->
lists:flatten("(" ++ t_to_string(SArg, R)
++ ["," ++ t_to_string(T, R) || T <- SArgs] ++ ")")
end.
format_cerl(Tree) ->
cerl_prettypr:format(cerl:set_ann(Tree, []),
[{hook, dialyzer_utils:pp_hook()},
{noann, true},
{paper, 100000}, %% These guys strip
{ribbon, 100000} %% newlines.
]).
format_patterns(Pats) ->
NewPats = map_pats(cerl:c_values(Pats)),
String = format_cerl(NewPats),
case Pats of
[PosVar] ->
case cerl:is_c_var(PosVar) andalso (cerl:var_name(PosVar) =/= '') of
true -> "variable "++String;
false -> "pattern "++String
end;
_ ->
"pattern "++String
end.
map_pats(Pats) ->
Fun = fun(Tree) ->
case cerl:is_c_var(Tree) of
true ->
case cerl:var_name(Tree) of
Atom when is_atom(Atom) ->
case atom_to_list(Atom) of
"cor"++_ -> cerl:c_var('');
"rec"++_ -> cerl:c_var('');
_ -> cerl:set_ann(Tree, [])
end;
_What -> cerl:c_var('')
end;
false ->
cerl:set_ann(Tree, [])
end
end,
cerl_trees:map(Fun, Pats).
parent_allows_this(FunLbl, #state{callgraph = Callgraph, plt = Plt} =State) ->
case state__is_escaping(FunLbl, State) of
false -> false; % if it isn't escaping it can't be a return value
true ->
case state__lookup_name(FunLbl, State) of
{_M, _F, _A} -> false; % if it has a name it is not a fun
_ ->
case dialyzer_callgraph:in_neighbours(FunLbl, Callgraph) of
[Parent] ->
case state__lookup_name(Parent, State) of
{_M, _F, _A} = PMFA ->
case dialyzer_plt:lookup_contract(Plt, PMFA) of
none -> false;
{value, C} ->
GenRet = dialyzer_contracts:get_contract_return(C),
case erl_types:t_is_fun(GenRet) of
false -> false; % element of structure? far-fetched...
true -> t_is_unit(t_fun_range(GenRet))
end
end;
_ -> false % parent should have a name to have a contract
end;
_ -> false % called in other funs? far-fetched...
end
end
end.
classify_returns(Tree) ->
case find_terminals(cerl:fun_body(Tree)) of
{false, false} -> no_match;
{true, false} -> only_explicit;
{false, true} -> only_normal;
{true, true} -> both
end.
find_terminals(Tree) ->
case cerl:type(Tree) of
apply -> {false, true};
binary -> {false, true};
bitstr -> {false, true};
call ->
M0 = cerl:call_module(Tree),
F0 = cerl:call_name(Tree),
A = length(cerl:call_args(Tree)),
case cerl:is_literal(M0) andalso cerl:is_literal(F0) of
false ->
%% We cannot make assumptions. Say that both are true.
{true, true};
true ->
M = cerl:concrete(M0),
F = cerl:concrete(F0),
case (erl_bif_types:is_known(M, F, A)
andalso t_is_none(erl_bif_types:type(M, F, A))) of
true -> {true, false};
false -> {false, true}
end
end;
'case' -> find_terminals_list(cerl:case_clauses(Tree));
'catch' -> find_terminals(cerl:catch_body(Tree));
clause -> find_terminals(cerl:clause_body(Tree));
cons -> {false, true};
'fun' -> {false, true};
'let' -> find_terminals(cerl:let_body(Tree));
letrec -> find_terminals(cerl:letrec_body(Tree));
literal -> {false, true};
primop -> {false, false}; %% match_fail, etc. are not explicit exits.
'receive' ->
Timeout = cerl:receive_timeout(Tree),
Clauses = cerl:receive_clauses(Tree),
case (cerl:is_literal(Timeout) andalso
(cerl:concrete(Timeout) =:= infinity)) of
true ->
if Clauses =:= [] -> {false, true}; %% A never ending receive.
true -> find_terminals_list(Clauses)
end;
false -> find_terminals_list([cerl:receive_action(Tree)|Clauses])
end;
seq -> find_terminals(cerl:seq_body(Tree));
'try' ->
find_terminals_list([cerl:try_handler(Tree), cerl:try_body(Tree)]);
tuple -> {false, true};
values -> {false, true};
var -> {false, true}
end.
find_terminals_list(List) ->
find_terminals_list(List, false, false).
find_terminals_list([Tree|Left], Explicit1, Normal1) ->
{Explicit2, Normal2} = find_terminals(Tree),
case {Explicit1 or Explicit2, Normal1 or Normal2} of
{true, true} = Ans -> Ans;
{NewExplicit, NewNormal} ->
find_terminals_list(Left, NewExplicit, NewNormal)
end;
find_terminals_list([], Explicit, Normal) ->
{Explicit, Normal}.
%%----------------------------------------------------------------------------
%% If you write a record pattern in a matching that violates the
%% definition it will never match. However, the warning is lost in the
%% regular analysis. This after-pass catches it.
find_mismatched_record_patterns(Tree, State) ->
cerl_trees:fold(
fun(SubTree, AccState) ->
case cerl:is_c_clause(SubTree) of
true -> lists:foldl(fun(P, AccState1) ->
find_rec_warnings(P, AccState1)
end, AccState, cerl:clause_pats(SubTree));
false -> AccState
end
end, State, Tree).
find_rec_warnings(Tree, State) ->
cerl_trees:fold(
fun(SubTree, AccState) ->
case cerl:is_c_tuple(SubTree) of
true -> find_rec_warnings_tuple(SubTree, AccState);
false -> AccState
end
end, State, Tree).
find_rec_warnings_tuple(Tree, State) ->
Elements = cerl:tuple_es(Tree),
{_, _, EsType} = traverse_list(Elements, map__new(), State),
TupleType = t_tuple(EsType),
case t_is_none(TupleType) of
true -> State;
false ->
%% Let's find out if this is a record construction.
case Elements of
[Tag|Left] ->
case cerl:is_c_atom(Tag) of
true ->
TagVal = cerl:atom_val(Tag),
case state__lookup_record(TagVal, length(Left), State) of
error -> State;
{ok, Prototype} ->
InfTupleType = t_inf(Prototype, TupleType),
case t_is_none(InfTupleType) of
true ->
Msg = {record_matching,
[format_patterns([Tree]), TagVal]},
state__add_warning(State, ?WARN_MATCHING, Tree, Msg);
false ->
State
end
end;
false ->
State
end;
_ ->
State
end
end.
%%----------------------------------------------------------------------------
-ifdef(DEBUG_PP).
debug_pp(Tree, true) ->
io:put_chars(cerl_prettypr:format(Tree, [{hook, cerl_typean:pp_hook()}])),
io:nl(),
ok;
debug_pp(Tree, false) ->
io:put_chars(cerl_prettypr:format(strip_annotations(Tree))),
io:nl(),
ok.
strip_annotations(Tree) ->
Fun = fun(T) ->
case cerl:type(T) of
var ->
cerl:set_ann(T, [{label, cerl_trees:get_label(T)}]);
'fun' ->
cerl:set_ann(T, [{label, cerl_trees:get_label(T)}]);
_ ->
cerl:set_ann(T, [])
end
end,
cerl_trees:map(Fun, Tree).
-else.
debug_pp(_Tree, _UseHook) ->
ok.
-endif.
%%----------------------------------------------------------------------------
-spec to_dot(dialyzer_callgraph:callgraph()) -> 'ok'.
-ifdef(DOT).
to_dot(CG) ->
dialyzer_callgraph:to_dot(CG).
-else.
to_dot(_CG) ->
ok.
-endif.
%%----------------------------------------------------------------------------