%%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2005-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(hipe_arm).
-export([
mk_temp/2,
mk_new_temp/1,
mk_new_nonallocatable_temp/1,
is_temp/1,
temp_reg/1,
temp_type/1,
temp_is_allocatable/1,
temp_is_precoloured/1,
mk_mfa/3,
mk_prim/1,
is_prim/1,
prim_prim/1,
mk_sdesc/4,
mk_am2/3,
mk_am3/3,
mk_alu/5,
mk_b_fun/2,
mk_b_label/2,
mk_b_label/1,
mk_bl/3,
mk_blx/2,
mk_cmp/3,
mk_comment/1,
mk_label/1,
is_label/1,
label_label/1,
mk_load/3,
mk_load/6,
mk_ldrsb/2,
mk_move/3,
mk_move/2,
mk_pseudo_bc/4,
mk_pseudo_call/4,
pseudo_call_contlab/1,
pseudo_call_funv/1,
pseudo_call_sdesc/1,
pseudo_call_linkage/1,
mk_pseudo_call_prepare/1,
pseudo_call_prepare_nrstkargs/1,
mk_pseudo_li/2,
mk_pseudo_move/2,
is_pseudo_move/1,
pseudo_move_dst/1,
pseudo_move_src/1,
mk_pseudo_switch/3,
mk_pseudo_tailcall/4,
pseudo_tailcall_funv/1,
pseudo_tailcall_stkargs/1,
pseudo_tailcall_linkage/1,
mk_pseudo_tailcall_prepare/0,
mk_smull/4,
mk_store/3,
mk_store/6,
mk_pseudo_blr/0,
mk_bx/1,
mk_mflr/1,
mk_mtlr/1,
mk_lr/0,
mk_pc/0,
mk_li/2,
mk_li/3,
mk_addi/4,
try_aluop_imm/2,
mk_defun/8,
defun_mfa/1,
defun_formals/1,
defun_is_closure/1,
defun_is_leaf/1,
defun_code/1,
defun_data/1,
defun_var_range/1
]).
-include("hipe_arm.hrl").
mk_temp(Reg, Type, Allocatable) ->
#arm_temp{reg=Reg, type=Type, allocatable=Allocatable}.
mk_temp(Reg, Type) -> mk_temp(Reg, Type, true).
mk_new_temp(Type, Allocatable) ->
mk_temp(hipe_gensym:get_next_var(arm), Type, Allocatable).
mk_new_temp(Type) -> mk_new_temp(Type, true).
mk_new_nonallocatable_temp(Type) -> mk_new_temp(Type, false).
is_temp(X) -> case X of #arm_temp{} -> true; _ -> false end.
temp_reg(#arm_temp{reg=Reg}) -> Reg.
temp_type(#arm_temp{type=Type}) -> Type.
temp_is_allocatable(#arm_temp{allocatable=A}) -> A.
temp_is_precoloured(#arm_temp{reg=Reg}) ->
hipe_arm_registers:is_precoloured_gpr(Reg).
mk_mfa(M, F, A) -> #arm_mfa{m=M, f=F, a=A}.
mk_prim(Prim) -> #arm_prim{prim=Prim}.
is_prim(X) -> case X of #arm_prim{} -> true; _ -> false end.
prim_prim(#arm_prim{prim=Prim}) -> Prim.
mk_am2(Src, Sign, Offset) -> #am2{src=Src, sign=Sign, offset=Offset}.
mk_am3(Src, Sign, Offset) -> #am3{src=Src, sign=Sign, offset=Offset}.
mk_alu(AluOp, S, Dst, Src, Am1) ->
#alu{aluop=AluOp, s=S, dst=Dst, src=Src, am1=Am1}.
mk_alu(AluOp, Dst, Src, Am1) -> mk_alu(AluOp, false, Dst, Src, Am1).
mk_b_fun(Fun, Linkage) -> #b_fun{'fun'=Fun, linkage=Linkage}.
mk_b_label(Cond, Label) -> #b_label{'cond'=Cond, label=Label}.
mk_b_label(Label) -> mk_b_label('al', Label).
mk_bl(Fun, SDesc, Linkage) -> #bl{'fun'=Fun, sdesc=SDesc, linkage=Linkage}.
mk_blx(Src, SDesc) -> #blx{src=Src, sdesc=SDesc}.
mk_cmp(CmpOp, Src, Am1) -> #cmp{cmpop=CmpOp, src=Src, am1=Am1}.
mk_sdesc(ExnLab, FSize, Arity, Live) ->
#arm_sdesc{exnlab=ExnLab, fsize=FSize, arity=Arity, live=Live}.
mk_comment(Term) -> #comment{term=Term}.
mk_label(Label) -> #label{label=Label}.
is_label(I) -> case I of #label{} -> true; _ -> false end.
label_label(#label{label=Label}) -> Label.
mk_load(LdOp, Dst, Am2) -> #load{ldop=LdOp, dst=Dst, am2=Am2}.
mk_load(LdOp, Dst, Base, Offset, Scratch, Rest) when is_integer(Offset) ->
{Sign,AbsOffset} =
if Offset < 0 -> {'-', -Offset};
true -> {'+', Offset}
end,
if AbsOffset =< 4095 ->
Am2 = #am2{src=Base,sign=Sign,offset=AbsOffset},
[mk_load(LdOp, Dst, Am2) | Rest];
true ->
Index =
begin
DstReg = temp_reg(Dst),
BaseReg = temp_reg(Base),
if DstReg =/= BaseReg -> Dst;
true -> mk_scratch(Scratch)
end
end,
Am2 = #am2{src=Base,sign=Sign,offset=Index},
mk_li(Index, AbsOffset,
[mk_load(LdOp, Dst, Am2) | Rest])
end.
mk_scratch(Scratch) ->
case Scratch of
'temp2' -> mk_temp(hipe_arm_registers:temp2(), 'untagged');
'new' -> mk_new_temp('untagged')
end.
mk_ldrsb(Dst, Am3) -> #ldrsb{dst=Dst, am3=Am3}.
mk_move(MovOp, S, Dst, Am1) -> #move{movop=MovOp, s=S, dst=Dst, am1=Am1}.
mk_move(S, Dst, Am1) -> mk_move('mov', S, Dst, Am1).
mk_move(Dst, Am1) -> mk_move('mov', false, Dst, Am1).
mk_pseudo_bc(Cond, TrueLab, FalseLab, Pred) ->
if Pred >= 0.5 ->
mk_pseudo_bc_simple(negate_cond(Cond), FalseLab,
TrueLab, 1.0-Pred);
true ->
mk_pseudo_bc_simple(Cond, TrueLab, FalseLab, Pred)
end.
mk_pseudo_bc_simple(Cond, TrueLab, FalseLab, Pred) when Pred =< 0.5 ->
#pseudo_bc{'cond'=Cond, true_label=TrueLab,
false_label=FalseLab, pred=Pred}.
negate_cond(Cond) ->
case Cond of
'lt' -> 'ge'; % <, >=
'ge' -> 'lt'; % >=, <
'gt' -> 'le'; % >, <=
'le' -> 'gt'; % <=, >
'eq' -> 'ne'; % ==, !=
'ne' -> 'eq'; % !=, ==
'hi' -> 'ls'; % >u, <=u
'ls' -> 'hi'; % <=u, >u
'hs' -> 'lo'; % >=u, <u
'lo' -> 'hs'; % <u, >=u
'vs' -> 'vc'; % overflow, not_overflow
'vc' -> 'vs' % not_overflow, overflow
end.
mk_pseudo_call(FunV, SDesc, ContLab, Linkage) ->
#pseudo_call{funv=FunV, sdesc=SDesc, contlab=ContLab, linkage=Linkage}.
pseudo_call_funv(#pseudo_call{funv=FunV}) -> FunV.
pseudo_call_sdesc(#pseudo_call{sdesc=SDesc}) -> SDesc.
pseudo_call_contlab(#pseudo_call{contlab=ContLab}) -> ContLab.
pseudo_call_linkage(#pseudo_call{linkage=Linkage}) -> Linkage.
mk_pseudo_call_prepare(NrStkArgs) ->
#pseudo_call_prepare{nrstkargs=NrStkArgs}.
pseudo_call_prepare_nrstkargs(#pseudo_call_prepare{nrstkargs=NrStkArgs}) ->
NrStkArgs.
mk_pseudo_li(Dst, Imm) ->
#pseudo_li{dst=Dst, imm=Imm, label=hipe_gensym:get_next_label(arm)}.
mk_pseudo_move(Dst, Src) -> #pseudo_move{dst=Dst, src=Src}.
is_pseudo_move(I) -> case I of #pseudo_move{} -> true; _ -> false end.
pseudo_move_dst(#pseudo_move{dst=Dst}) -> Dst.
pseudo_move_src(#pseudo_move{src=Src}) -> Src.
mk_pseudo_switch(JTab, Index, Labels) ->
#pseudo_switch{jtab=JTab, index=Index, labels=Labels}.
mk_pseudo_tailcall(FunV, Arity, StkArgs, Linkage) ->
#pseudo_tailcall{funv=FunV, arity=Arity, stkargs=StkArgs, linkage=Linkage}.
pseudo_tailcall_funv(#pseudo_tailcall{funv=FunV}) -> FunV.
pseudo_tailcall_stkargs(#pseudo_tailcall{stkargs=StkArgs}) -> StkArgs.
pseudo_tailcall_linkage(#pseudo_tailcall{linkage=Linkage}) -> Linkage.
mk_pseudo_tailcall_prepare() -> #pseudo_tailcall_prepare{}.
mk_smull(DstLo, DstHi, Src1, Src2) ->
#smull{dstlo=DstLo, dsthi=DstHi, src1=Src1, src2=Src2}.
mk_store(StOp, Src, Am2) -> #store{stop=StOp, src=Src, am2=Am2}.
mk_store(StOp, Src, Base, Offset, Scratch, Rest) when is_integer(Offset) ->
{Sign,AbsOffset} =
if Offset < 0 -> {'-', -Offset};
true -> {'+', Offset}
end,
if AbsOffset =< 4095 ->
Am2 = #am2{src=Base,sign=Sign,offset=AbsOffset},
[mk_store(StOp, Src, Am2) | Rest];
true ->
Index = mk_scratch(Scratch),
Am2 = #am2{src=Base,sign=Sign,offset=Index},
mk_li(Index, AbsOffset,
[mk_store(StOp, Src, Am2) | Rest])
end.
mk_pseudo_blr() -> #pseudo_blr{}.
mk_bx(Src) -> #pseudo_bx{src=Src}.
mk_mflr(Dst) -> mk_move(Dst, mk_lr()).
mk_mtlr(Src) -> mk_move(mk_lr(), Src).
mk_lr() -> mk_temp(hipe_arm_registers:lr(), 'untagged').
mk_pc() -> mk_temp(hipe_arm_registers:pc(), 'untagged').
%%% Load an integer constant into a register.
mk_li(Dst, Value) -> mk_li(Dst, Value, []).
mk_li(Dst, Value, Rest) ->
%% XXX: expand to handle 2-instruction sequences
case try_aluop_imm('mov', Value) of
{NewMovOp,Am1} ->
[mk_move(NewMovOp, false, Dst, Am1) | Rest];
[] ->
[mk_pseudo_li(Dst, Value) | Rest]
end.
%%% Add an integer constant. Dst may equal Src,
%%% in which case temp2 may be clobbered.
mk_addi(Dst, Src, Value, Rest) ->
case try_aluop_imm('add', Value) of
{NewAluOp,Am1} ->
[mk_alu(NewAluOp, Dst, Src, Am1) | Rest];
[] ->
Tmp =
begin
DstReg = temp_reg(Dst),
SrcReg = temp_reg(Src),
if DstReg =:= SrcReg ->
mk_temp(hipe_arm_registers:temp2(), 'untagged');
true -> Dst
end
end,
[mk_pseudo_li(Tmp, Value), mk_alu('add', Dst, Src, Tmp) | Rest]
end.
try_aluop_imm(AluOp, Imm) -> % -> {NewAluOp,Am1} or []
case imm_to_am1(Imm) of
(Am1={_Imm8,_Imm4}) -> {AluOp, Am1};
[] ->
case invert_aluop_imm(AluOp, Imm) of
{NewAluOp,NewImm} ->
case imm_to_am1(NewImm) of
(Am1={_Imm8,_Imm4}) -> {NewAluOp, Am1};
[] -> []
end;
[] -> []
end
end.
invert_aluop_imm(AluOp, Imm) ->
case AluOp of
'mov' -> {'mvn', bnot Imm};
'mvn' -> {'mov', bnot Imm};
'cmp' -> {'cmn', -Imm};
'cmn' -> {'cmp', -Imm};
'and' -> {'bic', bnot Imm};
'bic' -> {'and', bnot Imm};
'orr' -> {'orn', bnot Imm};
'orn' -> {'orr', bnot Imm};
'add' -> {'sub', -Imm};
'sub' -> {'add', -Imm};
_ -> [] % no inverted form available
end.
imm_to_am1(Imm) -> imm_to_am1(Imm band 16#FFFFFFFF, 16).
imm_to_am1(Imm, RotCnt) ->
if Imm >= 0, Imm =< 255 -> {Imm, RotCnt band 15};
true ->
NewRotCnt = RotCnt - 1,
if NewRotCnt =:= 0 -> []; % full circle, no joy
true ->
NewImm = (Imm bsr 2) bor ((Imm band 3) bsl 30),
imm_to_am1(NewImm, NewRotCnt)
end
end.
mk_defun(MFA, Formals, IsClosure, IsLeaf, Code, Data, VarRange, LabelRange) ->
#defun{mfa=MFA, formals=Formals, code=Code, data=Data,
isclosure=IsClosure, isleaf=IsLeaf,
var_range=VarRange, label_range=LabelRange}.
defun_mfa(#defun{mfa=MFA}) -> MFA.
defun_formals(#defun{formals=Formals}) -> Formals.
defun_is_closure(#defun{isclosure=IsClosure}) -> IsClosure.
defun_is_leaf(#defun{isleaf=IsLeaf}) -> IsLeaf.
defun_code(#defun{code=Code}) -> Code.
defun_data(#defun{data=Data}) -> Data.
defun_var_range(#defun{var_range=VarRange}) -> VarRange.