%% -*- erlang-indent-level: 2 -*-
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
-module(hipe_arm_assemble).
-export([assemble/4]).
-include("../main/hipe.hrl"). % for VERSION_STRING, when_option
-include("hipe_arm.hrl").
-include("../../kernel/src/hipe_ext_format.hrl").
-include("../rtl/hipe_literals.hrl").
-undef(ASSERT).
-define(ASSERT(G), if G -> [] ; true -> exit({assertion_failed,?MODULE,?LINE,??G}) end).
assemble(CompiledCode, Closures, Exports, Options) ->
print("****************** Assembling *******************\n", [], Options),
%%
Code = [{MFA,
hipe_arm:defun_code(Defun),
hipe_arm:defun_data(Defun)}
|| {MFA, Defun} <- CompiledCode],
%%
{ConstAlign,ConstSize,ConstMap,RefsFromConsts} =
hipe_pack_constants:pack_constants(Code, 4),
%%
{CodeSize,CodeBinary,AccRefs,LabelMap,ExportMap} =
encode(translate(Code, ConstMap), Options),
print("Total num bytes=~w\n", [CodeSize], Options),
%%
SC = hipe_pack_constants:slim_constmap(ConstMap),
DataRelocs = hipe_pack_constants:mk_data_relocs(RefsFromConsts, LabelMap),
SSE = hipe_pack_constants:slim_sorted_exportmap(ExportMap,Closures,Exports),
SlimRefs = hipe_pack_constants:slim_refs(AccRefs),
Bin = term_to_binary([{?VERSION_STRING(),?HIPE_ERTS_CHECKSUM},
ConstAlign, ConstSize,
SC,
DataRelocs, % nee LM, LabelMap
SSE,
CodeSize,CodeBinary,SlimRefs,
0,[] % ColdCodeSize, SlimColdRefs
]),
%%
Bin.
%%%
%%% Assembly Pass 1.
%%% Process initial {MFA,Code,Data} list.
%%% Translate each MFA's body, choosing operand & instruction kinds.
%%% Manage placement of large immediates in the code segment. (ARM-specific)
%%%
%%% Assembly Pass 2.
%%% Perform short/long form optimisation for jumps.
%%% (Trivial on ARM.)
%%%
%%% Result is {MFA,NewCode,CodeSize,LabelMap} list.
%%%
translate(Code, ConstMap) ->
translate_mfas(Code, ConstMap, []).
translate_mfas([{MFA,Insns,_Data}|Code], ConstMap, NewCode) ->
{NewInsns,CodeSize,LabelMap} = translate_insns(Insns, MFA, ConstMap),
translate_mfas(Code, ConstMap, [{MFA,NewInsns,CodeSize,LabelMap}|NewCode]);
translate_mfas([], _ConstMap, NewCode) ->
lists:reverse(NewCode).
translate_insns(Insns, MFA, ConstMap) ->
translate_insns(Insns, MFA, ConstMap, gb_trees:empty(), 0, [],
previous_empty(), pending_empty()).
translate_insns([I|Is] = Insns, MFA, ConstMap, LabelMap, Address, NewInsns, PrevImms, PendImms) ->
IsNotFallthroughInsn = is_not_fallthrough_insn(I),
MustFlushPending = must_flush_pending(PendImms, Address),
{NewIs,Insns1,PendImms1,DoFlushPending} =
case {MustFlushPending,IsNotFallthroughInsn} of
{true,false} ->
%% To avoid having to create new symbolic labels, which is problematic
%% in the assembler, we emit a forward branch with an offset computed
%% from the size of the pending literals.
N = pending_size(PendImms), % N >= 1 since MustFlushPending is true
BranchOffset = N - 1, % in units of 32-bit words!
NewIs0 = [{b, {do_cond('al'),{imm24,BranchOffset}}, #comment{term='skip'}}],
%% io:format("~w: forced flush of pending literals in ~w at ~w\n", [?MODULE,MFA,Address]),
{NewIs0,Insns,PendImms,true};
{_,_} ->
{NewIs0,PendImms0} = translate_insn(I, MFA, ConstMap, Address, PrevImms, PendImms),
{NewIs0,Is,PendImms0,IsNotFallthroughInsn}
end,
add_insns(NewIs, Insns1, MFA, ConstMap, LabelMap, Address, NewInsns, PrevImms, PendImms1, DoFlushPending);
translate_insns([], _MFA, _ConstMap, LabelMap, Address, NewInsns, PrevImms, PendImms) ->
{LabelMap1, Address1, NewInsns1, _PrevImms1} = % at end-of-function we ignore PrevImms1
flush_pending(PendImms, LabelMap, Address, NewInsns, PrevImms),
{lists:reverse(NewInsns1), Address1, LabelMap1}.
add_insns([I|Is], Insns, MFA, ConstMap, LabelMap, Address, NewInsns, PrevImms, PendImms, DoFlushPending) ->
NewLabelMap =
case I of
{'.label',L,_} ->
gb_trees:insert(L, Address, LabelMap);
_ ->
LabelMap
end,
Address1 = Address + insn_size(I),
add_insns(Is, Insns, MFA, ConstMap, NewLabelMap, Address1, [I|NewInsns], PrevImms, PendImms, DoFlushPending);
add_insns([], Insns, MFA, ConstMap, LabelMap, Address, NewInsns, PrevImms, PendImms, DoFlushPending) ->
{LabelMap1, Address1, NewInsns1, PrevImms1, PendImms1} =
case DoFlushPending of
true ->
{LabelMap0,Address0,NewInsns0,PrevImms0} =
flush_pending(PendImms, LabelMap, Address, NewInsns, PrevImms),
{LabelMap0,Address0,NewInsns0,PrevImms0,pending_empty()};
false ->
PrevImms0 = expire_previous(PrevImms, Address),
{LabelMap,Address,NewInsns,PrevImms0,PendImms}
end,
translate_insns(Insns, MFA, ConstMap, LabelMap1, Address1, NewInsns1, PrevImms1, PendImms1).
must_flush_pending(PendImms, Address) ->
case pending_firstref(PendImms) of
[] -> false;
LP0 ->
Distance = Address - LP0,
%% In "LP0: ldr R,[PC +/- imm12]", the PC value is LP0+8 so the
%% range for the ldr is [LP0-4084, LP0+4100] (32-bit alignment!).
%% LP0+4096 is the last point where we can emit a branch (4 bytes)
%% followed by the pending immediates.
%%
%% The translation of an individual instruction must not advance
%% . by more than 4 bytes, because that could cause us to miss
%% the point where PendImms must be flushed.
?ASSERT(Distance =< 4096),
Distance =:= 4096
end.
flush_pending(PendImms, LabelMap, Address, Insns, PrevImms) ->
Address1 = Address + 4*pending_size(PendImms),
PrevImms1 = expire_previous(PrevImms, Address1),
{LabelMap1,Address1,Insns1,PrevImms2} =
flush_pending2(pending_to_list(PendImms), LabelMap, Address, Insns, PrevImms1),
PrevImms3 = expire_previous(PrevImms2, Address1),
{LabelMap1,Address1,Insns1,PrevImms3}.
flush_pending2([{Lab,RelocOrInt,Imm}|Imms], LabelMap, Address, Insns, PrevImms) ->
PrevImms1 = previous_append(PrevImms, Address, Lab, Imm),
LabelMap1 = gb_trees:insert(Lab, Address, LabelMap),
{RelocOpt,LongVal} =
if is_integer(RelocOrInt) ->
{[],RelocOrInt};
true ->
{[RelocOrInt],0}
end,
Insns1 =
[{'.long', LongVal, #comment{term=Imm}} |
RelocOpt ++
[{'.label', Lab, #comment{term=Imm}} |
Insns]],
flush_pending2(Imms, LabelMap1, Address+4, Insns1, PrevImms1);
flush_pending2([], LabelMap, Address, Insns, PrevImms) ->
{LabelMap, Address, Insns, PrevImms}.
expire_previous(PrevImms, CodeAddress) ->
case previous_findmin(PrevImms) of
[] -> PrevImms;
{ImmAddress,_Imm} ->
if CodeAddress - ImmAddress > 4084 ->
expire_previous(previous_delmin(PrevImms), CodeAddress);
true ->
PrevImms
end
end.
is_not_fallthrough_insn(I) ->
case I of
#b_fun{} -> true;
#b_label{'cond'='al'} -> true;
%% bl and blx are not included since they return to ".+4"
%% a load to PC was originally a pseudo_switch insn
#load{dst=#arm_temp{reg=15,type=Type}} when Type =/= 'double' -> true;
%% a move to PC was originally a pseudo_blr or pseudo_bx insn
#move{dst=#arm_temp{reg=15,type=Type}} when Type =/= 'double' -> true;
_ -> false
end.
insn_size(I) ->
case I of
{'.label',_,_} -> 0;
{'.reloc',_,_} -> 0;
_ -> 4
end.
translate_insn(I, MFA, ConstMap, Address, PrevImms, PendImms) ->
case I of
%% pseudo_li is the only insn using MFA, ConstMap, Address, PrevImms, or PendLits
#pseudo_li{} -> do_pseudo_li(I, MFA, ConstMap, Address, PrevImms, PendImms);
_ -> {translate_insn(I), PendImms}
end.
translate_insn(I) -> % -> [{Op,Opnd,OrigI}]
case I of
#alu{} -> do_alu(I);
#b_fun{} -> do_b_fun(I);
#b_label{} -> do_b_label(I);
#bl{} -> do_bl(I);
#blx{} -> do_blx(I);
#cmp{} -> do_cmp(I);
#comment{} -> [];
#label{} -> do_label(I);
#load{} -> do_load(I);
#ldrsb{} -> do_ldrsb(I);
#move{} -> do_move(I);
%% pseudo_b: eliminated by finalise
%% pseudo_blr: eliminated by finalise
%% pseudo_call: eliminated by finalise
%% pseudo_call_prepare: eliminated by frame
%% pseudo_li: handled separately
%% pseudo_move: eliminated by frame
%% pseudo_switch: eliminated by finalise
%% pseudo_tailcall: eliminated by frame
%% pseudo_tailcall_prepare: eliminated by finalise
#smull{} -> do_smull(I);
#store{} -> do_store(I)
end.
do_alu(I) ->
#alu{aluop=AluOp,s=S,dst=Dst,src=Src,am1=Am1} = I,
NewCond = do_cond('al'),
NewS = do_s(S),
NewDst = do_reg(Dst),
NewSrc = do_reg(Src),
NewAm1 = do_am1(Am1),
{NewI,NewOpnds} = {AluOp, {NewCond,NewS,NewDst,NewSrc,NewAm1}},
[{NewI, NewOpnds, I}].
do_b_fun(I) ->
#b_fun{'fun'=Fun,linkage=Linkage} = I,
[{'.reloc', {b_fun,Fun,Linkage}, #comment{term='fun'}},
{b, {do_cond('al'),{imm24,0}}, I}].
do_b_label(I) ->
#b_label{'cond'=Cond,label=Label} = I,
[{b, {do_cond(Cond),do_label_ref(Label)}, I}].
do_bl(I) ->
#bl{'fun'=Fun,sdesc=SDesc,linkage=Linkage} = I,
[{'.reloc', {b_fun,Fun,Linkage}, #comment{term='fun'}},
{bl, {do_cond('al'),{imm24,0}}, I},
{'.reloc', {sdesc,SDesc}, #comment{term=sdesc}}].
do_blx(I) ->
#blx{src=Src,sdesc=SDesc} = I,
[{blx, {do_cond('al'),do_reg(Src)}, I},
{'.reloc', {sdesc,SDesc}, #comment{term=sdesc}}].
do_cmp(I) ->
#cmp{cmpop=CmpOp,src=Src,am1=Am1} = I,
NewCond = do_cond('al'),
NewSrc = do_reg(Src),
NewAm1 = do_am1(Am1),
[{CmpOp, {NewCond,NewSrc,NewAm1}, I}].
do_label(I) ->
#label{label=Label} = I,
[{'.label', Label, I}].
do_load(I) ->
#load{ldop=LdOp,dst=Dst,am2=Am2} = I,
NewCond = do_cond('al'),
NewDst = do_reg(Dst),
NewAm2 = do_am2(Am2),
[{LdOp, {NewCond,NewDst,NewAm2}, I}].
do_ldrsb(I) ->
#ldrsb{dst=Dst,am3=Am3} = I,
NewCond = do_cond('al'),
NewDst = do_reg(Dst),
NewAm3 = do_am3(Am3),
[{'ldrsb', {NewCond,NewDst,NewAm3}, I}].
do_move(I) ->
#move{movop=MovOp,s=S,dst=Dst,am1=Am1} = I,
NewCond = do_cond('al'),
NewS = do_s(S),
NewDst = do_reg(Dst),
NewAm1 = do_am1(Am1),
[{MovOp, {NewCond,NewS,NewDst,NewAm1}, I}].
do_pseudo_li(I, MFA, ConstMap, Address, PrevImms, PendImms) ->
#pseudo_li{dst=Dst,imm=Imm,label=Label0} = I,
{Label1,PendImms1} =
case previous_lookup(PrevImms, Imm) of
{value,Lab} -> {Lab,PendImms};
none ->
case pending_lookup(PendImms, Imm) of
{value,Lab} -> {Lab,PendImms};
none ->
RelocOrInt =
if is_integer(Imm) ->
%% This is for immediates that require too much work
%% to reconstruct using only arithmetic instructions.
Imm;
true ->
RelocData =
case Imm of
Atom when is_atom(Atom) ->
{load_atom, Atom};
{Label,constant} ->
ConstNo = hipe_pack_constants:find_const({MFA,Label}, ConstMap),
{load_address, {constant,ConstNo}};
{Label,closure} ->
{load_address, {closure,Label}};
{Label,c_const} ->
{load_address, {c_const,Label}}
end,
{'.reloc', RelocData, #comment{term=reloc}}
end,
Lab = Label0, % preallocated: creating labels in the assembler doesn't work
{Lab, pending_append(PendImms, Address, Lab, RelocOrInt, Imm)}
end
end,
NewDst = do_reg(Dst),
{[{'.pseudo_li', {NewDst,do_label_ref(Label1)}, I}], PendImms1}.
do_smull(I) ->
#smull{dstlo=DstLo,dsthi=DstHi,src1=Src1,src2=Src2} = I,
NewCond = do_cond('al'),
NewS = do_s(false),
NewDstLo = do_reg(DstLo),
NewDstHi = do_reg(DstHi),
NewSrc1 = do_reg(Src1),
NewSrc2 = do_reg(Src2),
[{'smull', {NewCond,NewS,NewDstLo,NewDstHi,NewSrc1,NewSrc2}, I}].
do_store(I) ->
#store{stop=StOp,src=Src,am2=Am2} = I,
NewCond = do_cond('al'),
NewSrc = do_reg(Src),
NewAm2 = do_am2(Am2),
[{StOp, {NewCond,NewSrc,NewAm2}, I}].
do_reg(#arm_temp{reg=Reg,type=Type})
when is_integer(Reg), 0 =< Reg, Reg < 16, Type =/= 'double' ->
{r,Reg}.
do_cond(Cond) -> {'cond',Cond}.
do_s(S) -> {'s', case S of false -> 0; true -> 1 end}.
do_label_ref(Label) when is_integer(Label) ->
{label,Label}. % symbolic, since offset is not yet computable
do_am1(Am1) ->
case Am1 of
#arm_temp{} -> do_reg(Am1);
{Src1,'rrx'} -> {do_reg(Src1),'rrx'};
{Src1,ShiftOp,Src2=#arm_temp{}} -> {do_reg(Src1),{ShiftOp,do_reg(Src2)}};
{Src1,ShiftOp,Imm5} -> {do_reg(Src1),{ShiftOp,{imm5,Imm5}}};
{Imm8,Imm4} -> {{imm8,Imm8},{imm4,Imm4}}
end.
do_am2(#am2{src=Src,sign=Sign,offset=Offset}) ->
NewSrc = do_reg(Src),
case Offset of
#arm_temp{} -> {'register_offset',NewSrc,Sign,do_reg(Offset)};
{Src3,'rrx'} -> {'scaled_register_offset',NewSrc,Sign,do_reg(Src3),'rrx'};
{Src3,ShiftOp,Imm5} -> {'scaled_register_offset',NewSrc,Sign,do_reg(Src3),{ShiftOp,{imm5,Imm5}}};
Imm12 -> {'immediate_offset',NewSrc,Sign,{imm12,Imm12}}
end.
do_am3(#am3{src=Src,sign=Sign,offset=Offset}) ->
NewSrc = do_reg(Src),
case Offset of
#arm_temp{} -> {'register_offset',NewSrc,Sign,do_reg(Offset)};
_ -> {'immediate_offset',NewSrc,Sign,{'imm8',Offset}}
end.
%%%
%%% Assembly Pass 3.
%%% Process final {MFA,Code,CodeSize,LabelMap} list from pass 2.
%%% Translate to a single binary code segment.
%%% Collect relocation patches.
%%% Build ExportMap (MFA-to-address mapping).
%%% Combine LabelMaps to a single one (for mk_data_relocs/2 compatibility).
%%% Return {CombinedCodeSize,BinaryCode,Relocs,CombinedLabelMap,ExportMap}.
%%%
encode(Code, Options) ->
CodeSize = compute_code_size(Code, 0),
ExportMap = build_export_map(Code, 0, []),
{AccCode,Relocs} = encode_mfas(Code, 0, [], [], Options),
CodeBinary = list_to_binary(lists:reverse(AccCode)),
?ASSERT(CodeSize =:= byte_size(CodeBinary)),
CombinedLabelMap = combine_label_maps(Code, 0, gb_trees:empty()),
{CodeSize,CodeBinary,Relocs,CombinedLabelMap,ExportMap}.
compute_code_size([{_MFA,_Insns,CodeSize,_LabelMap}|Code], Size) ->
compute_code_size(Code, Size+CodeSize);
compute_code_size([], Size) -> Size.
build_export_map([{{M,F,A},_Insns,CodeSize,_LabelMap}|Code], Address, ExportMap) ->
build_export_map(Code, Address+CodeSize, [{Address,M,F,A}|ExportMap]);
build_export_map([], _Address, ExportMap) -> ExportMap.
combine_label_maps([{MFA,_Insns,CodeSize,LabelMap}|Code], Address, CLM) ->
NewCLM = merge_label_map(gb_trees:to_list(LabelMap), MFA, Address, CLM),
combine_label_maps(Code, Address+CodeSize, NewCLM);
combine_label_maps([], _Address, CLM) -> CLM.
merge_label_map([{Label,Offset}|Rest], MFA, Address, CLM) ->
NewCLM = gb_trees:insert({MFA,Label}, Address+Offset, CLM),
merge_label_map(Rest, MFA, Address, NewCLM);
merge_label_map([], _MFA, _Address, CLM) -> CLM.
encode_mfas([{MFA,Insns,CodeSize,LabelMap}|Code], Address, AccCode, Relocs, Options) ->
print("Generating code for: ~w\n", [MFA], Options),
print("Offset | Opcode | Instruction\n", [], Options),
{Address1,Relocs1,AccCode1} =
encode_insns(Insns, Address, Address, LabelMap, Relocs, AccCode, Options),
ExpectedAddress = Address + CodeSize,
?ASSERT(Address1 =:= ExpectedAddress),
print("Finished.\n", [], Options),
encode_mfas(Code, Address1, AccCode1, Relocs1, Options);
encode_mfas([], _Address, AccCode, Relocs, _Options) ->
{AccCode,Relocs}.
encode_insns([I|Insns], Address, FunAddress, LabelMap, Relocs, AccCode, Options) ->
case I of
{'.label',L,_} ->
LabelAddress = gb_trees:get(L, LabelMap) + FunAddress,
?ASSERT(Address =:= LabelAddress), % sanity check
print_insn(Address, [], I, Options),
encode_insns(Insns, Address, FunAddress, LabelMap, Relocs, AccCode, Options);
{'.reloc',Data,_} ->
print_insn(Address, [], I, Options),
Reloc = encode_reloc(Data, Address, FunAddress, LabelMap),
encode_insns(Insns, Address, FunAddress, LabelMap, [Reloc|Relocs], AccCode, Options);
{'.long',Value,_} ->
print_insn(Address, Value, I, Options),
Segment = <<Value:32/integer-native>>,
NewAccCode = [Segment|AccCode],
encode_insns(Insns, Address+4, FunAddress, LabelMap, Relocs, NewAccCode, Options);
_ ->
{Op,Arg,_} = fix_pc_refs(I, Address, FunAddress, LabelMap),
Word = hipe_arm_encode:insn_encode(Op, Arg),
print_insn(Address, Word, I, Options),
Segment = <<Word:32/integer-native>>,
NewAccCode = [Segment|AccCode],
encode_insns(Insns, Address+4, FunAddress, LabelMap, Relocs, NewAccCode, Options)
end;
encode_insns([], Address, _FunAddress, _LabelMap, Relocs, AccCode, _Options) ->
{Address,Relocs,AccCode}.
encode_reloc(Data, Address, FunAddress, LabelMap) ->
case Data of
{b_fun,MFAorPrim,Linkage} ->
%% b and bl are patched the same, so no need to distinguish
%% call from tailcall
PatchTypeExt =
case Linkage of
remote -> ?CALL_REMOTE;
not_remote -> ?CALL_LOCAL
end,
{PatchTypeExt, Address, untag_mfa_or_prim(MFAorPrim)};
{load_atom,Atom} ->
{?LOAD_ATOM, Address, Atom};
{load_address,X} ->
{?LOAD_ADDRESS, Address, X};
{sdesc,SDesc} ->
#arm_sdesc{exnlab=ExnLab,fsize=FSize,arity=Arity,live=Live} = SDesc,
ExnRA =
case ExnLab of
[] -> []; % don't cons up a new one
ExnLab -> gb_trees:get(ExnLab, LabelMap) + FunAddress
end,
{?SDESC, Address,
?STACK_DESC(ExnRA, FSize, Arity, Live)}
end.
untag_mfa_or_prim(#arm_mfa{m=M,f=F,a=A}) -> {M,F,A};
untag_mfa_or_prim(#arm_prim{prim=Prim}) -> Prim.
fix_pc_refs(I, InsnAddress, FunAddress, LabelMap) ->
case I of
{b, {Cond,{label,L}}, OrigI} ->
LabelAddress = gb_trees:get(L, LabelMap) + FunAddress,
Imm24 = (LabelAddress - (InsnAddress+8)) div 4,
%% ensure Imm24 fits in a 24 bit sign-extended field
?ASSERT(Imm24 =< 16#7FFFFF),
?ASSERT(Imm24 >= -(16#800000)),
{b, {Cond,{imm24,Imm24 band 16#FFFFFF}}, OrigI};
{'.pseudo_li', {Dst,{label,L}}, OrigI} ->
LabelAddress = gb_trees:get(L, LabelMap) + FunAddress,
Offset = LabelAddress - (InsnAddress+8),
{Sign,Imm12} =
if Offset < 0 -> {'-', -Offset};
true -> {'+', Offset}
end,
?ASSERT(Imm12 =< 16#FFF),
Am2 = {'immediate_offset',{r,15},Sign,{imm12,Imm12}},
{ldr, {do_cond('al'),Dst,Am2}, OrigI};
_ -> I
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%% Assembly listing support (pp_asm option).
%%%
print(String, Arglist, Options) ->
?when_option(pp_asm, Options, io:format(String, Arglist)).
print_insn(Address, Word, I, Options) ->
?when_option(pp_asm, Options, print_insn_2(Address, Word, I)).
print_insn_2(Address, Word, {NewI,NewArgs,OrigI}) ->
io:format("~8.16.0b | ", [Address]),
print_code_list(word_to_bytes(Word), 0),
case NewI of
'.long' ->
io:format("\t.long ~.16x\n", [Word, "0x"]);
'.reloc' ->
io:format("\t.reloc ~w\n", [NewArgs]);
_ ->
hipe_arm_pp:pp_insn(OrigI)
end.
word_to_bytes(W) ->
case W of
[] -> []; % label or other pseudo instruction
_ -> [(W bsr 24) band 16#FF, (W bsr 16) band 16#FF,
(W bsr 8) band 16#FF, W band 16#FF]
end.
print_code_list([Byte|Rest], Len) ->
print_byte(Byte),
print_code_list(Rest, Len+1);
print_code_list([], Len) ->
fill_spaces(8-(Len*2)),
io:format(" | ").
print_byte(Byte) ->
io:format("~2.16.0b", [Byte band 16#FF]).
fill_spaces(N) when N > 0 ->
io:format(" "),
fill_spaces(N-1);
fill_spaces(0) ->
[].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%% ADT for previous immediates.
%%% This is a queue (fifo) of the previously defined immediates,
%%% plus a mapping from these immediates to their labels.
%%%
-record(previous, {set, head, tail}). % INV: tail=[] if head=[]
previous_empty() -> #previous{set=gb_trees:empty(), head=[], tail=[]}.
previous_lookup(#previous{set=S}, Imm) -> gb_trees:lookup(Imm, S).
previous_findmin(#previous{head=H}) ->
case H of
[X|_] -> X;
_ -> []
end.
previous_delmin(#previous{set=S, head=[{_Address,Imm}|H], tail=T}) ->
{NewH,NewT} =
case H of
[] -> {lists:reverse(T), []};
_ -> {H, T}
end,
#previous{set=gb_trees:delete(Imm, S), head=NewH, tail=NewT}.
previous_append(#previous{set=S, head=H, tail=T}, Address, Lab, Imm) ->
{NewH,NewT} =
case H of
[] -> {[{Address,Imm}], []};
_ -> {H, [{Address,Imm}|T]}
end,
#previous{set=gb_trees:insert(Imm, Lab, S), head=NewH, tail=NewT}.
%%%
%%% ADT for pending immediates.
%%% This is a queue (fifo) of immediates pending definition,
%%% plus a mapping from these immediates to their labels,
%%% and a recording of the first (lowest) code address referring
%%% to a pending immediate.
%%%
-record(pending, {set, list, firstref}).
pending_empty() -> #pending{set=gb_trees:empty(), list=[], firstref=[]}.
pending_to_list(#pending{list=L}) -> lists:reverse(L).
pending_lookup(#pending{set=S}, Imm) -> gb_trees:lookup(Imm, S).
pending_firstref(#pending{firstref=F}) -> F.
pending_append(#pending{set=S, list=L, firstref=F}, Address, Lab, RelocOrInt, Imm) ->
#pending{set=gb_trees:insert(Imm, Lab, S),
list=[{Lab,RelocOrInt,Imm}|L],
firstref=case F of [] -> Address; _ -> F end}.
pending_size(#pending{list=L}) -> length(L).