%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2005-2016. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
-module(hipe_rtl_to_arm).
-export([translate/1]).
-include("../rtl/hipe_rtl.hrl").
translate(RTL) ->
hipe_gensym:init(arm),
hipe_gensym:set_var(arm, hipe_arm_registers:first_virtual()),
hipe_gensym:set_label(arm, hipe_gensym:get_label(rtl)),
Map0 = vmap_empty(),
{Formals, Map1} = conv_formals(hipe_rtl:rtl_params(RTL), Map0),
OldData = hipe_rtl:rtl_data(RTL),
{Code0, NewData} = conv_insn_list(hipe_rtl:rtl_code(RTL), Map1, OldData),
{RegFormals,_} = split_args(Formals),
Code =
case RegFormals of
[] -> Code0;
_ -> [hipe_arm:mk_label(hipe_gensym:get_next_label(arm)) |
move_formals(RegFormals, Code0)]
end,
IsClosure = hipe_rtl:rtl_is_closure(RTL),
IsLeaf = hipe_rtl:rtl_is_leaf(RTL),
hipe_arm:mk_defun(hipe_rtl:rtl_fun(RTL),
Formals,
IsClosure,
IsLeaf,
Code,
NewData,
[],
[]).
conv_insn_list([H|T], Map, Data) ->
{NewH, NewMap, NewData1} = conv_insn(H, Map, Data),
%% io:format("~w \n ==>\n ~w\n- - - - - - - - -\n",[H,NewH]),
{NewT, NewData2} = conv_insn_list(T, NewMap, NewData1),
{NewH ++ NewT, NewData2};
conv_insn_list([], _, Data) ->
{[], Data}.
conv_insn(I, Map, Data) ->
case I of
#alu{} -> conv_alu(I, Map, Data);
#alub{} -> conv_alub(I, Map, Data);
#call{} -> conv_call(I, Map, Data);
#comment{} -> conv_comment(I, Map, Data);
#enter{} -> conv_enter(I, Map, Data);
#goto{} -> conv_goto(I, Map, Data);
#label{} -> conv_label(I, Map, Data);
#load{} -> conv_load(I, Map, Data);
#load_address{} -> conv_load_address(I, Map, Data);
#load_atom{} -> conv_load_atom(I, Map, Data);
#move{} -> conv_move(I, Map, Data);
#return{} -> conv_return(I, Map, Data);
#store{} -> conv_store(I, Map, Data);
#switch{} -> conv_switch(I, Map, Data);
_ -> exit({?MODULE,conv_insn,I})
end.
conv_alu(I, Map, Data) ->
%% dst = src1 aluop src2
{Dst, Map0} = conv_dst(hipe_rtl:alu_dst(I), Map),
{Src1, Map1} = conv_src(hipe_rtl:alu_src1(I), Map0),
{Src2, Map2} = conv_src(hipe_rtl:alu_src2(I), Map1),
RtlAluOp = hipe_rtl:alu_op(I),
S = false,
I2 = mk_alu(S, Dst, Src1, RtlAluOp, Src2),
{I2, Map2, Data}.
conv_shift(RtlShiftOp) ->
case RtlShiftOp of
'sll' -> 'lsl';
'srl' -> 'lsr';
'sra' -> 'asr'
end.
conv_arith(RtlAluOp) -> % RtlAluOp \ RtlShiftOp -> ArmArithOp
case RtlAluOp of
'add' -> 'add';
'sub' -> 'sub';
'mul' -> 'mul';
'or' -> 'orr';
'and' -> 'and';
'xor' -> 'eor'
end.
commute_arithop(ArithOp) ->
case ArithOp of
'sub' -> 'rsb';
_ -> ArithOp
end.
conv_cmpop('add') -> 'cmn';
conv_cmpop('sub') -> 'cmp';
conv_cmpop('and') -> 'tst';
conv_cmpop('xor') -> 'teq';
conv_cmpop(_) -> none.
cmpop_commutes('cmp') -> false;
cmpop_commutes('cmn') -> true;
cmpop_commutes('tst') -> true;
cmpop_commutes('teq') -> true.
mk_alu(S, Dst, Src1, RtlAluOp, Src2) ->
case hipe_rtl:is_shift_op(RtlAluOp) of
true ->
mk_shift(S, Dst, Src1, conv_shift(RtlAluOp), Src2);
false ->
mk_arith(S, Dst, Src1, conv_arith(RtlAluOp), Src2)
end.
mk_shift(S, Dst, Src1, ShiftOp, Src2) ->
case hipe_arm:is_temp(Src1) of
true ->
case hipe_arm:is_temp(Src2) of
true ->
mk_shift_rr(S, Dst, Src1, ShiftOp, Src2);
_ ->
mk_shift_ri(S, Dst, Src1, ShiftOp, Src2)
end;
_ ->
case hipe_arm:is_temp(Src2) of
true ->
mk_shift_ir(S, Dst, Src1, ShiftOp, Src2);
_ ->
mk_shift_ii(S, Dst, Src1, ShiftOp, Src2)
end
end.
mk_shift_ii(S, Dst, Src1, ShiftOp, Src2) ->
Tmp = new_untagged_temp(),
mk_li(Tmp, Src1,
mk_shift_ri(S, Dst, Tmp, ShiftOp, Src2)).
mk_shift_ir(S, Dst, Src1, ShiftOp, Src2) ->
Tmp = new_untagged_temp(),
mk_li(Tmp, Src1,
mk_shift_rr(S, Dst, Tmp, ShiftOp, Src2)).
mk_shift_ri(S, Dst, Src1, ShiftOp, 0)
when ShiftOp =:= lsl; ShiftOp =:= lsr; ShiftOp =:= asr ->
[hipe_arm:mk_move(S, Dst, Src1)];
mk_shift_ri(S, Dst, Src1, ShiftOp, Src2)
when is_integer(Src2), Src2 > 0, Src2 < 32 ->
Am1 = {Src1,ShiftOp,Src2},
[hipe_arm:mk_move(S, Dst, Am1)].
mk_shift_rr(S, Dst, Src1, ShiftOp, Src2) ->
Am1 = {Src1,ShiftOp,Src2},
[hipe_arm:mk_move(S, Dst, Am1)].
mk_arith(S, Dst, Src1, ArithOp, Src2) ->
case hipe_arm:is_temp(Src1) of
true ->
case hipe_arm:is_temp(Src2) of
true ->
mk_arith_rr(S, Dst, Src1, ArithOp, Src2);
_ ->
mk_arith_ri(S, Dst, Src1, ArithOp, Src2)
end;
_ ->
case hipe_arm:is_temp(Src2) of
true ->
mk_arith_ir(S, Dst, Src1, ArithOp, Src2);
_ ->
mk_arith_ii(S, Dst, Src1, ArithOp, Src2)
end
end.
mk_arith_ii(S, Dst, Src1, ArithOp, Src2) ->
Tmp = new_untagged_temp(),
mk_li(Tmp, Src1,
mk_arith_ri(S, Dst, Tmp, ArithOp, Src2)).
mk_arith_ir(S, Dst, Src1, ArithOp, Src2) ->
mk_arith_ri(S, Dst, Src2, commute_arithop(ArithOp), Src1).
mk_arith_ri(S, Dst, Src1, ArithOp, Src2) ->
case ArithOp of
'mul' -> % mul/smull only take reg/reg operands
Tmp = new_untagged_temp(),
mk_li(Tmp, Src2,
mk_arith_rr(S, Dst, Src1, ArithOp, Tmp));
_ -> % add/sub/orr/and/eor have reg/am1 operands
{FixAm1,NewArithOp,Am1} = fix_aluop_imm(ArithOp, Src2),
FixAm1 ++ [hipe_arm:mk_alu(NewArithOp, S, Dst, Src1, Am1)]
end.
mk_arith_rr(S, Dst, Src1, ArithOp, Src2) ->
case {ArithOp,S} of
{'mul',true} ->
%% To check for overflow in 32x32->32 multiplication:
%% smull Dst,TmpHi,Src1,Src2
%% mov TmpSign,Dst,ASR #31
%% cmp TmpSign,TmpHi
%% [bne OverflowLabel]
TmpHi = new_untagged_temp(),
TmpSign = new_untagged_temp(),
[hipe_arm:mk_smull(Dst, TmpHi, Src1, Src2),
hipe_arm:mk_move(TmpSign, {Dst,'asr',31}),
hipe_arm:mk_cmp('cmp', TmpSign, TmpHi)];
_ ->
[hipe_arm:mk_alu(ArithOp, S, Dst, Src1, Src2)]
end.
fix_aluop_imm(AluOp, Imm) -> % {FixAm1,NewAluOp,Am1}
case hipe_arm:try_aluop_imm(AluOp, Imm) of
{NewAluOp,Am1} -> {[], NewAluOp, Am1};
[] ->
Tmp = new_untagged_temp(),
{mk_li(Tmp, Imm), AluOp, Tmp}
end.
conv_alub(I, Map, Data) ->
%% dst = src1 aluop src2; if COND goto label
{Src1, Map0} = conv_src(hipe_rtl:alub_src1(I), Map),
{Src2, Map1} = conv_src(hipe_rtl:alub_src2(I), Map0),
RtlAluOp = hipe_rtl:alub_op(I),
RtlCond = hipe_rtl:alub_cond(I),
HasDst = hipe_rtl:alub_has_dst(I),
CmpOp = conv_cmpop(RtlAluOp),
Cond0 = conv_alub_cond(RtlAluOp, RtlCond),
case (not HasDst) andalso CmpOp =/= none of
true ->
I1 = mk_branch(Src1, CmpOp, Src2, Cond0,
hipe_rtl:alub_true_label(I),
hipe_rtl:alub_false_label(I),
hipe_rtl:alub_pred(I)),
{I1, Map1, Data};
false ->
{Dst, Map2} =
case HasDst of
false -> {new_untagged_temp(), Map1};
true -> conv_dst(hipe_rtl:alub_dst(I), Map1)
end,
Cond =
case {RtlAluOp,Cond0} of
{'mul','vs'} -> 'ne'; % overflow becomes not-equal
{'mul','vc'} -> 'eq'; % no-overflow becomes equal
{'mul',_} -> exit({?MODULE,I});
{_,_} -> Cond0
end,
I2 = mk_pseudo_bc(
Cond,
hipe_rtl:alub_true_label(I),
hipe_rtl:alub_false_label(I),
hipe_rtl:alub_pred(I)),
S = true,
I1 = mk_alu(S, Dst, Src1, RtlAluOp, Src2),
{I1 ++ I2, Map2, Data}
end.
mk_branch(Src1, CmpOp, Src2, Cond, TrueLab, FalseLab, Pred) ->
case hipe_arm:is_temp(Src1) of
true ->
case hipe_arm:is_temp(Src2) of
true ->
mk_branch_rr(Src1, CmpOp, Src2, Cond, TrueLab, FalseLab, Pred);
_ ->
mk_branch_ri(Src1, CmpOp, Src2, Cond, TrueLab, FalseLab, Pred)
end;
_ ->
case hipe_arm:is_temp(Src2) of
true ->
NewCond =
case cmpop_commutes(CmpOp) of
true -> Cond;
false -> commute_cond(Cond)
end,
mk_branch_ri(Src2, CmpOp, Src1, NewCond, TrueLab, FalseLab, Pred);
_ ->
mk_branch_ii(Src1, CmpOp, Src2, Cond, TrueLab, FalseLab, Pred)
end
end.
mk_branch_ii(Imm1, CmpOp, Imm2, Cond, TrueLab, FalseLab, Pred) ->
Tmp = new_untagged_temp(),
mk_li(Tmp, Imm1,
mk_branch_ri(Tmp, CmpOp, Imm2, Cond,
TrueLab, FalseLab, Pred)).
mk_branch_ri(Src, CmpOp, Imm, Cond, TrueLab, FalseLab, Pred) ->
{FixAm1,NewCmpOp,Am1} = fix_aluop_imm(CmpOp, Imm),
FixAm1 ++ mk_branch_rr(Src, NewCmpOp, Am1, Cond, TrueLab, FalseLab, Pred).
mk_branch_rr(Src, CmpOp, Am1, Cond, TrueLab, FalseLab, Pred) ->
[hipe_arm:mk_cmp(CmpOp, Src, Am1) |
mk_pseudo_bc(Cond, TrueLab, FalseLab, Pred)].
conv_call(I, Map, Data) ->
{Args, Map0} = conv_src_list(hipe_rtl:call_arglist(I), Map),
{Dsts, Map1} = conv_dst_list(hipe_rtl:call_dstlist(I), Map0),
{Fun, Map2} = conv_fun(hipe_rtl:call_fun(I), Map1),
ContLab = hipe_rtl:call_continuation(I),
ExnLab = hipe_rtl:call_fail(I),
Linkage = hipe_rtl:call_type(I),
I2 = mk_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage),
{I2, Map2, Data}.
mk_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage) ->
case hipe_arm:is_prim(Fun) of
true ->
mk_primop_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage);
false ->
mk_general_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage)
end.
mk_primop_call(Dsts, Prim, Args, ContLab, ExnLab, Linkage) ->
case hipe_arm:prim_prim(Prim) of
%% no ARM-specific primops defined yet
_ ->
mk_general_call(Dsts, Prim, Args, ContLab, ExnLab, Linkage)
end.
mk_general_call(Dsts, Fun, Args, ContLab, ExnLab, Linkage) ->
%% The backend does not support pseudo_calls without a
%% continuation label, so we make sure each call has one.
{RealContLab, Tail} =
case mk_call_results(Dsts) of
[] ->
%% Avoid consing up a dummy basic block if the moves list
%% is empty, as is typical for calls to suspend/0.
%% This should be subsumed by a general "optimise the CFG"
%% module, and could probably be removed.
case ContLab of
[] ->
NewContLab = hipe_gensym:get_next_label(arm),
{NewContLab, [hipe_arm:mk_label(NewContLab)]};
_ ->
{ContLab, []}
end;
Moves ->
%% Change the call to continue at a new basic block.
%% In this block move the result registers to the Dsts,
%% then continue at the call's original continuation.
NewContLab = hipe_gensym:get_next_label(arm),
case ContLab of
[] ->
%% This is just a fallthrough
%% No jump back after the moves.
{NewContLab,
[hipe_arm:mk_label(NewContLab) |
Moves]};
_ ->
%% The call has a continuation. Jump to it.
{NewContLab,
[hipe_arm:mk_label(NewContLab) |
Moves ++
[hipe_arm:mk_b_label(ContLab)]]}
end
end,
SDesc = hipe_arm:mk_sdesc(ExnLab, 0, length(Args), {}),
CallInsn = hipe_arm:mk_pseudo_call(Fun, SDesc, RealContLab, Linkage),
{RegArgs,StkArgs} = split_args(Args),
mk_push_args(StkArgs, move_actuals(RegArgs, [CallInsn | Tail])).
mk_call_results([]) ->
[];
mk_call_results([Dst]) ->
RV = hipe_arm:mk_temp(hipe_arm_registers:return_value(), 'tagged'),
[hipe_arm:mk_pseudo_move(Dst, RV)];
mk_call_results(Dsts) ->
exit({?MODULE,mk_call_results,Dsts}).
mk_push_args(StkArgs, Tail) ->
case length(StkArgs) of
0 ->
Tail;
NrStkArgs ->
[hipe_arm:mk_pseudo_call_prepare(NrStkArgs) |
mk_store_args(StkArgs, NrStkArgs * word_size(), Tail)]
end.
mk_store_args([Arg|Args], PrevOffset, Tail) ->
Offset = PrevOffset - word_size(),
{Src,FixSrc} =
case hipe_arm:is_temp(Arg) of
true ->
{Arg, []};
_ ->
Tmp = new_tagged_temp(),
{Tmp, mk_li(Tmp, Arg)}
end,
NewTail = hipe_arm:mk_store('str', Src, mk_sp(), Offset, 'new', Tail),
mk_store_args(Args, Offset, FixSrc ++ NewTail);
mk_store_args([], _, Tail) ->
Tail.
conv_comment(I, Map, Data) ->
I2 = [hipe_arm:mk_comment(hipe_rtl:comment_text(I))],
{I2, Map, Data}.
conv_enter(I, Map, Data) ->
{Args, Map0} = conv_src_list(hipe_rtl:enter_arglist(I), Map),
{Fun, Map1} = conv_fun(hipe_rtl:enter_fun(I), Map0),
I2 = mk_enter(Fun, Args, hipe_rtl:enter_type(I)),
{I2, Map1, Data}.
mk_enter(Fun, Args, Linkage) ->
Arity = length(Args),
{RegArgs,StkArgs} = split_args(Args),
move_actuals(RegArgs,
[hipe_arm:mk_pseudo_tailcall_prepare(),
hipe_arm:mk_pseudo_tailcall(Fun, Arity, StkArgs, Linkage)]).
conv_goto(I, Map, Data) ->
I2 = [hipe_arm:mk_b_label(hipe_rtl:goto_label(I))],
{I2, Map, Data}.
conv_label(I, Map, Data) ->
I2 = [hipe_arm:mk_label(hipe_rtl:label_name(I))],
{I2, Map, Data}.
conv_load(I, Map, Data) ->
{Dst, Map0} = conv_dst(hipe_rtl:load_dst(I), Map),
{Base1, Map1} = conv_src(hipe_rtl:load_src(I), Map0),
{Base2, Map2} = conv_src(hipe_rtl:load_offset(I), Map1),
LoadSize = hipe_rtl:load_size(I),
LoadSign = hipe_rtl:load_sign(I),
I2 = mk_load(Dst, Base1, Base2, LoadSize, LoadSign),
{I2, Map2, Data}.
mk_load(Dst, Base1, Base2, LoadSize, LoadSign) ->
case {LoadSize,LoadSign} of
{byte,signed} ->
case hipe_arm:is_temp(Base1) of
true ->
case hipe_arm:is_temp(Base2) of
true ->
mk_ldrsb_rr(Dst, Base1, Base2);
_ ->
mk_ldrsb_ri(Dst, Base1, Base2)
end;
_ ->
case hipe_arm:is_temp(Base2) of
true ->
mk_ldrsb_ri(Dst, Base2, Base1);
_ ->
mk_ldrsb_ii(Dst, Base1, Base2)
end
end;
_ ->
LdOp =
case LoadSize of
byte -> 'ldrb';
int32 -> 'ldr';
word -> 'ldr'
end,
case hipe_arm:is_temp(Base1) of
true ->
case hipe_arm:is_temp(Base2) of
true ->
mk_load_rr(Dst, Base1, Base2, LdOp);
_ ->
mk_load_ri(Dst, Base1, Base2, LdOp)
end;
_ ->
case hipe_arm:is_temp(Base2) of
true ->
mk_load_ri(Dst, Base2, Base1, LdOp);
_ ->
mk_load_ii(Dst, Base1, Base2, LdOp)
end
end
end.
mk_load_ii(Dst, Base1, Base2, LdOp) ->
Tmp = new_untagged_temp(),
mk_li(Tmp, Base1,
mk_load_ri(Dst, Tmp, Base2, LdOp)).
mk_load_ri(Dst, Base, Offset, LdOp) ->
hipe_arm:mk_load(LdOp, Dst, Base, Offset, 'new', []).
mk_load_rr(Dst, Base1, Base2, LdOp) ->
Am2 = hipe_arm:mk_am2(Base1, '+', Base2),
[hipe_arm:mk_load(LdOp, Dst, Am2)].
mk_ldrsb_ii(Dst, Base1, Base2) ->
Tmp = new_untagged_temp(),
mk_li(Tmp, Base1,
mk_ldrsb_ri(Dst, Tmp, Base2)).
mk_ldrsb_ri(Dst, Base, Offset) when is_integer(Offset) ->
{Sign,AbsOffset} =
if Offset < 0 -> {'-', -Offset};
true -> {'+', Offset}
end,
if AbsOffset =< 255 ->
Am3 = hipe_arm:mk_am3(Base, Sign, AbsOffset),
[hipe_arm:mk_ldrsb(Dst, Am3)];
true ->
Index = new_untagged_temp(),
Am3 = hipe_arm:mk_am3(Base, Sign, Index),
mk_li(Index, AbsOffset,
[hipe_arm:mk_ldrsb(Dst, Am3)])
end.
mk_ldrsb_rr(Dst, Base1, Base2) ->
Am3 = hipe_arm:mk_am3(Base1, '+', Base2),
[hipe_arm:mk_ldrsb(Dst, Am3)].
conv_load_address(I, Map, Data) ->
{Dst, Map0} = conv_dst(hipe_rtl:load_address_dst(I), Map),
Addr = hipe_rtl:load_address_addr(I),
Type = hipe_rtl:load_address_type(I),
Src = {Addr,Type},
I2 = [hipe_arm:mk_pseudo_li(Dst, Src)],
{I2, Map0, Data}.
conv_load_atom(I, Map, Data) ->
{Dst, Map0} = conv_dst(hipe_rtl:load_atom_dst(I), Map),
Src = hipe_rtl:load_atom_atom(I),
I2 = [hipe_arm:mk_pseudo_li(Dst, Src)],
{I2, Map0, Data}.
conv_move(I, Map, Data) ->
{Dst, Map0} = conv_dst(hipe_rtl:move_dst(I), Map),
{Src, Map1} = conv_src(hipe_rtl:move_src(I), Map0),
I2 = mk_move(Dst, Src, []),
{I2, Map1, Data}.
mk_move(Dst, Src, Tail) ->
case hipe_arm:is_temp(Src) of
true -> [hipe_arm:mk_pseudo_move(Dst, Src) | Tail];
_ -> mk_li(Dst, Src, Tail)
end.
conv_return(I, Map, Data) ->
%% TODO: multiple-value returns
{[Arg], Map0} = conv_src_list(hipe_rtl:return_varlist(I), Map),
I2 = mk_move(mk_rv(), Arg,
[hipe_arm:mk_pseudo_blr()]),
{I2, Map0, Data}.
conv_store(I, Map, Data) ->
{Base, Map0} = conv_src(hipe_rtl:store_base(I), Map),
{Src, Map1} = conv_src(hipe_rtl:store_src(I), Map0),
{Offset, Map2} = conv_src(hipe_rtl:store_offset(I), Map1),
StoreSize = hipe_rtl:store_size(I),
I2 = mk_store(Src, Base, Offset, StoreSize),
{I2, Map2, Data}.
mk_store(Src, Base, Offset, StoreSize) ->
StOp =
case StoreSize of
byte -> 'strb';
int32 -> 'str';
word -> 'str'
end,
case hipe_arm:is_temp(Src) of
true ->
mk_store2(Src, Base, Offset, StOp);
_ ->
Tmp = new_untagged_temp(),
mk_li(Tmp, Src,
mk_store2(Tmp, Base, Offset, StOp))
end.
mk_store2(Src, Base, Offset, StOp) ->
case hipe_arm:is_temp(Base) of
true ->
case hipe_arm:is_temp(Offset) of
true ->
mk_store_rr(Src, Base, Offset, StOp);
_ ->
mk_store_ri(Src, Base, Offset, StOp)
end;
false ->
case hipe_arm:is_temp(Offset) of
true ->
mk_store_ri(Src, Offset, Base, StOp);
_ ->
mk_store_ii(Src, Base, Offset, StOp)
end
end.
mk_store_ii(Src, Base, Offset, StOp) ->
Tmp = new_untagged_temp(),
mk_li(Tmp, Base,
mk_store_ri(Src, Tmp, Offset, StOp)).
mk_store_ri(Src, Base, Offset, StOp) ->
hipe_arm:mk_store(StOp, Src, Base, Offset, 'new', []).
mk_store_rr(Src, Base, Index, StOp) ->
Am2 = hipe_arm:mk_am2(Base, '+', Index),
[hipe_arm:mk_store(StOp, Src, Am2)].
conv_switch(I, Map, Data) ->
Labels = hipe_rtl:switch_labels(I),
LMap = [{label,L} || L <- Labels],
{NewData, JTabLab} =
case hipe_rtl:switch_sort_order(I) of
[] ->
hipe_consttab:insert_block(Data, word, LMap);
SortOrder ->
hipe_consttab:insert_sorted_block(
Data, word, LMap, SortOrder)
end,
%% no immediates allowed here
{IndexR, Map1} = conv_dst(hipe_rtl:switch_src(I), Map),
JTabR = new_untagged_temp(),
I2 =
[hipe_arm:mk_pseudo_li(JTabR, {JTabLab,constant}),
hipe_arm:mk_pseudo_switch(JTabR, IndexR, Labels)],
{I2, Map1, NewData}.
%%% Create a conditional branch.
mk_pseudo_bc(Cond, TrueLabel, FalseLabel, Pred) ->
[hipe_arm:mk_pseudo_bc(Cond, TrueLabel, FalseLabel, Pred)].
%%% Load an integer constant into a register.
mk_li(Dst, Value) -> mk_li(Dst, Value, []).
mk_li(Dst, Value, Tail) ->
hipe_arm:mk_li(Dst, Value, Tail).
%%% Convert an RTL condition code.
conv_alub_cond(RtlAluOp, Cond) -> % may be unsigned, depends on aluop
%% Note: ARM has a non-standard definition of the Carry flag:
%% 'cmp', 'sub', and 'rsb' define Carry as the NEGATION of Borrow.
%% This means that the mapping between C/Z combinations and
%% conditions like "lower" and "higher" becomes non-standard.
%% (See conv_branch_cond/1 which maps ltu to lo/carry-clear,
%% while x86 maps ltu to b/carry-set.)
%% Here in conv_alub_cond/2 it means that the mapping of unsigned
%% conditions also has to consider the alu operator, since e.g.
%% 'add' and 'sub' behave differently with regard to Carry.
case {RtlAluOp, Cond} of % handle allowed alub unsigned conditions
{'add', 'ltu'} -> 'hs'; % add+ltu == unsigned overflow == carry set == hs
%% add more cases when needed
{'sub', _} -> conv_branch_cond(Cond);
_ -> conv_cond(Cond)
end.
conv_cond(Cond) -> % only signed
case Cond of
eq -> 'eq';
ne -> 'ne';
gt -> 'gt';
ge -> 'ge';
lt -> 'lt';
le -> 'le';
overflow -> 'vs';
not_overflow -> 'vc'
end.
conv_branch_cond(Cond) -> % may be unsigned
case Cond of
gtu -> 'hi';
geu -> 'hs';
ltu -> 'lo';
leu -> 'ls';
_ -> conv_cond(Cond)
end.
%%% Commute an ARM condition code.
commute_cond(Cond) -> % if x Cond y, then y commute_cond(Cond) x
case Cond of
'eq' -> 'eq'; % ==, ==
'ne' -> 'ne'; % !=, !=
'gt' -> 'lt'; % >, <
'ge' -> 'le'; % >=, <=
'lt' -> 'gt'; % <, >
'le' -> 'ge'; % <=, >=
'hi' -> 'lo'; % >u, <u
'hs' -> 'ls'; % >=u, <=u
'lo' -> 'hi'; % <u, >u
'ls' -> 'hs'; % <=u, >=u
%% vs/vc: n/a
_ -> exit({?MODULE,commute_cond,Cond})
end.
%%% Split a list of formal or actual parameters into the
%%% part passed in registers and the part passed on the stack.
%%% The parameters passed in registers are also tagged with
%%% the corresponding registers.
split_args(Args) ->
split_args(0, hipe_arm_registers:nr_args(), Args, []).
split_args(I, N, [Arg|Args], RegArgs) when I < N ->
Reg = hipe_arm_registers:arg(I),
Temp = hipe_arm:mk_temp(Reg, 'tagged'),
split_args(I+1, N, Args, [{Arg,Temp}|RegArgs]);
split_args(_, _, StkArgs, RegArgs) ->
{RegArgs, StkArgs}.
%%% Convert a list of actual parameters passed in
%%% registers (from split_args/1) to a list of moves.
move_actuals([{Src,Dst}|Actuals], Rest) ->
move_actuals(Actuals, mk_move(Dst, Src, Rest));
move_actuals([], Rest) ->
Rest.
%%% Convert a list of formal parameters passed in
%%% registers (from split_args/1) to a list of moves.
move_formals([{Dst,Src}|Formals], Rest) ->
move_formals(Formals, [hipe_arm:mk_pseudo_move(Dst, Src) | Rest]);
move_formals([], Rest) ->
Rest.
%%% Convert a 'fun' operand (MFA, prim, or temp)
conv_fun(Fun, Map) ->
case hipe_rtl:is_var(Fun) of
true ->
conv_dst(Fun, Map);
false ->
case hipe_rtl:is_reg(Fun) of
true ->
conv_dst(Fun, Map);
false ->
if is_atom(Fun) ->
{hipe_arm:mk_prim(Fun), Map};
true ->
{conv_mfa(Fun), Map}
end
end
end.
%%% Convert an MFA operand.
conv_mfa({M,F,A}) when is_atom(M), is_atom(F), is_integer(A) ->
hipe_arm:mk_mfa(M, F, A).
%%% Convert an RTL source operand (imm/var/reg).
%%% Returns a temp or a naked integer.
conv_src(Opnd, Map) ->
case hipe_rtl:is_imm(Opnd) of
true ->
Value = hipe_rtl:imm_value(Opnd),
if is_integer(Value) ->
{Value, Map}
end;
false ->
conv_dst(Opnd, Map)
end.
conv_src_list([O|Os], Map) ->
{V, Map1} = conv_src(O, Map),
{Vs, Map2} = conv_src_list(Os, Map1),
{[V|Vs], Map2};
conv_src_list([], Map) ->
{[], Map}.
%%% Convert an RTL destination operand (var/reg).
conv_dst(Opnd, Map) ->
{Name, Type} =
case hipe_rtl:is_var(Opnd) of
true ->
{hipe_rtl:var_index(Opnd), 'tagged'};
false ->
case hipe_rtl:is_fpreg(Opnd) of
true ->
{hipe_rtl:fpreg_index(Opnd), 'double'};
false ->
{hipe_rtl:reg_index(Opnd), 'untagged'}
end
end,
IsPrecoloured =
case Type of
'double' -> false; %hipe_arm_registers:is_precoloured_fpr(Name);
_ -> hipe_arm_registers:is_precoloured_gpr(Name)
end,
case IsPrecoloured of
true ->
{hipe_arm:mk_temp(Name, Type), Map};
false ->
case vmap_lookup(Map, Opnd) of
{value, NewTemp} ->
{NewTemp, Map};
_ ->
NewTemp = hipe_arm:mk_new_temp(Type),
{NewTemp, vmap_bind(Map, Opnd, NewTemp)}
end
end.
conv_dst_list([O|Os], Map) ->
{Dst, Map1} = conv_dst(O, Map),
{Dsts, Map2} = conv_dst_list(Os, Map1),
{[Dst|Dsts], Map2};
conv_dst_list([], Map) ->
{[], Map}.
conv_formals(Os, Map) ->
conv_formals(hipe_arm_registers:nr_args(), Os, Map, []).
conv_formals(N, [O|Os], Map, Res) ->
Type =
case hipe_rtl:is_var(O) of
true -> 'tagged';
_ -> 'untagged'
end,
Dst =
if N > 0 -> hipe_arm:mk_new_temp(Type); % allocatable
true -> hipe_arm:mk_new_nonallocatable_temp(Type)
end,
Map1 = vmap_bind(Map, O, Dst),
conv_formals(N-1, Os, Map1, [Dst|Res]);
conv_formals(_, [], Map, Res) ->
{lists:reverse(Res), Map}.
%%% Create a temp representing the stack pointer register.
mk_sp() ->
hipe_arm:mk_temp(hipe_arm_registers:stack_pointer(), 'untagged').
%%% Create a temp representing the return value register.
mk_rv() ->
hipe_arm:mk_temp(hipe_arm_registers:return_value(), 'tagged').
%%% new_untagged_temp -- conjure up an untagged scratch reg
new_untagged_temp() ->
hipe_arm:mk_new_temp('untagged').
%%% new_tagged_temp -- conjure up a tagged scratch reg
new_tagged_temp() ->
hipe_arm:mk_new_temp('tagged').
%%% Map from RTL var/reg operands to temps.
vmap_empty() ->
gb_trees:empty().
vmap_lookup(Map, Key) ->
gb_trees:lookup(Key, Map).
vmap_bind(Map, Key, Val) ->
gb_trees:insert(Key, Val, Map).
word_size() ->
4.