aboutsummaryrefslogblamecommitdiffstats
path: root/lib/hipe/cerl/cerl_closurean.erl
blob: 021acd5b35f9d419ecedf6582e3fc49197563221 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
                   

                                                        



                                                                      
  


                                                                         
  
























































































































































































































































































































































































































































































































































































































































































































































































































                                                                              
                                                         














                                                                         
                                                          
































                                                                           
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2003-2010. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% =====================================================================
%% Closure analysis of Core Erlang programs.
%%
%% Copyright (C) 2001-2002 Richard Carlsson
%%
%% Author contact: richardc@it.uu.se
%% =====================================================================

%% TODO: might need a "top" (`any') element for any-length value lists.

-module(cerl_closurean).

-export([analyze/1, annotate/1]).
%% The following functions are exported from this module since they
%% are also used by Dialyzer (file dialyzer/src/dialyzer_dep.erl)
-export([is_escape_op/2, is_escape_op/3, is_literal_op/2, is_literal_op/3]).

-import(cerl, [ann_c_apply/3, ann_c_fun/3, ann_c_var/2, apply_args/1,
	       apply_op/1, atom_val/1, bitstr_size/1, bitstr_val/1,
	       binary_segments/1, c_letrec/2, c_seq/2, c_tuple/1,
	       c_nil/0, call_args/1, call_module/1, call_name/1,
	       case_arg/1, case_clauses/1, catch_body/1, clause_body/1,
	       clause_guard/1, clause_pats/1, cons_hd/1, cons_tl/1,
	       fun_body/1, fun_vars/1, get_ann/1, is_c_atom/1,
	       let_arg/1, let_body/1, let_vars/1, letrec_body/1,
	       letrec_defs/1, module_defs/1, module_defs/1,
	       module_exports/1, pat_vars/1, primop_args/1,
	       primop_name/1, receive_action/1, receive_clauses/1,
	       receive_timeout/1, seq_arg/1, seq_body/1, set_ann/2,
	       try_arg/1, try_body/1, try_vars/1, try_evars/1,
	       try_handler/1, tuple_es/1, type/1, values_es/1]).

-import(cerl_trees, [get_label/1]).

%% ===========================================================================

-type label()    :: integer() | 'top' | 'external' | 'external_call'.
-type ordset(X)  :: [X].  % XXX: TAKE ME OUT
-type labelset() :: ordset(label()).
-type outlist()  :: [labelset()] | 'none'.
-type escapes()  :: labelset().

%% ===========================================================================
%% annotate(Tree) -> {Tree1, OutList, Outputs, Escapes, Dependencies, Parents}
%%
%%	    Tree = cerl:cerl()
%%
%%	Analyzes `Tree' (see `analyze') and appends terms `{callers,
%%	Labels}' and `{calls, Labels}' to the annotation list of each
%%	fun-expression node and apply-expression node of `Tree',
%%	respectively, where `Labels' is an ordered-set list of labels of
%%	fun-expressions in `Tree', possibly also containing the atom
%%	`external', corresponding to the dependency information derived
%%	by the analysis. Any previous such annotations are removed from
%%	`Tree'. `Tree1' is the modified tree; for details on `OutList',
%%	`Outputs' , `Dependencies', `Escapes' and `Parents', see
%%	`analyze'.
%%
%%	Note: `Tree' must be annotated with labels in order to use this
%%	function; see `analyze' for details.

-spec annotate(cerl:cerl()) ->
        {cerl:cerl(), outlist(), dict(), escapes(), dict(), dict()}.

annotate(Tree) ->
    {Xs, Out, Esc, Deps, Par} = analyze(Tree),
    F = fun (T) ->
		case type(T) of
		    'fun' ->
			L = get_label(T),
			X = case dict:find(L, Deps) of
				{ok, X1} -> X1;
				error -> set__new()
			    end,
			set_ann(T, append_ann(callers,
					      set__to_list(X),
					      get_ann(T)));
		    apply ->
			L = get_label(T),
			X = case dict:find(L, Deps) of
				{ok, X1} -> X1;
				error -> set__new()
			    end,
			set_ann(T, append_ann(calls,
					      set__to_list(X),
					      get_ann(T)));
		    _ ->
%%%			set_ann(T, [])   % debug
			T
		end
	end,
    {cerl_trees:map(F, Tree), Xs, Out, Esc, Deps, Par}.

append_ann(Tag, Val, [X | Xs]) ->
    if tuple_size(X) >= 1, element(1, X) =:= Tag -> 
	    append_ann(Tag, Val, Xs);
       true ->
	    [X | append_ann(Tag, Val, Xs)]
    end;
append_ann(Tag, Val, []) ->
    [{Tag, Val}].

%% =====================================================================
%% analyze(Tree) -> {OutList, Outputs, Escapes, Dependencies, Parents}
%%
%%	    Tree = cerl()
%%	    OutList = [LabelSet] | none
%%	    Outputs = dict(Label, OutList)
%%	    Escapes = LabelSet
%%	    Dependencies = dict(Label, LabelSet)
%%	    LabelSet = ordset(Label)
%%	    Label = integer() | top | external | external_call
%%	    Parents = dict(Label, Label)
%%
%%	Analyzes a module or an expression represented by `Tree'.
%%
%%	The returned `OutList' is a list of sets of labels of
%%	fun-expressions which correspond to the possible closures in the
%%	value list produced by `Tree' (viewed as an expression; the
%%	"value" of a module contains its exported functions). The atom
%%	`none' denotes missing or conflicting information.
%%
%%	The atom `external' in any label set denotes any possible
%%	function outside `Tree', including those in `Escapes'. The atom
%%	`top' denotes the top-level expression `Tree'.
%%
%%	`Outputs' is a mapping from the labels of fun-expressions in
%%	`Tree' to corresponding lists of sets of labels of
%%	fun-expressions (or the atom `none'), representing the possible
%%	closures in the value lists returned by the respective
%%	functions.
%%
%%	`Dependencies' is a similar mapping from the labels of
%%	fun-expressions and apply-expressions in `Tree' to sets of
%%	labels of corresponding fun-expressions which may contain call
%%	sites of the functions or be called from the call sites,
%%	respectively. Any such label not defined in `Dependencies'
%%	represents an unreachable function or a dead or faulty
%%	application.
%%
%%	`Escapes' is the set of labels of fun-expressions in `Tree' such
%%	that corresponding closures may be accessed from outside `Tree'.
%%
%%	`Parents' is a mapping from labels of fun-expressions in `Tree'
%%	to the corresponding label of the nearest containing
%%	fun-expression or top-level expression. This can be used to
%%	extend the dependency graph, for certain analyses.
%%
%%	Note: `Tree' must be annotated with labels (as done by the
%%	function `cerl_trees:label/1') in order to use this function.
%%	The label annotation `{label, L}' (where L should be an integer)
%%	must be the first element of the annotation list of each node in
%%	the tree. Instances of variables bound in `Tree' which denote
%%	the same variable must have the same label; apart from this,
%%	labels should be unique. Constant literals do not need to be
%%	labeled.

-record(state, {vars, out, dep, work, funs, par}).

%% Note: In order to keep our domain simple, we assume that all remote
%% calls and primops return a single value, if any.

%% We use the terms `closure', `label', `lambda' and `fun-expression'
%% interchangeably. The exact meaning in each case can be grasped from
%% the context.
%%
%% Rules:
%%   1) The implicit top level lambda escapes.
%%   2) A lambda returned by an escaped lambda also escapes.
%%   3) An escaped lambda can be passed an external lambda as argument.
%%   4) A lambda passed as argument to an external lambda also escapes.
%%   5) An argument passed to an unknown operation escapes.
%%   6) A call to an unknown operation can return an external lambda.
%%
%% Escaped lambdas become part of the set of external lambdas, but this
%% does not need to be represented explicitly.

%% We wrap the given syntax tree T in a fun-expression labeled `top',
%% which is initially in the set of escaped labels. `top' will be
%% visited at least once.
%%
%% We create a separate function labeled `external', defined as:
%% "'external'/1 = fun (Escape) -> do apply 'external'/1(apply Escape())
%% 'external'/1", which will represent any and all functions outside T,
%% and which returns itself, and contains a recursive call; this models
%% rules 2 and 4 above. It will be revisited if the set of escaped
%% labels changes, or at least once. Its parameter `Escape' is a
%% variable labeled `escape', which will hold the set of escaped labels.
%% initially it contains `top' and `external'.

-spec analyze(cerl:cerl()) -> {outlist(), dict(), escapes(), dict(), dict()}.

analyze(Tree) ->
    %% Note that we use different name spaces for variable labels and
    %% function/call site labels, so we can reuse some names here. We
    %% assume that the labeling of Tree only uses integers, not atoms.
    External = ann_c_var([{label, external}], {external, 1}),
    Escape = ann_c_var([{label, escape}], 'Escape'),
    ExtBody = c_seq(ann_c_apply([{label, loop}], External,
				[ann_c_apply([{label, external_call}],
					     Escape, [])]),
		    External),
    ExtFun = ann_c_fun([{label, external}], [Escape], ExtBody),
%%%     io:fwrite("external fun:\n~s.\n",
%%% 	      [cerl_prettypr:format(ExtFun, [noann])]),
    Top = ann_c_var([{label, top}], {top, 0}),
    TopFun = ann_c_fun([{label, top}], [], Tree),

    %% The "start fun" just makes the initialisation easier. It will not
    %% be marked as escaped, and thus cannot be called.
    StartFun =  ann_c_fun([{label, start}], [],
			  c_letrec([{External, ExtFun}, {Top, TopFun}],
				   c_nil())),
%%%     io:fwrite("start fun:\n~s.\n",
%%% 	      [cerl_prettypr:format(StartFun, [noann])]),

    %% Gather a database of all fun-expressions in Tree and initialise
    %% all their outputs and parameter variables. Bind all module- and
    %% letrec-defined variables to their corresponding labels.
    Funs0 = dict:new(),
    Vars0 = dict:new(),
    Out0 = dict:new(),
    Empty = empty(),
    F = fun (T, S = {Fs, Vs, Os}) ->
		case type(T) of
		    'fun' ->
			L = get_label(T),
			As = fun_vars(T),
			{dict:store(L, T, Fs),
			 bind_vars_single(As, Empty, Vs),
			 dict:store(L, none, Os)};
		    letrec ->
			{Fs, bind_defs(letrec_defs(T), Vs), Os};
		    module ->
			{Fs, bind_defs(module_defs(T), Vs), Os};
		    _ ->
			S
		end
	end,
    {Funs, Vars, Out} = cerl_trees:fold(F, {Funs0, Vars0, Out0},
					StartFun),

    %% Initialise Escape to the minimal set of escaped labels.
    Vars1 = dict:store(escape, from_label_list([top, external]), Vars),

    %% Enter the fixpoint iteration at the StartFun.
    St = loop(StartFun, start, #state{vars = Vars1,
				      out = Out,
				      dep = dict:new(),
				      work = init_work(),
				      funs = Funs,
				      par = dict:new()}),
%%%     io:fwrite("dependencies: ~p.\n",
%%%  	      [[{X, set__to_list(Y)}
%%%   		|| {X, Y} <- dict:to_list(St#state.dep)]]),
    {dict:fetch(top, St#state.out),
     tidy_dict([start, top, external], St#state.out),
     dict:fetch(escape, St#state.vars),
     tidy_dict([loop], St#state.dep),
     St#state.par}.

tidy_dict([X | Xs], D) ->
    tidy_dict(Xs, dict:erase(X, D));
tidy_dict([], D) ->
    D.

loop(T, L, St0) ->
%%%     io:fwrite("analyzing: ~w.\n", [L]),
%%%     io:fwrite("work: ~w.\n", [St0#state.work]),
    Xs0 = dict:fetch(L, St0#state.out),
    {Xs, St1} = visit(fun_body(T), L, St0),
    {W, M} = case equal(Xs0, Xs) of
		 true ->
		     {St1#state.work, St1#state.out};
		 false ->
%%%  		     io:fwrite("out (~w) changed: ~w <- ~w.\n",
%%%  			       [L, Xs, Xs0]),
		     M1 = dict:store(L, Xs, St1#state.out),
		     case dict:find(L, St1#state.dep) of
			 {ok, S} ->
			     {add_work(set__to_list(S), St1#state.work),
			      M1};
			 error ->
			     {St1#state.work, M1}
		     end
	     end,
    St2 = St1#state{out = M},
    case take_work(W) of
	{ok, L1, W1} ->
 	    T1 = dict:fetch(L1, St2#state.funs),
 	    loop(T1, L1, St2#state{work = W1});
	none ->
	    St2
    end.

visit(T, L, St) ->
    case type(T) of
	literal ->
	    {[empty()], St};
	var ->
	    %% If a variable is not already in the store here, we
	    %% initialize it to empty().
	    L1 = get_label(T),
	    Vars = St#state.vars,
	    case dict:find(L1, Vars) of
		{ok, X} ->
		    {[X], St};
		error ->
		    X = empty(),
		    St1 = St#state{vars = dict:store(L1, X, Vars)},
		    {[X], St1}
	    end;
	'fun' ->
	    %% Must revisit the fun also, because its environment might
	    %% have changed. (We don't keep track of such dependencies.)
	    L1 = get_label(T),
	    St1 = St#state{work = add_work([L1], St#state.work),
			   par = set_parent([L1], L, St#state.par)},
	    {[singleton(L1)], St1};
	values ->
	    visit_list(values_es(T), L, St);
	cons ->
	    {Xs, St1} = visit_list([cons_hd(T), cons_tl(T)], L, St),
	    {[join_single_list(Xs)], St1};
	tuple ->
	    {Xs, St1} = visit_list(tuple_es(T), L, St),
	    {[join_single_list(Xs)], St1};
	'let' ->
	    {Xs, St1} = visit(let_arg(T), L, St),
	    Vars = bind_vars(let_vars(T), Xs, St1#state.vars),
	    visit(let_body(T), L, St1#state{vars = Vars});
	seq ->
	    {_, St1} = visit(seq_arg(T), L, St),
	    visit(seq_body(T), L, St1);
	apply ->
	    {Xs, St1} = visit(apply_op(T), L, St),
	    {As, St2} = visit_list(apply_args(T), L, St1),
	    case Xs of
		[X] ->
		    %% We store the dependency from the call site to the
		    %% called functions
		    Ls = set__to_list(X),
		    Out = St2#state.out,
		    Xs1 = join_list([dict:fetch(Lx, Out) || Lx <- Ls]),
		    St3 = call_site(Ls, L, As, St2),
		    L1 = get_label(T),
		    D = dict:store(L1, X, St3#state.dep),
		    {Xs1, St3#state{dep = D}};
		none ->
		    {none, St2}
	    end;
	call ->
	    M = call_module(T),
	    F = call_name(T),
	    {_, St1} = visit(M, L, St),
	    {_, St2} = visit(F, L, St1),
	    {Xs, St3} = visit_list(call_args(T), L, St2),
	    remote_call(M, F, Xs, St3);
	primop ->
	    As = primop_args(T),
	    {Xs, St1} = visit_list(As, L, St),
	    primop_call(atom_val(primop_name(T)), length(Xs), Xs, St1);
	'case' ->
	    {Xs, St1} = visit(case_arg(T), L, St),
	    visit_clauses(Xs, case_clauses(T), L, St1);
	'receive' ->
	    X = singleton(external),
	    {Xs1, St1} = visit_clauses([X], receive_clauses(T), L, St),
	    {_, St2} = visit(receive_timeout(T), L, St1),
	    {Xs2, St3} = visit(receive_action(T), L, St2),
	    {join(Xs1, Xs2), St3};
	'try' ->
	    {Xs1, St1} = visit(try_arg(T), L, St),
	    X = singleton(external),
	    Vars = bind_vars(try_vars(T), [X], St1#state.vars),
	    {Xs2, St2} = visit(try_body(T), L, St1#state{vars = Vars}),
	    Evars = bind_vars(try_evars(T), [X, X, X], St2#state.vars),
	    {Xs3, St3} = visit(try_handler(T), L, St2#state{vars = Evars}),
	    {join(join(Xs1, Xs2), Xs3), St3};
	'catch' ->
	    {_, St1} = visit(catch_body(T), L, St),
	    {[singleton(external)], St1};
	binary ->
	    {_, St1} = visit_list(binary_segments(T), L, St),
	    {[empty()], St1};
	bitstr ->
	    %% The other fields are constant literals.
	    {_, St1} = visit(bitstr_val(T), L, St),
	    {_, St2} = visit(bitstr_size(T), L, St1),
	    {none, St2};
	letrec ->
	    %% All the bound funs should be revisited, because the
	    %% environment might have changed.
	    Ls = [get_label(F) || {_, F} <- letrec_defs(T)],
	    St1 = St#state{work = add_work(Ls, St#state.work),
			   par = set_parent(Ls, L, St#state.par)},
	    visit(letrec_body(T), L, St1);
	module ->
	    %% All the exported functions escape, and can thus be passed
	    %% any external closures as arguments. We regard a module as
	    %% a tuple of function variables in the body of a `letrec'.
	    visit(c_letrec(module_defs(T), c_tuple(module_exports(T))),
		  L, St)
    end.

visit_clause(T, Xs, L, St) ->
    Vars = bind_pats(clause_pats(T), Xs, St#state.vars),
    {_, St1} = visit(clause_guard(T), L, St#state{vars = Vars}),
    visit(clause_body(T), L, St1).

%% We assume correct value-list typing.

visit_list([T | Ts], L, St) ->
    {Xs, St1} = visit(T, L, St),
    {Xs1, St2} = visit_list(Ts, L, St1),
    X = case Xs of
	    [X1] -> X1;
	    none -> none
	end,
    {[X | Xs1], St2};
visit_list([], _L, St) ->
    {[], St}.

visit_clauses(Xs, [T | Ts], L, St) ->
    {Xs1, St1} = visit_clause(T, Xs, L, St),
    {Xs2, St2} = visit_clauses(Xs, Ts, L, St1),
    {join(Xs1, Xs2), St2};
visit_clauses(_, [], _L, St) ->
    {none, St}.

bind_defs([{V, F} | Ds], Vars) ->
    bind_defs(Ds, dict:store(get_label(V), singleton(get_label(F)),
			     Vars));
bind_defs([], Vars) ->
    Vars.

bind_pats(Ps, none, Vars) ->
    bind_pats_single(Ps, empty(), Vars);
bind_pats(Ps, Xs, Vars) ->
    if length(Xs) =:= length(Ps) ->
	    bind_pats_list(Ps, Xs, Vars);
       true ->
	    bind_pats_single(Ps, empty(), Vars)
    end.

bind_pats_list([P | Ps], [X | Xs], Vars) ->
    bind_pats_list(Ps, Xs, bind_vars_single(pat_vars(P), X, Vars));
bind_pats_list([], [], Vars) ->
    Vars.

bind_pats_single([P | Ps], X, Vars) ->
    bind_pats_single(Ps, X, bind_vars_single(pat_vars(P), X, Vars));
bind_pats_single([], _X, Vars) ->
    Vars.

bind_vars(Vs, none, Vars) ->
    bind_vars_single(Vs, empty(), Vars);
bind_vars(Vs, Xs, Vars) ->
    if length(Vs) =:= length(Xs) ->
	    bind_vars_list(Vs, Xs, Vars);
       true ->
	    bind_vars_single(Vs, empty(), Vars)
    end.

bind_vars_list([V | Vs], [X | Xs], Vars) ->
    bind_vars_list(Vs, Xs, dict:store(get_label(V), X, Vars));
bind_vars_list([], [], Vars) ->
    Vars.

bind_vars_single([V | Vs], X, Vars) ->
    bind_vars_single(Vs, X, dict:store(get_label(V), X, Vars));
bind_vars_single([], _X, Vars) ->
    Vars.

%% This handles a call site - adding dependencies and updating parameter
%% variables with respect to the actual parameters. The 'external'
%% function is handled specially, since it can get an arbitrary number
%% of arguments, which must be unified into a single argument.

call_site(Ls, L, Xs, St) ->
%%%     io:fwrite("call site: ~w -> ~w (~w).\n", [L, Ls, Xs]),
    {D, W, V} = call_site(Ls, L, Xs, St#state.dep, St#state.work,
			  St#state.vars, St#state.funs),
    St#state{dep = D, work = W, vars = V}.

call_site([external | Ls], T, Xs, D, W, V, Fs) ->
    D1 = add_dep(external, T, D),
    X = join_single_list(Xs),
    case bind_arg(escape, X, V) of
	{V1, true} ->
%%%   	    io:fwrite("escape changed: ~w <- ~w + ~w.\n",
%%%   		      [dict:fetch(escape, V1), dict:fetch(escape, V),
%%%   		       X]),
	    {W1, V2} = update_esc(set__to_list(X), W, V1, Fs),
	    call_site(Ls, T, Xs, D1, add_work([external], W1), V2, Fs);
	{V1, false} ->
	    call_site(Ls, T, Xs, D1, W, V1, Fs)
    end;
call_site([L | Ls], T, Xs, D, W, V, Fs) ->
    D1 = add_dep(L, T, D),
    Vs = fun_vars(dict:fetch(L, Fs)),
    case bind_args(Vs, Xs, V) of
	{V1, true} ->
	    call_site(Ls, T, Xs, D1, add_work([L], W), V1, Fs);
	{V1, false} ->
	    call_site(Ls, T, Xs, D1, W, V1, Fs)
    end;
call_site([], _, _, D, W, V, _) ->
    {D, W, V}.

%% Note that `visit' makes sure all lambdas are visited at least once.
%% For every called function, we add a dependency from the *called*
%% function to the function containing the call site.

add_dep(Source, Target, Deps) ->
    case dict:find(Source, Deps) of
	{ok, X} ->
	    case set__is_member(Target, X) of
		true ->
		    Deps;
		false ->
%%%		    io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
		    dict:store(Source, set__add(Target, X), Deps)
	    end;
	error ->
%%%	    io:fwrite("new dep: ~w <- ~w.\n", [Target, Source]),
	    dict:store(Source, set__singleton(Target), Deps)
    end.

%% If the arity does not match the call, nothing is done here.

bind_args(Vs, Xs, Vars) ->
    if length(Vs) =:= length(Xs) ->
	    bind_args(Vs, Xs, Vars, false);
       true ->
	    {Vars, false}
    end.

bind_args([V | Vs], [X | Xs], Vars, Ch) ->
    L = get_label(V),
    {Vars1, Ch1} = bind_arg(L, X, Vars, Ch),
    bind_args(Vs, Xs, Vars1, Ch1);
bind_args([], [], Vars, Ch) ->
    {Vars, Ch}.

bind_args_single(Vs, X, Vars) ->
    bind_args_single(Vs, X, Vars, false).

bind_args_single([V | Vs], X, Vars, Ch) ->
    L = get_label(V),
    {Vars1, Ch1} = bind_arg(L, X, Vars, Ch),
    bind_args_single(Vs, X, Vars1, Ch1);
bind_args_single([], _, Vars, Ch) ->
    {Vars, Ch}.

bind_arg(L, X, Vars) ->
    bind_arg(L, X, Vars, false).

bind_arg(L, X, Vars, Ch) ->
    X0 = dict:fetch(L, Vars),
    X1 = join_single(X, X0),
    case equal_single(X0, X1) of
	true ->
	    {Vars, Ch};
	false ->
%%% 	    io:fwrite("arg (~w) changed: ~w <- ~w + ~w.\n",
%%% 		      [L, X1, X0, X]),
	    {dict:store(L, X1, Vars), true}
    end.

%% This handles escapes from things like primops and remote calls.

%% escape(none, St) ->
%%    St;
escape([X], St) ->
    Vars = St#state.vars,
    X0 = dict:fetch(escape, Vars),
    X1 = join_single(X, X0),
    case equal_single(X0, X1) of
	true ->
	    St;
	false ->
%%% 	    io:fwrite("escape changed: ~w <- ~w + ~w.\n", [X1, X0, X]),
%%% 	    io:fwrite("updating escaping funs: ~w.\n", [set__to_list(X)]),
	    Vars1 = dict:store(escape, X1, Vars),
	    {W, Vars2} = update_esc(set__to_list(set__subtract(X, X0)),
				    St#state.work, Vars1,
				    St#state.funs),
	    St#state{work = add_work([external], W), vars = Vars2}
    end.

%% For all escaping lambdas, since they might be called from outside the
%% program, all their arguments may be an external lambda. (Note that we
%% only have to include the `external' label once per escaping lambda.)
%% If the escape set has changed, we need to revisit the `external' fun.

update_esc(Ls, W, V, Fs) ->
    update_esc(Ls, singleton(external), W, V, Fs).

%% The external lambda is skipped here - the Escape variable is known to
%% contain `external' from the start.

update_esc([external | Ls], X, W, V, Fs) ->
    update_esc(Ls, X, W, V, Fs);
update_esc([L | Ls], X, W, V, Fs) ->
    Vs = fun_vars(dict:fetch(L, Fs)),
    case bind_args_single(Vs, X, V) of
	{V1, true} ->
	    update_esc(Ls, X, add_work([L], W), V1, Fs);
	{V1, false} ->
	    update_esc(Ls, X, W, V1, Fs)
    end;
update_esc([], _, W, V, _) ->
    {W, V}.

set_parent([L | Ls], L1, D) ->
    set_parent(Ls, L1, dict:store(L, L1, D));
set_parent([], _L1, D) ->
    D.

%% Handle primop calls: (At present, we assume that all unknown primops
%% yield exactly one value. This might have to be changed.)

primop_call(F, A, Xs, St0) ->
    case is_pure_op(F, A) of
	%% XXX: this case is currently not possible -- commented out.
	%% true ->
	%%    case is_literal_op(F, A) of
	%%	true -> {[empty()], St0};
	%%	false -> {[join_single_list(Xs)], St0}
	%%    end;
	false ->
	    St1 = case is_escape_op(F, A) of
		      true -> escape([join_single_list(Xs)], St0);
		      false -> St0
		  end,
	    case is_literal_op(F, A) of
		true -> {none, St1};
		false -> {[singleton(external)], St1}
	    end
    end.

%% Handle remote-calls: (At present, we assume that all unknown calls
%% yield exactly one value. This might have to be changed.)

remote_call(M, F, Xs, St) ->
    case is_c_atom(M) andalso is_c_atom(F) of
	true ->
	    remote_call_1(atom_val(M), atom_val(F), length(Xs), Xs, St);
	false ->
	    %% Unknown function
	    {[singleton(external)], escape([join_single_list(Xs)], St)}
    end.

remote_call_1(M, F, A, Xs, St0) ->
    case is_pure_op(M, F, A) of
	true ->
	    case is_literal_op(M, F, A) of
		true -> {[empty()], St0};
		false -> {[join_single_list(Xs)], St0}
	    end;
	false ->
	    St1 = case is_escape_op(M, F, A) of
		      true -> escape([join_single_list(Xs)], St0);
		      false -> St0
		  end,
	    case is_literal_op(M, F, A) of
		true -> {[empty()], St1};
		false -> {[singleton(external)], St1}
	    end
    end.

%% Domain: none | [Vs], where Vs = set(integer()).

join(none, Xs2) -> Xs2;
join(Xs1, none) -> Xs1;
join(Xs1, Xs2) ->
    if length(Xs1) =:= length(Xs2) ->
	    join_1(Xs1, Xs2);
       true ->
	    none
    end.

join_1([X1 | Xs1], [X2 | Xs2]) ->
    [join_single(X1, X2) | join_1(Xs1, Xs2)];
join_1([], []) ->
    [].

empty() -> set__new().

singleton(X) -> set__singleton(X).

from_label_list(X) -> set__from_list(X).

join_single(none, Y) -> Y;
join_single(X, none) -> X;
join_single(X, Y) -> set__union(X, Y).

join_list([Xs | Xss]) ->
    join(Xs, join_list(Xss));
join_list([]) ->
    none.

join_single_list([X | Xs]) ->
    join_single(X, join_single_list(Xs));
join_single_list([]) ->
    empty().

equal(none, none) -> true;
equal(none, _) -> false;
equal(_, none) -> false;
equal(X1, X2) -> equal_1(X1, X2).

equal_1([X1 | Xs1], [X2 | Xs2]) ->
    equal_single(X1, X2) andalso equal_1(Xs1, Xs2);
equal_1([], []) -> true;
equal_1(_, _) -> false.

equal_single(X, Y) -> set__equal(X, Y).

%% Set abstraction for label sets in the domain.

set__new() -> [].

set__singleton(X) -> [X].

set__to_list(S) -> S.

set__from_list(S) -> ordsets:from_list(S).

set__union(X, Y) -> ordsets:union(X, Y).

set__add(X, S) -> ordsets:add_element(X, S).

set__is_member(X, S) -> ordsets:is_element(X, S).    

set__subtract(X, Y) -> ordsets:subtract(X, Y).

set__equal(X, Y) -> X =:= Y.

%% A simple but efficient functional queue.

queue__new() -> {[], []}.

queue__put(X, {In, Out}) -> {[X | In], Out}.

queue__get({In, [X | Out]}) -> {ok, X, {In, Out}};
queue__get({[], _}) -> empty;
queue__get({In, _}) ->
    [X | In1] = lists:reverse(In),
    {ok, X, {[], In1}}.

%% The work list - a queue without repeated elements.

init_work() ->
    {queue__new(), sets:new()}.

add_work(Ls, {Q, Set}) ->
    add_work(Ls, Q, Set).

%% Note that the elements are enqueued in order.

add_work([L | Ls], Q, Set) ->
    case sets:is_element(L, Set) of
	true ->
	    add_work(Ls, Q, Set);
	false ->
	    add_work(Ls, queue__put(L, Q), sets:add_element(L, Set))
    end;
add_work([], Q, Set) ->
    {Q, Set}.

take_work({Queue0, Set0}) ->
    case queue__get(Queue0) of
	{ok, L, Queue1} ->
	    Set1 = sets:del_element(L, Set0),
	    {ok, L, {Queue1, Set1}};
	empty ->
	    none
    end.

%% Escape operators may let their arguments escape. Unless we know
%% otherwise, and the function is not pure, we assume this is the case.
%% Error-raising functions (fault/match_fail) are not considered as
%% escapes (but throw/exit are). Zero-argument functions need not be
%% listed.

-spec is_escape_op(atom(), arity()) -> boolean().

is_escape_op(match_fail, 1) -> false; 
is_escape_op(F, A) when is_atom(F), is_integer(A) -> true.

-spec is_escape_op(atom(), atom(), arity()) -> boolean().

is_escape_op(erlang, error, 1) -> false;
is_escape_op(erlang, error, 2) -> false;
is_escape_op(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> true.

%% "Literal" operators will never return functional values even when
%% found in their arguments. Unless we know otherwise, we assume this is
%% not the case. (More functions can be added to this list, if needed
%% for better precision. Note that the result of `term_to_binary' still
%% contains an encoding of the closure.)

-spec is_literal_op(atom(), arity()) -> boolean().

is_literal_op(match_fail, 1) -> true;
is_literal_op(F, A) when is_atom(F), is_integer(A) -> false.

-spec is_literal_op(atom(), atom(), arity()) -> boolean().

is_literal_op(erlang, '+', 2) -> true;
is_literal_op(erlang, '-', 2) -> true;
is_literal_op(erlang, '*', 2) -> true;
is_literal_op(erlang, '/', 2) -> true;
is_literal_op(erlang, '=:=', 2) -> true;
is_literal_op(erlang, '==', 2) -> true;
is_literal_op(erlang, '=/=', 2) -> true;
is_literal_op(erlang, '/=', 2) -> true;
is_literal_op(erlang, '<', 2) -> true;
is_literal_op(erlang, '=<', 2) -> true;
is_literal_op(erlang, '>', 2) -> true;
is_literal_op(erlang, '>=', 2) -> true;
is_literal_op(erlang, 'and', 2) -> true;
is_literal_op(erlang, 'or', 2) -> true;
is_literal_op(erlang, 'not', 1) -> true;
is_literal_op(erlang, length, 1) -> true;
is_literal_op(erlang, size, 1) -> true;
is_literal_op(erlang, fun_info, 1) -> true;
is_literal_op(erlang, fun_info, 2) -> true;
is_literal_op(erlang, fun_to_list, 1) -> true;
is_literal_op(erlang, throw, 1) -> true;
is_literal_op(erlang, exit, 1) -> true;
is_literal_op(erlang, error, 1) -> true;
is_literal_op(erlang, error, 2) -> true;
is_literal_op(M, F, A) when is_atom(M), is_atom(F), is_integer(A) -> false.

%% Pure functions neither affect the state, nor depend on it.

is_pure_op(F, A) when is_atom(F), is_integer(A) -> false.

is_pure_op(M, F, A) -> erl_bifs:is_pure(M, F, A).

%% =====================================================================