aboutsummaryrefslogblamecommitdiffstats
path: root/lib/hipe/icode/hipe_beam_to_icode.erl
blob: cfed41024072898f23f9909742daf482db1be77b (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321


                                 
  
                                                        
  




                                                                      
  



                                                                         
  






                                                                         


























































































































































































































































































































































                                                                                                                    



                                                                                   



























































                                                                              

                                                        
                              
                                                  
                              

























































































































































































































































































                                                                                    
                                                 

















































































































































































                                                                                                         


















                                                                        
                                                                               










                                                                     
                            




































































































































































































                                                                                                 






































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                      
%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2001-2011. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%=======================================================================
%% File        : hipe_beam_to_icode.erl
%% Author      : Kostis Sagonas
%% Description : Translates symbolic BEAM code to Icode
%%=======================================================================
%% @doc
%%    This file translates symbolic BEAM code to Icode which is HiPE's
%%    intermediate code representation.  Either the code of an entire
%%    module, or the code of a specified function can be translated.
%% @end
%%=======================================================================

-module(hipe_beam_to_icode).

-export([module/2, mfa/3]).

%%-----------------------------------------------------------------------

%% Uncomment the following lines to turn on debugging for this module
%% or comment them to it turn off.  Debug-level 6 inserts a print in
%% each compiled function.
%%
%%-ifndef(DEBUG).
%%-define(DEBUG,6).
%%-endif.

-include("../main/hipe.hrl").
-include("hipe_icode.hrl").
-include("hipe_icode_primops.hrl").
-include("../../compiler/src/beam_disasm.hrl").

-define(no_debug_msg(Str,Xs),ok).
%%-define(no_debug_msg(Str,Xs),msg(Str,Xs)).

-define(mk_debugcode(MFA, Env, Code),
	case MFA of
	  {io,_,_} ->
	    %% We do not want to loop infinitely if we are compiling
	    %% the module io.
	    {Code,Env};
	  {M,F,A} ->
	    MFAVar = mk_var(new),
	    StringVar = mk_var(new),
	    Ignore = mk_var(new),
	    MkMfa = hipe_icode:mk_move(MFAVar,hipe_icode:mk_const([MFA])),
	    MkString = hipe_icode:mk_move(StringVar,
					  hipe_icode:mk_const(
					    atom_to_list(M) ++ ":" ++ atom_to_list(F) ++"/"++ integer_to_list(A) ++ 
					    " Native enter fun ~w\n")),
	    Call =
	      hipe_icode:mk_call([Ignore],io,format,[StringVar,MFAVar],remote),
	    {[MkMfa,MkString,Call | Code], Env}
	end).

%%-----------------------------------------------------------------------
%% Exported types
%%-----------------------------------------------------------------------

-type hipe_beam_to_icode_ret() :: [{mfa(),#icode{}}].


%%-----------------------------------------------------------------------
%% Internal data structures
%%-----------------------------------------------------------------------

-record(beam_const, {value :: simple_const()}). % defined in hipe_icode.hrl

-record(closure_info, {mfa :: mfa(), arity :: arity(), fv_arity :: arity()}).

-record(environment, {mfa :: mfa(), entry :: non_neg_integer()}).


%%-----------------------------------------------------------------------
%% @doc
%% Translates the code of a whole module into Icode.
%%   Returns a tuple whose first argument is a list of {{M,F,A}, ICode} 
%%   pairs, and its second argument is the list of HiPE compiler options.
%% @end
%%-----------------------------------------------------------------------

-spec module([#function{}], comp_options()) -> hipe_beam_to_icode_ret().

module(BeamFuns, Options) ->
  BeamCode0 = [beam_disasm:function__code(F) || F <- BeamFuns],
  {ModCode, ClosureInfo} = preprocess_code(BeamCode0),
  pp_beam(ModCode, Options),
  [trans_beam_function_chunk(FunCode, ClosureInfo) || FunCode <- ModCode].

trans_beam_function_chunk(FunBeamCode, ClosureInfo) ->
  {M,F,A} = MFA = find_mfa(FunBeamCode),
  Icode = trans_mfa_code(M,F,A, FunBeamCode, ClosureInfo),
  {MFA,Icode}.

%%-----------------------------------------------------------------------
%% @doc
%% Translates the BEAM code of a single function into Icode.
%%   Returns a tuple whose first argument is list of {{M,F,A}, ICode}
%%   pairs, where the first entry is that of the given MFA, and the
%%   following (in undefined order) are those of the funs that are
%%   defined in the function, and recursively, in the funs.  The
%%   second argument of the tuple is the HiPE compiler options
%%   contained in the file.
%% @end
%%-----------------------------------------------------------------------

-spec mfa(list(), mfa(), comp_options()) -> hipe_beam_to_icode_ret().

mfa(BeamFuns, {M,F,A} = MFA, Options)
  when is_atom(M), is_atom(F), is_integer(A) ->
  BeamCode0 = [beam_disasm:function__code(Fn) || Fn <- BeamFuns],
  {ModCode, ClosureInfo} = preprocess_code(BeamCode0),
  mfa_loop([MFA], [], sets:new(), ModCode, ClosureInfo, Options).

mfa_loop([{M,F,A} = MFA | MFAs], Acc, Seen, ModCode, ClosureInfo,
	 Options) when is_atom(M), is_atom(F), is_integer(A) ->
  case sets:is_element(MFA, Seen) of
    true ->
      mfa_loop(MFAs, Acc, Seen, ModCode, ClosureInfo, Options);
    false ->
      {Icode, FunMFAs} = mfa_get(M, F, A, ModCode, ClosureInfo, Options),
      mfa_loop(FunMFAs ++ MFAs, [{MFA, Icode} | Acc],
	       sets:add_element(MFA, Seen),
	       ModCode, ClosureInfo, Options)
  end;
mfa_loop([], Acc, _, _, _, _) ->
  lists:reverse(Acc).

mfa_get(M, F, A, ModCode, ClosureInfo, Options) ->
  BeamCode = get_fun(ModCode, M,F,A),
  pp_beam([BeamCode], Options),  % cheat by using a list
  Icode = trans_mfa_code(M,F,A, BeamCode, ClosureInfo),
  FunMFAs = get_fun_mfas(BeamCode),
  {Icode, FunMFAs}.

get_fun_mfas([{patched_make_fun,{M,F,A} = MFA,_,_,_}|BeamCode])
  when is_atom(M), is_atom(F), is_integer(A) ->
  [MFA|get_fun_mfas(BeamCode)];
get_fun_mfas([_|BeamCode]) ->
  get_fun_mfas(BeamCode);
get_fun_mfas([]) ->
  [].

%%-----------------------------------------------------------------------
%% The main translation function.
%%-----------------------------------------------------------------------

trans_mfa_code(M,F,A, FunBeamCode, ClosureInfo) ->
  ?no_debug_msg("disassembling: {~p,~p,~p} ...", [M,F,A]),
  hipe_gensym:init(icode),
  %% Extract the function arguments
  FunArgs = extract_fun_args(A),
  %% Record the function arguments
  FunLbl = mk_label(new),
  Env1 = env__mk_env(M, F, A, hipe_icode:label_name(FunLbl)),
  Code1 = lists:flatten(trans_fun(FunBeamCode,Env1)),
  Code2 = fix_fallthroughs(fix_catches(Code1)),
  MFA = {M,F,A},
  %% Debug code
  ?IF_DEBUG_LEVEL(5,
		  {Code3,_Env3} = ?mk_debugcode(MFA, Env2, Code2),
		  {Code3,_Env3} = {Code2,Env1}),
  %% For stack optimization
  Leafness = leafness(Code3),
  IsLeaf = is_leaf_code(Leafness),
  Code4 =
    [FunLbl |
     case needs_redtest(Leafness) of
       false -> Code3;
       true -> [mk_redtest()|Code3]
     end],
  IsClosure = get_closure_info(MFA, ClosureInfo) =/= not_a_closure,
  Code5 = hipe_icode:mk_icode(MFA, FunArgs, IsClosure, IsLeaf,
			      remove_dead_code(Code4),
			      hipe_gensym:var_range(icode),
			      hipe_gensym:label_range(icode)),
  Icode = %% If this function is the code for a closure ...
    case get_closure_info(MFA, ClosureInfo) of
      not_a_closure -> Code5;
      CI -> %% ... then patch the code to 
	%% get the free_vars from the closure
	patch_closure_entry(Code5, CI)
    end,
  ?no_debug_msg("ok~n", []),
  Icode.

mk_redtest() -> hipe_icode:mk_primop([], redtest, []).

leafness(Is) -> % -> true, selfrec, or false
  leafness(Is, true).

leafness([], Leafness) ->
  Leafness;
leafness([I|Is], Leafness) ->
  case I of
    #icode_comment{} ->
      %% BEAM self-tailcalls become gotos, but they leave
      %% a trace behind in comments. Check those to ensure
      %% that the computed leafness is correct. Needed to
      %% prevent redtest elimination in those cases.
      NewLeafness =
	case hipe_icode:comment_text(I) of
	  'tail_recursive' -> selfrec;		% call_last to selfrec
	  'self_tail_recursive' -> selfrec;	% call_only to selfrec
	  _ -> Leafness
	end,
      leafness(Is, NewLeafness);
    #icode_call{} ->
      case hipe_icode:call_type(I) of
	'primop' -> 
	  case hipe_icode:call_fun(I) of
	    call_fun -> false;		% Calls closure
	    enter_fun -> false;		% Calls closure
	    #apply_N{} -> false;
	    _ -> leafness(Is, Leafness)	% Other primop calls are ok
	  end;
	T when T =:= 'local' orelse T =:= 'remote' ->
	  {M,F,A} = hipe_icode:call_fun(I),
	  case erlang:is_builtin(M, F, A) of
	    true -> leafness(Is, Leafness);
	    false -> false
	  end
      end;
    #icode_enter{} ->
      case hipe_icode:enter_type(I) of
	'primop' ->
	  case hipe_icode:enter_fun(I) of
	    enter_fun -> false;
	    #apply_N{} -> false;
	    _ ->
	      %% All primops should be ok except those excluded above,
	      %% except we don't actually tailcall them...
	      io:format("leafness: unexpected enter to primop ~w\n", [I]),
	      true
	  end;
	T when T =:= 'local' orelse T =:= 'remote' ->
	  {M,F,A} = hipe_icode:enter_fun(I),
	  case erlang:is_builtin(M, F, A) of
	    true -> leafness(Is, Leafness);
	    _ -> false
	  end
      end;
    _ -> leafness(Is, Leafness)
  end.

%% XXX: this old stuff is passed around but essentially unused
is_leaf_code(Leafness) ->
  case Leafness of
    true -> true;
    selfrec -> true;
    false -> false
  end.

needs_redtest(Leafness) ->
  case Leafness of
    true -> false;
    selfrec -> true;
    false -> true
  end.

%%-----------------------------------------------------------------------
%% The main translation switch.
%%-----------------------------------------------------------------------

%%--- label & func_info combo ---
trans_fun([{label,B},{label,_},
	   {func_info,M,F,A},{label,L}|Instructions], Env) ->
  trans_fun([{label,B},{func_info,M,F,A},{label,L}|Instructions], Env);
trans_fun([{label,B},
	   {func_info,{atom,_M},{atom,_F},_A},
	   {label,L}|Instructions], Env) ->
  %% Emit code to handle function_clause errors.  The BEAM test instructions
  %% branch to this label if they fail during function clause selection.
  %% Obviously, we must goto past this error point on normal entry.
  Begin = mk_label(B),
  V = mk_var(new),
  EntryPt = mk_label(L),
  Goto = hipe_icode:mk_goto(hipe_icode:label_name(EntryPt)),
  Mov = hipe_icode:mk_move(V, hipe_icode:mk_const(function_clause)),
  Fail = hipe_icode:mk_fail([V],error),
  [Goto, Begin, Mov, Fail, EntryPt | trans_fun(Instructions, Env)];
%%--- label ---
trans_fun([{label,L1},{label,L2}|Instructions], Env) ->
  %% Old BEAM code can have two consecutive labels.
  Lab1 = mk_label(L1),
  Lab2 = mk_label(L2),
  Goto = hipe_icode:mk_goto(map_label(L2)),
  [Lab1, Goto, Lab2 | trans_fun(Instructions, Env)];
trans_fun([{label,L}|Instructions], Env) ->
  [mk_label(L) | trans_fun(Instructions, Env)];
%%--- int_code_end --- SHOULD NEVER OCCUR HERE
%%--- call ---
trans_fun([{call,_N,{_M,_F,A}=MFA}|Instructions], Env) ->
  Args = extract_fun_args(A),
  Dst = [mk_var({r,0})],
  I = trans_call(MFA, Dst, Args, local),
  [I | trans_fun(Instructions, Env)];
%%--- call_last ---
%% Differs from call_only in that it deallocates the environment
trans_fun([{call_last,_N,{_M,_F,A}=MFA,_}|Instructions], Env) ->
  %% IS IT OK TO IGNORE LAST ARG ??
  ?no_debug_msg("  translating call_last: ~p ...~n", [Env]),
  case env__get_mfa(Env) of
    MFA ->
      %% Does this case really happen, or is it covered by call_only?
      Entry = env__get_entry(Env),
      [hipe_icode:mk_comment('tail_recursive'), % needed by leafness/2
       hipe_icode:mk_goto(Entry) | trans_fun(Instructions,Env)];
    _ ->
      Args = extract_fun_args(A),
      I = trans_enter(MFA, Args, local),
      [I | trans_fun(Instructions, Env)]
  end;
%%--- call_only ---
%% Used when the body contains only one call in which case 
%% an environment is not needed/created.
trans_fun([{call_only,_N,{_M,_F,A}=MFA}|Instructions], Env) ->
  ?no_debug_msg("  translating call_only: ~p ...~n", [Env]),
  case env__get_mfa(Env) of
    MFA ->
      Entry = env__get_entry(Env),
      [hipe_icode:mk_comment('self_tail_recursive'), % needed by leafness/2
       hipe_icode:mk_goto(Entry) | trans_fun(Instructions,Env)];
    _ ->
      Args = extract_fun_args(A),
      I = trans_enter(MFA,Args,local),
      [I |  trans_fun(Instructions,Env)]
  end;
%%--- call_ext ---
trans_fun([{call_ext,_N,{extfunc,M,F,A}}|Instructions], Env) ->
  Args = extract_fun_args(A),
  Dst = [mk_var({r,0})],
  I = trans_call({M,F,A},Dst,Args,remote),
  [hipe_icode:mk_comment('call_ext'),I | trans_fun(Instructions,Env)];
%%--- call_ext_last ---
trans_fun([{call_ext_last,_N,{extfunc,M,F,A},_}|Instructions], Env) ->
  %% IS IT OK TO IGNORE LAST ARG ??
  Args = extract_fun_args(A),
  %% Dst = [mk_var({r,0})],
  I = trans_enter({M,F,A},Args,remote),
  [hipe_icode:mk_comment('call_ext_last'), I | trans_fun(Instructions,Env)];
%%--- bif0 ---
trans_fun([{bif,BifName,nofail,[],Reg}|Instructions], Env) ->
  BifInst = trans_bif0(BifName,Reg),
  [hipe_icode:mk_comment({bif0,BifName}),BifInst|trans_fun(Instructions,Env)];
%%--- bif1 ---
trans_fun([{bif,BifName,{f,Lbl},[_] = Args,Reg}|Instructions], Env) ->
  {BifInsts,Env1} = trans_bif(1,BifName,Lbl,Args,Reg,Env),
  [hipe_icode:mk_comment({bif1,BifName})|BifInsts] ++ trans_fun(Instructions,Env1);
%%--- bif2 ---
trans_fun([{bif,BifName,{f,Lbl},[_,_] = Args,Reg}|Instructions], Env) ->
  {BifInsts,Env1} = trans_bif(2,BifName,Lbl,Args,Reg,Env),
  [hipe_icode:mk_comment({bif2,BifName})|BifInsts] ++ trans_fun(Instructions,Env1);
%%--- bif3 ---
trans_fun([{bif,BifName,{f,Lbl},[_,_,_] = Args,Reg}|Instructions], Env) ->
  {BifInsts,Env1} = trans_bif(3,BifName,Lbl,Args,Reg,Env),
  [hipe_icode:mk_comment({bif3,BifName})|BifInsts] ++ trans_fun(Instructions,Env1);
%%--- allocate
trans_fun([{allocate,StackSlots,_}|Instructions], Env) ->
  trans_allocate(StackSlots) ++ trans_fun(Instructions,Env);
%%--- allocate_heap
trans_fun([{allocate_heap,StackSlots,_,_}|Instructions], Env) ->
  trans_allocate(StackSlots) ++ trans_fun(Instructions,Env);
%%--- allocate_zero
trans_fun([{allocate_zero,StackSlots,_}|Instructions], Env) ->
  trans_allocate(StackSlots) ++ trans_fun(Instructions,Env);
%%--- allocate_heap_zero
trans_fun([{allocate_heap_zero,StackSlots,_,_}|Instructions], Env) ->
  trans_allocate(StackSlots) ++ trans_fun(Instructions,Env);
%%--- test_heap --- IGNORED ON PURPOSE
trans_fun([{test_heap,_,_}|Instructions], Env) ->
  trans_fun(Instructions,Env);
%%--- init --- IGNORED - CORRECT??
trans_fun([{init,_}|Instructions], Env) ->
  trans_fun(Instructions,Env);
%%--- deallocate --- IGNORED ON PURPOSE
trans_fun([{deallocate,_}|Instructions], Env) ->
  trans_fun(Instructions,Env);
%%--- return ---
trans_fun([return|Instructions], Env) ->
  [hipe_icode:mk_return([mk_var({r,0})]) | trans_fun(Instructions,Env)];
%%--- send ---
trans_fun([send|Instructions], Env) ->
  I = hipe_icode:mk_call([mk_var({r,0})], erlang, send,
			 [mk_var({x,0}),mk_var({x,1})], remote),
  [I | trans_fun(Instructions,Env)];
%%--- remove_message ---
trans_fun([remove_message|Instructions], Env) ->
  [hipe_icode:mk_primop([],select_msg,[]) | trans_fun(Instructions,Env)];
%%--- timeout --- 
trans_fun([timeout|Instructions], Env) ->
  [hipe_icode:mk_primop([],clear_timeout,[]) | trans_fun(Instructions,Env)];
%%--- loop_rec ---
trans_fun([{loop_rec,{_,Lbl},Reg}|Instructions], Env) ->
  {Movs,[Temp],Env1} = get_constants_in_temps([Reg],Env),
  GotitLbl = mk_label(new),
  ChkGetMsg = hipe_icode:mk_primop([Temp],check_get_msg,[],
				   hipe_icode:label_name(GotitLbl),
				   map_label(Lbl)),
  Movs ++ [ChkGetMsg, GotitLbl | trans_fun(Instructions,Env1)];
%%--- loop_rec_end ---
trans_fun([{loop_rec_end,{_,Lbl}}|Instructions], Env) ->
  Loop = hipe_icode:mk_goto(map_label(Lbl)),
  [hipe_icode:mk_primop([],next_msg,[]), Loop | trans_fun(Instructions,Env)];
%%--- wait ---
trans_fun([{wait,{_,Lbl}}|Instructions], Env) ->
  Susp = hipe_icode:mk_primop([],suspend_msg,[]),
  Loop = hipe_icode:mk_goto(map_label(Lbl)),
  [Susp, Loop | trans_fun(Instructions,Env)];
%%--- wait_timeout ---
trans_fun([{wait_timeout,{_,Lbl},Reg}|Instructions], Env) ->
  {Movs,[_]=Temps,Env1} = get_constants_in_temps([Reg],Env),
  SetTmout = hipe_icode:mk_primop([],set_timeout,Temps),
  DoneLbl = mk_label(new),
  SuspTmout = hipe_icode:mk_if(suspend_msg_timeout,[],
			       map_label(Lbl),hipe_icode:label_name(DoneLbl)),
  Movs ++ [SetTmout, SuspTmout, DoneLbl | trans_fun(Instructions,Env1)];
%%--- recv_mark/1 & recv_set/1 ---  XXX: Handle better??
trans_fun([{recv_mark,{f,_}}|Instructions], Env) ->
  trans_fun(Instructions,Env);
trans_fun([{recv_set,{f,_}}|Instructions], Env) ->
  trans_fun(Instructions,Env);
%%--------------------------------------------------------------------
%%--- Translation of arithmetics {bif,ArithOp, ...} ---
%%--------------------------------------------------------------------
trans_fun([{arithbif,ArithOp,{f,L},SrcRs,DstR}|Instructions], Env) ->
  {ICode,NewEnv} = trans_arith(ArithOp,SrcRs,DstR,L,Env),
  ICode ++ trans_fun(Instructions,NewEnv);
%%--------------------------------------------------------------------
%%--- Translation of arithmetic tests {test,is_ARITHTEST, ...} ---
%%--------------------------------------------------------------------
%%--- is_lt ---
trans_fun([{test,is_lt,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
  {ICode,Env1} = trans_test_guard('<',Lbl,Arg1,Arg2,Env),
  ICode ++ trans_fun(Instructions,Env1);
%%--- is_ge ---
trans_fun([{test,is_ge,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
  {ICode,Env1} = trans_test_guard('>=',Lbl,Arg1,Arg2,Env),
  ICode ++ trans_fun(Instructions,Env1);
%%--- is_eq ---
trans_fun([{test,is_eq,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
  {ICode,Env1} = trans_is_eq(Lbl,Arg1,Arg2,Env),
  ICode ++ trans_fun(Instructions,Env1);
%%--- is_ne ---
trans_fun([{test,is_ne,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
  {ICode,Env1} = trans_is_ne(Lbl,Arg1,Arg2,Env),
  ICode ++ trans_fun(Instructions,Env1);
%%--- is_eq_exact ---
trans_fun([{test,is_eq_exact,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
  {ICode,Env1} = trans_is_eq_exact(Lbl,Arg1,Arg2,Env),
  ICode ++ trans_fun(Instructions,Env1);
%%--- is_ne_exact ---
trans_fun([{test,is_ne_exact,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
  {ICode,Env1} = trans_is_ne_exact(Lbl,Arg1,Arg2,Env),
  ICode ++ trans_fun(Instructions,Env1);
%%--------------------------------------------------------------------
%%--- Translation of type tests {test,is_TYPE, ...} ---
%%--------------------------------------------------------------------
%%--- is_integer ---
trans_fun([{test,is_integer,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(integer,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_float ---
trans_fun([{test,is_float,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(float,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_number ---
trans_fun([{test,is_number,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(number,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_atom ---
trans_fun([{test,is_atom,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(atom,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_pid ---
trans_fun([{test,is_pid,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(pid,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_ref ---
trans_fun([{test,is_reference,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(reference,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_port ---
trans_fun([{test,is_port,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(port,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_nil ---
trans_fun([{test,is_nil,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(nil,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_binary ---
trans_fun([{test,is_binary,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(binary,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_constant ---
trans_fun([{test,is_constant,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(constant,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_list ---
trans_fun([{test,is_list,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(list,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_nonempty_list ---
trans_fun([{test,is_nonempty_list,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(cons,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- is_tuple ---
trans_fun([{test,is_tuple,{f,_Lbl}=FLbl,[Xreg]},
	   {test,test_arity,FLbl,[Xreg,_]=Args}|Instructions], Env) ->
  trans_fun([{test,test_arity,FLbl,Args}|Instructions],Env);
trans_fun([{test,is_tuple,{_,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(tuple,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- test_arity ---
trans_fun([{test,test_arity,{f,Lbl},[Reg,N]}|Instructions], Env) ->
  True = mk_label(new),
  I = hipe_icode:mk_type([trans_arg(Reg)],{tuple,N}, 
			 hipe_icode:label_name(True),map_label(Lbl)),
  [I,True | trans_fun(Instructions,Env)];
%%--------------------------------------------------------------------
%%--- select_val ---
trans_fun([{select_val,Reg,{f,Lbl},{list,Cases}}|Instructions], Env) ->
  {SwVar,CasePairs} = trans_select_stuff(Reg,Cases),
  Len = length(CasePairs),
  I = hipe_icode:mk_switch_val(SwVar,map_label(Lbl),Len,CasePairs),
  ?no_debug_msg("switch_val instr is ~p~n",[I]),
  [I | trans_fun(Instructions,Env)];
%%--- select_tuple_arity ---
trans_fun([{select_tuple_arity,Reg,{f,Lbl},{list,Cases}}|Instructions],Env) ->
  {SwVar,CasePairs} = trans_select_stuff(Reg,Cases),
  Len = length(CasePairs),
  I = hipe_icode:mk_switch_tuple_arity(SwVar,map_label(Lbl),Len,CasePairs),
  ?no_debug_msg("switch_tuple_arity instr is ~p~n",[I]),
  [I | trans_fun(Instructions,Env)];    
%%--- jump ---
trans_fun([{jump,{_,L}}|Instructions], Env) ->
  Label = mk_label(L),
  I = hipe_icode:mk_goto(hipe_icode:label_name(Label)),
  [I | trans_fun(Instructions,Env)];
%%--- move ---
trans_fun([{move,Src,Dst}|Instructions], Env) ->
  Dst1 = mk_var(Dst),
  Src1 = trans_arg(Src),
  [hipe_icode:mk_move(Dst1,Src1) | trans_fun(Instructions,Env)];
%%--- catch --- ITS PROCESSING IS POSTPONED
trans_fun([{'catch',N,{_,EndLabel}}|Instructions], Env) ->
  NewContLbl = mk_label(new),
  [{'catch',N,EndLabel},NewContLbl | trans_fun(Instructions,Env)];
%%--- catch_end --- ITS PROCESSING IS POSTPONED
trans_fun([{catch_end,_N}=I|Instructions], Env) ->
  [I | trans_fun(Instructions,Env)];
%%--- try --- ITS PROCESSING IS POSTPONED
trans_fun([{'try',N,{_,EndLabel}}|Instructions], Env) ->
  NewContLbl = mk_label(new),
  [{'try',N,EndLabel},NewContLbl | trans_fun(Instructions,Env)];
%%--- try_end ---
trans_fun([{try_end,_N}|Instructions], Env) ->
  [hipe_icode:mk_end_try() | trans_fun(Instructions,Env)];
%%--- try_case --- ITS PROCESSING IS POSTPONED
trans_fun([{try_case,_N}=I|Instructions], Env) ->
  [I | trans_fun(Instructions,Env)];
%%--- try_case_end ---
trans_fun([{try_case_end,Arg}|Instructions], Env) ->
  BadArg = trans_arg(Arg),
  ErrVar = mk_var(new),
  Vs = [mk_var(new)],
  Atom = hipe_icode:mk_move(ErrVar,hipe_icode:mk_const(try_clause)),
  Tuple = hipe_icode:mk_primop(Vs,mktuple,[ErrVar,BadArg]),
  Fail = hipe_icode:mk_fail(Vs,error),
  [Atom,Tuple,Fail | trans_fun(Instructions,Env)];
%%--- raise ---
trans_fun([{raise,{f,0},[Reg1,Reg2],{x,0}}|Instructions], Env) ->
  V1 = trans_arg(Reg1),
  V2 = trans_arg(Reg2),
  Fail = hipe_icode:mk_fail([V1,V2],rethrow),
  [Fail | trans_fun(Instructions,Env)];
%%--- get_list ---
trans_fun([{get_list,List,Head,Tail}|Instructions], Env) ->
  TransList = [trans_arg(List)],
  I1 = hipe_icode:mk_primop([mk_var(Head)],unsafe_hd,TransList),
  I2 = hipe_icode:mk_primop([mk_var(Tail)],unsafe_tl,TransList),
  %% Handle the cases where the dest overwrites the src!!
  if 
    Head =/= List ->
      [I1, I2 | trans_fun(Instructions,Env)];
    Tail =/= List ->
      [I2, I1 | trans_fun(Instructions,Env)];
    true ->
      %% XXX: We should take care of this case!!!!!
      ?error_msg("hd and tl regs identical in get_list~n",[]),
      erlang:error(not_handled)
  end;
%%--- get_tuple_element ---
trans_fun([{get_tuple_element,Xreg,Index,Dst}|Instructions], Env) ->
  I = hipe_icode:mk_primop([mk_var(Dst)],
			   #unsafe_element{index=Index+1},
			   [trans_arg(Xreg)]),
  [I | trans_fun(Instructions,Env)];
%%--- set_tuple_element ---
trans_fun([{set_tuple_element,Elem,Tuple,Index}|Instructions], Env) ->
  Elem1 = trans_arg(Elem),
  I = hipe_icode:mk_primop([mk_var(Tuple)],
			   #unsafe_update_element{index=Index+1},
			   [mk_var(Tuple),Elem1]),
  [I | trans_fun(Instructions,Env)];
%%--- put_string ---
trans_fun([{put_string,_Len,String,Dst}|Instructions], Env) ->
  Mov = hipe_icode:mk_move(mk_var(Dst),trans_const(String)),
  [Mov | trans_fun(Instructions,Env)];
%%--- put_list ---
trans_fun([{put_list,Car,Cdr,Dest}|Instructions], Env) ->
  {M1,V1,Env2} = mk_move_and_var(Car,Env),
  {M2,V2,Env3} = mk_move_and_var(Cdr,Env2),
  D = mk_var(Dest),
  M1 ++ M2 ++ [hipe_icode:mk_primop([D],cons,[V1,V2])
	       | trans_fun(Instructions,Env3)];
%%--- put_tuple ---
trans_fun([{put_tuple,_Size,Reg}|Instructions], Env) ->
  {Moves,Instructions2,Vars,Env2} = trans_puts(Instructions,Env),
  Dest = [mk_var(Reg)],
  Src = lists:reverse(Vars),
  Primop = hipe_icode:mk_primop(Dest,mktuple,Src),
  Moves ++ [Primop | trans_fun(Instructions2,Env2)];
%%--- put --- SHOULD NOT REALLY EXIST HERE; put INSTRUCTIONS ARE HANDLED ABOVE.
%%--- badmatch ---
trans_fun([{badmatch,Arg}|Instructions], Env) ->
  BadVar = trans_arg(Arg),
  ErrVar = mk_var(new),
  Vs = [mk_var(new)],
  Atom = hipe_icode:mk_move(ErrVar,hipe_icode:mk_const(badmatch)),
  Tuple = hipe_icode:mk_primop(Vs,mktuple,[ErrVar,BadVar]),
  Fail = hipe_icode:mk_fail(Vs,error),
  [Atom,Tuple,Fail | trans_fun(Instructions,Env)];
%%--- if_end ---
trans_fun([if_end|Instructions], Env) ->
  V = mk_var(new),
  Mov = hipe_icode:mk_move(V,hipe_icode:mk_const(if_clause)),
  Fail = hipe_icode:mk_fail([V],error),
  [Mov,Fail | trans_fun(Instructions, Env)];
%%--- case_end ---
trans_fun([{case_end,Arg}|Instructions], Env) ->
  BadArg = trans_arg(Arg),
  ErrVar = mk_var(new),
  Vs = [mk_var(new)],
  Atom = hipe_icode:mk_move(ErrVar,hipe_icode:mk_const(case_clause)),
  Tuple = hipe_icode:mk_primop(Vs,mktuple,[ErrVar,BadArg]),
  Fail = hipe_icode:mk_fail(Vs,error),
  [Atom,Tuple,Fail | trans_fun(Instructions,Env)];
%%--- enter_fun ---
trans_fun([{call_fun,N},{deallocate,_},return|Instructions], Env) ->
  Args = extract_fun_args(N+1), %% +1 is for the fun itself
  [hipe_icode:mk_comment('enter_fun'),
   hipe_icode:mk_enter_primop(enter_fun,Args) | trans_fun(Instructions,Env)];
%%--- call_fun ---
trans_fun([{call_fun,N}|Instructions], Env) ->
  Args = extract_fun_args(N+1), %% +1 is for the fun itself
  Dst = [mk_var({r,0})],
  [hipe_icode:mk_comment('call_fun'),
   hipe_icode:mk_primop(Dst,call_fun,Args) | trans_fun(Instructions,Env)];
%%--- patched_make_fun --- make_fun/make_fun2 after fixes
trans_fun([{patched_make_fun,MFA,Magic,FreeVarNum,Index}|Instructions], Env) ->
  Args = extract_fun_args(FreeVarNum),
  Dst = [mk_var({r,0})],
  Fun = hipe_icode:mk_primop(Dst,
			     #mkfun{mfa=MFA,magic_num=Magic,index=Index},
			     Args),
  ?no_debug_msg("mkfun translates to: ~p~n",[Fun]),
  [Fun | trans_fun(Instructions,Env)];
%%--- is_function ---
trans_fun([{test,is_function,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(function,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--- call_ext_only ---
trans_fun([{call_ext_only,_N,{extfunc,M,F,A}}|Instructions], Env) ->
  Args = extract_fun_args(A),
  I = trans_enter({M,F,A}, Args, remote),
  [hipe_icode:mk_comment('call_ext_only'), I | trans_fun(Instructions,Env)];
%%--------------------------------------------------------------------
%%--- Translation of binary instructions ---
%%--------------------------------------------------------------------
%% This code uses a somewhat unorthodox translation:
%%   Since we do not want non-erlang values as arguments to Icode
%%   instructions some compile time constants are coded into the
%%   name of the function (or rather the primop).
%% TODO: Make sure all cases of argument types are covered.
%%--------------------------------------------------------------------
trans_fun([{test,bs_start_match2,{f,Lbl},[X,_Live,Max,Ms]}|Instructions], Env) ->
  Bin = trans_arg(X),
  MsVar = mk_var(Ms),
  trans_op_call({hipe_bs_primop, {bs_start_match, Max}}, Lbl, [Bin],
		[MsVar], Env, Instructions);
trans_fun([{test,bs_get_float2,{f,Lbl},[Ms,_Live,Size,Unit,{field_flags,Flags0},X]}|
	   Instructions], Env) ->  
  Dst = mk_var(X),
  MsVar = mk_var(Ms),
  Flags = resolve_native_endianess(Flags0),
  {Name, Args} = 
    case Size of
      {integer, NoBits} when is_integer(NoBits), NoBits >= 0 -> 
	{{bs_get_float,NoBits*Unit,Flags}, [MsVar]};
      {integer, NoBits} when is_integer(NoBits), NoBits < 0 ->
	?EXIT({bad_bs_size_constant,Size});
      BitReg ->
	Bits = mk_var(BitReg),
	{{bs_get_float,Unit,Flags}, [MsVar,Bits]}
    end,
  trans_op_call({hipe_bs_primop,Name}, Lbl, Args, [Dst,MsVar], Env, Instructions);
trans_fun([{test,bs_get_integer2,{f,Lbl},[Ms,_Live,Size,Unit,{field_flags,Flags0},X]}|
	   Instructions], Env) ->
  Dst = mk_var(X),
  MsVar = mk_var(Ms),
  Flags = resolve_native_endianess(Flags0),
  {Name, Args} = 
    case Size of
      {integer,NoBits} when is_integer(NoBits), NoBits >= 0 -> 
	{{bs_get_integer,NoBits*Unit,Flags}, [MsVar]};
      {integer,NoBits} when is_integer(NoBits), NoBits < 0 ->
	?EXIT({bad_bs_size_constant,Size});
      BitReg ->
	Bits = mk_var(BitReg),
	{{bs_get_integer,Unit,Flags}, [MsVar,Bits]}
    end,
  trans_op_call({hipe_bs_primop,Name}, Lbl, Args, [Dst,MsVar], Env, Instructions);
trans_fun([{test,bs_get_binary2,{f,Lbl},[Ms,_Live,Size,Unit,{field_flags,Flags},X]}| 
	   Instructions], Env) ->
  MsVar = mk_var(Ms),
  {Name, Args, Dsts} =
    case Size of
      {atom, all} -> %% put all bits
	if Ms =:= X ->
	    {{bs_get_binary_all,Unit,Flags},[MsVar],[mk_var(X)]};
	   true ->
	    {{bs_get_binary_all_2,Unit,Flags},[MsVar],[mk_var(X),MsVar]}
	end;
      {integer, NoBits} when is_integer(NoBits), NoBits >= 0 ->
	{{bs_get_binary,NoBits*Unit,Flags}, [MsVar], [mk_var(X),MsVar]};%% Create a N*Unit bits subbinary
      {integer, NoBits} when is_integer(NoBits), NoBits < 0 ->
	?EXIT({bad_bs_size_constant,Size});
      BitReg -> % Use a number of bits only known at runtime.
	Bits = mk_var(BitReg),
	{{bs_get_binary,Unit,Flags}, [MsVar,Bits], [mk_var(X),MsVar]}
    end,
  trans_op_call({hipe_bs_primop,Name}, Lbl, Args, Dsts, Env, Instructions);
trans_fun([{test,bs_skip_bits2,{f,Lbl},[Ms,Size,NumBits,{field_flags,Flags}]}|
	   Instructions], Env) -> 
  %% the current match buffer
  MsVar = mk_var(Ms),
  {Name, Args} = 
    case Size of
      {atom, all} -> %% Skip all bits
	{{bs_skip_bits_all,NumBits,Flags},[MsVar]};
      {integer, BitSize} when is_integer(BitSize), BitSize >= 0-> %% Skip N bits
	{{bs_skip_bits,BitSize*NumBits}, [MsVar]};
      {integer, BitSize} when is_integer(BitSize), BitSize < 0 ->
	?EXIT({bad_bs_size_constant,Size});
      X -> % Skip a number of bits only known at runtime.
	Src = mk_var(X),
	{{bs_skip_bits,NumBits},[MsVar,Src]}
    end,
  trans_op_call({hipe_bs_primop,Name}, Lbl, Args, [MsVar], Env, Instructions);
trans_fun([{test,bs_test_unit,{f,Lbl},[Ms,Unit]}|
	   Instructions], Env) -> 
  %% the current match buffer
  MsVar = mk_var(Ms),
  trans_op_call({hipe_bs_primop,{bs_test_unit,Unit}}, Lbl, 
		[MsVar], [], Env, Instructions);
trans_fun([{test,bs_match_string,{f,Lbl},[Ms,BitSize,Bin]}|
	   Instructions], Env) -> 
  True = mk_label(new),
  FalseLabName = map_label(Lbl),
  TrueLabName = hipe_icode:label_name(True),
  MsVar = mk_var(Ms),
  TmpVar = mk_var(new),
  ByteSize = BitSize div 8,
  ExtraBits = BitSize rem 8,
  WordSize = hipe_rtl_arch:word_size(),
  if ExtraBits =:= 0 ->
      trans_op_call({hipe_bs_primop,{bs_match_string,Bin,ByteSize}}, Lbl, 
		    [MsVar], [MsVar], Env, Instructions);
      BitSize =< ((WordSize * 8) - 5) -> 
      <<Int:BitSize, _/bits>> = Bin,
      {I1,Env1} = trans_one_op_call({hipe_bs_primop,{bs_get_integer,BitSize,0}}, Lbl, 
				    [MsVar], [TmpVar, MsVar], Env), 
      I2 = hipe_icode:mk_type([TmpVar], {integer,Int}, TrueLabName, FalseLabName),
      I1 ++ [I2,True] ++ trans_fun(Instructions, Env1);
     true ->
      <<RealBin:ByteSize/binary, Int:ExtraBits, _/bits>> = Bin,
      {I1,Env1} = trans_one_op_call({hipe_bs_primop,{bs_match_string,RealBin,ByteSize}}, Lbl, 
				    [MsVar], [MsVar], Env),
      {I2,Env2} = trans_one_op_call({hipe_bs_primop,{bs_get_integer,ExtraBits,0}}, Lbl, 
				    [MsVar], [TmpVar, MsVar], Env1),
      I3 = hipe_icode:mk_type([TmpVar], {integer,Int}, TrueLabName, FalseLabName),
      I1 ++ I2 ++ [I3,True] ++ trans_fun(Instructions, Env2)
  end;
trans_fun([{bs_context_to_binary,Var}|Instructions], Env) -> 
  %% the current match buffer
  IVars = [trans_arg(Var)],
  [hipe_icode:mk_primop(IVars,{hipe_bs_primop,bs_context_to_binary},IVars)|
   trans_fun(Instructions, Env)];
trans_fun([{bs_append,{f,Lbl},Size,W,R,U,Binary,{field_flags,F},Dst}| 
	   Instructions], Env) -> 
  %% the current match buffer
  SizeArg = trans_arg(Size),
  BinArg = trans_arg(Binary),
  IcodeDst = mk_var(Dst),
  Offset = mk_var(reg),
  Base = mk_var(reg),
  trans_bin_call({hipe_bs_primop,{bs_append,W,R,U,F}},Lbl,[SizeArg,BinArg],
		[IcodeDst,Base,Offset],
		 Base, Offset, Env, Instructions);
trans_fun([{bs_private_append,{f,Lbl},Size,U,Binary,{field_flags,F},Dst}| 
	   Instructions], Env) -> 
  %% the current match buffer
  SizeArg = trans_arg(Size),
  BinArg = trans_arg(Binary),
  IcodeDst = mk_var(Dst),
  Offset = mk_var(reg),
  Base = mk_var(reg),
  trans_bin_call({hipe_bs_primop,{bs_private_append,U,F}},
		 Lbl,[SizeArg,BinArg],
		 [IcodeDst,Base,Offset],
		 Base, Offset, Env, Instructions);
trans_fun([bs_init_writable|Instructions], Env) -> 
  Vars = [mk_var({x,0})], %{x,0} is implict arg and dst
  [hipe_icode:mk_primop(Vars,{hipe_bs_primop,bs_init_writable},Vars),
   trans_fun(Instructions, Env)];
trans_fun([{bs_save2,Ms,IndexName}|Instructions], Env) ->
  Index =
    case IndexName of
      {atom, start} -> 0;
      _ -> IndexName+1
    end,
  MsVars = [mk_var(Ms)],
  [hipe_icode:mk_primop(MsVars,{hipe_bs_primop,{bs_save,Index}},MsVars) |
   trans_fun(Instructions, Env)];
trans_fun([{bs_restore2,Ms,IndexName}|Instructions], Env) ->
  Index =
    case IndexName of
      {atom, start} -> 0;
      _ -> IndexName+1
    end,
  MsVars = [mk_var(Ms)],
  [hipe_icode:mk_primop(MsVars,{hipe_bs_primop,{bs_restore,Index}},MsVars) |
   trans_fun(Instructions, Env)];
trans_fun([{test,bs_test_tail2,{f,Lbl},[Ms,Numbits]}| Instructions], Env) ->
  MsVar = mk_var(Ms),
  trans_op_call({hipe_bs_primop,{bs_test_tail,Numbits}}, 
		Lbl, [MsVar], [], Env, Instructions);
%%--------------------------------------------------------------------
%% New bit syntax instructions added in February 2004 (R10B).
%%--------------------------------------------------------------------
trans_fun([{bs_init2,{f,Lbl},Size,_Words,_LiveRegs,{field_flags,Flags0},X}|
	   Instructions], Env) ->
  Dst = mk_var(X),
  Flags = resolve_native_endianess(Flags0),
  Offset = mk_var(reg),
  Base = mk_var(reg),
  {Name, Args} =
    case Size of
      NoBytes when is_integer(NoBytes) ->
	{{bs_init, Size, Flags}, []};
      BitReg ->
	Bits = mk_var(BitReg),
	{{bs_init, Flags}, [Bits]}
    end,
  trans_bin_call({hipe_bs_primop,Name}, Lbl, Args, [Dst, Base, Offset],
		 Base, Offset, Env, Instructions);
trans_fun([{bs_init_bits,{f,Lbl},Size,_Words,_LiveRegs,{field_flags,Flags0},X}|
	   Instructions], Env) ->
  Dst = mk_var(X),
  Flags = resolve_native_endianess(Flags0),
  Offset = mk_var(reg),
  Base = mk_var(reg),
  {Name, Args} =
    case Size of
      NoBits when is_integer(NoBits) ->
	{{bs_init_bits, NoBits, Flags}, []};
      BitReg ->
	Bits = mk_var(BitReg),
	{{bs_init_bits, Flags}, [Bits]}
    end,
  trans_bin_call({hipe_bs_primop,Name}, Lbl, Args, [Dst, Base, Offset],
		 Base, Offset, Env, Instructions);
trans_fun([{bs_add, {f,Lbl}, [Old,New,Unit], Res}|Instructions], Env) ->
  Dst = mk_var(Res),
  Temp = mk_var(new),
  MultIs =
    case {New,Unit} of
      {{integer, NewInt}, _} ->
	[hipe_icode:mk_move(Temp, hipe_icode:mk_const(NewInt*Unit))];
      {_, 1} ->
	NewVar = mk_var(New),
	[hipe_icode:mk_move(Temp, NewVar)];
      _ ->
	NewVar = mk_var(New),
	if Lbl =:= 0 ->
	    [hipe_icode:mk_primop([Temp], '*', 
				  [NewVar, hipe_icode:mk_const(Unit)])];
	   true ->
	    Succ = mk_label(new),
	    [hipe_icode:mk_primop([Temp], '*', 
				  [NewVar, hipe_icode:mk_const(Unit)],
				  hipe_icode:label_name(Succ), map_label(Lbl)),
	     Succ]
	end
    end,
  Succ2 = mk_label(new),
  {FailLblName, FailCode} = 
    if Lbl =:= 0 ->
	FailLbl = mk_label(new),
	{hipe_icode:label_name(FailLbl),
	 [FailLbl,
	  hipe_icode:mk_fail([hipe_icode:mk_const(badarg)], error)]};
       true ->
	{map_label(Lbl), []}
    end,
  IsPos = 
    [hipe_icode:mk_if('>=', [Temp, hipe_icode:mk_const(0)], 
		      hipe_icode:label_name(Succ2), FailLblName)] ++
    FailCode ++ [Succ2], 
  AddI =
    case Old of
      {integer,OldInt} ->
	hipe_icode:mk_primop([Dst], '+', [Temp, hipe_icode:mk_const(OldInt)]);
      _ ->
	OldVar = mk_var(Old),
	hipe_icode:mk_primop([Dst], '+', [Temp, OldVar])
    end,
  MultIs ++ IsPos ++ [AddI|trans_fun(Instructions, Env)];
%%--------------------------------------------------------------------
%% Bit syntax instructions added in R12B-5 (Fall 2008)
%%--------------------------------------------------------------------
trans_fun([{bs_utf8_size,{f,Lbl},A2,A3}|Instructions], Env) ->
  Bin = trans_arg(A2),
  Dst = mk_var(A3),
  trans_op_call({hipe_bs_primop, bs_utf8_size}, Lbl, [Bin], [Dst], Env, Instructions);
trans_fun([{test,bs_get_utf8,{f,Lbl},[Ms,_Live,{field_flags,_Flags},X]} |
	   Instructions], Env) ->
  trans_bs_get_or_skip_utf8(Lbl, Ms, X, Instructions, Env);
trans_fun([{test,bs_skip_utf8,{f,Lbl},[Ms,_Live,{field_flags,_Flags}]} |
	   Instructions], Env) ->
  trans_bs_get_or_skip_utf8(Lbl, Ms, 'new', Instructions, Env);
trans_fun([{bs_utf16_size,{f,Lbl},A2,A3}|Instructions], Env) ->
  Bin = trans_arg(A2),
  Dst = mk_var(A3),
  trans_op_call({hipe_bs_primop, bs_utf16_size}, Lbl, [Bin], [Dst], Env, Instructions);
trans_fun([{test,bs_get_utf16,{f,Lbl},[Ms,_Live,{field_flags,Flags0},X]} |
	   Instructions], Env) ->
  trans_bs_get_or_skip_utf16(Lbl, Ms, Flags0, X, Instructions, Env);
trans_fun([{test,bs_skip_utf16,{f,Lbl},[Ms,_Live,{field_flags,Flags0}]} |
	   Instructions], Env) ->
  trans_bs_get_or_skip_utf16(Lbl, Ms, Flags0, 'new', Instructions, Env);
trans_fun([{test,bs_get_utf32,{f,Lbl},[Ms,_Live,{field_flags,Flags0},X]} | Instructions], Env) ->
  trans_bs_get_or_skip_utf32(Lbl, Ms, Flags0, X, Instructions, Env);
trans_fun([{test,bs_skip_utf32,{f,Lbl},[Ms,_Live,{field_flags,Flags0}]} | Instructions], Env) ->
  trans_bs_get_or_skip_utf32(Lbl, Ms, Flags0, 'new', Instructions, Env);
%%--------------------------------------------------------------------
%%--- Translation of floating point instructions ---
%%--------------------------------------------------------------------
%%--- fclearerror ---
trans_fun([fclearerror|Instructions], Env) ->
  case get(hipe_inline_fp) of
    true ->  
      [hipe_icode:mk_primop([], fclearerror, []) | 
       trans_fun(Instructions,Env)];
    _ ->
      trans_fun(Instructions,Env)
  end;
%%--- fcheckerror ---
trans_fun([{fcheckerror,{_,Fail}}|Instructions], Env) ->
  case get(hipe_inline_fp) of
    true ->
      ContLbl = mk_label(new),
      case Fail of
	0 -> 
	  [hipe_icode:mk_primop([], fcheckerror, [],
				hipe_icode:label_name(ContLbl), []),
	   ContLbl | trans_fun(Instructions,Env)];
	_ -> %% Can this happen?
	  {Guard,Env1} =
	    make_guard([], fcheckerror, [],
		       hipe_icode:label_name(ContLbl), map_label(Fail), Env),
	  [Guard, ContLbl | trans_fun(Instructions,Env1)]
      end;
    _ ->
      trans_fun(Instructions, Env)
  end;
%%--- fmove ---
trans_fun([{fmove,Src,Dst}|Instructions], Env) ->
  case get(hipe_inline_fp) of
    true ->
      Dst1 = mk_var(Dst),
      Src1 = trans_arg(Src),
      case{hipe_icode:is_fvar(Dst1),
	   hipe_icode:is_fvar(Src1)} of
	{true, true} -> %% fvar := fvar 
	  [hipe_icode:mk_move(Dst1,Src1) | trans_fun(Instructions,Env)];
	{false, true} -> %% var := fvar
	  [hipe_icode:mk_primop([Dst1], unsafe_tag_float, [Src1]) |
	   trans_fun(Instructions,Env)];
	{true, false} -> %% fvar := var or fvar := constant
	  [hipe_icode:mk_primop([Dst1], unsafe_untag_float, [Src1]) |
	   trans_fun(Instructions,Env)]      
      end;
    _ ->
      trans_fun([{move,Src,Dst}|Instructions], Env)
  end;
%%--- fconv ---
trans_fun([{fconv,Eterm,FReg}|Instructions], Env) ->
  case get(hipe_inline_fp) of
    true ->
      Src = trans_arg(Eterm),
      ContLbl = mk_label(new),
      Dst = mk_var(FReg),
      [hipe_icode:mk_primop([Dst], conv_to_float, [Src], 
			    hipe_icode:label_name(ContLbl), []),
       ContLbl| trans_fun(Instructions, Env)];
    _ ->
      trans_fun([{fmove,Eterm,FReg}|Instructions], Env)
  end;
%%--- fadd ---
trans_fun([{arithfbif,fadd,Lab,SrcRs,DstR}|Instructions], Env) ->
  case get(hipe_inline_fp) of
    true ->
      trans_fun([{arithbif,fp_add,Lab,SrcRs,DstR}|Instructions], Env);
    _ ->
      trans_fun([{arithbif,'+',Lab,SrcRs,DstR}|Instructions], Env)
  end;
%%--- fsub ---
trans_fun([{arithfbif,fsub,Lab,SrcRs,DstR}|Instructions], Env) ->
  case get(hipe_inline_fp) of
    true ->
      trans_fun([{arithbif,fp_sub,Lab,SrcRs,DstR}|Instructions], Env);
    _ ->
      trans_fun([{arithbif,'-',Lab,SrcRs,DstR}|Instructions], Env)
  end;
%%--- fmult ---
trans_fun([{arithfbif,fmul,Lab,SrcRs,DstR}|Instructions], Env) ->
  case get(hipe_inline_fp) of
    true ->
      trans_fun([{arithbif,fp_mul,Lab,SrcRs,DstR}|Instructions], Env);
    _ ->
      trans_fun([{arithbif,'*',Lab,SrcRs,DstR}|Instructions], Env)
  end;
%%--- fdiv ---
trans_fun([{arithfbif,fdiv,Lab,SrcRs,DstR}|Instructions], Env) ->
  case get(hipe_inline_fp) of
    true ->
      trans_fun([{arithbif,fp_div,Lab,SrcRs,DstR}|Instructions], Env);
    _ ->
      trans_fun([{arithbif,'/',Lab,SrcRs,DstR}|Instructions], Env)
  end;
%%--- fnegate ---
trans_fun([{arithfbif,fnegate,Lab,[SrcR],DestR}|Instructions], Env) ->
  case get(hipe_inline_fp) of
    true ->
      Src = trans_arg(SrcR),
      Dst = mk_var(DestR),
      [hipe_icode:mk_primop([Dst], fnegate, [Src])| 
       trans_fun(Instructions,Env)];
    _ ->
      trans_fun([{arithbif,'-',Lab,[{float,0.0},SrcR],DestR}|Instructions], Env)
  end;
%%--------------------------------------------------------------------
%% New apply instructions added in April 2004 (R10B).
%%--------------------------------------------------------------------
trans_fun([{apply,Arity}|Instructions], Env) ->
  BeamArgs = extract_fun_args(Arity+2), %% +2 is for M and F
  {Args,[M,F]} = lists:split(Arity,BeamArgs),
  Dst = [mk_var({r,0})],
  [hipe_icode:mk_comment('apply'),
   hipe_icode:mk_primop(Dst, #apply_N{arity=Arity}, [M,F|Args])
   | trans_fun(Instructions,Env)];
trans_fun([{apply_last,Arity,_N}|Instructions], Env) -> % N is StackAdjustment?
  BeamArgs = extract_fun_args(Arity+2), %% +2 is for M and F
  {Args,[M,F]} = lists:split(Arity,BeamArgs),
  [hipe_icode:mk_comment('apply_last'),
   hipe_icode:mk_enter_primop(#apply_N{arity=Arity}, [M,F|Args])
   | trans_fun(Instructions,Env)];
%%--------------------------------------------------------------------
%% New test instruction added in April 2004 (R10B).
%%--------------------------------------------------------------------
%%--- is_boolean ---
trans_fun([{test,is_boolean,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(boolean,Lbl,Arg,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--------------------------------------------------------------------
%% New test instruction added in June 2005 for R11
%%--------------------------------------------------------------------
%%--- is_function2 ---
trans_fun([{test,is_function2,{f,Lbl},[Arg,Arity]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test2(function2,Lbl,Arg,Arity,Env),
  [Code | trans_fun(Instructions,Env1)];
%%--------------------------------------------------------------------
%% New garbage-collecting BIFs added in January 2006 for R11B.
%%--------------------------------------------------------------------
trans_fun([{gc_bif,'-',Fail,_Live,[SrcR],DstR}|Instructions], Env) ->
  %% Unary minus. Change this to binary minus.
  trans_fun([{arithbif,'-',Fail,[{integer,0},SrcR],DstR}|Instructions], Env);
trans_fun([{gc_bif,'+',Fail,_Live,[SrcR],DstR}|Instructions], Env) ->
  %% Unary plus. Change this to a bif call.
  trans_fun([{bif,'+',Fail,[SrcR],DstR}|Instructions], Env);
trans_fun([{gc_bif,Name,Fail,_Live,SrcRs,DstR}|Instructions], Env) ->
  case erl_internal:guard_bif(Name, length(SrcRs)) of
    false ->
      %% Arithmetic instruction.
      trans_fun([{arithbif,Name,Fail,SrcRs,DstR}|Instructions], Env);
    true ->
      %% A guard BIF.
      trans_fun([{bif,Name,Fail,SrcRs,DstR}|Instructions], Env)
  end;
%%--------------------------------------------------------------------
%% New test instruction added in July 2007 for R12.
%%--------------------------------------------------------------------
%%--- is_bitstr ---
trans_fun([{test,is_bitstr,{f,Lbl},[Arg]}|Instructions], Env) ->
  {Code,Env1} = trans_type_test(bitstr, Lbl, Arg, Env),
  [Code | trans_fun(Instructions, Env1)];
%%--------------------------------------------------------------------
%% New stack triming instruction added in October 2007 for R12.
%%--------------------------------------------------------------------
trans_fun([{trim,N,NY}|Instructions], Env) ->
  %% trim away N registers leaving NY registers
  Moves = trans_trim(N, NY),
  Moves ++ trans_fun(Instructions, Env);
%%--------------------------------------------------------------------
%%--- ERROR HANDLING ---
%%--------------------------------------------------------------------
trans_fun([X|_], _) ->
  ?EXIT({'trans_fun/2',X});
trans_fun([], _) ->
  [].

%%--------------------------------------------------------------------
%% trans_call and trans_enter generate correct Icode calls/tail-calls,
%% recognizing explicit fails.
%%--------------------------------------------------------------------

trans_call(MFA={M,F,_A}, Dst, Args, Type) ->
  handle_fail(MFA, Args, fun () -> hipe_icode:mk_call(Dst,M,F,Args,Type) end).

trans_enter(MFA={M,F,_A}, Args, Type) ->
  handle_fail(MFA, Args, fun () -> hipe_icode:mk_enter(M,F,Args,Type) end).

handle_fail(MFA, Args, F) ->
  case MFA of
    {erlang,exit,1} ->
      hipe_icode:mk_fail(Args,exit);
    {erlang,throw,1} ->
      hipe_icode:mk_fail(Args,throw);
    {erlang,fault,1} ->
      hipe_icode:mk_fail(Args,error);
    {erlang,fault,2} ->
      hipe_icode:mk_fail(Args,error);
    {erlang,error,1} ->
      hipe_icode:mk_fail(Args,error);
    {erlang,error,2} ->
      hipe_icode:mk_fail(Args,error);
    _ ->
      F()
  end.

%%-----------------------------------------------------------------------
%% trans_bif0(BifName, DestReg)
%% trans_bif(Arity, BifName, FailLab, Args, DestReg, Environment)
%%-----------------------------------------------------------------------

trans_bif0(BifName, DestReg) ->
  ?no_debug_msg("  found BIF0: ~p() ...~n", [BifName]),
  BifRes = mk_var(DestReg),
  hipe_icode:mk_call([BifRes],erlang,BifName,[],remote).

trans_bif(Arity, BifName, Lbl, Args, DestReg, Env) ->
  ?no_debug_msg("  found BIF: ~p(~p) ...~n", [BifName,Args]),
  BifRes = mk_var(DestReg),
  {Movs, SrcVars, Env1} = get_constants_in_temps(Args,Env),
  case Lbl of
    0 -> % Bif is not in a guard
      I = hipe_icode:mk_call([BifRes],erlang,BifName,SrcVars,remote),
      {Movs ++ [I], Env1};
    _ -> % Bif occurs in a guard - fail silently to Lbl
      {GuardI,Env2} =
	make_fallthrough_guard([BifRes],{erlang,BifName,Arity},SrcVars,
			       map_label(Lbl),Env1),
      {[Movs,GuardI], Env2}
  end.

trans_op_call(Name, Lbl, Args, Dests, Env, Instructions) ->
  {Code, Env1} = trans_one_op_call(Name, Lbl, Args, Dests, Env),
  [Code|trans_fun(Instructions, Env1)].

trans_one_op_call(Name, Lbl, Args, Dests, Env) ->
  case Lbl of
      0 -> % Op is not in a guard
	I = hipe_icode:mk_primop(Dests, Name, Args),
	{[I], Env};
      _ -> % op occurs in a guard - fail silently to Lbl
	make_fallthrough_guard(Dests, Name, Args, map_label(Lbl), Env)
    end.

%%-----------------------------------------------------------------------
%% trans_bin_call
%%-----------------------------------------------------------------------

trans_bin_call(Name, Lbl, Args, Dests, Base, Offset, Env, Instructions) ->
  {Code, Env1} =
    case Lbl of
      0 -> % Op is not in a guard
	I = hipe_icode:mk_primop(Dests, Name, Args),
	{[I], Env};
      _ -> % op occurs in a guard - fail silently to Lbl
	make_fallthrough_guard(Dests, Name, Args, map_label(Lbl), Env)
    end,
  [Code|trans_bin(Instructions, Base, Offset, Env1)].

%% Translate instructions for building binaries separately to give
%% them an appropriate state

trans_bin([{bs_put_float,{f,Lbl},Size,Unit,{field_flags,Flags0},Source}|
	   Instructions], Base, Offset, Env) ->
  Flags = resolve_native_endianess(Flags0),
  %% Get source
  {Src,SourceInstrs,ConstInfo} = 
    case is_var(Source) of
      true ->
	{mk_var(Source),[], var};
      false ->
	case Source of
	  {float, X} when is_float(X) ->
	    C = trans_const(Source),
	    SrcVar = mk_var(new),
	    I = hipe_icode:mk_move(SrcVar, C),
	    {SrcVar,[I],pass};
	  _ -> 
	    C = trans_const(Source),
	    SrcVar = mk_var(new),
	    I = hipe_icode:mk_move(SrcVar, C),
	    {SrcVar,[I],fail}
	end
    end,
  %% Get type of put_float
  {Name,Args,Env2} = 
    case Size of
      {integer,NoBits} when is_integer(NoBits), NoBits >= 0 ->
	%% Create a N*Unit bits float
	{{bs_put_float, NoBits*Unit, Flags, ConstInfo}, [Src, Base, Offset], Env};
      {integer,NoBits} when is_integer(NoBits), NoBits < 0 ->
	?EXIT({bad_bs_size_constant,Size});
      BitReg -> % Use a number of bits only known at runtime.
	Bits = mk_var(BitReg),
	{{bs_put_float, Unit, Flags, ConstInfo}, [Src,Bits,Base,Offset], Env}
    end,
  %% Generate code for calling the bs-op. 
  SourceInstrs ++ 
    trans_bin_call({hipe_bs_primop,Name}, Lbl, Args, [Offset], Base, Offset, Env2, Instructions);
trans_bin([{bs_put_binary,{f,Lbl},Size,Unit,{field_flags,Flags},Source}|
	   Instructions], Base, Offset, Env) ->
  %% Get the source of the binary.
  Src = trans_arg(Source), 
  %% Get type of put_binary
  {Name, Args, Env2} =
    case Size of
      {atom,all} -> %% put all bits
	{{bs_put_binary_all, Flags}, [Src,Base,Offset], Env};
      {integer,NoBits} when is_integer(NoBits), NoBits >= 0 ->
	%% Create a N*Unit bits subbinary
	{{bs_put_binary, NoBits*Unit, Flags}, [Src,Base,Offset], Env};
      {integer,NoBits} when is_integer(NoBits), NoBits < 0 ->
	?EXIT({bad_bs_size_constant,Size});
      BitReg -> % Use a number of bits only known at runtime.
	Bits = mk_var(BitReg),
	{{bs_put_binary, Unit, Flags}, [Src, Bits,Base,Offset], Env}
    end,
  %% Generate code for calling the bs-op.
  trans_bin_call({hipe_bs_primop, Name}, 
		 Lbl, Args, [Offset],
		 Base, Offset, Env2, Instructions);
%%--- bs_put_string ---
trans_bin([{bs_put_string,SizeInBytes,{string,String}}|Instructions], Base, 
	  Offset, Env) ->
  [hipe_icode:mk_primop([Offset],
			{hipe_bs_primop,{bs_put_string, String, SizeInBytes}},
			[Base, Offset]) |
   trans_bin(Instructions, Base, Offset, Env)];
trans_bin([{bs_put_integer,{f,Lbl},Size,Unit,{field_flags,Flags0},Source}|
	   Instructions], Base, Offset, Env) ->
  Flags = resolve_native_endianess(Flags0),
  %% Get size-type 
  
  %% Get the source of the binary.
  {Src, SrcInstrs, ConstInfo} = 
    case is_var(Source) of
      true ->
	{mk_var(Source), [], var};
      false ->
	case Source of
	  {integer, X} when is_integer(X) ->
	    C = trans_const(Source),
	    SrcVar = mk_var(new),
	    I = hipe_icode:mk_move(SrcVar, C),
	    {SrcVar,[I], pass};
	  _ ->
	    C = trans_const(Source),
	    SrcVar = mk_var(new),
	    I = hipe_icode:mk_move(SrcVar, C),
	    {SrcVar,[I], fail}
	    
	end
    end,
  {Name, Args, Env2} = 
    case is_var(Size) of
      true ->
	SVar = mk_var(Size),
	{{bs_put_integer,Unit,Flags,ConstInfo}, [SVar, Base, Offset], Env};
      false ->
	case Size of
	  {integer, NoBits} when NoBits >= 0 -> 
	    {{bs_put_integer,NoBits*Unit,Flags,ConstInfo}, [Base, Offset], Env};
	  _ -> 
	    ?EXIT({bad_bs_size_constant,Size})
	end
    end,
  SrcInstrs ++ trans_bin_call({hipe_bs_primop, Name}, 
			     Lbl, [Src|Args], [Offset], Base, Offset, Env2, Instructions);
%%----------------------------------------------------------------
%% New binary construction instructions added in R12B-5 (Fall 2008).
%%----------------------------------------------------------------
trans_bin([{bs_put_utf8,{f,Lbl},_FF,A3}|Instructions], Base, Offset, Env) ->
  Src = trans_arg(A3),
  Args = [Src, Base, Offset],
  trans_bin_call({hipe_bs_primop, bs_put_utf8}, Lbl, Args, [Offset], Base, Offset, Env, Instructions);
trans_bin([{bs_put_utf16,{f,Lbl},{field_flags,Flags0},A3}|Instructions], Base, Offset, Env) ->
  Src = trans_arg(A3),
  Args = [Src, Base, Offset],
  Flags = resolve_native_endianess(Flags0),
  Name = {bs_put_utf16, Flags},
  trans_bin_call({hipe_bs_primop, Name}, Lbl, Args, [Offset], Base, Offset, Env, Instructions);
trans_bin([{bs_put_utf32,F={f,Lbl},FF={field_flags,_Flags0},A3}|Instructions], Base, Offset, Env) ->
  Src = trans_arg(A3),
  trans_bin_call({hipe_bs_primop,bs_validate_unicode}, Lbl, [Src], [], Base, Offset, Env,
		 [{bs_put_integer,F,{integer,32},1,FF,A3} | Instructions]);
%%----------------------------------------------------------------
%% Base cases for the end of a binary construction sequence.
%%----------------------------------------------------------------
trans_bin([{bs_final2,Src,Dst}|Instructions], _Base, Offset, Env) ->
  [hipe_icode:mk_primop([mk_var(Dst)], {hipe_bs_primop, bs_final}, 
			[trans_arg(Src),Offset])
   |trans_fun(Instructions, Env)];
trans_bin(Instructions, _Base, _Offset, Env) ->
  trans_fun(Instructions, Env).

%% this translates bs_get_utf8 and bs_skip_utf8 (get with new unused dst)
trans_bs_get_or_skip_utf8(Lbl, Ms, X, Instructions, Env) ->
  Dst = mk_var(X),
  MsVar = mk_var(Ms),
  trans_op_call({hipe_bs_primop,bs_get_utf8}, Lbl, [MsVar], [Dst,MsVar], Env, Instructions).

%% this translates bs_get_utf16 and bs_skip_utf16 (get with new unused dst)
trans_bs_get_or_skip_utf16(Lbl, Ms, Flags0, X, Instructions, Env) ->
  Dst = mk_var(X),
  MsVar = mk_var(Ms),
  Flags = resolve_native_endianess(Flags0),
  Name = {bs_get_utf16,Flags},
  trans_op_call({hipe_bs_primop,Name}, Lbl, [MsVar], [Dst,MsVar], Env, Instructions).

%% this translates bs_get_utf32 and bs_skip_utf32 (get with new unused dst)
trans_bs_get_or_skip_utf32(Lbl, Ms, Flags0, X, Instructions, Env) ->
  Dst = mk_var(X),
  MsVar = mk_var(Ms),
  Flags = resolve_native_endianess(Flags0),
  {I1,Env1} = trans_one_op_call({hipe_bs_primop,{bs_get_integer,32,Flags}},
				Lbl, [MsVar], [Dst,MsVar], Env),
  I1 ++ trans_op_call({hipe_bs_primop,bs_validate_unicode_retract},
		      Lbl, [Dst,MsVar], [MsVar], Env1, Instructions).

%%-----------------------------------------------------------------------
%% trans_arith(Op, SrcVars, Des, Lab, Env) -> { Icode, NewEnv }
%%     A failure label of type {f,0} means in a body.
%%     A failure label of type {f,L} where L>0 means in a guard.
%%        Within a guard a failure should branch to the next guard and
%%        not trigger an exception!!
%%     Handles body arithmetic with Icode primops!
%%     Handles guard arithmetic with Icode guardops!
%%-----------------------------------------------------------------------

trans_arith(Op, SrcRs, DstR, Lbl, Env) ->
  {Movs,SrcVars,Env1} = get_constants_in_temps(SrcRs,Env),
  DstVar = mk_var(DstR),
  %%io:format("~w:trans_arith()\n ~w := ~w ~w\n",
  %%		[?MODULE,DstVar,SrcVars,Op]),
  case Lbl of
    0 ->  % Body arithmetic
      Primop = hipe_icode:mk_primop([DstVar], arith_op_name(Op), SrcVars),
      {Movs++[Primop], Env1};
    _ ->  % Guard arithmetic
      {Guard,Env2} = 
	make_fallthrough_guard([DstVar], arith_op_name(Op), SrcVars,
			       map_label(Lbl), Env1),
      {[Movs,Guard], Env2}
  end.

%% Prevent arbitrary names from leaking into Icode from BEAM.
arith_op_name('+') -> '+';
arith_op_name('-') -> '-';
arith_op_name('*') -> '*';
arith_op_name('/') -> '/';
arith_op_name('div') -> 'div';
arith_op_name('fp_add') -> 'fp_add';
arith_op_name('fp_sub') -> 'fp_sub';
arith_op_name('fp_mul') -> 'fp_mul';
arith_op_name('fp_div') -> 'fp_div';
arith_op_name('rem') -> 'rem';
arith_op_name('bsl') -> 'bsl';
arith_op_name('bsr') -> 'bsr';
arith_op_name('band') -> 'band';
arith_op_name('bor') -> 'bor';
arith_op_name('bxor') -> 'bxor';
arith_op_name('bnot') -> 'bnot'.

%%-----------------------------------------------------------------------
%%-----------------------------------------------------------------------

trans_test_guard(TestOp,F,Arg1,Arg2,Env) ->
  {Movs,Vars,Env1} = get_constants_in_temps([Arg1,Arg2],Env),
  True = mk_label(new),
  I = hipe_icode:mk_if(TestOp,Vars,hipe_icode:label_name(True),map_label(F)),
  {[Movs,I,True], Env1}.

%%-----------------------------------------------------------------------
%%-----------------------------------------------------------------------

make_fallthrough_guard(DstVar,GuardOp,Args,FailLName,Env) ->
  ContL = mk_label(new),
  ContLName = hipe_icode:label_name(ContL),
  {Instrs, NewDsts} = clone_dsts(DstVar),
  {Guard,Env1} = make_guard(NewDsts,GuardOp,Args,ContLName,FailLName,Env),
  {[Guard,ContL]++Instrs,Env1}.

%% Make sure DstVar gets initialised to a dummy value after a fail:
%make_guard(Dests,{hipe_bs_primop,Primop},Args,ContLName,FailLName,Env) ->
%  {[hipe_icode:mk_guardop(Dests,{hipe_bs_primop,Primop},Args,ContLName,FailLName)],
%   Env};
make_guard(Dests=[_|_],GuardOp,Args,ContLName,FailLName,Env) ->
  TmpFailL = mk_label(new),
  TmpFailLName = hipe_icode:label_name(TmpFailL),
  GuardOpIns = hipe_icode:mk_guardop(Dests,GuardOp,Args,
				     ContLName,TmpFailLName),
  FailCode = [TmpFailL,
	      nillify_all(Dests),
	      hipe_icode:mk_goto(FailLName)],
  {[GuardOpIns|FailCode], Env};
%% A guard that does not return anything:
make_guard([],GuardOp,Args,ContLName,FailLName,Env) ->
  {[hipe_icode:mk_guardop([],GuardOp,Args,ContLName,FailLName)],
   Env}.

nillify_all([Var|Vars]) ->
  [hipe_icode:mk_move(Var,hipe_icode:mk_const([]))|nillify_all(Vars)];
nillify_all([]) -> [].

clone_dsts(Dests) ->
  clone_dsts(Dests, [],[]).

clone_dsts([Dest|Dests], Instrs, NewDests) -> 
  {I,ND} = clone_dst(Dest),
  clone_dsts(Dests, [I|Instrs], [ND|NewDests]);
clone_dsts([], Instrs, NewDests) ->
  {lists:reverse(Instrs), lists:reverse(NewDests)}.

clone_dst(Dest) -> 
  New = 
    case hipe_icode:is_reg(Dest) of
      true ->
	mk_var(reg);
      false ->
	true = hipe_icode:is_var(Dest),	      
	mk_var(new)
    end,
  {hipe_icode:mk_move(Dest, New), New}.


%%-----------------------------------------------------------------------
%% trans_type_test(Test, Lbl, Arg, Env) -> { Icode, NewEnv }
%%     Handles all unary type tests like is_integer etc. 
%%-----------------------------------------------------------------------

trans_type_test(Test, Lbl, Arg, Env) ->
  True = mk_label(new),
  {Move,Var,Env1} = mk_move_and_var(Arg,Env),
  I = hipe_icode:mk_type([Var], Test,
			 hipe_icode:label_name(True), map_label(Lbl)),
  {[Move,I,True],Env1}.

%%
%% This handles binary type tests. Currently, the only such is the new
%% is_function/2 BIF.
%%
trans_type_test2(function2, Lbl, Arg, Arity, Env) ->
  True = mk_label(new),
  {Move1,Var1,Env1} = mk_move_and_var(Arg, Env),
  {Move2,Var2,Env2} = mk_move_and_var(Arity, Env1),
  I = hipe_icode:mk_type([Var1,Var2], function2,
			 hipe_icode:label_name(True), map_label(Lbl)),
  {[Move1,Move2,I,True],Env2}.

%%-----------------------------------------------------------------------
%% trans_puts(Code, Environment) -> 
%%            { Movs, Code, Vars, NewEnv }
%%-----------------------------------------------------------------------

trans_puts(Code, Env) ->
  trans_puts(Code, [], [], Env).

trans_puts([{put,X}|Code], Vars, Moves, Env) ->
  case type(X) of
    var ->
      Var = mk_var(X),
      trans_puts(Code, [Var|Vars], Moves, Env);
    #beam_const{value=C} ->
      Var = mk_var(new),
      Move = hipe_icode:mk_move(Var, hipe_icode:mk_const(C)),
      trans_puts(Code, [Var|Vars], [Move|Moves], Env)
  end;
trans_puts(Code, Vars, Moves, Env) ->    %% No more put operations
  {Moves, Code, Vars, Env}.

%%-----------------------------------------------------------------------
%% The code for this instruction is a bit large because we are treating
%% different cases differently.  We want to use the icode `type' 
%% instruction when it is applicable to take care of match expressions.
%%-----------------------------------------------------------------------

trans_is_eq_exact(Lbl, Arg1, Arg2, Env) ->
  case {is_var(Arg1),is_var(Arg2)} of
    {true,true} ->
      True = mk_label(new),
      I = hipe_icode:mk_if('=:=',
			   [mk_var(Arg1),mk_var(Arg2)],
			   hipe_icode:label_name(True), map_label(Lbl)),
      {[I,True], Env};
    {true,false} -> %% right argument is a constant -- use type()!
      trans_is_eq_exact_var_const(Lbl, Arg1, Arg2, Env);
    {false,true} -> %% mirror of the case above; swap args
      trans_is_eq_exact_var_const(Lbl, Arg2, Arg1, Env);
    {false,false} -> %% both arguments are constants !!!
      case Arg1 =:= Arg2 of
	true ->
	  {[], Env};
	false ->   
	  Never = mk_label(new),
	  I = hipe_icode:mk_goto(map_label(Lbl)),
	  {[I,Never], Env}
      end
  end.

trans_is_eq_exact_var_const(Lbl, Arg1, Arg2, Env) -> % var =:= const
  True = mk_label(new),
  NewArg1 = mk_var(Arg1),
  TrueLabName = hipe_icode:label_name(True),
  FalseLabName = map_label(Lbl),
  I = case Arg2 of
	{float,Float} ->
	  hipe_icode:mk_if('=:=',
			   [NewArg1, hipe_icode:mk_const(Float)],
			   TrueLabName, FalseLabName);
	{literal,Literal} ->
	  hipe_icode:mk_if('=:=',
			   [NewArg1, hipe_icode:mk_const(Literal)],
			   TrueLabName, FalseLabName);
	_ ->
	  hipe_icode:mk_type([NewArg1], Arg2, TrueLabName, FalseLabName)
      end,
  {[I,True], Env}.

%%-----------------------------------------------------------------------
%% ... and this is analogous to the above
%%-----------------------------------------------------------------------

trans_is_ne_exact(Lbl, Arg1, Arg2, Env) ->
  case {is_var(Arg1),is_var(Arg2)} of
    {true,true} ->
      True = mk_label(new),
      I = hipe_icode:mk_if('=/=',
			   [mk_var(Arg1),mk_var(Arg2)],
			   hipe_icode:label_name(True), map_label(Lbl)),
      {[I,True], Env};
    {true,false} -> %% right argument is a constant -- use type()!
      trans_is_ne_exact_var_const(Lbl, Arg1, Arg2, Env);
    {false,true} -> %% mirror of the case above; swap args
      trans_is_ne_exact_var_const(Lbl, Arg2, Arg1, Env);
    {false,false} -> %% both arguments are constants !!!
      case Arg1 =/= Arg2 of
	true ->
	  {[], Env};
	false ->   
	  Never = mk_label(new),
	  I = hipe_icode:mk_goto(map_label(Lbl)),
	  {[I,Never], Env}
      end
  end.

trans_is_ne_exact_var_const(Lbl, Arg1, Arg2, Env) -> % var =/= const
  True = mk_label(new),
  NewArg1 = mk_var(Arg1),
  TrueLabName = hipe_icode:label_name(True),
  FalseLabName = map_label(Lbl),
  I = case Arg2 of
	{float,Float} ->
	  hipe_icode:mk_if('=/=',
			   [NewArg1, hipe_icode:mk_const(Float)],
			   TrueLabName, FalseLabName);
	{literal,Literal} ->
	  hipe_icode:mk_if('=/=',
			   [NewArg1, hipe_icode:mk_const(Literal)],
			   TrueLabName, FalseLabName);
	_ ->
	  hipe_icode:mk_type([NewArg1], Arg2, FalseLabName, TrueLabName)
      end,
  {[I,True], Env}.

%%-----------------------------------------------------------------------
%% Try to do a relatively straightforward optimization: if equality with
%% an atom is used, then convert this test to use of exact equality test
%% with the same atom (which in turn will be translated to a `type' test
%% instruction by the code of trans_is_eq_exact_var_const/4 above).
%%-----------------------------------------------------------------------

trans_is_eq(Lbl, Arg1, Arg2, Env) ->
  case {is_var(Arg1),is_var(Arg2)} of
    {true,true} ->   %% not much can be done in this case
      trans_test_guard('==', Lbl, Arg1, Arg2, Env);
    {true,false} ->  %% optimize this case, if possible
      case Arg2 of
	{atom,_SomeAtom} ->
	  trans_is_eq_exact_var_const(Lbl, Arg1, Arg2, Env);
	_ ->
	  trans_test_guard('==', Lbl, Arg1, Arg2, Env)
      end;
    {false,true} ->  %% probably happens rarely; hence the recursive call
      trans_is_eq(Lbl, Arg2, Arg1, Env);
    {false,false} -> %% both arguments are constants !!!
      case Arg1 == Arg2 of
	true ->
	  {[], Env};
	false ->   
	  Never = mk_label(new),
	  I = hipe_icode:mk_goto(map_label(Lbl)),
	  {[I,Never], Env}
      end
  end.

%%-----------------------------------------------------------------------
%% ... and this is analogous to the above
%%-----------------------------------------------------------------------

trans_is_ne(Lbl, Arg1, Arg2, Env) ->
  case {is_var(Arg1),is_var(Arg2)} of
    {true,true} ->   %% not much can be done in this case
      trans_test_guard('/=', Lbl, Arg1, Arg2, Env);
    {true,false} ->  %% optimize this case, if possible
      case Arg2 of
	{atom,_SomeAtom} ->
	  trans_is_ne_exact_var_const(Lbl, Arg1, Arg2, Env);
	_ ->
	  trans_test_guard('/=', Lbl, Arg1, Arg2, Env)
      end;
    {false,true} ->  %% probably happens rarely; hence the recursive call
      trans_is_ne(Lbl, Arg2, Arg1, Env);
    {false,false} -> %% both arguments are constants !!!
      case Arg1 /= Arg2 of
	true ->
	  {[], Env};
	false ->   
	  Never = mk_label(new),
	  I = hipe_icode:mk_goto(map_label(Lbl)),
	  {[I,Never], Env}
      end
  end.


%%-----------------------------------------------------------------------
%% Translates an allocate instruction into a sequence of initializations
%%-----------------------------------------------------------------------

trans_allocate(N) ->
  trans_allocate(N, []).

trans_allocate(0, Acc) ->
  Acc;
trans_allocate(N, Acc) ->
  Move = hipe_icode:mk_move(mk_var({y,N-1}), 
			    hipe_icode:mk_const('dummy_value')),
  trans_allocate(N-1, [Move|Acc]).

%%-----------------------------------------------------------------------
%% Translates a trim instruction into a sequence of moves
%%-----------------------------------------------------------------------

trans_trim(N, NY) ->
  lists:reverse(trans_trim(N, NY, 0, [])).

trans_trim(_, 0, _, Acc) ->
  Acc;
trans_trim(N, NY, Y, Acc) ->
  Move = hipe_icode:mk_move(mk_var({y,Y}), mk_var({y,N})),
  trans_trim(N+1, NY-1, Y+1, [Move|Acc]).

%%-----------------------------------------------------------------------
%%-----------------------------------------------------------------------

mk_move_and_var(Var, Env) ->
  case type(Var) of
    var ->
      V = mk_var(Var),
      {[], V, Env};
    #beam_const{value=C} ->
      V = mk_var(new),
      {[hipe_icode:mk_move(V,hipe_icode:mk_const(C))], V, Env}
  end.

%%-----------------------------------------------------------------------
%% Find names of closures and number of free vars.
%%-----------------------------------------------------------------------

closure_info_mfa(#closure_info{mfa=MFA}) -> MFA.
closure_info_arity(#closure_info{arity=Arity}) -> Arity.
%% closure_info_fv_arity(#closure_info{fv_arity=Arity}) -> Arity.

find_closure_info(Code) -> mod_find_closure_info(Code, []).

mod_find_closure_info([FunCode|Fs], CI) ->
  mod_find_closure_info(Fs, find_closure_info(FunCode, CI));
mod_find_closure_info([], CI) ->
  CI.

find_closure_info([{patched_make_fun,MFA={_M,_F,A},_Magic,FreeVarNum,_Index}|BeamCode],
		  ClosureInfo) ->
  NewClosure = %% A-FreeVarNum+1 (The real arity + 1 for the closure)
    #closure_info{mfa=MFA, arity=A-FreeVarNum+1, fv_arity=FreeVarNum},
  find_closure_info(BeamCode, [NewClosure|ClosureInfo]);
find_closure_info([_Inst|BeamCode], ClosureInfo) ->
  find_closure_info(BeamCode, ClosureInfo);
find_closure_info([], ClosureInfo) ->
  ClosureInfo.

%%-----------------------------------------------------------------------
%% Is closure
%%-----------------------------------------------------------------------

get_closure_info(MFA, [CI|Rest]) ->
  case closure_info_mfa(CI) of
    MFA -> CI;
    _ -> get_closure_info(MFA, Rest)
  end;
get_closure_info(_, []) ->
  not_a_closure.

%%-----------------------------------------------------------------------
%% Patch closure entry.
%%-----------------------------------------------------------------------

%% NOTE: this changes the number of parameters in the ICode function,
%% but does *not* change the arity in the function name. Thus, all
%% closure-functions have the exact same names in Beam and in native
%% code, although they have different calling conventions.

patch_closure_entry(Icode, ClosureInfo)->
  Arity = closure_info_arity(ClosureInfo), 
  %% ?msg("Arity ~w\n",[Arity]),
  {Args, Closure, FreeVars} = 
    split_params(Arity, hipe_icode:icode_params(Icode), []),
  [Start|_] = hipe_icode:icode_code(Icode),
  {_LMin, LMax} = hipe_icode:icode_label_range(Icode),
  hipe_gensym:set_label(icode,LMax+1),
  {_VMin, VMax} = hipe_icode:icode_var_range(Icode),
  hipe_gensym:set_var(icode,VMax+1),
  MoveCode = gen_get_free_vars(FreeVars, Closure,
			       hipe_icode:label_name(Start)),
  Icode1 = hipe_icode:icode_code_update(Icode, MoveCode ++
					hipe_icode:icode_code(Icode)),
  Icode2 = hipe_icode:icode_params_update(Icode1, Args),
  %% Arity - 1 since the original arity did not have the closure argument.
  Icode3 = hipe_icode:icode_closure_arity_update(Icode2, Arity-1),
  Icode3.

%%-----------------------------------------------------------------------

gen_get_free_vars(Vars, Closure, StartName) ->
  [hipe_icode:mk_new_label()] ++ 
    get_free_vars(Vars, Closure, 1, []) ++ [hipe_icode:mk_goto(StartName)].

get_free_vars([V|Vs], Closure, No, MoveCode) ->
  %% TempV = hipe_icode:mk_new_var(),
  get_free_vars(Vs, Closure, No+1,
		[%% hipe_icode:mk_move(TempV,hipe_icode:mk_const(No)),
		 hipe_icode:mk_primop([V], #closure_element{n=No}, [Closure])
		 |MoveCode]);
get_free_vars([],_,_,MoveCode) ->
  MoveCode.

%%-----------------------------------------------------------------------

split_params(1, [Closure|_OrgArgs] = Params, Args) ->
  {lists:reverse([Closure|Args]), Closure, Params};
split_params(1, [], Args) ->
  Closure = hipe_icode:mk_new_var(),
  {lists:reverse([Closure|Args]), Closure, []};
split_params(N, [ArgN|OrgArgs], Args) ->
  split_params(N-1, OrgArgs, [ArgN|Args]).

%%-----------------------------------------------------------------------

preprocess_code(ModuleCode) ->
  PatchedCode = patch_R7_funs(ModuleCode),
  ClosureInfo = find_closure_info(PatchedCode),
  {PatchedCode, ClosureInfo}.

%%-----------------------------------------------------------------------
%% Patches the "make_fun" BEAM instructions of R7 so that they also
%% contain the index that the BEAM loader generates for funs.
%% 
%% The index starts from 0 and is incremented by 1 for each make_fun
%% instruction encountered.
%%
%% Retained only for compatibility with BEAM code prior to R8.
%%
%% Temporarily, it also rewrites R8-PRE-RELEASE "make_fun2"
%% instructions, since their embedded indices don't work.
%%-----------------------------------------------------------------------

patch_R7_funs(ModuleCode) ->
  patch_make_funs(ModuleCode, 0).

patch_make_funs([FunCode0|Fs], FunIndex0) ->
  {PatchedFunCode,FunIndex} = patch_make_funs(FunCode0, FunIndex0, []),
  [PatchedFunCode|patch_make_funs(Fs, FunIndex)];
patch_make_funs([], _) -> [].

patch_make_funs([{make_fun,MFA,Magic,FreeVarNum}|Is], FunIndex, Acc) ->
  Patched = {patched_make_fun,MFA,Magic,FreeVarNum,FunIndex},
  patch_make_funs(Is, FunIndex+1, [Patched|Acc]);
patch_make_funs([{make_fun2,MFA,_BogusIndex,Magic,FreeVarNum}|Is], FunIndex, Acc) ->
  Patched = {patched_make_fun,MFA,Magic,FreeVarNum,FunIndex},
  patch_make_funs(Is, FunIndex+1, [Patched|Acc]);
patch_make_funs([I|Is], FunIndex, Acc) ->
  patch_make_funs(Is, FunIndex, [I|Acc]);
patch_make_funs([], FunIndex, Acc) ->
  {lists:reverse(Acc),FunIndex}.

%%-----------------------------------------------------------------------

find_mfa([{label,_}|Code]) ->
  find_mfa(Code);
find_mfa([{func_info,{atom,M},{atom,F},A}|_]) 
  when is_atom(M), is_atom(F), is_integer(A), 0 =< A, A =< 255 ->
  {M, F, A}.

%%-----------------------------------------------------------------------

%% Localize a particular function in a module
get_fun([[L, {func_info,{atom,M},{atom,F},A} | Is] | _], M,F,A) ->
  [L, {func_info,{atom,M},{atom,F},A} | Is];
get_fun([[_L1,_L2, {func_info,{atom,M},{atom,F},A} = MFA| _Is] | _], M,F,A) ->
  ?WARNING_MSG("Consecutive labels found; please re-create the .beam file~n", []),
  [_L1,_L2, MFA | _Is];
get_fun([_|Rest], M,F,A) ->
  get_fun(Rest, M,F,A).    

%%-----------------------------------------------------------------------
%% Takes a list of arguments and returns the constants of them into
%% fresh temporaries.  Return a triple consisting of a list of move
%% instructions, a list of proper icode arguments and the new environment.
%%-----------------------------------------------------------------------

get_constants_in_temps(Args, Env) ->
  get_constants_in_temps(Args, [], [], Env).

get_constants_in_temps([Arg|Args], Instrs, Temps, Env) ->
  case get_constant_in_temp(Arg, Env) of
    {none,ArgVar,Env1} ->
      get_constants_in_temps(Args, Instrs, [ArgVar|Temps], Env1);
    {Instr,Temp,Env1} ->
      get_constants_in_temps(Args, [Instr|Instrs], [Temp|Temps], Env1)
  end;
get_constants_in_temps([], Instrs, Temps, Env) ->
  {lists:reverse(Instrs), lists:reverse(Temps), Env}.

%%  If Arg is a constant then put Arg in a fresh temp!
get_constant_in_temp(Arg, Env) ->
  case is_var(Arg) of
    true ->  % Convert into Icode variable format before return
      {none, mk_var(Arg), Env};
    false -> % Create a new temp and move the constant into it
      Temp = mk_var(new),
      Const = trans_const(Arg),
      {hipe_icode:mk_move(Temp, Const), Temp, Env}
  end.

%%-----------------------------------------------------------------------
%% Makes a list of function arguments.
%%-----------------------------------------------------------------------

extract_fun_args(A) ->
  lists:reverse(extract_fun_args1(A)).

extract_fun_args1(0) ->
  [];
extract_fun_args1(1) ->
  [mk_var({r,0})];
extract_fun_args1(N) ->
  [mk_var({x,N-1}) | extract_fun_args1(N-1)].

%%-----------------------------------------------------------------------
%% Auxiliary translation for arguments of select_val & select_tuple_arity
%%-----------------------------------------------------------------------

trans_select_stuff(Reg, CaseList) ->
  SwVar = case is_var(Reg) of
	    true ->
	      mk_var(Reg);
	    false ->
	      trans_const(Reg)
	  end,
  CasePairs = trans_case_list(CaseList),
  {SwVar,CasePairs}.

trans_case_list([Symbol,{f,Lbl}|L]) ->
  [{trans_const(Symbol),map_label(Lbl)} | trans_case_list(L)];
trans_case_list([]) ->
  [].

%%-----------------------------------------------------------------------
%% Makes an Icode argument from a BEAM argument.
%%-----------------------------------------------------------------------

trans_arg(Arg) ->
  case is_var(Arg) of
    true ->
      mk_var(Arg);
    false ->
      trans_const(Arg)
  end.

%%-----------------------------------------------------------------------
%% Makes an Icode constant from a BEAM constant.
%%-----------------------------------------------------------------------

trans_const(Const) ->
  case Const of
    {atom,Atom} when is_atom(Atom) ->
      hipe_icode:mk_const(Atom);
    {integer,N} when is_integer(N) ->
      hipe_icode:mk_const(N);
    {float,Float} when is_float(Float) ->
      hipe_icode:mk_const(Float);
    {string,String} ->
      hipe_icode:mk_const(String);
    {literal,Literal} ->
      hipe_icode:mk_const(Literal);
    nil ->
      hipe_icode:mk_const([]);
    Int when is_integer(Int) ->
      hipe_icode:mk_const(Int)
  end.

%%-----------------------------------------------------------------------
%% Make an icode variable of proper type
%%   (Variables mod 5) =:= 0  are X regs
%%   (Variables mod 5) =:= 1  are Y regs
%%   (Variables mod 5) =:= 2  are FR regs
%%   (Variables mod 5) =:= 3  are new temporaries
%%   (Variables mod 5) =:= 4  are new register temporaries
%% Tell hipe_gensym to update its state for each new thing created!!
%%-----------------------------------------------------------------------

mk_var({r,0}) ->
  hipe_icode:mk_var(0);
mk_var({x,R}) when is_integer(R) ->
  V = 5*R,
  hipe_gensym:update_vrange(icode,V),
  hipe_icode:mk_var(V);
mk_var({y,R}) when is_integer(R) ->
  V = (5*R)+1,
  hipe_gensym:update_vrange(icode,V),
  hipe_icode:mk_var(V);
mk_var({fr,R}) when is_integer(R) ->
  V = (5*R)+2,
  hipe_gensym:update_vrange(icode,V),
  case get(hipe_inline_fp) of
    true ->
      hipe_icode:mk_fvar(V);
    _ ->
      hipe_icode:mk_var(V)
  end;
mk_var(new) ->
  T = hipe_gensym:new_var(icode),
  V = (5*T)+3,
  hipe_gensym:update_vrange(icode,V),
  hipe_icode:mk_var(V);
mk_var(reg) ->
  T = hipe_gensym:new_var(icode),
  V = (5*T)+4,
  hipe_gensym:update_vrange(icode,V),
  hipe_icode:mk_reg(V).

%%-----------------------------------------------------------------------
%% Make an icode label of proper type
%%   (Labels mod 2) =:= 0  are actually occuring in the BEAM code
%%   (Labels mod 2) =:= 1  are new labels generated by the translation
%%-----------------------------------------------------------------------

mk_label(L) when is_integer(L) ->
  LL = 2 * L,
  hipe_gensym:update_lblrange(icode, LL),
  hipe_icode:mk_label(LL);
mk_label(new) ->
  L = hipe_gensym:new_label(icode),
  LL = (2 * L) + 1,
  hipe_gensym:update_lblrange(icode, LL),
  hipe_icode:mk_label(LL).

%% Maps from the BEAM's labelling scheme to our labelling scheme.
%% See mk_label to understand how it works.

map_label(L) ->
  L bsl 1.  % faster and more type-friendly version of 2 * L

%%-----------------------------------------------------------------------
%% Returns the type of the given variables.
%%-----------------------------------------------------------------------

type({x,_}) ->
  var;
type({y,_}) ->
  var;
type({fr,_}) ->
  var;
type({atom,A}) when is_atom(A) ->
  #beam_const{value=A};
type(nil) ->
  #beam_const{value=[]};
type({integer,X}) when is_integer(X) ->
  #beam_const{value=X};
type({float,X}) when is_float(X) ->
  #beam_const{value=X};
type({literal,X}) ->
  #beam_const{value=X}.

%%-----------------------------------------------------------------------
%% Returns true iff the argument is a variable.
%%-----------------------------------------------------------------------

is_var({x,_}) ->
  true;
is_var({y,_}) ->
  true;
is_var({fr,_}) ->
  true;
is_var({atom,A}) when is_atom(A) ->
  false;
is_var(nil) ->
  false;
is_var({integer,N}) when is_integer(N) ->
  false;
is_var({float,F}) when is_float(F) ->
  false;
is_var({literal,_Literal}) ->
  false.

%%-----------------------------------------------------------------------
%% Fixes the code for catches by adding some code.
%%-----------------------------------------------------------------------

fix_catches(Code) ->
  fix_catches(Code, gb_trees:empty()).

%% We need to handle merged catch blocks, that is multiple 'catch' with
%% only one 'catch_end', or multiple 'try' with one 'try_case'. (Catch
%% and try can never be merged.) All occurrences of 'catch' or 'try'
%% with a particular fail-to label are assumed to only occur before the
%% corresponding 'catch_end'/'try_end' in the Beam code.

fix_catches([{'catch',N,Lbl},ContLbl|Code], HandledCatchLbls) ->
  fix_catch('catch',Lbl,ContLbl,Code,HandledCatchLbls,{catch_end,N});
fix_catches([{'try',N,Lbl},ContLbl|Code], HandledCatchLbls) ->
  fix_catch('try',Lbl,ContLbl,Code,HandledCatchLbls,{try_case,N});
fix_catches([Instr|Code], HandledCatchLbls) ->
  [Instr|fix_catches(Code, HandledCatchLbls)];
fix_catches([], _HandledCatchLbls) ->
  [].

fix_catch(Type, Lbl, ContLbl, Code, HandledCatchLbls, Instr) ->
  TLbl = {Type, Lbl},
  case gb_trees:lookup(TLbl, HandledCatchLbls) of
    {value, Catch} when is_integer(Catch) ->
      NewCode = fix_catches(Code, HandledCatchLbls),
      Cont = hipe_icode:label_name(ContLbl),
      [hipe_icode:mk_begin_try(Catch,Cont),ContLbl | NewCode];
    none ->
      OldCatch = map_label(Lbl),
      OldCatchLbl = hipe_icode:mk_label(OldCatch),
      {CodeToCatch,RestOfCode} = split_code(Code,OldCatchLbl,Instr),
      NewCatchLbl = mk_label(new),
      NewCatch = hipe_icode:label_name(NewCatchLbl),
      %% The rest of the code cannot contain catches with the same label.
      RestOfCode1 = fix_catches(RestOfCode, HandledCatchLbls),
      %% The catched code *can* contain more catches with the same label.
      NewHandledCatchLbls = gb_trees:insert(TLbl, NewCatch, HandledCatchLbls),
      CatchedCode = fix_catches(CodeToCatch, NewHandledCatchLbls),
      %% The variables which will get the tag, value, and trace.
      Vars = [mk_var({r,0}), mk_var({x,1}), mk_var({x,2})],
      Cont = hipe_icode:label_name(ContLbl),
      [hipe_icode:mk_begin_try(NewCatch,Cont), ContLbl]
	++ CatchedCode
	++ [mk_label(new), % dummy label before the goto
	    hipe_icode:mk_goto(OldCatch),  % normal execution path
	    NewCatchLbl,  % exception handing enters here
	    hipe_icode:mk_begin_handler(Vars)]
        ++ catch_handler(Type, Vars, OldCatchLbl)
	++ RestOfCode1  % back to normal execution
  end.

catch_handler('try', _Vars, OldCatchLbl) ->
  %% A try just falls through to the old fail-to label which marked the
  %% start of the try_case block. All variables are set up as expected.
  [OldCatchLbl];
catch_handler('catch', [TagVar,ValueVar,TraceVar], OldCatchLbl) ->
  %% This basically implements a catch as a try-expression. We must jump
  %% to the given end label afterwards so we don't pass through both the
  %% begin_handler and the end_try.
  ContLbl = mk_label(new),
  Cont = hipe_icode:label_name(ContLbl),
  ThrowLbl = mk_label(new),
  NoThrowLbl = mk_label(new),
  ExitLbl = mk_label(new),
  ErrorLbl = mk_label(new),
  Dst = mk_var({r,0}),
  [hipe_icode:mk_if('=:=', [TagVar, hipe_icode:mk_const('throw')],
		    hipe_icode:label_name(ThrowLbl),
		    hipe_icode:label_name(NoThrowLbl)),
   ThrowLbl,
   hipe_icode:mk_move(Dst, ValueVar),   
   hipe_icode:mk_goto(Cont),
   NoThrowLbl,
   hipe_icode:mk_if('=:=', [TagVar, hipe_icode:mk_const('exit')],
		    hipe_icode:label_name(ExitLbl),
		    hipe_icode:label_name(ErrorLbl)),
   ExitLbl,
   hipe_icode:mk_primop([Dst],mktuple,[hipe_icode:mk_const('EXIT'),
				       ValueVar]),
   hipe_icode:mk_goto(Cont),
   ErrorLbl,
   %% We use the trace variable to hold the symbolic trace. Its previous
   %% value is just that in p->ftrace, so get_stacktrace() works fine.
   hipe_icode:mk_call([TraceVar],erlang,get_stacktrace,[],remote),
   hipe_icode:mk_primop([ValueVar],mktuple, [ValueVar, TraceVar]),
   hipe_icode:mk_goto(hipe_icode:label_name(ExitLbl)),
   OldCatchLbl,  % normal execution paths must go through end_try
   hipe_icode:mk_end_try(),
   hipe_icode:mk_goto(Cont),
   ContLbl].

%% Note that it is the fail-to label that is the important thing, but
%% for 'catch' we want to make sure that the label is followed by the
%% 'catch_end' instruction - if it is not, we might have a real problem.
%% Checking that a 'try' label is followed by 'try_case' is not as
%% important, but we get that as a bonus.

split_code([First|Code], Label, Instr) ->
  split_code(Code, Label, Instr, First, []).

split_code([Instr|Code], Label, Instr, Prev, As) when Prev =:= Label ->
  split_code_final(Code, As);  % drop both label and instruction
split_code([Other|_Code], Label, Instr, Prev, _As) when Prev =:= Label ->
  ?EXIT({missing_instr_after_label, Label, Instr, [Other, Prev | _As]});
split_code([Other|Code], Label, Instr, Prev, As) ->
  split_code(Code, Label, Instr, Other, [Prev|As]);
split_code([], _Label, _Instr, Prev, As) ->
  split_code_final([], [Prev|As]).

split_code_final(Code, As) ->
  {lists:reverse(As), Code}.

%%-----------------------------------------------------------------------
%% Fixes fallthroughs
%%-----------------------------------------------------------------------

fix_fallthroughs([]) ->
  [];
fix_fallthroughs([I|Is]) ->
  fix_fallthroughs(Is, I, []).

fix_fallthroughs([I1|Is], I0, Acc) ->
  case hipe_icode:is_label(I1) of
    false ->
      fix_fallthroughs(Is, I1, [I0 | Acc]);
    true ->
      case hipe_icode:is_branch(I0) of
	true ->
	  fix_fallthroughs(Is, I1, [I0 | Acc]);
	false ->
	  %% non-branch before label - insert a goto
	  Goto = hipe_icode:mk_goto(hipe_icode:label_name(I1)),
	  fix_fallthroughs(Is, I1, [Goto, I0 | Acc])
      end
  end;
fix_fallthroughs([], I, Acc) ->
  lists:reverse([I | Acc]).

%%-----------------------------------------------------------------------
%% Removes the code between a fail instruction and the closest following
%% label.
%%-----------------------------------------------------------------------

-spec remove_dead_code(icode_instrs()) -> icode_instrs().
remove_dead_code([I|Is]) ->
  case I of
    #icode_fail{} ->
      [I|remove_dead_code(skip_to_label(Is))];
    _ ->
      [I|remove_dead_code(Is)]
  end;
remove_dead_code([]) ->
  [].

%% returns the instructions from the closest label
-spec skip_to_label(icode_instrs()) -> icode_instrs().
skip_to_label([I|Is] = Instrs) ->
  case I of
    #icode_label{} -> Instrs;
    _ -> skip_to_label(Is)
  end;
skip_to_label([]) ->
  [].

%%-----------------------------------------------------------------------
%% This needs to be extended in case new architectures are added.
%%-----------------------------------------------------------------------

resolve_native_endianess(Flags) ->
  case {Flags band 16#10, hipe_rtl_arch:endianess()} of
    {16#10, big} ->
      Flags band 5;
    {16#10, little} ->
      (Flags bor 2) band 7;  
    _ ->
      Flags band 7
  end.

%%-----------------------------------------------------------------------
%% Potentially useful for debugging.
%%-----------------------------------------------------------------------

pp_beam(BeamCode, Options) ->
  case proplists:get_value(pp_beam, Options) of
    true ->
      pp(BeamCode);
    {file,FileName} ->
      {ok,File} = file:open(FileName, [write]),
      pp(File, BeamCode);
    _ -> %% includes "false" case
      ok
  end.

pp(Code) ->
  pp(standard_io, Code).

pp(Stream, []) ->
  case Stream of  %% I am not sure whether this is necessary
    standard_io -> ok;
    _ -> ok = file:close(Stream)
  end;
pp(Stream, [FunCode|FunCodes]) ->
  pp_mfa(Stream, FunCode),
  put_nl(Stream),
  pp(Stream, FunCodes).

pp_mfa(Stream, FunCode) ->
  lists:foreach(fun(Instr) -> print_instr(Stream, Instr) end, FunCode).

print_instr(Stream, {label,Lbl}) ->
  io:format(Stream, "  label ~p:\n", [Lbl]);
print_instr(Stream, Op) ->
  io:format(Stream, "    ~p\n", [Op]).

put_nl(Stream) ->
  io:format(Stream, "\n", []).

%%-----------------------------------------------------------------------
%% Handling of environments -- used to process local tail calls.
%%-----------------------------------------------------------------------

%% Construct an environment
env__mk_env(M, F, A, Entry) ->
  #environment{mfa={M,F,A}, entry=Entry}.

%% Get current MFA
env__get_mfa(#environment{mfa=MFA}) -> MFA.

%% Get entry point of the current function
env__get_entry(#environment{entry=EP}) -> EP.

%%-----------------------------------------------------------------------