%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2001-2011. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%=======================================================================
%% File : hipe_beam_to_icode.erl
%% Author : Kostis Sagonas
%% Description : Translates symbolic BEAM code to Icode
%%=======================================================================
%% @doc
%% This file translates symbolic BEAM code to Icode which is HiPE's
%% intermediate code representation. Either the code of an entire
%% module, or the code of a specified function can be translated.
%% @end
%%=======================================================================
-module(hipe_beam_to_icode).
-export([module/2]).
%%-----------------------------------------------------------------------
%% Uncomment the following lines to turn on debugging for this module
%% or comment them to it turn off. Debug-level 6 inserts a print in
%% each compiled function.
%%
%%-ifndef(DEBUG).
%%-define(DEBUG,6).
%%-endif.
-include("../main/hipe.hrl").
-include("hipe_icode.hrl").
-include("hipe_icode_primops.hrl").
-include("../../compiler/src/beam_disasm.hrl").
-define(no_debug_msg(Str,Xs),ok).
%%-define(no_debug_msg(Str,Xs),msg(Str,Xs)).
-define(mk_debugcode(MFA, Env, Code),
case MFA of
{io,_,_} ->
%% We do not want to loop infinitely if we are compiling
%% the module io.
{Code,Env};
{M,F,A} ->
MFAVar = mk_var(new),
StringVar = mk_var(new),
Ignore = mk_var(new),
MkMfa = hipe_icode:mk_move(MFAVar,hipe_icode:mk_const([MFA])),
MkString = hipe_icode:mk_move(StringVar,
hipe_icode:mk_const(
atom_to_list(M) ++ ":" ++ atom_to_list(F) ++"/"++ integer_to_list(A) ++
" Native enter fun ~w\n")),
Call =
hipe_icode:mk_call([Ignore],io,format,[StringVar,MFAVar],remote),
{[MkMfa,MkString,Call | Code], Env}
end).
%%-----------------------------------------------------------------------
%% Exported types
%%-----------------------------------------------------------------------
-type hipe_beam_to_icode_ret() :: [{mfa(),#icode{}}].
%%-----------------------------------------------------------------------
%% Internal data structures
%%-----------------------------------------------------------------------
-record(beam_const, {value :: simple_const()}). % defined in hipe_icode.hrl
-record(closure_info, {mfa :: mfa(), arity :: arity(), fv_arity :: arity()}).
-record(environment, {mfa :: mfa(), entry :: non_neg_integer()}).
%%-----------------------------------------------------------------------
%% @doc
%% Translates the code of a whole module into Icode.
%% Returns a tuple whose first argument is a list of {{M,F,A}, ICode}
%% pairs, and its second argument is the list of HiPE compiler options.
%% @end
%%-----------------------------------------------------------------------
-spec module([#function{}], comp_options()) -> hipe_beam_to_icode_ret().
module(BeamFuns, Options) ->
BeamCode0 = [beam_disasm:function__code(F) || F <- BeamFuns],
{ModCode, ClosureInfo} = preprocess_code(BeamCode0),
pp_beam(ModCode, Options),
[trans_beam_function_chunk(FunCode, ClosureInfo) || FunCode <- ModCode].
trans_beam_function_chunk(FunBeamCode, ClosureInfo) ->
{M,F,A} = MFA = find_mfa(FunBeamCode),
Icode = trans_mfa_code(M,F,A, FunBeamCode, ClosureInfo),
{MFA,Icode}.
%%-----------------------------------------------------------------------
%% The main translation function.
%%-----------------------------------------------------------------------
trans_mfa_code(M,F,A, FunBeamCode, ClosureInfo) ->
?no_debug_msg("disassembling: {~p,~p,~p} ...", [M,F,A]),
hipe_gensym:init(icode),
%% Extract the function arguments
FunArgs = extract_fun_args(A),
%% Record the function arguments
FunLbl = mk_label(new),
Env1 = env__mk_env(M, F, A, hipe_icode:label_name(FunLbl)),
Code1 = lists:flatten(trans_fun(FunBeamCode,Env1)),
Code2 = fix_fallthroughs(fix_catches(Code1)),
MFA = {M,F,A},
%% Debug code
?IF_DEBUG_LEVEL(5,
{Code3,_Env3} = ?mk_debugcode(MFA, Env2, Code2),
{Code3,_Env3} = {Code2,Env1}),
%% For stack optimization
Leafness = leafness(Code3),
IsLeaf = is_leaf_code(Leafness),
Code4 =
[FunLbl |
case needs_redtest(Leafness) of
false -> Code3;
true -> [mk_redtest()|Code3]
end],
IsClosure = get_closure_info(MFA, ClosureInfo) =/= not_a_closure,
Code5 = hipe_icode:mk_icode(MFA, FunArgs, IsClosure, IsLeaf,
remove_dead_code(Code4),
hipe_gensym:var_range(icode),
hipe_gensym:label_range(icode)),
Icode = %% If this function is the code for a closure ...
case get_closure_info(MFA, ClosureInfo) of
not_a_closure -> Code5;
CI -> %% ... then patch the code to
%% get the free_vars from the closure
patch_closure_entry(Code5, CI)
end,
?no_debug_msg("ok~n", []),
Icode.
mk_redtest() -> hipe_icode:mk_primop([], redtest, []).
leafness(Is) -> % -> true, selfrec, or false
leafness(Is, true).
leafness([], Leafness) ->
Leafness;
leafness([I|Is], Leafness) ->
case I of
#icode_comment{} ->
%% BEAM self-tailcalls become gotos, but they leave
%% a trace behind in comments. Check those to ensure
%% that the computed leafness is correct. Needed to
%% prevent redtest elimination in those cases.
NewLeafness =
case hipe_icode:comment_text(I) of
'tail_recursive' -> selfrec; % call_last to selfrec
'self_tail_recursive' -> selfrec; % call_only to selfrec
_ -> Leafness
end,
leafness(Is, NewLeafness);
#icode_call{} ->
case hipe_icode:call_type(I) of
'primop' ->
case hipe_icode:call_fun(I) of
call_fun -> false; % Calls closure
enter_fun -> false; % Calls closure
#apply_N{} -> false;
_ -> leafness(Is, Leafness) % Other primop calls are ok
end;
T when T =:= 'local' orelse T =:= 'remote' ->
{M,F,A} = hipe_icode:call_fun(I),
case erlang:is_builtin(M, F, A) of
true -> leafness(Is, Leafness);
false -> false
end
end;
#icode_enter{} ->
case hipe_icode:enter_type(I) of
'primop' ->
case hipe_icode:enter_fun(I) of
enter_fun -> false;
#apply_N{} -> false;
_ ->
%% All primops should be ok except those excluded above,
%% except we don't actually tailcall them...
io:format("leafness: unexpected enter to primop ~w\n", [I]),
true
end;
T when T =:= 'local' orelse T =:= 'remote' ->
{M,F,A} = hipe_icode:enter_fun(I),
case erlang:is_builtin(M, F, A) of
true -> leafness(Is, Leafness);
_ -> false
end
end;
_ -> leafness(Is, Leafness)
end.
%% XXX: this old stuff is passed around but essentially unused
is_leaf_code(Leafness) ->
case Leafness of
true -> true;
selfrec -> true;
false -> false
end.
needs_redtest(Leafness) ->
case Leafness of
true -> false;
selfrec -> true;
false -> true
end.
%%-----------------------------------------------------------------------
%% The main translation switch.
%%-----------------------------------------------------------------------
%%--- label & func_info combo ---
trans_fun([{label,_}=F,{func_info,_,_,_}=FI|Instructions], Env) ->
%% Handle old code without a line instruction.
trans_fun([F,{line,[]},FI|Instructions], Env);
trans_fun([{label,B},{label,_},
{func_info,M,F,A},{label,L}|Instructions], Env) ->
trans_fun([{label,B},{func_info,M,F,A},{label,L}|Instructions], Env);
trans_fun([{label,B},
{line,_},
{func_info,{atom,_M},{atom,_F},_A},
{label,L}|Instructions], Env) ->
%% Emit code to handle function_clause errors. The BEAM test instructions
%% branch to this label if they fail during function clause selection.
%% Obviously, we must goto past this error point on normal entry.
Begin = mk_label(B),
V = mk_var(new),
EntryPt = mk_label(L),
Goto = hipe_icode:mk_goto(hipe_icode:label_name(EntryPt)),
Mov = hipe_icode:mk_move(V, hipe_icode:mk_const(function_clause)),
Fail = hipe_icode:mk_fail([V],error),
[Goto, Begin, Mov, Fail, EntryPt | trans_fun(Instructions, Env)];
%%--- label ---
trans_fun([{label,L1},{label,L2}|Instructions], Env) ->
%% Old BEAM code can have two consecutive labels.
Lab1 = mk_label(L1),
Lab2 = mk_label(L2),
Goto = hipe_icode:mk_goto(map_label(L2)),
[Lab1, Goto, Lab2 | trans_fun(Instructions, Env)];
trans_fun([{label,L}|Instructions], Env) ->
[mk_label(L) | trans_fun(Instructions, Env)];
%%--- int_code_end --- SHOULD NEVER OCCUR HERE
%%--- call ---
trans_fun([{call,_N,{_M,_F,A}=MFA}|Instructions], Env) ->
Args = extract_fun_args(A),
Dst = [mk_var({r,0})],
I = trans_call(MFA, Dst, Args, local),
[I | trans_fun(Instructions, Env)];
%%--- call_last ---
%% Differs from call_only in that it deallocates the environment
trans_fun([{call_last,_N,{_M,_F,A}=MFA,_}|Instructions], Env) ->
%% IS IT OK TO IGNORE LAST ARG ??
?no_debug_msg(" translating call_last: ~p ...~n", [Env]),
case env__get_mfa(Env) of
MFA ->
%% Does this case really happen, or is it covered by call_only?
Entry = env__get_entry(Env),
[hipe_icode:mk_comment('tail_recursive'), % needed by leafness/2
hipe_icode:mk_goto(Entry) | trans_fun(Instructions,Env)];
_ ->
Args = extract_fun_args(A),
I = trans_enter(MFA, Args, local),
[I | trans_fun(Instructions, Env)]
end;
%%--- call_only ---
%% Used when the body contains only one call in which case
%% an environment is not needed/created.
trans_fun([{call_only,_N,{_M,_F,A}=MFA}|Instructions], Env) ->
?no_debug_msg(" translating call_only: ~p ...~n", [Env]),
case env__get_mfa(Env) of
MFA ->
Entry = env__get_entry(Env),
[hipe_icode:mk_comment('self_tail_recursive'), % needed by leafness/2
hipe_icode:mk_goto(Entry) | trans_fun(Instructions,Env)];
_ ->
Args = extract_fun_args(A),
I = trans_enter(MFA,Args,local),
[I | trans_fun(Instructions,Env)]
end;
%%--- call_ext ---
trans_fun([{call_ext,_N,{extfunc,M,F,A}}|Instructions], Env) ->
Args = extract_fun_args(A),
Dst = [mk_var({r,0})],
I = trans_call({M,F,A},Dst,Args,remote),
[hipe_icode:mk_comment('call_ext'),I | trans_fun(Instructions,Env)];
%%--- call_ext_last ---
trans_fun([{call_ext_last,_N,{extfunc,M,F,A},_}|Instructions], Env) ->
%% IS IT OK TO IGNORE LAST ARG ??
Args = extract_fun_args(A),
%% Dst = [mk_var({r,0})],
I = trans_enter({M,F,A},Args,remote),
[hipe_icode:mk_comment('call_ext_last'), I | trans_fun(Instructions,Env)];
%%--- bif0 ---
trans_fun([{bif,BifName,nofail,[],Reg}|Instructions], Env) ->
BifInst = trans_bif0(BifName,Reg),
[hipe_icode:mk_comment({bif0,BifName}),BifInst|trans_fun(Instructions,Env)];
%%--- bif1 ---
trans_fun([{bif,BifName,{f,Lbl},[_] = Args,Reg}|Instructions], Env) ->
{BifInsts,Env1} = trans_bif(1,BifName,Lbl,Args,Reg,Env),
[hipe_icode:mk_comment({bif1,BifName})|BifInsts] ++ trans_fun(Instructions,Env1);
%%--- bif2 ---
trans_fun([{bif,BifName,{f,Lbl},[_,_] = Args,Reg}|Instructions], Env) ->
{BifInsts,Env1} = trans_bif(2,BifName,Lbl,Args,Reg,Env),
[hipe_icode:mk_comment({bif2,BifName})|BifInsts] ++ trans_fun(Instructions,Env1);
%%--- bif3 ---
trans_fun([{bif,BifName,{f,Lbl},[_,_,_] = Args,Reg}|Instructions], Env) ->
{BifInsts,Env1} = trans_bif(3,BifName,Lbl,Args,Reg,Env),
[hipe_icode:mk_comment({bif3,BifName})|BifInsts] ++ trans_fun(Instructions,Env1);
%%--- allocate
trans_fun([{allocate,StackSlots,_}|Instructions], Env) ->
trans_allocate(StackSlots) ++ trans_fun(Instructions,Env);
%%--- allocate_heap
trans_fun([{allocate_heap,StackSlots,_,_}|Instructions], Env) ->
trans_allocate(StackSlots) ++ trans_fun(Instructions,Env);
%%--- allocate_zero
trans_fun([{allocate_zero,StackSlots,_}|Instructions], Env) ->
trans_allocate(StackSlots) ++ trans_fun(Instructions,Env);
%%--- allocate_heap_zero
trans_fun([{allocate_heap_zero,StackSlots,_,_}|Instructions], Env) ->
trans_allocate(StackSlots) ++ trans_fun(Instructions,Env);
%%--- test_heap --- IGNORED ON PURPOSE
trans_fun([{test_heap,_,_}|Instructions], Env) ->
trans_fun(Instructions,Env);
%%--- init --- IGNORED - CORRECT??
trans_fun([{init,_}|Instructions], Env) ->
trans_fun(Instructions,Env);
%%--- deallocate --- IGNORED ON PURPOSE
trans_fun([{deallocate,_}|Instructions], Env) ->
trans_fun(Instructions,Env);
%%--- return ---
trans_fun([return|Instructions], Env) ->
[hipe_icode:mk_return([mk_var({r,0})]) | trans_fun(Instructions,Env)];
%%--- send ---
trans_fun([send|Instructions], Env) ->
I = hipe_icode:mk_call([mk_var({r,0})], erlang, send,
[mk_var({x,0}),mk_var({x,1})], remote),
[I | trans_fun(Instructions,Env)];
%%--- remove_message ---
trans_fun([remove_message|Instructions], Env) ->
[hipe_icode:mk_primop([],select_msg,[]) | trans_fun(Instructions,Env)];
%%--- timeout ---
trans_fun([timeout|Instructions], Env) ->
[hipe_icode:mk_primop([],clear_timeout,[]) | trans_fun(Instructions,Env)];
%%--- loop_rec ---
trans_fun([{loop_rec,{_,Lbl},Reg}|Instructions], Env) ->
{Movs,[Temp],Env1} = get_constants_in_temps([Reg],Env),
GotitLbl = mk_label(new),
ChkGetMsg = hipe_icode:mk_primop([Temp],check_get_msg,[],
hipe_icode:label_name(GotitLbl),
map_label(Lbl)),
Movs ++ [ChkGetMsg, GotitLbl | trans_fun(Instructions,Env1)];
%%--- loop_rec_end ---
trans_fun([{loop_rec_end,{_,Lbl}}|Instructions], Env) ->
Loop = hipe_icode:mk_goto(map_label(Lbl)),
[hipe_icode:mk_primop([],next_msg,[]), Loop | trans_fun(Instructions,Env)];
%%--- wait ---
trans_fun([{wait,{_,Lbl}}|Instructions], Env) ->
Susp = hipe_icode:mk_primop([],suspend_msg,[]),
Loop = hipe_icode:mk_goto(map_label(Lbl)),
[Susp, Loop | trans_fun(Instructions,Env)];
%%--- wait_timeout ---
trans_fun([{wait_timeout,{_,Lbl},Reg}|Instructions], Env) ->
{Movs,[_]=Temps,Env1} = get_constants_in_temps([Reg],Env),
SetTmout = hipe_icode:mk_primop([],set_timeout,Temps),
DoneLbl = mk_label(new),
SuspTmout = hipe_icode:mk_if(suspend_msg_timeout,[],
map_label(Lbl),hipe_icode:label_name(DoneLbl)),
Movs ++ [SetTmout, SuspTmout, DoneLbl | trans_fun(Instructions,Env1)];
%%--- recv_mark/1 & recv_set/1 --- XXX: Handle better??
trans_fun([{recv_mark,{f,_}}|Instructions], Env) ->
trans_fun(Instructions,Env);
trans_fun([{recv_set,{f,_}}|Instructions], Env) ->
trans_fun(Instructions,Env);
%%--------------------------------------------------------------------
%%--- Translation of arithmetics {bif,ArithOp, ...} ---
%%--------------------------------------------------------------------
trans_fun([{arithbif,ArithOp,{f,L},SrcRs,DstR}|Instructions], Env) ->
{ICode,NewEnv} = trans_arith(ArithOp,SrcRs,DstR,L,Env),
ICode ++ trans_fun(Instructions,NewEnv);
%%--------------------------------------------------------------------
%%--- Translation of arithmetic tests {test,is_ARITHTEST, ...} ---
%%--------------------------------------------------------------------
%%--- is_lt ---
trans_fun([{test,is_lt,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
{ICode,Env1} = trans_test_guard('<',Lbl,Arg1,Arg2,Env),
ICode ++ trans_fun(Instructions,Env1);
%%--- is_ge ---
trans_fun([{test,is_ge,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
{ICode,Env1} = trans_test_guard('>=',Lbl,Arg1,Arg2,Env),
ICode ++ trans_fun(Instructions,Env1);
%%--- is_eq ---
trans_fun([{test,is_eq,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
{ICode,Env1} = trans_is_eq(Lbl,Arg1,Arg2,Env),
ICode ++ trans_fun(Instructions,Env1);
%%--- is_ne ---
trans_fun([{test,is_ne,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
{ICode,Env1} = trans_is_ne(Lbl,Arg1,Arg2,Env),
ICode ++ trans_fun(Instructions,Env1);
%%--- is_eq_exact ---
trans_fun([{test,is_eq_exact,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
{ICode,Env1} = trans_is_eq_exact(Lbl,Arg1,Arg2,Env),
ICode ++ trans_fun(Instructions,Env1);
%%--- is_ne_exact ---
trans_fun([{test,is_ne_exact,{f,Lbl},[Arg1,Arg2]}|Instructions], Env) ->
{ICode,Env1} = trans_is_ne_exact(Lbl,Arg1,Arg2,Env),
ICode ++ trans_fun(Instructions,Env1);
%%--------------------------------------------------------------------
%%--- Translation of type tests {test,is_TYPE, ...} ---
%%--------------------------------------------------------------------
%%--- is_integer ---
trans_fun([{test,is_integer,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(integer,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_float ---
trans_fun([{test,is_float,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(float,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_number ---
trans_fun([{test,is_number,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(number,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_atom ---
trans_fun([{test,is_atom,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(atom,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_pid ---
trans_fun([{test,is_pid,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(pid,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_ref ---
trans_fun([{test,is_reference,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(reference,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_port ---
trans_fun([{test,is_port,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(port,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_nil ---
trans_fun([{test,is_nil,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(nil,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_binary ---
trans_fun([{test,is_binary,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(binary,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_constant ---
trans_fun([{test,is_constant,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(constant,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_list ---
trans_fun([{test,is_list,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(list,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_nonempty_list ---
trans_fun([{test,is_nonempty_list,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(cons,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- is_tuple ---
trans_fun([{test,is_tuple,{f,_Lbl}=FLbl,[Xreg]},
{test,test_arity,FLbl,[Xreg,_]=Args}|Instructions], Env) ->
trans_fun([{test,test_arity,FLbl,Args}|Instructions],Env);
trans_fun([{test,is_tuple,{_,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(tuple,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- test_arity ---
trans_fun([{test,test_arity,{f,Lbl},[Reg,N]}|Instructions], Env) ->
True = mk_label(new),
I = hipe_icode:mk_type([trans_arg(Reg)],{tuple,N},
hipe_icode:label_name(True),map_label(Lbl)),
[I,True | trans_fun(Instructions,Env)];
%%--------------------------------------------------------------------
%%--- select_val ---
trans_fun([{select_val,Reg,{f,Lbl},{list,Cases}}|Instructions], Env) ->
{SwVar,CasePairs} = trans_select_stuff(Reg,Cases),
Len = length(CasePairs),
I = hipe_icode:mk_switch_val(SwVar,map_label(Lbl),Len,CasePairs),
?no_debug_msg("switch_val instr is ~p~n",[I]),
[I | trans_fun(Instructions,Env)];
%%--- select_tuple_arity ---
trans_fun([{select_tuple_arity,Reg,{f,Lbl},{list,Cases}}|Instructions],Env) ->
{SwVar,CasePairs} = trans_select_stuff(Reg,Cases),
Len = length(CasePairs),
I = hipe_icode:mk_switch_tuple_arity(SwVar,map_label(Lbl),Len,CasePairs),
?no_debug_msg("switch_tuple_arity instr is ~p~n",[I]),
[I | trans_fun(Instructions,Env)];
%%--- jump ---
trans_fun([{jump,{_,L}}|Instructions], Env) ->
Label = mk_label(L),
I = hipe_icode:mk_goto(hipe_icode:label_name(Label)),
[I | trans_fun(Instructions,Env)];
%%--- move ---
trans_fun([{move,Src,Dst}|Instructions], Env) ->
Dst1 = mk_var(Dst),
Src1 = trans_arg(Src),
[hipe_icode:mk_move(Dst1,Src1) | trans_fun(Instructions,Env)];
%%--- catch --- ITS PROCESSING IS POSTPONED
trans_fun([{'catch',N,{_,EndLabel}}|Instructions], Env) ->
NewContLbl = mk_label(new),
[{'catch',N,EndLabel},NewContLbl | trans_fun(Instructions,Env)];
%%--- catch_end --- ITS PROCESSING IS POSTPONED
trans_fun([{catch_end,_N}=I|Instructions], Env) ->
[I | trans_fun(Instructions,Env)];
%%--- try --- ITS PROCESSING IS POSTPONED
trans_fun([{'try',N,{_,EndLabel}}|Instructions], Env) ->
NewContLbl = mk_label(new),
[{'try',N,EndLabel},NewContLbl | trans_fun(Instructions,Env)];
%%--- try_end ---
trans_fun([{try_end,_N}|Instructions], Env) ->
[hipe_icode:mk_end_try() | trans_fun(Instructions,Env)];
%%--- try_case --- ITS PROCESSING IS POSTPONED
trans_fun([{try_case,_N}=I|Instructions], Env) ->
[I | trans_fun(Instructions,Env)];
%%--- try_case_end ---
trans_fun([{try_case_end,Arg}|Instructions], Env) ->
BadArg = trans_arg(Arg),
ErrVar = mk_var(new),
Vs = [mk_var(new)],
Atom = hipe_icode:mk_move(ErrVar,hipe_icode:mk_const(try_clause)),
Tuple = hipe_icode:mk_primop(Vs,mktuple,[ErrVar,BadArg]),
Fail = hipe_icode:mk_fail(Vs,error),
[Atom,Tuple,Fail | trans_fun(Instructions,Env)];
%%--- raise ---
trans_fun([{raise,{f,0},[Reg1,Reg2],{x,0}}|Instructions], Env) ->
V1 = trans_arg(Reg1),
V2 = trans_arg(Reg2),
Fail = hipe_icode:mk_fail([V1,V2],rethrow),
[Fail | trans_fun(Instructions,Env)];
%%--- get_list ---
trans_fun([{get_list,List,Head,Tail}|Instructions], Env) ->
TransList = [trans_arg(List)],
I1 = hipe_icode:mk_primop([mk_var(Head)],unsafe_hd,TransList),
I2 = hipe_icode:mk_primop([mk_var(Tail)],unsafe_tl,TransList),
%% Handle the cases where the dest overwrites the src!!
if
Head =/= List ->
[I1, I2 | trans_fun(Instructions,Env)];
Tail =/= List ->
[I2, I1 | trans_fun(Instructions,Env)];
true ->
%% XXX: We should take care of this case!!!!!
?error_msg("hd and tl regs identical in get_list~n",[]),
erlang:error(not_handled)
end;
%%--- get_tuple_element ---
trans_fun([{get_tuple_element,Xreg,Index,Dst}|Instructions], Env) ->
I = hipe_icode:mk_primop([mk_var(Dst)],
#unsafe_element{index=Index+1},
[trans_arg(Xreg)]),
[I | trans_fun(Instructions,Env)];
%%--- set_tuple_element ---
trans_fun([{set_tuple_element,Elem,Tuple,Index}|Instructions], Env) ->
Elem1 = trans_arg(Elem),
I = hipe_icode:mk_primop([mk_var(Tuple)],
#unsafe_update_element{index=Index+1},
[mk_var(Tuple),Elem1]),
[I | trans_fun(Instructions,Env)];
%%--- put_string ---
trans_fun([{put_string,_Len,String,Dst}|Instructions], Env) ->
Mov = hipe_icode:mk_move(mk_var(Dst),trans_const(String)),
[Mov | trans_fun(Instructions,Env)];
%%--- put_list ---
trans_fun([{put_list,Car,Cdr,Dest}|Instructions], Env) ->
{M1,V1,Env2} = mk_move_and_var(Car,Env),
{M2,V2,Env3} = mk_move_and_var(Cdr,Env2),
D = mk_var(Dest),
M1 ++ M2 ++ [hipe_icode:mk_primop([D],cons,[V1,V2])
| trans_fun(Instructions,Env3)];
%%--- put_tuple ---
trans_fun([{put_tuple,_Size,Reg}|Instructions], Env) ->
{Moves,Instructions2,Vars,Env2} = trans_puts(Instructions,Env),
Dest = [mk_var(Reg)],
Src = lists:reverse(Vars),
Primop = hipe_icode:mk_primop(Dest,mktuple,Src),
Moves ++ [Primop | trans_fun(Instructions2,Env2)];
%%--- put --- SHOULD NOT REALLY EXIST HERE; put INSTRUCTIONS ARE HANDLED ABOVE.
%%--- badmatch ---
trans_fun([{badmatch,Arg}|Instructions], Env) ->
BadVar = trans_arg(Arg),
ErrVar = mk_var(new),
Vs = [mk_var(new)],
Atom = hipe_icode:mk_move(ErrVar,hipe_icode:mk_const(badmatch)),
Tuple = hipe_icode:mk_primop(Vs,mktuple,[ErrVar,BadVar]),
Fail = hipe_icode:mk_fail(Vs,error),
[Atom,Tuple,Fail | trans_fun(Instructions,Env)];
%%--- if_end ---
trans_fun([if_end|Instructions], Env) ->
V = mk_var(new),
Mov = hipe_icode:mk_move(V,hipe_icode:mk_const(if_clause)),
Fail = hipe_icode:mk_fail([V],error),
[Mov,Fail | trans_fun(Instructions, Env)];
%%--- case_end ---
trans_fun([{case_end,Arg}|Instructions], Env) ->
BadArg = trans_arg(Arg),
ErrVar = mk_var(new),
Vs = [mk_var(new)],
Atom = hipe_icode:mk_move(ErrVar,hipe_icode:mk_const(case_clause)),
Tuple = hipe_icode:mk_primop(Vs,mktuple,[ErrVar,BadArg]),
Fail = hipe_icode:mk_fail(Vs,error),
[Atom,Tuple,Fail | trans_fun(Instructions,Env)];
%%--- enter_fun ---
trans_fun([{call_fun,N},{deallocate,_},return|Instructions], Env) ->
Args = extract_fun_args(N+1), %% +1 is for the fun itself
[hipe_icode:mk_comment('enter_fun'),
hipe_icode:mk_enter_primop(enter_fun,Args) | trans_fun(Instructions,Env)];
%%--- call_fun ---
trans_fun([{call_fun,N}|Instructions], Env) ->
Args = extract_fun_args(N+1), %% +1 is for the fun itself
Dst = [mk_var({r,0})],
[hipe_icode:mk_comment('call_fun'),
hipe_icode:mk_primop(Dst,call_fun,Args) | trans_fun(Instructions,Env)];
%%--- patched_make_fun --- make_fun/make_fun2 after fixes
trans_fun([{patched_make_fun,MFA,Magic,FreeVarNum,Index}|Instructions], Env) ->
Args = extract_fun_args(FreeVarNum),
Dst = [mk_var({r,0})],
Fun = hipe_icode:mk_primop(Dst,
#mkfun{mfa=MFA,magic_num=Magic,index=Index},
Args),
?no_debug_msg("mkfun translates to: ~p~n",[Fun]),
[Fun | trans_fun(Instructions,Env)];
%%--- is_function ---
trans_fun([{test,is_function,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(function,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--- call_ext_only ---
trans_fun([{call_ext_only,_N,{extfunc,M,F,A}}|Instructions], Env) ->
Args = extract_fun_args(A),
I = trans_enter({M,F,A}, Args, remote),
[hipe_icode:mk_comment('call_ext_only'), I | trans_fun(Instructions,Env)];
%%--------------------------------------------------------------------
%%--- Translation of binary instructions ---
%%--------------------------------------------------------------------
%% This code uses a somewhat unorthodox translation:
%% Since we do not want non-erlang values as arguments to Icode
%% instructions some compile time constants are coded into the
%% name of the function (or rather the primop).
%% TODO: Make sure all cases of argument types are covered.
%%--------------------------------------------------------------------
trans_fun([{test,bs_start_match2,{f,Lbl},[X,_Live,Max,Ms]}|Instructions], Env) ->
Bin = trans_arg(X),
MsVar = mk_var(Ms),
trans_op_call({hipe_bs_primop, {bs_start_match, Max}}, Lbl, [Bin],
[MsVar], Env, Instructions);
trans_fun([{test,bs_get_float2,{f,Lbl},[Ms,_Live,Size,Unit,{field_flags,Flags0},X]}|
Instructions], Env) ->
Dst = mk_var(X),
MsVar = mk_var(Ms),
Flags = resolve_native_endianess(Flags0),
{Name, Args} =
case Size of
{integer, NoBits} when is_integer(NoBits), NoBits >= 0 ->
{{bs_get_float,NoBits*Unit,Flags}, [MsVar]};
{integer, NoBits} when is_integer(NoBits), NoBits < 0 ->
?EXIT({bad_bs_size_constant,Size});
BitReg ->
Bits = mk_var(BitReg),
{{bs_get_float,Unit,Flags}, [MsVar,Bits]}
end,
trans_op_call({hipe_bs_primop,Name}, Lbl, Args, [Dst,MsVar], Env, Instructions);
trans_fun([{test,bs_get_integer2,{f,Lbl},[Ms,_Live,Size,Unit,{field_flags,Flags0},X]}|
Instructions], Env) ->
Dst = mk_var(X),
MsVar = mk_var(Ms),
Flags = resolve_native_endianess(Flags0),
{Name, Args} =
case Size of
{integer,NoBits} when is_integer(NoBits), NoBits >= 0 ->
{{bs_get_integer,NoBits*Unit,Flags}, [MsVar]};
{integer,NoBits} when is_integer(NoBits), NoBits < 0 ->
?EXIT({bad_bs_size_constant,Size});
BitReg ->
Bits = mk_var(BitReg),
{{bs_get_integer,Unit,Flags}, [MsVar,Bits]}
end,
trans_op_call({hipe_bs_primop,Name}, Lbl, Args, [Dst,MsVar], Env, Instructions);
trans_fun([{test,bs_get_binary2,{f,Lbl},[Ms,_Live,Size,Unit,{field_flags,Flags},X]}|
Instructions], Env) ->
MsVar = mk_var(Ms),
{Name, Args, Dsts} =
case Size of
{atom, all} -> %% put all bits
if Ms =:= X ->
{{bs_get_binary_all,Unit,Flags},[MsVar],[mk_var(X)]};
true ->
{{bs_get_binary_all_2,Unit,Flags},[MsVar],[mk_var(X),MsVar]}
end;
{integer, NoBits} when is_integer(NoBits), NoBits >= 0 ->
{{bs_get_binary,NoBits*Unit,Flags}, [MsVar], [mk_var(X),MsVar]};%% Create a N*Unit bits subbinary
{integer, NoBits} when is_integer(NoBits), NoBits < 0 ->
?EXIT({bad_bs_size_constant,Size});
BitReg -> % Use a number of bits only known at runtime.
Bits = mk_var(BitReg),
{{bs_get_binary,Unit,Flags}, [MsVar,Bits], [mk_var(X),MsVar]}
end,
trans_op_call({hipe_bs_primop,Name}, Lbl, Args, Dsts, Env, Instructions);
trans_fun([{test,bs_skip_bits2,{f,Lbl},[Ms,Size,NumBits,{field_flags,Flags}]}|
Instructions], Env) ->
%% the current match buffer
MsVar = mk_var(Ms),
{Name, Args} =
case Size of
{atom, all} -> %% Skip all bits
{{bs_skip_bits_all,NumBits,Flags},[MsVar]};
{integer, BitSize} when is_integer(BitSize), BitSize >= 0-> %% Skip N bits
{{bs_skip_bits,BitSize*NumBits}, [MsVar]};
{integer, BitSize} when is_integer(BitSize), BitSize < 0 ->
?EXIT({bad_bs_size_constant,Size});
X -> % Skip a number of bits only known at runtime.
Src = mk_var(X),
{{bs_skip_bits,NumBits},[MsVar,Src]}
end,
trans_op_call({hipe_bs_primop,Name}, Lbl, Args, [MsVar], Env, Instructions);
trans_fun([{test,bs_test_unit,{f,Lbl},[Ms,Unit]}|
Instructions], Env) ->
%% the current match buffer
MsVar = mk_var(Ms),
trans_op_call({hipe_bs_primop,{bs_test_unit,Unit}}, Lbl,
[MsVar], [], Env, Instructions);
trans_fun([{test,bs_match_string,{f,Lbl},[Ms,BitSize,Bin]}|
Instructions], Env) ->
True = mk_label(new),
FalseLabName = map_label(Lbl),
TrueLabName = hipe_icode:label_name(True),
MsVar = mk_var(Ms),
TmpVar = mk_var(new),
ByteSize = BitSize div 8,
ExtraBits = BitSize rem 8,
WordSize = hipe_rtl_arch:word_size(),
if ExtraBits =:= 0 ->
trans_op_call({hipe_bs_primop,{bs_match_string,Bin,ByteSize}}, Lbl,
[MsVar], [MsVar], Env, Instructions);
BitSize =< ((WordSize * 8) - 5) ->
<<Int:BitSize, _/bits>> = Bin,
{I1,Env1} = trans_one_op_call({hipe_bs_primop,{bs_get_integer,BitSize,0}}, Lbl,
[MsVar], [TmpVar, MsVar], Env),
I2 = hipe_icode:mk_type([TmpVar], {integer,Int}, TrueLabName, FalseLabName),
I1 ++ [I2,True] ++ trans_fun(Instructions, Env1);
true ->
<<RealBin:ByteSize/binary, Int:ExtraBits, _/bits>> = Bin,
{I1,Env1} = trans_one_op_call({hipe_bs_primop,{bs_match_string,RealBin,ByteSize}}, Lbl,
[MsVar], [MsVar], Env),
{I2,Env2} = trans_one_op_call({hipe_bs_primop,{bs_get_integer,ExtraBits,0}}, Lbl,
[MsVar], [TmpVar, MsVar], Env1),
I3 = hipe_icode:mk_type([TmpVar], {integer,Int}, TrueLabName, FalseLabName),
I1 ++ I2 ++ [I3,True] ++ trans_fun(Instructions, Env2)
end;
trans_fun([{bs_context_to_binary,Var}|Instructions], Env) ->
%% the current match buffer
IVars = [trans_arg(Var)],
[hipe_icode:mk_primop(IVars,{hipe_bs_primop,bs_context_to_binary},IVars)|
trans_fun(Instructions, Env)];
trans_fun([{bs_append,{f,Lbl},Size,W,R,U,Binary,{field_flags,F},Dst}|
Instructions], Env) ->
%% the current match buffer
SizeArg = trans_arg(Size),
BinArg = trans_arg(Binary),
IcodeDst = mk_var(Dst),
Offset = mk_var(reg),
Base = mk_var(reg),
trans_bin_call({hipe_bs_primop,{bs_append,W,R,U,F}},Lbl,[SizeArg,BinArg],
[IcodeDst,Base,Offset],
Base, Offset, Env, Instructions);
trans_fun([{bs_private_append,{f,Lbl},Size,U,Binary,{field_flags,F},Dst}|
Instructions], Env) ->
%% the current match buffer
SizeArg = trans_arg(Size),
BinArg = trans_arg(Binary),
IcodeDst = mk_var(Dst),
Offset = mk_var(reg),
Base = mk_var(reg),
trans_bin_call({hipe_bs_primop,{bs_private_append,U,F}},
Lbl,[SizeArg,BinArg],
[IcodeDst,Base,Offset],
Base, Offset, Env, Instructions);
trans_fun([bs_init_writable|Instructions], Env) ->
Vars = [mk_var({x,0})], %{x,0} is implict arg and dst
[hipe_icode:mk_primop(Vars,{hipe_bs_primop,bs_init_writable},Vars),
trans_fun(Instructions, Env)];
trans_fun([{bs_save2,Ms,IndexName}|Instructions], Env) ->
Index =
case IndexName of
{atom, start} -> 0;
_ -> IndexName+1
end,
MsVars = [mk_var(Ms)],
[hipe_icode:mk_primop(MsVars,{hipe_bs_primop,{bs_save,Index}},MsVars) |
trans_fun(Instructions, Env)];
trans_fun([{bs_restore2,Ms,IndexName}|Instructions], Env) ->
Index =
case IndexName of
{atom, start} -> 0;
_ -> IndexName+1
end,
MsVars = [mk_var(Ms)],
[hipe_icode:mk_primop(MsVars,{hipe_bs_primop,{bs_restore,Index}},MsVars) |
trans_fun(Instructions, Env)];
trans_fun([{test,bs_test_tail2,{f,Lbl},[Ms,Numbits]}| Instructions], Env) ->
MsVar = mk_var(Ms),
trans_op_call({hipe_bs_primop,{bs_test_tail,Numbits}},
Lbl, [MsVar], [], Env, Instructions);
%%--------------------------------------------------------------------
%% New bit syntax instructions added in February 2004 (R10B).
%%--------------------------------------------------------------------
trans_fun([{bs_init2,{f,Lbl},Size,_Words,_LiveRegs,{field_flags,Flags0},X}|
Instructions], Env) ->
Dst = mk_var(X),
Flags = resolve_native_endianess(Flags0),
Offset = mk_var(reg),
Base = mk_var(reg),
{Name, Args} =
case Size of
NoBytes when is_integer(NoBytes) ->
{{bs_init, Size, Flags}, []};
BitReg ->
Bits = mk_var(BitReg),
{{bs_init, Flags}, [Bits]}
end,
trans_bin_call({hipe_bs_primop,Name}, Lbl, Args, [Dst, Base, Offset],
Base, Offset, Env, Instructions);
trans_fun([{bs_init_bits,{f,Lbl},Size,_Words,_LiveRegs,{field_flags,Flags0},X}|
Instructions], Env) ->
Dst = mk_var(X),
Flags = resolve_native_endianess(Flags0),
Offset = mk_var(reg),
Base = mk_var(reg),
{Name, Args} =
case Size of
NoBits when is_integer(NoBits) ->
{{bs_init_bits, NoBits, Flags}, []};
BitReg ->
Bits = mk_var(BitReg),
{{bs_init_bits, Flags}, [Bits]}
end,
trans_bin_call({hipe_bs_primop,Name}, Lbl, Args, [Dst, Base, Offset],
Base, Offset, Env, Instructions);
trans_fun([{bs_add, {f,Lbl}, [Old,New,Unit], Res}|Instructions], Env) ->
Dst = mk_var(Res),
Temp = mk_var(new),
MultIs =
case {New,Unit} of
{{integer, NewInt}, _} ->
[hipe_icode:mk_move(Temp, hipe_icode:mk_const(NewInt*Unit))];
{_, 1} ->
NewVar = mk_var(New),
[hipe_icode:mk_move(Temp, NewVar)];
_ ->
NewVar = mk_var(New),
if Lbl =:= 0 ->
[hipe_icode:mk_primop([Temp], '*',
[NewVar, hipe_icode:mk_const(Unit)])];
true ->
Succ = mk_label(new),
[hipe_icode:mk_primop([Temp], '*',
[NewVar, hipe_icode:mk_const(Unit)],
hipe_icode:label_name(Succ), map_label(Lbl)),
Succ]
end
end,
Succ2 = mk_label(new),
{FailLblName, FailCode} =
if Lbl =:= 0 ->
FailLbl = mk_label(new),
{hipe_icode:label_name(FailLbl),
[FailLbl,
hipe_icode:mk_fail([hipe_icode:mk_const(badarg)], error)]};
true ->
{map_label(Lbl), []}
end,
IsPos =
[hipe_icode:mk_if('>=', [Temp, hipe_icode:mk_const(0)],
hipe_icode:label_name(Succ2), FailLblName)] ++
FailCode ++ [Succ2],
AddI =
case Old of
{integer,OldInt} ->
hipe_icode:mk_primop([Dst], '+', [Temp, hipe_icode:mk_const(OldInt)]);
_ ->
OldVar = mk_var(Old),
hipe_icode:mk_primop([Dst], '+', [Temp, OldVar])
end,
MultIs ++ IsPos ++ [AddI|trans_fun(Instructions, Env)];
%%--------------------------------------------------------------------
%% Bit syntax instructions added in R12B-5 (Fall 2008)
%%--------------------------------------------------------------------
trans_fun([{bs_utf8_size,{f,Lbl},A2,A3}|Instructions], Env) ->
Bin = trans_arg(A2),
Dst = mk_var(A3),
trans_op_call({hipe_bs_primop, bs_utf8_size}, Lbl, [Bin], [Dst], Env, Instructions);
trans_fun([{test,bs_get_utf8,{f,Lbl},[Ms,_Live,{field_flags,_Flags},X]} |
Instructions], Env) ->
trans_bs_get_or_skip_utf8(Lbl, Ms, X, Instructions, Env);
trans_fun([{test,bs_skip_utf8,{f,Lbl},[Ms,_Live,{field_flags,_Flags}]} |
Instructions], Env) ->
trans_bs_get_or_skip_utf8(Lbl, Ms, 'new', Instructions, Env);
trans_fun([{bs_utf16_size,{f,Lbl},A2,A3}|Instructions], Env) ->
Bin = trans_arg(A2),
Dst = mk_var(A3),
trans_op_call({hipe_bs_primop, bs_utf16_size}, Lbl, [Bin], [Dst], Env, Instructions);
trans_fun([{test,bs_get_utf16,{f,Lbl},[Ms,_Live,{field_flags,Flags0},X]} |
Instructions], Env) ->
trans_bs_get_or_skip_utf16(Lbl, Ms, Flags0, X, Instructions, Env);
trans_fun([{test,bs_skip_utf16,{f,Lbl},[Ms,_Live,{field_flags,Flags0}]} |
Instructions], Env) ->
trans_bs_get_or_skip_utf16(Lbl, Ms, Flags0, 'new', Instructions, Env);
trans_fun([{test,bs_get_utf32,{f,Lbl},[Ms,_Live,{field_flags,Flags0},X]} | Instructions], Env) ->
trans_bs_get_or_skip_utf32(Lbl, Ms, Flags0, X, Instructions, Env);
trans_fun([{test,bs_skip_utf32,{f,Lbl},[Ms,_Live,{field_flags,Flags0}]} | Instructions], Env) ->
trans_bs_get_or_skip_utf32(Lbl, Ms, Flags0, 'new', Instructions, Env);
%%--------------------------------------------------------------------
%%--- Translation of floating point instructions ---
%%--------------------------------------------------------------------
%%--- fclearerror ---
trans_fun([fclearerror|Instructions], Env) ->
case get(hipe_inline_fp) of
true ->
[hipe_icode:mk_primop([], fclearerror, []) |
trans_fun(Instructions,Env)];
_ ->
trans_fun(Instructions,Env)
end;
%%--- fcheckerror ---
trans_fun([{fcheckerror,{_,Fail}}|Instructions], Env) ->
case get(hipe_inline_fp) of
true ->
ContLbl = mk_label(new),
case Fail of
0 ->
[hipe_icode:mk_primop([], fcheckerror, [],
hipe_icode:label_name(ContLbl), []),
ContLbl | trans_fun(Instructions,Env)];
_ -> %% Can this happen?
{Guard,Env1} =
make_guard([], fcheckerror, [],
hipe_icode:label_name(ContLbl), map_label(Fail), Env),
[Guard, ContLbl | trans_fun(Instructions,Env1)]
end;
_ ->
trans_fun(Instructions, Env)
end;
%%--- fmove ---
trans_fun([{fmove,Src,Dst}|Instructions], Env) ->
case get(hipe_inline_fp) of
true ->
Dst1 = mk_var(Dst),
Src1 = trans_arg(Src),
case{hipe_icode:is_fvar(Dst1),
hipe_icode:is_fvar(Src1)} of
{true, true} -> %% fvar := fvar
[hipe_icode:mk_move(Dst1,Src1) | trans_fun(Instructions,Env)];
{false, true} -> %% var := fvar
[hipe_icode:mk_primop([Dst1], unsafe_tag_float, [Src1]) |
trans_fun(Instructions,Env)];
{true, false} -> %% fvar := var or fvar := constant
[hipe_icode:mk_primop([Dst1], unsafe_untag_float, [Src1]) |
trans_fun(Instructions,Env)]
end;
_ ->
trans_fun([{move,Src,Dst}|Instructions], Env)
end;
%%--- fconv ---
trans_fun([{fconv,Eterm,FReg}|Instructions], Env) ->
case get(hipe_inline_fp) of
true ->
Src = trans_arg(Eterm),
ContLbl = mk_label(new),
Dst = mk_var(FReg),
[hipe_icode:mk_primop([Dst], conv_to_float, [Src],
hipe_icode:label_name(ContLbl), []),
ContLbl| trans_fun(Instructions, Env)];
_ ->
trans_fun([{fmove,Eterm,FReg}|Instructions], Env)
end;
%%--- fadd ---
trans_fun([{arithfbif,fadd,Lab,SrcRs,DstR}|Instructions], Env) ->
case get(hipe_inline_fp) of
true ->
trans_fun([{arithbif,fp_add,Lab,SrcRs,DstR}|Instructions], Env);
_ ->
trans_fun([{arithbif,'+',Lab,SrcRs,DstR}|Instructions], Env)
end;
%%--- fsub ---
trans_fun([{arithfbif,fsub,Lab,SrcRs,DstR}|Instructions], Env) ->
case get(hipe_inline_fp) of
true ->
trans_fun([{arithbif,fp_sub,Lab,SrcRs,DstR}|Instructions], Env);
_ ->
trans_fun([{arithbif,'-',Lab,SrcRs,DstR}|Instructions], Env)
end;
%%--- fmult ---
trans_fun([{arithfbif,fmul,Lab,SrcRs,DstR}|Instructions], Env) ->
case get(hipe_inline_fp) of
true ->
trans_fun([{arithbif,fp_mul,Lab,SrcRs,DstR}|Instructions], Env);
_ ->
trans_fun([{arithbif,'*',Lab,SrcRs,DstR}|Instructions], Env)
end;
%%--- fdiv ---
trans_fun([{arithfbif,fdiv,Lab,SrcRs,DstR}|Instructions], Env) ->
case get(hipe_inline_fp) of
true ->
trans_fun([{arithbif,fp_div,Lab,SrcRs,DstR}|Instructions], Env);
_ ->
trans_fun([{arithbif,'/',Lab,SrcRs,DstR}|Instructions], Env)
end;
%%--- fnegate ---
trans_fun([{arithfbif,fnegate,Lab,[SrcR],DestR}|Instructions], Env) ->
case get(hipe_inline_fp) of
true ->
Src = trans_arg(SrcR),
Dst = mk_var(DestR),
[hipe_icode:mk_primop([Dst], fnegate, [Src])|
trans_fun(Instructions,Env)];
_ ->
trans_fun([{arithbif,'-',Lab,[{float,0.0},SrcR],DestR}|Instructions], Env)
end;
%%--------------------------------------------------------------------
%% New apply instructions added in April 2004 (R10B).
%%--------------------------------------------------------------------
trans_fun([{apply,Arity}|Instructions], Env) ->
BeamArgs = extract_fun_args(Arity+2), %% +2 is for M and F
{Args,[M,F]} = lists:split(Arity,BeamArgs),
Dst = [mk_var({r,0})],
[hipe_icode:mk_comment('apply'),
hipe_icode:mk_primop(Dst, #apply_N{arity=Arity}, [M,F|Args])
| trans_fun(Instructions,Env)];
trans_fun([{apply_last,Arity,_N}|Instructions], Env) -> % N is StackAdjustment?
BeamArgs = extract_fun_args(Arity+2), %% +2 is for M and F
{Args,[M,F]} = lists:split(Arity,BeamArgs),
[hipe_icode:mk_comment('apply_last'),
hipe_icode:mk_enter_primop(#apply_N{arity=Arity}, [M,F|Args])
| trans_fun(Instructions,Env)];
%%--------------------------------------------------------------------
%% New test instruction added in April 2004 (R10B).
%%--------------------------------------------------------------------
%%--- is_boolean ---
trans_fun([{test,is_boolean,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(boolean,Lbl,Arg,Env),
[Code | trans_fun(Instructions,Env1)];
%%--------------------------------------------------------------------
%% New test instruction added in June 2005 for R11
%%--------------------------------------------------------------------
%%--- is_function2 ---
trans_fun([{test,is_function2,{f,Lbl},[Arg,Arity]}|Instructions], Env) ->
{Code,Env1} = trans_type_test2(function2,Lbl,Arg,Arity,Env),
[Code | trans_fun(Instructions,Env1)];
%%--------------------------------------------------------------------
%% New garbage-collecting BIFs added in January 2006 for R11B.
%%--------------------------------------------------------------------
trans_fun([{gc_bif,'-',Fail,_Live,[SrcR],DstR}|Instructions], Env) ->
%% Unary minus. Change this to binary minus.
trans_fun([{arithbif,'-',Fail,[{integer,0},SrcR],DstR}|Instructions], Env);
trans_fun([{gc_bif,'+',Fail,_Live,[SrcR],DstR}|Instructions], Env) ->
%% Unary plus. Change this to a bif call.
trans_fun([{bif,'+',Fail,[SrcR],DstR}|Instructions], Env);
trans_fun([{gc_bif,Name,Fail,_Live,SrcRs,DstR}|Instructions], Env) ->
case erl_internal:guard_bif(Name, length(SrcRs)) of
false ->
%% Arithmetic instruction.
trans_fun([{arithbif,Name,Fail,SrcRs,DstR}|Instructions], Env);
true ->
%% A guard BIF.
trans_fun([{bif,Name,Fail,SrcRs,DstR}|Instructions], Env)
end;
%%--------------------------------------------------------------------
%% New test instruction added in July 2007 for R12.
%%--------------------------------------------------------------------
%%--- is_bitstr ---
trans_fun([{test,is_bitstr,{f,Lbl},[Arg]}|Instructions], Env) ->
{Code,Env1} = trans_type_test(bitstr, Lbl, Arg, Env),
[Code | trans_fun(Instructions, Env1)];
%%--------------------------------------------------------------------
%% New stack triming instruction added in October 2007 for R12.
%%--------------------------------------------------------------------
trans_fun([{trim,N,NY}|Instructions], Env) ->
%% trim away N registers leaving NY registers
Moves = trans_trim(N, NY),
Moves ++ trans_fun(Instructions, Env);
%%--------------------------------------------------------------------
%% New line/1 instruction in R15.
%%--------------------------------------------------------------------
trans_fun([{line,_}|Instructions], Env) ->
trans_fun(Instructions,Env);
%%--------------------------------------------------------------------
%%--- ERROR HANDLING ---
%%--------------------------------------------------------------------
trans_fun([X|_], _) ->
?EXIT({'trans_fun/2',X});
trans_fun([], _) ->
[].
%%--------------------------------------------------------------------
%% trans_call and trans_enter generate correct Icode calls/tail-calls,
%% recognizing explicit fails.
%%--------------------------------------------------------------------
trans_call(MFA={M,F,_A}, Dst, Args, Type) ->
handle_fail(MFA, Args, fun () -> hipe_icode:mk_call(Dst,M,F,Args,Type) end).
trans_enter(MFA={M,F,_A}, Args, Type) ->
handle_fail(MFA, Args, fun () -> hipe_icode:mk_enter(M,F,Args,Type) end).
handle_fail(MFA, Args, F) ->
case MFA of
{erlang,exit,1} ->
hipe_icode:mk_fail(Args,exit);
{erlang,throw,1} ->
hipe_icode:mk_fail(Args,throw);
{erlang,fault,1} ->
hipe_icode:mk_fail(Args,error);
{erlang,fault,2} ->
hipe_icode:mk_fail(Args,error);
{erlang,error,1} ->
hipe_icode:mk_fail(Args,error);
{erlang,error,2} ->
hipe_icode:mk_fail(Args,error);
_ ->
F()
end.
%%-----------------------------------------------------------------------
%% trans_bif0(BifName, DestReg)
%% trans_bif(Arity, BifName, FailLab, Args, DestReg, Environment)
%%-----------------------------------------------------------------------
trans_bif0(BifName, DestReg) ->
?no_debug_msg(" found BIF0: ~p() ...~n", [BifName]),
BifRes = mk_var(DestReg),
hipe_icode:mk_call([BifRes],erlang,BifName,[],remote).
trans_bif(Arity, BifName, Lbl, Args, DestReg, Env) ->
?no_debug_msg(" found BIF: ~p(~p) ...~n", [BifName,Args]),
BifRes = mk_var(DestReg),
{Movs, SrcVars, Env1} = get_constants_in_temps(Args,Env),
case Lbl of
0 -> % Bif is not in a guard
I = hipe_icode:mk_call([BifRes],erlang,BifName,SrcVars,remote),
{Movs ++ [I], Env1};
_ -> % Bif occurs in a guard - fail silently to Lbl
{GuardI,Env2} =
make_fallthrough_guard([BifRes],{erlang,BifName,Arity},SrcVars,
map_label(Lbl),Env1),
{[Movs,GuardI], Env2}
end.
trans_op_call(Name, Lbl, Args, Dests, Env, Instructions) ->
{Code, Env1} = trans_one_op_call(Name, Lbl, Args, Dests, Env),
[Code|trans_fun(Instructions, Env1)].
trans_one_op_call(Name, Lbl, Args, Dests, Env) ->
case Lbl of
0 -> % Op is not in a guard
I = hipe_icode:mk_primop(Dests, Name, Args),
{[I], Env};
_ -> % op occurs in a guard - fail silently to Lbl
make_fallthrough_guard(Dests, Name, Args, map_label(Lbl), Env)
end.
%%-----------------------------------------------------------------------
%% trans_bin_call
%%-----------------------------------------------------------------------
trans_bin_call(Name, Lbl, Args, Dests, Base, Offset, Env, Instructions) ->
{Code, Env1} =
case Lbl of
0 -> % Op is not in a guard
I = hipe_icode:mk_primop(Dests, Name, Args),
{[I], Env};
_ -> % op occurs in a guard - fail silently to Lbl
make_fallthrough_guard(Dests, Name, Args, map_label(Lbl), Env)
end,
[Code|trans_bin(Instructions, Base, Offset, Env1)].
%% Translate instructions for building binaries separately to give
%% them an appropriate state
trans_bin([{bs_put_float,{f,Lbl},Size,Unit,{field_flags,Flags0},Source}|
Instructions], Base, Offset, Env) ->
Flags = resolve_native_endianess(Flags0),
%% Get source
{Src,SourceInstrs,ConstInfo} =
case is_var(Source) of
true ->
{mk_var(Source),[], var};
false ->
case Source of
{float, X} when is_float(X) ->
C = trans_const(Source),
SrcVar = mk_var(new),
I = hipe_icode:mk_move(SrcVar, C),
{SrcVar,[I],pass};
_ ->
C = trans_const(Source),
SrcVar = mk_var(new),
I = hipe_icode:mk_move(SrcVar, C),
{SrcVar,[I],fail}
end
end,
%% Get type of put_float
{Name,Args,Env2} =
case Size of
{integer,NoBits} when is_integer(NoBits), NoBits >= 0 ->
%% Create a N*Unit bits float
{{bs_put_float, NoBits*Unit, Flags, ConstInfo}, [Src, Base, Offset], Env};
{integer,NoBits} when is_integer(NoBits), NoBits < 0 ->
?EXIT({bad_bs_size_constant,Size});
BitReg -> % Use a number of bits only known at runtime.
Bits = mk_var(BitReg),
{{bs_put_float, Unit, Flags, ConstInfo}, [Src,Bits,Base,Offset], Env}
end,
%% Generate code for calling the bs-op.
SourceInstrs ++
trans_bin_call({hipe_bs_primop,Name}, Lbl, Args, [Offset], Base, Offset, Env2, Instructions);
trans_bin([{bs_put_binary,{f,Lbl},Size,Unit,{field_flags,Flags},Source}|
Instructions], Base, Offset, Env) ->
%% Get the source of the binary.
Src = trans_arg(Source),
%% Get type of put_binary
{Name, Args, Env2} =
case Size of
{atom,all} -> %% put all bits
{{bs_put_binary_all, Flags}, [Src,Base,Offset], Env};
{integer,NoBits} when is_integer(NoBits), NoBits >= 0 ->
%% Create a N*Unit bits subbinary
{{bs_put_binary, NoBits*Unit, Flags}, [Src,Base,Offset], Env};
{integer,NoBits} when is_integer(NoBits), NoBits < 0 ->
?EXIT({bad_bs_size_constant,Size});
BitReg -> % Use a number of bits only known at runtime.
Bits = mk_var(BitReg),
{{bs_put_binary, Unit, Flags}, [Src, Bits,Base,Offset], Env}
end,
%% Generate code for calling the bs-op.
trans_bin_call({hipe_bs_primop, Name},
Lbl, Args, [Offset],
Base, Offset, Env2, Instructions);
%%--- bs_put_string ---
trans_bin([{bs_put_string,SizeInBytes,{string,String}}|Instructions], Base,
Offset, Env) ->
[hipe_icode:mk_primop([Offset],
{hipe_bs_primop,{bs_put_string, String, SizeInBytes}},
[Base, Offset]) |
trans_bin(Instructions, Base, Offset, Env)];
trans_bin([{bs_put_integer,{f,Lbl},Size,Unit,{field_flags,Flags0},Source}|
Instructions], Base, Offset, Env) ->
Flags = resolve_native_endianess(Flags0),
%% Get size-type
%% Get the source of the binary.
{Src, SrcInstrs, ConstInfo} =
case is_var(Source) of
true ->
{mk_var(Source), [], var};
false ->
case Source of
{integer, X} when is_integer(X) ->
C = trans_const(Source),
SrcVar = mk_var(new),
I = hipe_icode:mk_move(SrcVar, C),
{SrcVar,[I], pass};
_ ->
C = trans_const(Source),
SrcVar = mk_var(new),
I = hipe_icode:mk_move(SrcVar, C),
{SrcVar,[I], fail}
end
end,
{Name, Args, Env2} =
case is_var(Size) of
true ->
SVar = mk_var(Size),
{{bs_put_integer,Unit,Flags,ConstInfo}, [SVar, Base, Offset], Env};
false ->
case Size of
{integer, NoBits} when NoBits >= 0 ->
{{bs_put_integer,NoBits*Unit,Flags,ConstInfo}, [Base, Offset], Env};
_ ->
?EXIT({bad_bs_size_constant,Size})
end
end,
SrcInstrs ++ trans_bin_call({hipe_bs_primop, Name},
Lbl, [Src|Args], [Offset], Base, Offset, Env2, Instructions);
%%----------------------------------------------------------------
%% New binary construction instructions added in R12B-5 (Fall 2008).
%%----------------------------------------------------------------
trans_bin([{bs_put_utf8,{f,Lbl},_FF,A3}|Instructions], Base, Offset, Env) ->
Src = trans_arg(A3),
Args = [Src, Base, Offset],
trans_bin_call({hipe_bs_primop, bs_put_utf8}, Lbl, Args, [Offset], Base, Offset, Env, Instructions);
trans_bin([{bs_put_utf16,{f,Lbl},{field_flags,Flags0},A3}|Instructions], Base, Offset, Env) ->
Src = trans_arg(A3),
Args = [Src, Base, Offset],
Flags = resolve_native_endianess(Flags0),
Name = {bs_put_utf16, Flags},
trans_bin_call({hipe_bs_primop, Name}, Lbl, Args, [Offset], Base, Offset, Env, Instructions);
trans_bin([{bs_put_utf32,F={f,Lbl},FF={field_flags,_Flags0},A3}|Instructions], Base, Offset, Env) ->
Src = trans_arg(A3),
trans_bin_call({hipe_bs_primop,bs_validate_unicode}, Lbl, [Src], [], Base, Offset, Env,
[{bs_put_integer,F,{integer,32},1,FF,A3} | Instructions]);
%%----------------------------------------------------------------
%% Base cases for the end of a binary construction sequence.
%%----------------------------------------------------------------
trans_bin([{bs_final2,Src,Dst}|Instructions], _Base, Offset, Env) ->
[hipe_icode:mk_primop([mk_var(Dst)], {hipe_bs_primop, bs_final},
[trans_arg(Src),Offset])
|trans_fun(Instructions, Env)];
trans_bin(Instructions, _Base, _Offset, Env) ->
trans_fun(Instructions, Env).
%% this translates bs_get_utf8 and bs_skip_utf8 (get with new unused dst)
trans_bs_get_or_skip_utf8(Lbl, Ms, X, Instructions, Env) ->
Dst = mk_var(X),
MsVar = mk_var(Ms),
trans_op_call({hipe_bs_primop,bs_get_utf8}, Lbl, [MsVar], [Dst,MsVar], Env, Instructions).
%% this translates bs_get_utf16 and bs_skip_utf16 (get with new unused dst)
trans_bs_get_or_skip_utf16(Lbl, Ms, Flags0, X, Instructions, Env) ->
Dst = mk_var(X),
MsVar = mk_var(Ms),
Flags = resolve_native_endianess(Flags0),
Name = {bs_get_utf16,Flags},
trans_op_call({hipe_bs_primop,Name}, Lbl, [MsVar], [Dst,MsVar], Env, Instructions).
%% this translates bs_get_utf32 and bs_skip_utf32 (get with new unused dst)
trans_bs_get_or_skip_utf32(Lbl, Ms, Flags0, X, Instructions, Env) ->
Dst = mk_var(X),
MsVar = mk_var(Ms),
Flags = resolve_native_endianess(Flags0),
{I1,Env1} = trans_one_op_call({hipe_bs_primop,{bs_get_integer,32,Flags}},
Lbl, [MsVar], [Dst,MsVar], Env),
I1 ++ trans_op_call({hipe_bs_primop,bs_validate_unicode_retract},
Lbl, [Dst,MsVar], [MsVar], Env1, Instructions).
%%-----------------------------------------------------------------------
%% trans_arith(Op, SrcVars, Des, Lab, Env) -> { Icode, NewEnv }
%% A failure label of type {f,0} means in a body.
%% A failure label of type {f,L} where L>0 means in a guard.
%% Within a guard a failure should branch to the next guard and
%% not trigger an exception!!
%% Handles body arithmetic with Icode primops!
%% Handles guard arithmetic with Icode guardops!
%%-----------------------------------------------------------------------
trans_arith(Op, SrcRs, DstR, Lbl, Env) ->
{Movs,SrcVars,Env1} = get_constants_in_temps(SrcRs,Env),
DstVar = mk_var(DstR),
%%io:format("~w:trans_arith()\n ~w := ~w ~w\n",
%% [?MODULE,DstVar,SrcVars,Op]),
case Lbl of
0 -> % Body arithmetic
Primop = hipe_icode:mk_primop([DstVar], arith_op_name(Op), SrcVars),
{Movs++[Primop], Env1};
_ -> % Guard arithmetic
{Guard,Env2} =
make_fallthrough_guard([DstVar], arith_op_name(Op), SrcVars,
map_label(Lbl), Env1),
{[Movs,Guard], Env2}
end.
%% Prevent arbitrary names from leaking into Icode from BEAM.
arith_op_name('+') -> '+';
arith_op_name('-') -> '-';
arith_op_name('*') -> '*';
arith_op_name('/') -> '/';
arith_op_name('div') -> 'div';
arith_op_name('fp_add') -> 'fp_add';
arith_op_name('fp_sub') -> 'fp_sub';
arith_op_name('fp_mul') -> 'fp_mul';
arith_op_name('fp_div') -> 'fp_div';
arith_op_name('rem') -> 'rem';
arith_op_name('bsl') -> 'bsl';
arith_op_name('bsr') -> 'bsr';
arith_op_name('band') -> 'band';
arith_op_name('bor') -> 'bor';
arith_op_name('bxor') -> 'bxor';
arith_op_name('bnot') -> 'bnot'.
%%-----------------------------------------------------------------------
%%-----------------------------------------------------------------------
trans_test_guard(TestOp,F,Arg1,Arg2,Env) ->
{Movs,Vars,Env1} = get_constants_in_temps([Arg1,Arg2],Env),
True = mk_label(new),
I = hipe_icode:mk_if(TestOp,Vars,hipe_icode:label_name(True),map_label(F)),
{[Movs,I,True], Env1}.
%%-----------------------------------------------------------------------
%%-----------------------------------------------------------------------
make_fallthrough_guard(DstVar,GuardOp,Args,FailLName,Env) ->
ContL = mk_label(new),
ContLName = hipe_icode:label_name(ContL),
{Instrs, NewDsts} = clone_dsts(DstVar),
{Guard,Env1} = make_guard(NewDsts,GuardOp,Args,ContLName,FailLName,Env),
{[Guard,ContL]++Instrs,Env1}.
%% Make sure DstVar gets initialised to a dummy value after a fail:
%make_guard(Dests,{hipe_bs_primop,Primop},Args,ContLName,FailLName,Env) ->
% {[hipe_icode:mk_guardop(Dests,{hipe_bs_primop,Primop},Args,ContLName,FailLName)],
% Env};
make_guard(Dests=[_|_],GuardOp,Args,ContLName,FailLName,Env) ->
TmpFailL = mk_label(new),
TmpFailLName = hipe_icode:label_name(TmpFailL),
GuardOpIns = hipe_icode:mk_guardop(Dests,GuardOp,Args,
ContLName,TmpFailLName),
FailCode = [TmpFailL,
nillify_all(Dests),
hipe_icode:mk_goto(FailLName)],
{[GuardOpIns|FailCode], Env};
%% A guard that does not return anything:
make_guard([],GuardOp,Args,ContLName,FailLName,Env) ->
{[hipe_icode:mk_guardop([],GuardOp,Args,ContLName,FailLName)],
Env}.
nillify_all([Var|Vars]) ->
[hipe_icode:mk_move(Var,hipe_icode:mk_const([]))|nillify_all(Vars)];
nillify_all([]) -> [].
clone_dsts(Dests) ->
clone_dsts(Dests, [],[]).
clone_dsts([Dest|Dests], Instrs, NewDests) ->
{I,ND} = clone_dst(Dest),
clone_dsts(Dests, [I|Instrs], [ND|NewDests]);
clone_dsts([], Instrs, NewDests) ->
{lists:reverse(Instrs), lists:reverse(NewDests)}.
clone_dst(Dest) ->
New =
case hipe_icode:is_reg(Dest) of
true ->
mk_var(reg);
false ->
true = hipe_icode:is_var(Dest),
mk_var(new)
end,
{hipe_icode:mk_move(Dest, New), New}.
%%-----------------------------------------------------------------------
%% trans_type_test(Test, Lbl, Arg, Env) -> { Icode, NewEnv }
%% Handles all unary type tests like is_integer etc.
%%-----------------------------------------------------------------------
trans_type_test(Test, Lbl, Arg, Env) ->
True = mk_label(new),
{Move,Var,Env1} = mk_move_and_var(Arg,Env),
I = hipe_icode:mk_type([Var], Test,
hipe_icode:label_name(True), map_label(Lbl)),
{[Move,I,True],Env1}.
%%
%% This handles binary type tests. Currently, the only such is the new
%% is_function/2 BIF.
%%
trans_type_test2(function2, Lbl, Arg, Arity, Env) ->
True = mk_label(new),
{Move1,Var1,Env1} = mk_move_and_var(Arg, Env),
{Move2,Var2,Env2} = mk_move_and_var(Arity, Env1),
I = hipe_icode:mk_type([Var1,Var2], function2,
hipe_icode:label_name(True), map_label(Lbl)),
{[Move1,Move2,I,True],Env2}.
%%-----------------------------------------------------------------------
%% trans_puts(Code, Environment) ->
%% { Movs, Code, Vars, NewEnv }
%%-----------------------------------------------------------------------
trans_puts(Code, Env) ->
trans_puts(Code, [], [], Env).
trans_puts([{put,X}|Code], Vars, Moves, Env) ->
case type(X) of
var ->
Var = mk_var(X),
trans_puts(Code, [Var|Vars], Moves, Env);
#beam_const{value=C} ->
Var = mk_var(new),
Move = hipe_icode:mk_move(Var, hipe_icode:mk_const(C)),
trans_puts(Code, [Var|Vars], [Move|Moves], Env)
end;
trans_puts(Code, Vars, Moves, Env) -> %% No more put operations
{Moves, Code, Vars, Env}.
%%-----------------------------------------------------------------------
%% The code for this instruction is a bit large because we are treating
%% different cases differently. We want to use the icode `type'
%% instruction when it is applicable to take care of match expressions.
%%-----------------------------------------------------------------------
trans_is_eq_exact(Lbl, Arg1, Arg2, Env) ->
case {is_var(Arg1),is_var(Arg2)} of
{true,true} ->
True = mk_label(new),
I = hipe_icode:mk_if('=:=',
[mk_var(Arg1),mk_var(Arg2)],
hipe_icode:label_name(True), map_label(Lbl)),
{[I,True], Env};
{true,false} -> %% right argument is a constant -- use type()!
trans_is_eq_exact_var_const(Lbl, Arg1, Arg2, Env);
{false,true} -> %% mirror of the case above; swap args
trans_is_eq_exact_var_const(Lbl, Arg2, Arg1, Env);
{false,false} -> %% both arguments are constants !!!
case Arg1 =:= Arg2 of
true ->
{[], Env};
false ->
Never = mk_label(new),
I = hipe_icode:mk_goto(map_label(Lbl)),
{[I,Never], Env}
end
end.
trans_is_eq_exact_var_const(Lbl, Arg1, Arg2, Env) -> % var =:= const
True = mk_label(new),
NewArg1 = mk_var(Arg1),
TrueLabName = hipe_icode:label_name(True),
FalseLabName = map_label(Lbl),
I = case Arg2 of
{float,Float} ->
hipe_icode:mk_if('=:=',
[NewArg1, hipe_icode:mk_const(Float)],
TrueLabName, FalseLabName);
{literal,Literal} ->
hipe_icode:mk_if('=:=',
[NewArg1, hipe_icode:mk_const(Literal)],
TrueLabName, FalseLabName);
_ ->
hipe_icode:mk_type([NewArg1], Arg2, TrueLabName, FalseLabName)
end,
{[I,True], Env}.
%%-----------------------------------------------------------------------
%% ... and this is analogous to the above
%%-----------------------------------------------------------------------
trans_is_ne_exact(Lbl, Arg1, Arg2, Env) ->
case {is_var(Arg1),is_var(Arg2)} of
{true,true} ->
True = mk_label(new),
I = hipe_icode:mk_if('=/=',
[mk_var(Arg1),mk_var(Arg2)],
hipe_icode:label_name(True), map_label(Lbl)),
{[I,True], Env};
{true,false} -> %% right argument is a constant -- use type()!
trans_is_ne_exact_var_const(Lbl, Arg1, Arg2, Env);
{false,true} -> %% mirror of the case above; swap args
trans_is_ne_exact_var_const(Lbl, Arg2, Arg1, Env);
{false,false} -> %% both arguments are constants !!!
case Arg1 =/= Arg2 of
true ->
{[], Env};
false ->
Never = mk_label(new),
I = hipe_icode:mk_goto(map_label(Lbl)),
{[I,Never], Env}
end
end.
trans_is_ne_exact_var_const(Lbl, Arg1, Arg2, Env) -> % var =/= const
True = mk_label(new),
NewArg1 = mk_var(Arg1),
TrueLabName = hipe_icode:label_name(True),
FalseLabName = map_label(Lbl),
I = case Arg2 of
{float,Float} ->
hipe_icode:mk_if('=/=',
[NewArg1, hipe_icode:mk_const(Float)],
TrueLabName, FalseLabName);
{literal,Literal} ->
hipe_icode:mk_if('=/=',
[NewArg1, hipe_icode:mk_const(Literal)],
TrueLabName, FalseLabName);
_ ->
hipe_icode:mk_type([NewArg1], Arg2, FalseLabName, TrueLabName)
end,
{[I,True], Env}.
%%-----------------------------------------------------------------------
%% Try to do a relatively straightforward optimization: if equality with
%% an atom is used, then convert this test to use of exact equality test
%% with the same atom (which in turn will be translated to a `type' test
%% instruction by the code of trans_is_eq_exact_var_const/4 above).
%%-----------------------------------------------------------------------
trans_is_eq(Lbl, Arg1, Arg2, Env) ->
case {is_var(Arg1),is_var(Arg2)} of
{true,true} -> %% not much can be done in this case
trans_test_guard('==', Lbl, Arg1, Arg2, Env);
{true,false} -> %% optimize this case, if possible
case Arg2 of
{atom,_SomeAtom} ->
trans_is_eq_exact_var_const(Lbl, Arg1, Arg2, Env);
_ ->
trans_test_guard('==', Lbl, Arg1, Arg2, Env)
end;
{false,true} -> %% probably happens rarely; hence the recursive call
trans_is_eq(Lbl, Arg2, Arg1, Env);
{false,false} -> %% both arguments are constants !!!
case Arg1 == Arg2 of
true ->
{[], Env};
false ->
Never = mk_label(new),
I = hipe_icode:mk_goto(map_label(Lbl)),
{[I,Never], Env}
end
end.
%%-----------------------------------------------------------------------
%% ... and this is analogous to the above
%%-----------------------------------------------------------------------
trans_is_ne(Lbl, Arg1, Arg2, Env) ->
case {is_var(Arg1),is_var(Arg2)} of
{true,true} -> %% not much can be done in this case
trans_test_guard('/=', Lbl, Arg1, Arg2, Env);
{true,false} -> %% optimize this case, if possible
case Arg2 of
{atom,_SomeAtom} ->
trans_is_ne_exact_var_const(Lbl, Arg1, Arg2, Env);
_ ->
trans_test_guard('/=', Lbl, Arg1, Arg2, Env)
end;
{false,true} -> %% probably happens rarely; hence the recursive call
trans_is_ne(Lbl, Arg2, Arg1, Env);
{false,false} -> %% both arguments are constants !!!
case Arg1 /= Arg2 of
true ->
{[], Env};
false ->
Never = mk_label(new),
I = hipe_icode:mk_goto(map_label(Lbl)),
{[I,Never], Env}
end
end.
%%-----------------------------------------------------------------------
%% Translates an allocate instruction into a sequence of initializations
%%-----------------------------------------------------------------------
trans_allocate(N) ->
trans_allocate(N, []).
trans_allocate(0, Acc) ->
Acc;
trans_allocate(N, Acc) ->
Move = hipe_icode:mk_move(mk_var({y,N-1}),
hipe_icode:mk_const('dummy_value')),
trans_allocate(N-1, [Move|Acc]).
%%-----------------------------------------------------------------------
%% Translates a trim instruction into a sequence of moves
%%-----------------------------------------------------------------------
trans_trim(N, NY) ->
lists:reverse(trans_trim(N, NY, 0, [])).
trans_trim(_, 0, _, Acc) ->
Acc;
trans_trim(N, NY, Y, Acc) ->
Move = hipe_icode:mk_move(mk_var({y,Y}), mk_var({y,N})),
trans_trim(N+1, NY-1, Y+1, [Move|Acc]).
%%-----------------------------------------------------------------------
%%-----------------------------------------------------------------------
mk_move_and_var(Var, Env) ->
case type(Var) of
var ->
V = mk_var(Var),
{[], V, Env};
#beam_const{value=C} ->
V = mk_var(new),
{[hipe_icode:mk_move(V,hipe_icode:mk_const(C))], V, Env}
end.
%%-----------------------------------------------------------------------
%% Find names of closures and number of free vars.
%%-----------------------------------------------------------------------
closure_info_mfa(#closure_info{mfa=MFA}) -> MFA.
closure_info_arity(#closure_info{arity=Arity}) -> Arity.
%% closure_info_fv_arity(#closure_info{fv_arity=Arity}) -> Arity.
find_closure_info(Code) -> mod_find_closure_info(Code, []).
mod_find_closure_info([FunCode|Fs], CI) ->
mod_find_closure_info(Fs, find_closure_info(FunCode, CI));
mod_find_closure_info([], CI) ->
CI.
find_closure_info([{patched_make_fun,MFA={_M,_F,A},_Magic,FreeVarNum,_Index}|BeamCode],
ClosureInfo) ->
NewClosure = %% A-FreeVarNum+1 (The real arity + 1 for the closure)
#closure_info{mfa=MFA, arity=A-FreeVarNum+1, fv_arity=FreeVarNum},
find_closure_info(BeamCode, [NewClosure|ClosureInfo]);
find_closure_info([_Inst|BeamCode], ClosureInfo) ->
find_closure_info(BeamCode, ClosureInfo);
find_closure_info([], ClosureInfo) ->
ClosureInfo.
%%-----------------------------------------------------------------------
%% Is closure
%%-----------------------------------------------------------------------
get_closure_info(MFA, [CI|Rest]) ->
case closure_info_mfa(CI) of
MFA -> CI;
_ -> get_closure_info(MFA, Rest)
end;
get_closure_info(_, []) ->
not_a_closure.
%%-----------------------------------------------------------------------
%% Patch closure entry.
%%-----------------------------------------------------------------------
%% NOTE: this changes the number of parameters in the ICode function,
%% but does *not* change the arity in the function name. Thus, all
%% closure-functions have the exact same names in Beam and in native
%% code, although they have different calling conventions.
patch_closure_entry(Icode, ClosureInfo)->
Arity = closure_info_arity(ClosureInfo),
%% ?msg("Arity ~w\n",[Arity]),
{Args, Closure, FreeVars} =
split_params(Arity, hipe_icode:icode_params(Icode), []),
[Start|_] = hipe_icode:icode_code(Icode),
{_LMin, LMax} = hipe_icode:icode_label_range(Icode),
hipe_gensym:set_label(icode,LMax+1),
{_VMin, VMax} = hipe_icode:icode_var_range(Icode),
hipe_gensym:set_var(icode,VMax+1),
MoveCode = gen_get_free_vars(FreeVars, Closure,
hipe_icode:label_name(Start)),
Icode1 = hipe_icode:icode_code_update(Icode, MoveCode ++
hipe_icode:icode_code(Icode)),
Icode2 = hipe_icode:icode_params_update(Icode1, Args),
%% Arity - 1 since the original arity did not have the closure argument.
Icode3 = hipe_icode:icode_closure_arity_update(Icode2, Arity-1),
Icode3.
%%-----------------------------------------------------------------------
gen_get_free_vars(Vars, Closure, StartName) ->
[hipe_icode:mk_new_label()] ++
get_free_vars(Vars, Closure, 1, []) ++ [hipe_icode:mk_goto(StartName)].
get_free_vars([V|Vs], Closure, No, MoveCode) ->
%% TempV = hipe_icode:mk_new_var(),
get_free_vars(Vs, Closure, No+1,
[%% hipe_icode:mk_move(TempV,hipe_icode:mk_const(No)),
hipe_icode:mk_primop([V], #closure_element{n=No}, [Closure])
|MoveCode]);
get_free_vars([],_,_,MoveCode) ->
MoveCode.
%%-----------------------------------------------------------------------
split_params(1, [Closure|_OrgArgs] = Params, Args) ->
{lists:reverse([Closure|Args]), Closure, Params};
split_params(1, [], Args) ->
Closure = hipe_icode:mk_new_var(),
{lists:reverse([Closure|Args]), Closure, []};
split_params(N, [ArgN|OrgArgs], Args) ->
split_params(N-1, OrgArgs, [ArgN|Args]).
%%-----------------------------------------------------------------------
preprocess_code(ModuleCode) ->
PatchedCode = patch_R7_funs(ModuleCode),
ClosureInfo = find_closure_info(PatchedCode),
{PatchedCode, ClosureInfo}.
%%-----------------------------------------------------------------------
%% Patches the "make_fun" BEAM instructions of R7 so that they also
%% contain the index that the BEAM loader generates for funs.
%%
%% The index starts from 0 and is incremented by 1 for each make_fun
%% instruction encountered.
%%
%% Retained only for compatibility with BEAM code prior to R8.
%%
%% Temporarily, it also rewrites R8-PRE-RELEASE "make_fun2"
%% instructions, since their embedded indices don't work.
%%-----------------------------------------------------------------------
patch_R7_funs(ModuleCode) ->
patch_make_funs(ModuleCode, 0).
patch_make_funs([FunCode0|Fs], FunIndex0) ->
{PatchedFunCode,FunIndex} = patch_make_funs(FunCode0, FunIndex0, []),
[PatchedFunCode|patch_make_funs(Fs, FunIndex)];
patch_make_funs([], _) -> [].
patch_make_funs([{make_fun,MFA,Magic,FreeVarNum}|Is], FunIndex, Acc) ->
Patched = {patched_make_fun,MFA,Magic,FreeVarNum,FunIndex},
patch_make_funs(Is, FunIndex+1, [Patched|Acc]);
patch_make_funs([{make_fun2,MFA,_BogusIndex,Magic,FreeVarNum}|Is], FunIndex, Acc) ->
Patched = {patched_make_fun,MFA,Magic,FreeVarNum,FunIndex},
patch_make_funs(Is, FunIndex+1, [Patched|Acc]);
patch_make_funs([I|Is], FunIndex, Acc) ->
patch_make_funs(Is, FunIndex, [I|Acc]);
patch_make_funs([], FunIndex, Acc) ->
{lists:reverse(Acc),FunIndex}.
%%-----------------------------------------------------------------------
find_mfa([{label,_}|Code]) ->
find_mfa(Code);
find_mfa([{line,_}|Code]) ->
find_mfa(Code);
find_mfa([{func_info,{atom,M},{atom,F},A}|_])
when is_atom(M), is_atom(F), is_integer(A), 0 =< A, A =< 255 ->
{M, F, A}.
%%-----------------------------------------------------------------------
%% Takes a list of arguments and returns the constants of them into
%% fresh temporaries. Return a triple consisting of a list of move
%% instructions, a list of proper icode arguments and the new environment.
%%-----------------------------------------------------------------------
get_constants_in_temps(Args, Env) ->
get_constants_in_temps(Args, [], [], Env).
get_constants_in_temps([Arg|Args], Instrs, Temps, Env) ->
case get_constant_in_temp(Arg, Env) of
{none,ArgVar,Env1} ->
get_constants_in_temps(Args, Instrs, [ArgVar|Temps], Env1);
{Instr,Temp,Env1} ->
get_constants_in_temps(Args, [Instr|Instrs], [Temp|Temps], Env1)
end;
get_constants_in_temps([], Instrs, Temps, Env) ->
{lists:reverse(Instrs), lists:reverse(Temps), Env}.
%% If Arg is a constant then put Arg in a fresh temp!
get_constant_in_temp(Arg, Env) ->
case is_var(Arg) of
true -> % Convert into Icode variable format before return
{none, mk_var(Arg), Env};
false -> % Create a new temp and move the constant into it
Temp = mk_var(new),
Const = trans_const(Arg),
{hipe_icode:mk_move(Temp, Const), Temp, Env}
end.
%%-----------------------------------------------------------------------
%% Makes a list of function arguments.
%%-----------------------------------------------------------------------
extract_fun_args(A) ->
lists:reverse(extract_fun_args1(A)).
extract_fun_args1(0) ->
[];
extract_fun_args1(1) ->
[mk_var({r,0})];
extract_fun_args1(N) ->
[mk_var({x,N-1}) | extract_fun_args1(N-1)].
%%-----------------------------------------------------------------------
%% Auxiliary translation for arguments of select_val & select_tuple_arity
%%-----------------------------------------------------------------------
trans_select_stuff(Reg, CaseList) ->
SwVar = case is_var(Reg) of
true ->
mk_var(Reg);
false ->
trans_const(Reg)
end,
CasePairs = trans_case_list(CaseList),
{SwVar,CasePairs}.
trans_case_list([Symbol,{f,Lbl}|L]) ->
[{trans_const(Symbol),map_label(Lbl)} | trans_case_list(L)];
trans_case_list([]) ->
[].
%%-----------------------------------------------------------------------
%% Makes an Icode argument from a BEAM argument.
%%-----------------------------------------------------------------------
trans_arg(Arg) ->
case is_var(Arg) of
true ->
mk_var(Arg);
false ->
trans_const(Arg)
end.
%%-----------------------------------------------------------------------
%% Makes an Icode constant from a BEAM constant.
%%-----------------------------------------------------------------------
trans_const(Const) ->
case Const of
{atom,Atom} when is_atom(Atom) ->
hipe_icode:mk_const(Atom);
{integer,N} when is_integer(N) ->
hipe_icode:mk_const(N);
{float,Float} when is_float(Float) ->
hipe_icode:mk_const(Float);
{string,String} ->
hipe_icode:mk_const(String);
{literal,Literal} ->
hipe_icode:mk_const(Literal);
nil ->
hipe_icode:mk_const([]);
Int when is_integer(Int) ->
hipe_icode:mk_const(Int)
end.
%%-----------------------------------------------------------------------
%% Make an icode variable of proper type
%% (Variables mod 5) =:= 0 are X regs
%% (Variables mod 5) =:= 1 are Y regs
%% (Variables mod 5) =:= 2 are FR regs
%% (Variables mod 5) =:= 3 are new temporaries
%% (Variables mod 5) =:= 4 are new register temporaries
%% Tell hipe_gensym to update its state for each new thing created!!
%%-----------------------------------------------------------------------
mk_var({r,0}) ->
hipe_icode:mk_var(0);
mk_var({x,R}) when is_integer(R) ->
V = 5*R,
hipe_gensym:update_vrange(icode,V),
hipe_icode:mk_var(V);
mk_var({y,R}) when is_integer(R) ->
V = (5*R)+1,
hipe_gensym:update_vrange(icode,V),
hipe_icode:mk_var(V);
mk_var({fr,R}) when is_integer(R) ->
V = (5*R)+2,
hipe_gensym:update_vrange(icode,V),
case get(hipe_inline_fp) of
true ->
hipe_icode:mk_fvar(V);
_ ->
hipe_icode:mk_var(V)
end;
mk_var(new) ->
T = hipe_gensym:new_var(icode),
V = (5*T)+3,
hipe_gensym:update_vrange(icode,V),
hipe_icode:mk_var(V);
mk_var(reg) ->
T = hipe_gensym:new_var(icode),
V = (5*T)+4,
hipe_gensym:update_vrange(icode,V),
hipe_icode:mk_reg(V).
%%-----------------------------------------------------------------------
%% Make an icode label of proper type
%% (Labels mod 2) =:= 0 are actually occuring in the BEAM code
%% (Labels mod 2) =:= 1 are new labels generated by the translation
%%-----------------------------------------------------------------------
mk_label(L) when is_integer(L) ->
LL = 2 * L,
hipe_gensym:update_lblrange(icode, LL),
hipe_icode:mk_label(LL);
mk_label(new) ->
L = hipe_gensym:new_label(icode),
LL = (2 * L) + 1,
hipe_gensym:update_lblrange(icode, LL),
hipe_icode:mk_label(LL).
%% Maps from the BEAM's labelling scheme to our labelling scheme.
%% See mk_label to understand how it works.
map_label(L) ->
L bsl 1. % faster and more type-friendly version of 2 * L
%%-----------------------------------------------------------------------
%% Returns the type of the given variables.
%%-----------------------------------------------------------------------
type({x,_}) ->
var;
type({y,_}) ->
var;
type({fr,_}) ->
var;
type({atom,A}) when is_atom(A) ->
#beam_const{value=A};
type(nil) ->
#beam_const{value=[]};
type({integer,X}) when is_integer(X) ->
#beam_const{value=X};
type({float,X}) when is_float(X) ->
#beam_const{value=X};
type({literal,X}) ->
#beam_const{value=X}.
%%-----------------------------------------------------------------------
%% Returns true iff the argument is a variable.
%%-----------------------------------------------------------------------
is_var({x,_}) ->
true;
is_var({y,_}) ->
true;
is_var({fr,_}) ->
true;
is_var({atom,A}) when is_atom(A) ->
false;
is_var(nil) ->
false;
is_var({integer,N}) when is_integer(N) ->
false;
is_var({float,F}) when is_float(F) ->
false;
is_var({literal,_Literal}) ->
false.
%%-----------------------------------------------------------------------
%% Fixes the code for catches by adding some code.
%%-----------------------------------------------------------------------
fix_catches(Code) ->
fix_catches(Code, gb_trees:empty()).
%% We need to handle merged catch blocks, that is multiple 'catch' with
%% only one 'catch_end', or multiple 'try' with one 'try_case'. (Catch
%% and try can never be merged.) All occurrences of 'catch' or 'try'
%% with a particular fail-to label are assumed to only occur before the
%% corresponding 'catch_end'/'try_end' in the Beam code.
fix_catches([{'catch',N,Lbl},ContLbl|Code], HandledCatchLbls) ->
fix_catch('catch',Lbl,ContLbl,Code,HandledCatchLbls,{catch_end,N});
fix_catches([{'try',N,Lbl},ContLbl|Code], HandledCatchLbls) ->
fix_catch('try',Lbl,ContLbl,Code,HandledCatchLbls,{try_case,N});
fix_catches([Instr|Code], HandledCatchLbls) ->
[Instr|fix_catches(Code, HandledCatchLbls)];
fix_catches([], _HandledCatchLbls) ->
[].
fix_catch(Type, Lbl, ContLbl, Code, HandledCatchLbls, Instr) ->
TLbl = {Type, Lbl},
case gb_trees:lookup(TLbl, HandledCatchLbls) of
{value, Catch} when is_integer(Catch) ->
NewCode = fix_catches(Code, HandledCatchLbls),
Cont = hipe_icode:label_name(ContLbl),
[hipe_icode:mk_begin_try(Catch,Cont),ContLbl | NewCode];
none ->
OldCatch = map_label(Lbl),
OldCatchLbl = hipe_icode:mk_label(OldCatch),
{CodeToCatch,RestOfCode} = split_code(Code,OldCatchLbl,Instr),
NewCatchLbl = mk_label(new),
NewCatch = hipe_icode:label_name(NewCatchLbl),
%% The rest of the code cannot contain catches with the same label.
RestOfCode1 = fix_catches(RestOfCode, HandledCatchLbls),
%% The catched code *can* contain more catches with the same label.
NewHandledCatchLbls = gb_trees:insert(TLbl, NewCatch, HandledCatchLbls),
CatchedCode = fix_catches(CodeToCatch, NewHandledCatchLbls),
%% The variables which will get the tag, value, and trace.
Vars = [mk_var({r,0}), mk_var({x,1}), mk_var({x,2})],
Cont = hipe_icode:label_name(ContLbl),
[hipe_icode:mk_begin_try(NewCatch,Cont), ContLbl]
++ CatchedCode
++ [mk_label(new), % dummy label before the goto
hipe_icode:mk_goto(OldCatch), % normal execution path
NewCatchLbl, % exception handing enters here
hipe_icode:mk_begin_handler(Vars)]
++ catch_handler(Type, Vars, OldCatchLbl)
++ RestOfCode1 % back to normal execution
end.
catch_handler('try', _Vars, OldCatchLbl) ->
%% A try just falls through to the old fail-to label which marked the
%% start of the try_case block. All variables are set up as expected.
[OldCatchLbl];
catch_handler('catch', [TagVar,ValueVar,TraceVar], OldCatchLbl) ->
%% This basically implements a catch as a try-expression. We must jump
%% to the given end label afterwards so we don't pass through both the
%% begin_handler and the end_try.
ContLbl = mk_label(new),
Cont = hipe_icode:label_name(ContLbl),
ThrowLbl = mk_label(new),
NoThrowLbl = mk_label(new),
ExitLbl = mk_label(new),
ErrorLbl = mk_label(new),
Dst = mk_var({r,0}),
[hipe_icode:mk_if('=:=', [TagVar, hipe_icode:mk_const('throw')],
hipe_icode:label_name(ThrowLbl),
hipe_icode:label_name(NoThrowLbl)),
ThrowLbl,
hipe_icode:mk_move(Dst, ValueVar),
hipe_icode:mk_goto(Cont),
NoThrowLbl,
hipe_icode:mk_if('=:=', [TagVar, hipe_icode:mk_const('exit')],
hipe_icode:label_name(ExitLbl),
hipe_icode:label_name(ErrorLbl)),
ExitLbl,
hipe_icode:mk_primop([Dst],mktuple,[hipe_icode:mk_const('EXIT'),
ValueVar]),
hipe_icode:mk_goto(Cont),
ErrorLbl,
%% We use the trace variable to hold the symbolic trace. Its previous
%% value is just that in p->ftrace, so get_stacktrace() works fine.
hipe_icode:mk_call([TraceVar],erlang,get_stacktrace,[],remote),
hipe_icode:mk_primop([ValueVar],mktuple, [ValueVar, TraceVar]),
hipe_icode:mk_goto(hipe_icode:label_name(ExitLbl)),
OldCatchLbl, % normal execution paths must go through end_try
hipe_icode:mk_end_try(),
hipe_icode:mk_goto(Cont),
ContLbl].
%% Note that it is the fail-to label that is the important thing, but
%% for 'catch' we want to make sure that the label is followed by the
%% 'catch_end' instruction - if it is not, we might have a real problem.
%% Checking that a 'try' label is followed by 'try_case' is not as
%% important, but we get that as a bonus.
split_code([First|Code], Label, Instr) ->
split_code(Code, Label, Instr, First, []).
split_code([Instr|Code], Label, Instr, Prev, As) when Prev =:= Label ->
split_code_final(Code, As); % drop both label and instruction
split_code([Other|_Code], Label, Instr, Prev, _As) when Prev =:= Label ->
?EXIT({missing_instr_after_label, Label, Instr, [Other, Prev | _As]});
split_code([Other|Code], Label, Instr, Prev, As) ->
split_code(Code, Label, Instr, Other, [Prev|As]);
split_code([], _Label, _Instr, Prev, As) ->
split_code_final([], [Prev|As]).
split_code_final(Code, As) ->
{lists:reverse(As), Code}.
%%-----------------------------------------------------------------------
%% Fixes fallthroughs
%%-----------------------------------------------------------------------
fix_fallthroughs([]) ->
[];
fix_fallthroughs([I|Is]) ->
fix_fallthroughs(Is, I, []).
fix_fallthroughs([I1|Is], I0, Acc) ->
case hipe_icode:is_label(I1) of
false ->
fix_fallthroughs(Is, I1, [I0 | Acc]);
true ->
case hipe_icode:is_branch(I0) of
true ->
fix_fallthroughs(Is, I1, [I0 | Acc]);
false ->
%% non-branch before label - insert a goto
Goto = hipe_icode:mk_goto(hipe_icode:label_name(I1)),
fix_fallthroughs(Is, I1, [Goto, I0 | Acc])
end
end;
fix_fallthroughs([], I, Acc) ->
lists:reverse([I | Acc]).
%%-----------------------------------------------------------------------
%% Removes the code between a fail instruction and the closest following
%% label.
%%-----------------------------------------------------------------------
-spec remove_dead_code(icode_instrs()) -> icode_instrs().
remove_dead_code([I|Is]) ->
case I of
#icode_fail{} ->
[I|remove_dead_code(skip_to_label(Is))];
_ ->
[I|remove_dead_code(Is)]
end;
remove_dead_code([]) ->
[].
%% returns the instructions from the closest label
-spec skip_to_label(icode_instrs()) -> icode_instrs().
skip_to_label([I|Is] = Instrs) ->
case I of
#icode_label{} -> Instrs;
_ -> skip_to_label(Is)
end;
skip_to_label([]) ->
[].
%%-----------------------------------------------------------------------
%% This needs to be extended in case new architectures are added.
%%-----------------------------------------------------------------------
resolve_native_endianess(Flags) ->
case {Flags band 16#10, hipe_rtl_arch:endianess()} of
{16#10, big} ->
Flags band 5;
{16#10, little} ->
(Flags bor 2) band 7;
_ ->
Flags band 7
end.
%%-----------------------------------------------------------------------
%% Potentially useful for debugging.
%%-----------------------------------------------------------------------
pp_beam(BeamCode, Options) ->
case proplists:get_value(pp_beam, Options) of
true ->
pp(BeamCode);
{file,FileName} ->
{ok,File} = file:open(FileName, [write]),
pp(File, BeamCode);
_ -> %% includes "false" case
ok
end.
pp(Code) ->
pp(standard_io, Code).
pp(Stream, []) ->
case Stream of %% I am not sure whether this is necessary
standard_io -> ok;
_ -> ok = file:close(Stream)
end;
pp(Stream, [FunCode|FunCodes]) ->
pp_mfa(Stream, FunCode),
put_nl(Stream),
pp(Stream, FunCodes).
pp_mfa(Stream, FunCode) ->
lists:foreach(fun(Instr) -> print_instr(Stream, Instr) end, FunCode).
print_instr(Stream, {label,Lbl}) ->
io:format(Stream, " label ~p:\n", [Lbl]);
print_instr(Stream, Op) ->
io:format(Stream, " ~p\n", [Op]).
put_nl(Stream) ->
io:format(Stream, "\n", []).
%%-----------------------------------------------------------------------
%% Handling of environments -- used to process local tail calls.
%%-----------------------------------------------------------------------
%% Construct an environment
env__mk_env(M, F, A, Entry) ->
#environment{mfa={M,F,A}, entry=Entry}.
%% Get current MFA
env__get_mfa(#environment{mfa=MFA}) -> MFA.
%% Get entry point of the current function
env__get_entry(#environment{entry=EP}) -> EP.
%%-----------------------------------------------------------------------