aboutsummaryrefslogblamecommitdiffstats
path: root/lib/hipe/icode/hipe_icode_ssa_struct_reuse.erl
blob: 2337ef9323753d172b7c7a24b286bcc7bbc79168 (plain) (tree)
1
2
3
4
5
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444



                                 
                                                        





























































































































                                                                                        

                                                               





































                                                                               
                                                     












































                                                                                          





                                                                     




































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                                              
%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%% 
%% Copyright Ericsson AB 2007-2013. All Rights Reserved.
%% 
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%% 
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%% 
%% %CopyrightEnd%
%%
%%%=======================================================================
%% File        : hipe_icode_ssa_struct_reuse.erl
%% Author      : Ragnar Osterlund <[email protected]>
%%               student at the compiler techniques 2 course at UU 2007
%% Description : HiPE module that removes redundant or partially redundant
%%		 structure creations from Icode.
%%		 It does so by inserting redundant expressions as late
%%		 as possible in the CFG, with the exception of loops where
%%		 expressions are moved to just before the loop head.
%%		 Current Icode instructions that can be moved are mktuple()
%%		 and cons() primop calls. It also handles cases like 
%%		 f({Z}) -> {Z}. It does so by looking at the structure of
%%		 the match, and recognizes tuples and conses.
%%=======================================================================

-module(hipe_icode_ssa_struct_reuse).

-export([struct_reuse/1]).

-include("../main/hipe.hrl").
-include("hipe_icode.hrl").
-include("hipe_icode_primops.hrl").
-include("../flow/cfg.hrl").

-define(SET,  ordset).
-define(SETS, ordsets).
%%-define(DEBUG, true).

-define(MKTUPLE, mktuple).
-define(CONS, cons).
-define(SR_INSTR_TYPE, sr_instr_type).
-define(SR_STRUCT_INSTR_TYPE, sr_struct_instr_type).

-type struct_type()  :: {?CONS | ?MKTUPLE, icode_term_arg(), any()}.
-type struct_elems() :: {icode_var(), non_neg_integer(), icode_term_arg()}.

%% DATATYPE AREA

%%-----------------------------------------------------------------------------
%% maps
%% The maps are used to identify variables and expressions. 
%% The maps are:
%%
%% expr - a map that contains value numbered structure expressions, ie
%% mktuple and cons expression. The key is the value number and the value
%% is an expr record.
%%
%% instr - maps the semantic instruction to an expression value number, 
%% that is, a key in the expr map above.
%%
%% var - maps variables to expression value numbers. These variables are
%% defined or used by the structure expressions.

-record(maps, {var   = gb_trees:empty() :: gb_tree(),
	       instr = gb_trees:empty() :: gb_tree(),
	       expr  = gb_trees:empty() :: gb_tree()}).

maps_var(#maps{var = Out}) -> Out.
maps_instr(#maps{instr = Out}) -> Out.
maps_expr(#maps{expr = Out}) -> Out.

maps_expr_keys(Maps) -> gb_trees:keys(maps_expr(Maps)).
maps_expr_values(Maps) -> gb_trees:values(maps_expr(Maps)).

maps_instr_lookup(Instr, Maps) -> gb_trees:lookup(Instr, maps_instr(Maps)).
maps_instr_enter(Instr, ExprId, Maps) -> 
  NewInstr = gb_trees:enter(Instr, ExprId, maps_instr(Maps)),
  Maps#maps{instr = NewInstr}.

maps_expr_get(Id, Maps) -> gb_trees:get(Id, maps_expr(Maps)).
maps_expr_enter(Expr, Maps) -> 
  NewExprMap = gb_trees:enter(expr_id(Expr), Expr, maps_expr(Maps)),
  Maps#maps{expr = NewExprMap}.

maps_var_get(Var, Maps) -> gb_trees:get(Var, maps_var(Maps)).
maps_var_lookup(Var, #maps{var = VarMap}) -> gb_trees:lookup(Var, VarMap).
maps_var_enter(Var, Info, Maps = #maps{var = VarMap}) -> 
  NewMap = gb_trees:enter(Var, Info, VarMap),
  Maps#maps{var = NewMap}.
maps_var_insert(Var, Info, Maps = #maps{var = VarMap}) -> 
  NewMap = gb_trees:insert(Var, Info, VarMap),
  Maps#maps{var = NewMap}.

maps_balance(Maps) ->
  Maps#maps{instr = gb_trees:balance(maps_instr(Maps)),
	    expr = gb_trees:balance(maps_expr(Maps)),
	    var = gb_trees:balance(maps_var(Maps))}.

maps_expr_key_enter(Expr, Maps) ->
  NewMaps = maps_instr_enter(expr_key(Expr), expr_id(Expr), Maps),
  maps_expr_enter(Expr, NewMaps).

%%-----------------------------------------------------------------------------
%% expr
%% An expression record. Contains information about a structure expression. 
%% The fields are:
%%
%% id - the value number of the expression
%% key - the semantic instruction, as defined in icode, with destination
%%	 removed and arguments rewritten.
%% defs - destination variable to hold the value of the expression.
%% direct_replace - indicates whether the expression shall be replaced wherever
%%	 it occurs, although it might not have been inserted. This is used for
%%	 the expressions that are detected by the icode type constructs.
%% inserts - a list of node labels that will insert this expression
%% use - a list of expression value numbers that use the value of this
%%	 expression

-record(expr, {id 	      = none        :: 'none' | non_neg_integer(),
	       key	      = none        :: 'none' | tuple(), % illegal_icode_instr()
	       defs 	      = none        :: 'none' | [icode_var()],
	       direct_replace = false       :: boolean(),
	       inserts 	      = ?SETS:new() :: ?SETS:?SET(_),
	       use 	      = ?SETS:new() :: ?SETS:?SET(_)}).

expr_id(#expr{id = Out}) -> Out.
expr_defs(#expr{defs = Out}) -> Out.
expr_key(#expr{key = Out}) -> Out.
expr_inserts(#expr{inserts = Out}) -> Out.
expr_use(#expr{use = Out}) -> Out.
expr_direct_replace(#expr{direct_replace = Out}) -> Out.

expr_use_add(Expr = #expr{use = UseSet}, Use) -> 
  Expr#expr{use = ?SETS:add_element(Use, UseSet)}.

%% expr_key_set(Expr, In) -> Expr#expr{key = In}.
expr_direct_replace_set(Expr, In) -> Expr#expr{direct_replace = In}.
expr_inserts_set(Expr, In) -> Expr#expr{inserts = In}.

expr_create(Key, Defs) ->
  NewExprId = new_expr_id(), 
  #expr{id = NewExprId, key = Key, defs = Defs}.
	
%%-----------------------------------------------------------------------------
%% varinfo
%% A variable mapping info. Contains info about variable references.
%% The fields are:
%%
%% use - a set of expression value numbers that use this variable
%% ref - the variable which value this variable will be assigned
%%      when expression is replaced. This is encoded as {N, M} where
%%	N is the expression value number and M is the nth destination
%%	variable defined by the expression N.
%% elem - indicates that this variable has been detected to be a part of
%%	a tuple. The field contains a {V, N} tuple where V is the variable
%%	that refers to the structure that this variable is an element in
%%	and N is the position that the element occurs on in the tuple. Eg.
%%	{{var, 3}, 2} means that the variable {var, 3} refers to a tuple
%%	in which this variable is on second place.
%% exprid - a expression value number which is the expression that
%%          the variable is defined by.

-record(varinfo, {use = ?SETS:new() :: ?SETS:?SET(_),
		  ref = none        :: 'none' | {non_neg_integer(), non_neg_integer()},
		  elem = none       :: 'none' | {icode_var(), non_neg_integer()},
		  exprid = none     :: 'none' | non_neg_integer()}).

varinfo_exprid(#varinfo{exprid = Out}) -> Out.

varinfo_use_add(#varinfo{use = UseSet} = I, Use) -> 
  I#varinfo{use = ?SETS:add_element(Use, UseSet)}.

%%-----------------------------------------------------------------------------
%% node - a node in the temp CFG. 
%% 
%% label - the label of the node in the original CFG
%% pred - a list of predecessors to this node
%% succ - a list of successors to this node
%% code - code from CFG filtered to only contain structure instructions
%% non_struct_defs - a list of variable definitions that are not defined
%% 	by structures
%% up_expr - upwards exposed expression value numbers
%% killed_expr - killed expressions value numbers
%% sub_inserts - a set of labels of nodes that defines one or more
%% 	expressions and that are in a subtree of this node
%% inserts - a set of expression value numbers to be inserted into the node
%% antic_in - a set of expression value numbers that are anticipated into
%%      the node
%% antic_out - a set of expression value numbers that are anticipated out of
%%      the node
%% phi - a tree of node labels which is defined in phi functions in the node
%% varmap - a list of variable tuples {V1, V2} that maps a variable that are
%% 	the output of phi functions in sub blocks, V1, into a variable
%%      flowing from the block of this node, V2.
%% struct_type - a list of {V, N} tuples that indicates that V is a tuple
%%      with N elements. These are added from the icode primop type().
%% struct_elems - a list of {VD, N, VS} tuples where VD is a variable in the N'th position
%% 	in VS. These are added from the icode primop unsafe_element()

-record(node, {
  label       		= none             :: 'none' | icode_lbl(),
  pred			= none             :: 'none' | [icode_lbl()],
  succ 			= none             :: 'none' | [icode_lbl()],
  code     		= []               :: [tuple()], % [illegal_icode_instr()]
  phi			= gb_trees:empty() :: gb_tree(),
  varmap		= []               :: [{icode_var(), icode_var()}],
  pre_loop		= false            :: boolean(),
  non_struct_defs 	= gb_sets:new()    :: gb_set(),
  up_expr     		= none             :: 'none' | ?SETS:?SET(_),
  killed_expr 		= none             :: 'none' | ?SETS:?SET(_),
  sub_inserts		= ?SETS:new()      :: ?SETS:?SET(_),
  inserts 		= ?SETS:new()      :: ?SETS:?SET(_),
  antic_in    		= none             :: 'none' | ?SETS:?SET(_),
  antic_out   		= none             :: 'none' | ?SETS:?SET(_),
  struct_type		= []               :: [struct_type()],
  struct_elems		= []               :: [struct_elems()]}).

node_sub_inserts(#node{sub_inserts = Out}) -> Out.
node_inserts(#node{inserts = Out}) -> Out.
node_antic_out(#node{antic_out = Out}) -> Out.
node_antic_in(#node{antic_in = Out}) -> Out.
node_killed_expr(#node{killed_expr = Out}) -> Out.
node_pred(#node{pred = Out}) -> Out.
node_succ(#node{succ = Out}) -> Out.
node_label(#node{label = Out}) -> Out.
node_code(#node{code = Out}) -> Out.
node_non_struct_defs(#node{non_struct_defs = Out}) -> Out.
node_up_expr(#node{up_expr = Out}) -> Out.
node_pre_loop(#node{pre_loop = Out}) -> Out.
node_struct_type(#node{struct_type = Out}) -> Out.
%% node_atom_type(#node{atom_type = Out}) -> Out.
node_struct_elems(#node{struct_elems = Out}) -> Out.

node_pre_loop_set(Node) -> Node#node{pre_loop = true}.

node_phi_add(Node = #node{phi = Phi}, Pred, Value) ->
  NewList = 
    case gb_trees:lookup(Pred, Phi) of
      {value, List} -> [Value | List];
      none -> [Value]
    end,
  Node#node{phi = gb_trees:enter(Pred, NewList, Phi)}.

node_phi_get(#node{phi = Phi}, Pred) ->
  case gb_trees:lookup(Pred, Phi) of
    {value, List} -> List;
    none -> []
  end.

node_code_add(Node = #node{code = Code}, Instr) ->
  Node#node{code = [Instr | Code]}.

node_code_rev(Node = #node{code = Code}) ->
  Node#node{code = lists:reverse(Code)}.

node_struct_type_add(Node = #node{struct_type = T}, Value) ->
  Node#node{struct_type = [Value | T]}.

%% node_atom_type_add(Node = #node{atom_type = T}, Value) ->
%%   Node#node{atom_type = [Value | T]}.

node_struct_elems_add(Node = #node{struct_elems = T}, Value) ->
  Node#node{struct_elems = [Value | T]}.

node_non_struct_defs_list(Node) -> 
  gb_sets:to_list(node_non_struct_defs(Node)).

node_non_struct_instr_add(Node, Instr) -> 
  DefList = hipe_icode:defines(Instr),
  Tmp = gb_sets:union(node_non_struct_defs(Node), gb_sets:from_list(DefList)),
  Node#node{non_struct_defs = Tmp}.

node_set_sub_inserts(Node, In) -> Node#node{sub_inserts = In}.

node_add_insert(Node, In) -> 
  NewIns = ?SETS:add_element(In, node_inserts(Node)),
  Node#node{inserts = NewIns}.

node_union_sub_inserts(Node, SubIns) -> 
  NewSubIns = ?SETS:union(SubIns, node_sub_inserts(Node)),
  node_set_sub_inserts(Node, NewSubIns).

node_varmap_set(Node, Vars) ->
  Node#node{varmap = Vars}.

node_varmap_lookup(#node{varmap = Varmap}, Var) ->
  case lists:keyfind(Var, 1, Varmap) of
    {_, NewVar} -> NewVar;
    false -> Var
  end.
 
node_create(Label, Pred, Succ) ->
  #node{label = Label, pred = Pred, succ = Succ}.

%%-----------------------------------------------------------------------------
%% nodes - describes the new temporary CFG
%%
%% domtree - the dominator tree of the original CFG
%% labels - the labels of the original CFG, filtered to only contain non fail trace paths
%% postorder - the postorder walk of labels of the original CFG, filtered to only contain non fail trace paths
%% rev_postorder - reverse of postorder.
%% start_label - the start basic block label.
%% all_expr - all expression value numbers that the CFG defines
%% tree - the tree of nodes, with labels as keys and node records as values

-record(nodes, {
  domtree	                   :: hipe_dominators:domTree(),
  labels 	= none             :: 'none' | [icode_lbl()],
  postorder 	= none             :: 'none' | [icode_lbl()],            
  start_label	= none             :: 'none' | icode_lbl(),
  rev_postorder = none             :: 'none' | [icode_lbl()],
  all_expr	= none             :: 'none' | [non_neg_integer()],
  tree  	= gb_trees:empty() :: gb_tree()}).

nodes_postorder(#nodes{postorder = Out}) -> Out.
nodes_rev_postorder(#nodes{rev_postorder = Out}) -> Out.
nodes_tree(#nodes{tree = Out}) -> Out.
nodes_domtree(#nodes{domtree = Out}) -> Out.
nodes_start_label(#nodes{start_label = Out}) -> Out.

nodes_tree_is_empty(#nodes{tree = Tree}) ->
  gb_trees:is_empty(Tree).

nodes_tree_set(Tree, Nodes) -> Nodes#nodes{tree = Tree}.
nodes_all_expr_set(AllExpr, Nodes) -> Nodes#nodes{all_expr = AllExpr}.

nodes_tree_values(Nodes) -> 
  gb_trees:values(nodes_tree(Nodes)).

get_node(Label, Nodes) ->
  gb_trees:get(Label, nodes_tree(Nodes)).

enter_node(Node, Nodes) ->
  nodes_tree_set(gb_trees:enter(node_label(Node), Node, nodes_tree(Nodes)), Nodes).

remove_node(Node, Nodes) ->
  nodes_tree_set(gb_trees:delete(node_label(Node), nodes_tree(Nodes)), Nodes).

nodes_create() -> #nodes{}.

%%-----------------------------------------------------------------------------
%% update
%% record used when updating the CFG, keeping track of which expressions
%% have been inserted and their mappings to variable names.
%%
%% inserted - maps an expression to a list of variables
%% del_red_test - flag that is set to true when the reduction test
%% 	has been inserted is used to move the reduction test.

-record(update, {inserted     = gb_trees:empty() :: gb_tree(),
		 del_red_test = false            :: boolean()}).

update_inserted_lookup(#update{inserted = Inserted}, ExprId) ->
  gb_trees:lookup(ExprId, Inserted).

update_inserted_add_new(Update = #update{inserted = Inserted}, ExprId, Defs) ->
  VarList = [case hipe_icode:is_var(Def) of
	       true -> hipe_icode:mk_new_var();
	       false ->
		 case hipe_icode:is_reg(Def) of
		   true -> hipe_icode:mk_new_reg();
		   false ->
		     true = hipe_icode:is_fvar(Def),
		     hipe_icode:mk_new_fvar()
		 end
	     end || Def <- Defs],
  NewInserted = gb_trees:enter(ExprId, VarList, Inserted),
  {Update#update{inserted = NewInserted}, VarList}.

update_inserted_add(Update = #update{inserted = Inserted}, ExprId, Defs) ->
  Update#update{inserted = gb_trees:enter(ExprId, Defs, Inserted)}.

update_del_red_test(#update{del_red_test = DelRed}) -> DelRed.
update_del_red_test_set(Update) -> 
  Update#update{del_red_test = true}.

%%-----------------------------------------------------------------------------
%% CODE AREA

%%-----------------------------------------------------------------------------
%% Main function called from the hipe_main module

-spec struct_reuse(#cfg{}) -> #cfg{}.

struct_reuse(CFG) ->
  %% debug_init_case_count(?SR_INSTR_TYPE),
  %% debug_init_case_count(?SR_STRUCT_INSTR_TYPE),

  %% debug_function({wings_ask,ask_unzip,3}, CFG),
  %% debug_function(nil, CFG),
  %% set_debug_flag(true),
  %% debug_struct("CFG In: ", CFG),
  %% debug_cfg_pp(CFG),

  init_expr_id(),

  Nodes = construct_nodes(CFG),

  case nodes_tree_is_empty(Nodes) of
    false ->
      Maps = create_maps(Nodes),

      Nodes3 = init_nodes(Nodes, Maps),
      Nodes4 = calc_anticipated(Nodes3),

      {Nodes5, Maps3} = calc_inserts(Nodes4, Maps),

      Nodes6 = update_nodes_inserts(Nodes5, Maps3),

      %% debug_list("ExprMap: ", gb_trees:to_list(Maps3#maps.expr)),
      %% debug_list("VarMap: ", gb_trees:to_list(maps_var(Maps3))),
      %% debug_nodes(Nodes6),

      %% update the cfg
      CFG1 = rewrite_cfg(CFG, Nodes6, Maps3),
      CFG2 = hipe_icode_ssa:remove_dead_code(CFG1),
      CFGOut = hipe_icode_ssa_copy_prop:cfg(CFG2),
      %% CFGOut = CFG1,

      %% print_struct("CFG: ", CFG),
      %% debug_cfg_pp(CFG),
      %% debug_cfg_pp(CFGOut),

      %% debug_print_case_count(?SR_STRUCT_INSTR_TYPE),
      %% debug_print_case_count(?SR_INSTR_TYPE),
      %% debug("Done~n"),
      %% debug_struct("CFG Out: ", CFGOut),
      CFGOut;
    true ->
      CFG
  end.

%%-----------------------------------------------------------------------------
%% Calculate simplified CFG with all fail paths removed

construct_nodes(CFG) ->
  %% all important dominator tree
  DomTree = hipe_dominators:domTree_create(CFG),

  %% construct initial nodes
  {Nodes, NonFailSet} = nodes_from_cfg(CFG, DomTree),

  %% remove nodes on fail paths
  NewNodes = prune_nodes(Nodes, NonFailSet),

  %% fill in misc node tree info
  Postorder = [Label || Label <- hipe_icode_cfg:postorder(CFG),
			gb_sets:is_member(Label, NonFailSet)],

  %% check postorder is valid
  PostOrderTmp = hipe_icode_cfg:postorder(CFG),
  LabelsTmp = hipe_icode_cfg:labels(CFG),
  case length(PostOrderTmp) =/= length(LabelsTmp) of
    true ->
      print("Warning, Postorder and Labels differ!~n"),
      print_struct("Postorder: ", PostOrderTmp),
      print_struct("Labels: ", LabelsTmp);
    false ->
      done
  end,

  RevPostorder = lists:reverse(Postorder),

  StartLabel = hipe_icode_cfg:start_label(CFG),
  NewTree = gb_trees:balance(nodes_tree(NewNodes)),
  
  NewNodes#nodes{postorder = Postorder, 
		 rev_postorder = RevPostorder,
		 start_label = StartLabel,
		 tree = NewTree, 
		 domtree = DomTree}.

%%-----------------------------------------------------------------------------
%% Constructs a tree of nodes, one node for each basic block in CFG

nodes_from_cfg(CFG, DomTree) ->
  lists:foldl(fun(Label, {NodesAcc, NonFailAcc}) -> 
    Code = hipe_bb:code(hipe_icode_cfg:bb(CFG, Label)),
    Pred = hipe_icode_cfg:pred(CFG, Label),
    Succ = hipe_icode_cfg:succ(CFG, Label),
    %% debug_struct("Label: ", Label),
    %% debug_struct("Code: ", Code),
		  
    %% Find all structures and phi functions.
    %% Find all defines in this bb that are not from structures
    %% and add them to NonStructDefs, later to be used for calculating upwards
    %% exposed expressions, and killed expressions.
    %% Also find all non fail blocks, ie backtrace from return blocks,
    %% and add them to NewNonFailAcc

    Node = node_create(Label, Pred, Succ),

    {NewNode, NewNonFailAcc, PreLoopPreds} = 
      lists:foldl(fun(Instr, {NodeAcc, NFAcc, PLPAcc}) ->
	case instr_type(Instr) of
	  struct -> 
	    {node_code_add(NodeAcc, Instr), NFAcc, PLPAcc};
	  return -> 
	    {NodeAcc, get_back_trace_rec(CFG, Label, NFAcc), PLPAcc};
	  {struct_elems, NumElem, DstVar, SrcVar} ->
	    NewNodeAcc = node_struct_elems_add(NodeAcc, {DstVar, NumElem, SrcVar}),
	    {node_non_struct_instr_add(NewNodeAcc, Instr), NFAcc, PLPAcc};
	  {struct_type, NumElems, Var, Type} ->
	    {node_struct_type_add(NodeAcc, {Type, Var, NumElems}), NFAcc, PLPAcc};
	  {tuple_arity, Var, Cases} ->
	    NewNodeAcc = 
	      lists:foldl(fun(Case, NAcc) ->
			      case Case of
				{{const, {flat, Arity}}, _} ->
				  Tuple = {?MKTUPLE, Var, Arity},
				  node_struct_type_add(NAcc, Tuple);
				_ -> NAcc
			      end
			  end, NodeAcc, Cases),
	    {NewNodeAcc, NFAcc, PLPAcc};
	  %% {atom_type, Atom, Var} ->
	  %%   {node_atom_type_add(NodeAcc, {Var, Atom}), NFAcc, PLPAcc};
	  phi ->
	    Def = hipe_icode:phi_dst(Instr),
	    Part = lists:foldl(fun(P = {Pr, PredVar}, {IsDef, NotDom}) -> 
	      case hipe_dominators:domTree_dominates(Label, Pr, DomTree) of
		false ->
		  {IsDef, [P | NotDom]};
		true ->
		  {IsDef andalso PredVar =:= Def, NotDom}
	      end
	    end, {true, []}, hipe_icode:phi_arglist(Instr)),

	    case Part of
	      {true, [{P, V}]} -> 
		%% This is the only case recognized so far. All phi
		%% sub block references a static variable that is
		%% assigned the same value again in the phi function.
		{node_phi_add(NodeAcc, P, {Def, V}),
		 NFAcc, ?SETS:add_element(P, PLPAcc)};

	      {false, [{P, _}]} -> 
		{node_non_struct_instr_add(NodeAcc, Instr),
		 NFAcc, ?SETS:add_element(P, PLPAcc)};

	      _ -> 
		{node_non_struct_instr_add(NodeAcc, Instr), NFAcc, PLPAcc}
	    end;
	  _ ->
	    {node_non_struct_instr_add(NodeAcc, Instr), NFAcc, PLPAcc}
	end
      end, {Node, NonFailAcc, ?SETS:new()}, Code),

      %% insert the new node
      NewNodesAcc = enter_node(node_code_rev(NewNode), NodesAcc),

      %% Set the pre loop flag of all nodes that are predecessor to this node
      %% and that are the first nodes prior to a loop.
      NewNodesAcc2 = 
	lists:foldl(fun(Lbl, NsAcc) ->
	  PredNode = get_node(Lbl, NsAcc),
	  NewPredNode = node_pre_loop_set(PredNode),
	  NewPredNode2 = node_varmap_set(NewPredNode, node_phi_get(NewNode, Lbl)),

	  enter_node(NewPredNode2, NsAcc)
	end, NewNodesAcc, PreLoopPreds),

      {NewNodesAcc2, NewNonFailAcc}
  end, {nodes_create(), gb_sets:new()}, hipe_icode_cfg:reverse_postorder(CFG)).

%%-----------------------------------------------------------------------------
%% Get all labels from Label to root of CFG, ie backtraces from Label.

get_back_trace_rec(CFG, Label, LabelSet) -> 
  %% debug_struct("Label :", Label),
  %% debug_struct("Set :", gb_sets:to_list(LabelSet)),
  case gb_sets:is_member(Label, LabelSet) of 
    false ->
      Preds = hipe_icode_cfg:pred(CFG, Label),
      lists:foldl(fun(Lbl, SetAcc) ->
		      get_back_trace_rec(CFG, Lbl, SetAcc) 
		  end, gb_sets:add(Label, LabelSet), Preds);
    true -> LabelSet
  end.

%%-----------------------------------------------------------------------------
%% Remove all fail block paths and successors and predecessors
%% That are on fail paths

prune_nodes(Nodes, NonFailSet) ->
  lists:foldl(fun(Node, NodesAcc) -> 
   case gb_sets:is_member(node_label(Node), NonFailSet) of
      true ->
	NewSucc = [L || L <- node_succ(Node), gb_sets:is_member(L, NonFailSet)],
	NewPred = [L || L <- node_pred(Node), gb_sets:is_member(L, NonFailSet)],
	enter_node(Node#node{succ = NewSucc, pred = NewPred}, NodesAcc);
      false ->
	remove_node(Node, NodesAcc)
    end
  end, Nodes, nodes_tree_values(Nodes)).

%%-----------------------------------------------------------------------------
%% Map calculations. 

%%-----------------------------------------------------------------------------
%% Create a maps structure from the Nodes record

create_maps(Nodes) ->
  Maps = lists:foldl(fun(Label, MapsAcc) ->
    Node = get_node(Label, Nodes),
    NewMapsAcc = maps_from_node_struct_type(MapsAcc, Node),
    NewMapsAcc2 = maps_from_node_struct_elems(NewMapsAcc, Node),
    %% NewMapsAcc3 = maps_from_node_atom_type(NewMapsAcc2, Node),
    maps_from_node_code(NewMapsAcc2, Node)
  end, #maps{}, nodes_rev_postorder(Nodes)),
  maps_balance(Maps).

%%-----------------------------------------------------------------------------
%% Add all elements in the struct_type list of Node to Maps as expressions

maps_from_node_struct_type(Maps, Node) ->
  %% debug_struct("Node Label: ", node_label(Node)),
  %% debug_struct("Node Tuple Type: ", node_struct_type(Node)),
  lists:foldl(fun({Type, Var, Size}, MapsAcc) ->
		  Key = create_elem_expr_key(Size, Var, []),
		  InstrKey = hipe_icode:mk_primop([], Type, Key),
		  NewExpr2 = expr_create(InstrKey, [Var]),
		  NewExpr3 = expr_direct_replace_set(NewExpr2, true),
		  maps_expr_key_enter(NewExpr3, MapsAcc)
	      end, Maps, node_struct_type(Node)).

create_elem_expr_key(0, _, Key) -> Key;
create_elem_expr_key(N, Var, Key) -> 
  create_elem_expr_key(N - 1, Var, [{Var, N} | Key]).

%%-----------------------------------------------------------------------------
%%maps_from_node_atom_type(Maps, Node) ->
%%  lists:foldl(fun({Var, Atom}, MapsAcc) ->
%%    case maps_var_lookup(Var, MapsAcc) of
%%      none ->
%%	MapsAcc;
%%      {value, #varinfo{elem = none}} -> 
%%	MapsAcc;
%%      {value, #varinfo{elem = {Src, Num, ExprId}}} -> 
%%	Expr = maps_expr_get(ExprId, MapsAcc),
%%	Key = expr_key(Expr),
%%
%%	Filter = fun(Arg) -> 
%%	  case Arg of
%%	    {Src, Num, ExprId} -> 
%%	      hipe_icode:mk_const(Atom);
%%	    _ -> 
%%	      Arg
%%	  end end,
%%
%%	NewKey = replace_call_variables(Filter, Key),
%%	NewExpr = expr_create(NewKey, expr_defs(Expr)),
%%	maps_expr_key_enter(NewExpr, MapsAcc)
%%    end
%%  end, Maps, node_atom_type(Node)).

%%-----------------------------------------------------------------------------
%% Add all struct_elemns in Node to Maps as variables

maps_from_node_struct_elems(Maps, Node) ->
  lists:foldl(fun({Dst, Num, Src}, MapsAcc) ->
		  VarInfo = #varinfo{elem = {Src, Num}},
		  maps_var_insert(Dst, VarInfo, MapsAcc)
	      end, Maps, node_struct_elems(Node)).

%%-----------------------------------------------------------------------------
%% Get all expressions defined by the Node and insert them into Maps.
%% Also insert information about all affected variables into Maps.

maps_from_node_code(Maps, Node) ->
  %% debug_struct("Node Label: ", Label),
  %% debug_struct("Node Code: ", Code),
  %% Label = node_label(Node),
  lists:foldl(fun(Instr, MapsAcc) ->
    %% create two keys that are used to reference this structure creation
    %% instruction, so that we can lookup its expression value number
    %% later.
    InstrKey = hipe_icode:call_dstlist_update(Instr, []),

    %% Fetch the two keys from the instruction
    {HasElems, RefKey, ElemKey} = 
      replace_call_vars_elems(MapsAcc, InstrKey),

    %% create a new expr record or lookup an existing one.
    case HasElems of 
      true ->
	%% The instruction contains uses of variables that are
	%% part of another structure.
	case maps_instr_lookup(ElemKey, MapsAcc) of
	  {value, ExprId} -> 
	    %% The instruction is equal to a structure that has
	    %% already been created. This is the f({Z}) -> {Z}
	    %% optimization. I.e. there is no need to create {Z} again.
	    %% Also lookup if ExprId is defining a variable that is
	    %% already an element in another structure. If so,
	    %% use that element. This takes care of nested structures
	    %% such as f({X, {Y, Z}}) -> {X, {Y, Z}}.

	    #expr{defs = [Var]} = maps_expr_get(ExprId, MapsAcc),
	    StructElem = 
	      case maps_var_lookup(Var, MapsAcc) of
		{value, #varinfo{elem = Elem, exprid = none}} when Elem =/= none ->
		  Elem;
		_ -> none
	      end,
	    Defines = hipe_icode:defines(Instr),
	    maps_varinfos_create(Defines, ExprId, StructElem, MapsAcc);
	  none ->
	    %% create a new expression
	    maps_expr_varinfos_create(Instr, RefKey, MapsAcc)	
	end;
      false ->
	%% create a new expression
	maps_expr_varinfos_create(Instr, RefKey, MapsAcc)
    end
  end, Maps, node_code(Node)).

%%-----------------------------------------------------------------------------
%% Creates varinfo structures with exprid set to ExprId for all
%% variables contained in Defines. These are put into MapsIn.

maps_varinfos_create(Defines, ExprId, Elem, MapsIn) ->
  VarInfo = #varinfo{exprid = ExprId, elem = Elem},
  {MapsOut, _} = 
    lists:foldl(fun (Def, {Maps, NumAcc}) -> 
		    NewVarInfo = VarInfo#varinfo{ref = {ExprId, NumAcc}},
		    {maps_var_insert(Def, NewVarInfo, Maps), NumAcc + 1}
		end, {MapsIn, 1}, Defines),
  MapsOut.

%%-----------------------------------------------------------------------------
%% Creates a new expression from RefKey if RefKey is not already reffering
%% to an expression. Also creates varinfo structures for all variables defined
%% and used by Instr. Result is put in Maps.

maps_expr_varinfos_create(Instr, RefKey, Maps) ->
  Defines = hipe_icode:defines(Instr),
  {ExprId, Maps2} =
    case maps_instr_lookup(RefKey, Maps) of
      {value, EId} -> 
	{EId, Maps};
      none ->
	NewExpr = expr_create(RefKey, Defines),
	{expr_id(NewExpr), maps_expr_key_enter(NewExpr, Maps)}
    end,
  Maps3 = maps_varinfos_create(Defines, ExprId, none, Maps2),
  update_maps_var_use(Instr, ExprId, Maps3).

%%-----------------------------------------------------------------------------
%% A variable replacement function that returns a tuple of three elements
%% {T, K1, K2}, where T indicates if Instr contained variables that where
%% elements of other structures, K1 is the Instr with all variables that
%% references another structure replaced, and K2 is K1 but also with all
%% variables that are elements of other structures replaced.

replace_call_vars_elems(Maps, Instr) ->
  VarMap = maps_var(Maps),
  {HasElems, Vars, Elems} = 
    lists:foldr(fun(Arg, {HasElems, Vars, Elems}) -> 
      case hipe_icode:is_const(Arg) of
	false -> 
	  case gb_trees:lookup(Arg, VarMap) of
	    none ->
	      {HasElems, [Arg | Vars], [Arg | Elems]};
	    {value, #varinfo{ref = none, elem = none}} -> 
	      {HasElems, [Arg | Vars], [Arg | Elems]};
	    {value, #varinfo{ref = Ref, elem = none}} -> 
	      {HasElems, [Ref | Vars], [Ref | Elems]};
	    {value, #varinfo{ref = none, elem = Elem}} -> 
	      {true, [Arg | Vars], [Elem | Elems]};
	    {value, #varinfo{ref = Ref, elem = Elem}} -> 
	      {true, [Ref | Vars], [Elem | Elems]}
	  end;
	true ->
	  {HasElems, [Arg | Vars], [Arg | Elems]}
      end end, {false, [], []}, hipe_icode:args(Instr)),
  {HasElems, hipe_icode:call_args_update(Instr, Vars), 
  hipe_icode:call_args_update(Instr, Elems)}.

%%-----------------------------------------------------------------------------
%% Updates the usage information of all variables used by Instr to also
%% contain Id and updates Maps to contain the new variable information.
%% Also updates the expressions where the updated variables are used to
%% contain the use information.

update_maps_var_use(Instr, Id, Maps) ->
  lists:foldl(fun(Use, MapsAcc) ->
		  VarInfo = get_varinfo(Use, MapsAcc),
		  NewVarInfo = varinfo_use_add(VarInfo, Id),
		  MapsAcc2 = maps_var_enter(Use, NewVarInfo, MapsAcc),
		  case varinfo_exprid(VarInfo) of
		    none ->
		      MapsAcc2;
		    VarExprId -> 
		      Expr = maps_expr_get(VarExprId, MapsAcc2),
		      NewExpr = expr_use_add(Expr, Id),
		      maps_expr_enter(NewExpr, MapsAcc2)
		  end
	      end, Maps, hipe_icode:uses(Instr)).

%%-----------------------------------------------------------------------------
%% Looks up an old variable info or creates a new one if none is found.

get_varinfo(Var, Maps) ->
  case maps_var_lookup(Var, Maps) of
    {value, Info} -> 
      Info;
    none -> 
      #varinfo{}
  end.

%%-----------------------------------------------------------------------------
%% filters all arguments to a function call Instr that are not constants
%% through the Filter function, and replaces the arguments in Instr with
%% the result.

replace_call_variables(Filter, Instr) ->
  NewArgs = [case hipe_icode:is_const(Arg) of
	       false -> Filter(Arg);
	       true -> Arg
	     end || Arg <- hipe_icode:args(Instr)],
  hipe_icode:call_args_update(Instr, NewArgs).

%%-----------------------------------------------------------------------------
%% Init nodes from node local expression information

init_nodes(Nodes, Maps) ->
  AllExpr = maps_expr_keys(Maps),
  lists:foldl(fun(Node, NodesAcc) -> 
    UEExpr = calc_up_exposed_expr(maps_var(Maps), Node),
    %% print_list("Up ExprSet: ", ?SETS:to_list(UEExpr)),

    KilledExpr = calc_killed_expr(Node, Maps),
    %% print_list("Killed: ", ?SETS:to_list(KilledExpr)),

    %% End nodes have no anticipated out
    AnticOut =
      case node_succ(Node) of
	[] ->
	  ?SETS:new();
	_ ->
	  AllExpr
      end,
    enter_node(Node#node{up_expr = UEExpr,
			 killed_expr = KilledExpr,
			 antic_out = AnticOut}, NodesAcc)
  end, nodes_all_expr_set(AllExpr, Nodes), nodes_tree_values(Nodes)).

%%-----------------------------------------------------------------------------
%% Calculate the upwards exposed expressions for a node.

calc_up_exposed_expr(VarMap, Node) ->
  %% debug_struct("UpExpr label: ", node_label(Node)),
  NonStructDefs = node_non_struct_defs(Node),
  {_, ExprIdSet} = 
    lists:foldl(fun(Instr, {NotToUseAcc, ExprIdAcc}) ->
      Defs = hipe_icode:defines(Instr),
      Uses = hipe_icode:uses(Instr),
      IsNotToUse = 
	lists:any(fun(Use) -> gb_sets:is_member(Use, NotToUseAcc) end, Uses),
	case IsNotToUse of
	  false ->
	    NewExprIdAcc = 
	      lists:foldl(fun(Def, Acc) ->
		#varinfo{exprid = Id} = gb_trees:get(Def, VarMap),
		?SETS:add_element(Id, Acc) end, ExprIdAcc, Defs),
	    {NotToUseAcc, NewExprIdAcc};
	  true ->
	    NewNotToUse =
	      gb_sets:union(gb_sets:from_list(Defs), NotToUseAcc),
	    {NewNotToUse, ExprIdAcc}
	end
    end, {NonStructDefs, ?SETS:new()}, node_code(Node)),
    ExprIdSet.

%%-----------------------------------------------------------------------------
%% Calculate killed expression for node

calc_killed_expr(Node, Maps) ->
  calc_killed_expr_defs(node_non_struct_defs_list(Node), ?SETS:new(), Maps).

calc_killed_expr_defs(Defs, UseSet, Maps) ->
  lists:foldl(fun(Def, Acc) -> 
		  case maps_var_lookup(Def, Maps) of
		    none ->
		      Acc;
		    {value, #varinfo{use = Use}} ->
		      ?SETS:union(Acc, calc_killed_expr_use(Use, Maps))
		  end
	      end, UseSet, Defs).

calc_killed_expr_use(ExprIds, Maps) ->
  ?SETS:fold(fun(Id, Acc) -> 
		 Expr = maps_expr_get(Id, Maps),
		 ?SETS:union(Acc, calc_killed_expr_use(expr_use(Expr), Maps))
	     end, ExprIds, ExprIds).

%%-----------------------------------------------------------------------------
%% Calculate the anticipated in and anticipated out sets for each node

calc_anticipated(NodesIn) ->
  calc_anticipated_rec(NodesIn, nodes_postorder(NodesIn)).

calc_anticipated_rec(NodesIn, []) -> NodesIn;
calc_anticipated_rec(NodesIn, WorkIn) ->
  {NodesOut, WorkOut} = 
  lists:foldl(fun(Label, {NodesAcc, WorkAcc}) ->
    Node = get_node(Label, NodesAcc),

    %debug_struct("~nNode Label: ", Label),

    AnticIn = ?SETS:union(node_up_expr(Node), 
      ?SETS:subtract(node_antic_out(Node), node_killed_expr(Node))),

    %debug_struct("AnticIn: ", AnticIn),
    case (node_antic_in(Node) =:= AnticIn) of
      false ->
	NewNodes1 = enter_node(Node#node{antic_in = AnticIn}, NodesAcc),
	Preds = node_pred(Node),
	%debug_struct("Preds: ", Preds),

	NewNodes2 = 
	lists:foldl(fun(Label2, NodesAcc2) ->
	  PredNode = get_node(Label2, NodesAcc2),
	  AnticOut = ?SETS:intersection(AnticIn, node_antic_out(PredNode)),
	  %debug_struct("Pred Node Label: ", Label2),
	  %debug_struct("Pred AnticOut: ", AnticOut),
	  
	  enter_node(PredNode#node{antic_out = AnticOut}, NodesAcc2) 
	end, NewNodes1, Preds),

	NewWork = add_work_list(Preds, WorkAcc),
	%debug_struct("New Work: ", NewWork),

	{NewNodes2, NewWork};
      true ->
	{NodesAcc, WorkAcc}
    end
    end, {NodesIn, new_work()}, WorkIn),

  calc_anticipated_rec(NodesOut, get_work_list(WorkOut)).

%%-----------------------------------------------------------------------------
%% Function that adds inserts to expressions from nodes which either
%% have an upwards exposed expression or dominate more than one node
%% that inserts the same expression or the node is a prior to loop
%% node. The inserted info is stored in the #expr records in the expr
%% map of the #maps structure.

calc_inserts(NodesIn, MapsIn) ->
  DomTree = nodes_domtree(NodesIn),

  lists:foldl(fun(Label, {NodesAcc, MapsAcc}) ->
    Node = get_node(Label, NodesAcc),

    %% get some basic properties.
    UpExpr = node_up_expr(Node), 
    AnticOut = node_antic_out(Node),
    SubIns = node_sub_inserts(Node),

    %% debug_struct("Label: ", Label),

    {HasIns, NewMapsAcc} = 
      ?SETS:fold(fun(ExprId, {HasInsAcc, MapsAcc2}) ->
	Expr = maps_expr_get(ExprId, MapsAcc2),

	ExprIns = expr_inserts(Expr),
	ExprSubIns = ?SETS:intersection(ExprIns, SubIns),

	%% There are three cases when to insert an expression
	%% 1. The expression is defined at least twice in the subtree of this
	%%    node, that is length(ExprSubIns) > 1.
	%% 2. It is defined in the node and is upwards exposed.
	%% 3. The node is a block just above a loop, so we should move
	%%    all anticipated expressions to the node.
	
	case length(ExprSubIns) > 1 orelse ?SETS:is_element(ExprId, UpExpr) 
	  orelse node_pre_loop(Node) of
	  true ->
	    %% get labels of all sub blocks that inserts the expression and
	    %% that are dominated by the current node.
	    Dominates = 
	      ?SETS:filter(fun(SubLabel) ->
		hipe_dominators:domTree_dominates(Label, SubLabel, DomTree) 
	      end, ExprSubIns),

	    %% remove inserts labels from insert labelset.
	    NewIns = ?SETS:subtract(ExprIns, Dominates),
	    NewIns2 = ?SETS:add_element(Label, NewIns),

	    %% update the node.
	    NewMaps =
	      maps_expr_enter(expr_inserts_set(Expr, NewIns2), MapsAcc2),
	    {true, NewMaps};
	  false ->
	    {HasInsAcc, MapsAcc2}
	end
      end, {false, MapsAcc}, ?SETS:union(AnticOut, UpExpr)),
    
    %% Check if there was an insert into this node,
    %% and if so add to the sub inserts set.
    NewSubIns = 
      case HasIns of
	true ->
	  ?SETS:add_element(Label, SubIns);
	false ->
	  SubIns
      end,
    
    %% update sub inserts for all predecessors to the node.
    NewNodes2 = 
      lists:foldl(fun(PredLabel, NodesAcc2) ->
	PredNode = get_node(PredLabel, NodesAcc2),	
	enter_node(node_union_sub_inserts(PredNode, NewSubIns), NodesAcc2) 
      end, NodesAcc, node_pred(Node)),

    {NewNodes2, NewMapsAcc}

  end, {NodesIn, MapsIn}, nodes_postorder(NodesIn)).

%%-----------------------------------------------------------------------------
%% Update the insert sets of each node in the node tree.
%% That is, move the insert information from the expressions to
%% the actual nodes that perform the inserts.

update_nodes_inserts(Nodes, Maps) ->
  lists:foldl(fun(Expr, NodesAcc) ->
		  ExprId = expr_id(Expr),
		  ?SETS:fold(fun(Label, NsAcc) ->
				 Nd = get_node(Label, NsAcc),
				 enter_node(node_add_insert(Nd, ExprId), NsAcc)
			     end, NodesAcc, expr_inserts(Expr))
	      end, Nodes, maps_expr_values(Maps)).

%%-----------------------------------------------------------------------------
%% Rewrite CFG functions

%%-----------------------------------------------------------------------------
%% Do the code updating from the info in the nodes and maps structures. This
%% is a proxy function for rewrite_cfg/6
rewrite_cfg(CFG, Nodes, Maps) ->
  {NewCFG, _Visited} =
    rewrite_cfg(CFG, ?SETS:new(), #update{}, Nodes, Maps, [nodes_start_label(Nodes)]),
  %% debug_struct("Visited: ", _Visited),
  NewCFG.

%%-----------------------------------------------------------------------------
%% rewrite_cfg
%% traverse the CFG in reverse postorder and rewrite each basic block before
%% rewriteing its children. Pass along to each BB update the mappings of
%% inserted expressions in the Update record.

rewrite_cfg(CFG, Visited, Update, Nodes, Maps, Labels) ->
  lists:foldl(fun(Label, {CFGAcc, VisitedAcc}) -> 
    case ?SETS:is_element(Label, VisitedAcc) of
      false ->
	%% debug_struct("Visit: ", Label),
	Node = get_node(Label, Nodes),
	NewVisitedAcc = ?SETS:add_element(Label, VisitedAcc),
	{NewCFGAcc, NewUpdate} = rewrite_bb(CFGAcc, Update, Maps, Node),
	%% debug_struct("Update inserted: ", update_inserted_list(NewUpdate)),
	rewrite_cfg(NewCFGAcc, NewVisitedAcc, NewUpdate, Nodes, Maps, node_succ(Node));
      true ->
	{CFGAcc, VisitedAcc}
    end
  end, {CFG, Visited}, Labels).

%%-----------------------------------------------------------------------------
%% rewrite one single basic block in the CFG as described by the properties
%% in the Node for that block. Uses the Maps and Update info to lookup
%% the instructions and expressions to insert or delete.

rewrite_bb(CFG, Update, Maps, Node) ->
  #node{pre_loop = PreLoop, label = Label, up_expr = UpExpr, inserts = Inserts} = Node, 

  Code = hipe_bb:code(hipe_icode_cfg:bb(CFG, Label)),

  %debug_struct("RW Label: ", Label),
  %debug_struct("Inserts", Inserts),

  DelRed = update_del_red_test(Update),
  Delete = ?SETS:subtract(UpExpr, Inserts),

  %% local function that gets the instruction and defines list of an
  %% expression id in the current node and and returns them.
  GetInstrFunc = fun(Expr) ->
		     Instr = expr_key(Expr),
		     Defs = expr_defs(Expr),
		     NewInstr = 
		       if
			 PreLoop ->
			   replace_call_variables(fun(Var) ->
						      node_varmap_lookup(Node,
									 Var)
						  end,
						  Instr);
			 true ->
			   Instr
		       end,
		     {NewInstr, Defs}
		 end,

  %% go through all expressions defined by the node and replace
  %% or remove them as indicated by the delete set. Also perform
  %% reduction test replacement if neccessary.
  {[CodeLast | CodeRest], NewUpdate, LocalAcc} = 
    lists:foldl(fun(Instr, {CodeAcc,  UpdateAcc, LocalAcc}) ->
      case struct_instr_type(Instr) of
	struct ->
	  Defs = hipe_icode:defines(Instr),

	  #varinfo{exprid = ExprId} = maps_var_get(hd(Defs), Maps),

	  Expr = maps_expr_get(ExprId, Maps),
	  DirectReplace = expr_direct_replace(Expr),

	  %% Creates move intstructions from Vars to Defs
	  RemoveFuncVars = fun(Vars) ->
	    CodeAcc2 = mk_defs_moves(CodeAcc, Defs, Vars),
	    {CodeAcc2, UpdateAcc, LocalAcc} end,

	  %% Looks up an already inserted ExprId and makes moves
	  %% of variables from that expression to this expression.
	  RemoveFunc = fun() ->
	    {value, Vars} = update_inserted_lookup(UpdateAcc, ExprId),
	    RemoveFuncVars(Vars) end,

	  %% Is ExprId already inserted?
	  IsLocal = ?SETS:is_element(ExprId, LocalAcc),

	  case DirectReplace of
	    true -> 
	      %% The Instr is reffering to an expression that is 
	      %% defined as an identical already present instruction, 
	      %% and can be removed directly.
	      RemoveFuncVars(expr_defs(Expr));
	    false when IsLocal ->
	      %% The instruction has already been inserted.
	      RemoveFunc();
	    _ ->
	      case ?SETS:is_element(ExprId, Delete) of
		true ->
		  %% should not be inserted
		  RemoveFunc();
		_ ->
		  %% Should remain
		  UpdateAcc2 = update_inserted_add(UpdateAcc, ExprId, Defs),
		  LocalAcc2 = ?SETS:add_element(ExprId, LocalAcc),
		  {[Instr | CodeAcc], UpdateAcc2, LocalAcc2}
	      end
	  end;
	redtest when DelRed ->
	  %% delete reduction test
	  {CodeAcc, UpdateAcc, LocalAcc};
	_ ->
	  {[Instr | CodeAcc], UpdateAcc, LocalAcc}
      end
    end, {[], Update, ?SETS:new()}, Code),

  %debug_struct("RW Label 2: ", Label),

  %% calculate the inserts that are new to this node, that is
  %% the expressions that are in Inserts but not in UpExpr,
  %% and that have not been added already,
  %% that is not present in LocalAcc
  NewInserts = ?SETS:subtract(?SETS:subtract(Inserts, UpExpr), LocalAcc),

  {NewCodeRest, NewUpdate2} = 
    ?SETS:fold(fun(ExprId, {CodeAcc, UpdateAcc}) ->
      Expr = maps_expr_get(ExprId, Maps),
      {ExprInstr, Defs} = GetInstrFunc(Expr),
      {UpdateAcc2, NewDefs} = update_inserted_add_new(UpdateAcc, ExprId, Defs),

      %% check if there exists an identical expression, so that
      %% this expression can be replaced directly.
      CodeAcc2 = 
	case expr_direct_replace(Expr) of
	  false ->
	    NewInstr = rewrite_expr(UpdateAcc2, ExprInstr, NewDefs),
	    [NewInstr | CodeAcc];
	  true ->
	    mk_defs_moves(CodeAcc, NewDefs, Defs)
	end,
      {CodeAcc2, UpdateAcc2}
    end, {CodeRest, NewUpdate}, NewInserts),

  NewCode = lists:reverse([CodeLast | NewCodeRest]),

  %% Check if we are to insert new reduction test here...
  {NewCode2, NewUpdate3} = 
    case PreLoop andalso ?SETS:size(Inserts) > 0 andalso not DelRed of
      true ->
	{[hipe_icode:mk_primop([], redtest, []) | NewCode], update_del_red_test_set(NewUpdate2)};
      false ->
	{NewCode, NewUpdate2}
    end,

  NewBB = hipe_bb:mk_bb(NewCode2),
  NewCFG = hipe_icode_cfg:bb_add(CFG, Label, NewBB),

  {NewCFG, NewUpdate3}.

%%-----------------------------------------------------------------------------
%% Create a new structure instruction from Instr with destination Defs
%% from the insert mapping in Update.

rewrite_expr(Update, Instr, Defs) ->
  NewInstr = 
    replace_call_variables(fun(Ref) ->
      case Ref of
	{ExprId, Num} when is_integer(ExprId) ->
	  {value, DefList} = update_inserted_lookup(Update, ExprId),
	  lists:nth(Num, DefList);
	_ -> Ref
      end end, Instr),
  hipe_icode:call_dstlist_update(NewInstr, Defs).

%%-----------------------------------------------------------------------------
%% Make move instructions from Defs list to all variables in
%% the Refs list and insert into Code.

mk_defs_moves(Code, [], []) -> Code;
mk_defs_moves(Code, [Ref | Refs], [Def | Defs]) -> 
  mk_defs_moves([hipe_icode:mk_move(Ref, Def) | Code], Refs, Defs).

%%-----------------------------------------------------------------------------
%% Utilities

new_work() ->
  {[], gb_sets:new()}.

add_work_list(List, Work) ->
  lists:foldl(fun(Label, WorkAcc) ->
    add_work_label(Label, WorkAcc) end, Work, List).

add_work_label(Label, {List, Set}) ->
  case gb_sets:is_member(Label, Set) of
    false ->
      {[Label | List], gb_sets:add(Label, Set)};
    true ->
      {List, Set}
  end.

get_work_list({List, _}) -> 
  lists:reverse(List).

%%-----------------------------------------------------------------------------
%% instr_type
%% gets a tag for the type of instruction that is passed in I

struct_instr_type(I) ->
  case I of
    #icode_call{type = primop, 'fun' = mktuple} -> 
      %%debug_count_case(?SR_STRUCT_INSTR_TYPE, #call{type = primop, 'fun' = mktuple}),
      struct;
    #icode_call{type = primop, 'fun' = cons} -> 
      %%debug_count_case(?SR_STRUCT_INSTR_TYPE, #call{type = primop, 'fun' = cons}),
      struct;
    #icode_call{type = primop, 'fun' = redtest} -> 
      %%debug_count_case(?SR_STRUCT_INSTR_TYPE, #call{type = primop, 'fun' = redtest}),
      redtest;
    _ ->
      %%debug_count_case(?SR_STRUCT_INSTR_TYPE, other),
      other 
  end.

instr_type(I) ->
  case I of
    %#call{type = primop, dstlist = List} when length(List) >= 1 -> struct;
    #icode_call{type = primop, 'fun' = {unsafe_element, Elem}, dstlist = [DstVar], args = [SrcVar]} -> 
      %%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = {unsafe_element, num}}),
      {struct_elems, Elem, DstVar, SrcVar};
    #icode_phi{} -> 
      %%debug_count_case(?SR_INSTR_TYPE,#phi{}),
      phi;
    #icode_enter{} ->
      %%debug_count_case(?SR_INSTR_TYPE,#enter{}),
      return;
    #icode_return{} ->
      %%debug_count_case(?SR_INSTR_TYPE,#return{}),
      return;
    #icode_call{type = primop, 'fun' = mktuple} -> 
      %%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = mktuple}),
      struct;
    #icode_call{type = primop, 'fun' = cons} ->
      %%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = cons}),
      struct;
    #icode_call{type = primop, 'fun' = redtest} ->
      %%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = redtest}),
      redtest;
    #icode_type{test = {tuple, Size}, args = [Var]} ->
      %%debug_count_case(?SR_INSTR_TYPE, #type{type = {tuple, size}}),
      {struct_type, Size, Var, ?MKTUPLE};
    #icode_type{test = cons, args = [Var]} ->
      %%debug_count_case(?SR_INSTR_TYPE,#type{type = cons}),
      {struct_type, 2, Var, ?CONS};
    %#type{type = {atom, Atom}, args = [Var]} -> {atom_type, Atom, Var};
    #icode_call{type = primop, 'fun' = unsafe_hd,
		dstlist = [DstVar], args = [SrcVar]} ->
      %%debug_count_case(?SR_INSTR_TYPE,#call{type = primop, 'fun' = unsafe_hd}),
      {struct_elems, 1, DstVar, SrcVar};
    #icode_call{type = primop, 'fun' = unsafe_tl,
		dstlist = [DstVar], args = [SrcVar]} ->
      %%debug_count_case(?SR_INSTR_TYPE, #call{type = primop, 'fun' = unsafe_tl}),
      {struct_elems, 2, DstVar, SrcVar};
    #icode_switch_tuple_arity{term = Var, cases = Cases} -> 
      %%debug_count_case(?SR_INSTR_TYPE,#switch_tuple_arity{}),
      {tuple_arity, Var, Cases};
    _ -> other
  end.
    
%%-----------------------------------------------------------------------------
%% Expression ID counter

init_expr_id() ->
  put({struct_reuse, expr_id_count}, 0).

-spec new_expr_id() -> non_neg_integer().
new_expr_id() ->
  V = get({struct_reuse, expr_id_count}),
  put({struct_reuse, expr_id_count}, V+1),
  V.

%%-----------------------------------------------------------------------------
%% Debug and print functions

print_struct(String, Struct) ->
  io:format(String),
  erlang:display(Struct).

print(String) ->
  io:format(String).

-ifdef(DEBUG).

debug_count_case(Type, Case) -> 
  Cases = get(Type), 
  NewCases = 
    case gb_trees:lookup(Case, Cases) of
      {value, Value} -> gb_trees:enter(Case, Value + 1, Cases);
      none -> gb_trees:insert(Case, 1, Cases)
    end,
  put(Type, NewCases).

debug_init_case_count(Type) -> 
  case get(Type) of
    undefined -> put(Type, gb_trees:empty());
    _ -> ok
  end.

debug_print_case_count(Type) ->
  Cases = get(Type), 
  debug_struct("Case type: ", Type),
  debug_list("Cases: ", gb_trees:to_list(Cases)).

set_debug_flag(Value) ->
  put({struct_reuse, debug}, Value).

get_debug_flag() -> get({struct_reuse, debug}).

debug_function(FuncName, CFG) ->
  Linear = hipe_icode_cfg:cfg_to_linear(CFG),
  Func = hipe_icode:icode_fun(Linear),
  case Func =:= FuncName orelse FuncName =:= nil of
    true -> 
      set_debug_flag(true),
      %% debug_struct("Code: ", hipe_icode_cfg:bb(CFG, 15)),
      debug_struct("~nFunction name :", Func);
    false -> 
      set_debug_flag(undefined)
  end.

debug_cfg_pp(CFG) ->
  case get_debug_flag() of
    true -> hipe_icode_cfg:pp(CFG);
    _ -> none
  end.

debug_struct(String, Struct) ->
  case get_debug_flag() of
    true ->
      io:format(String),
      erlang:display(Struct);
    _ -> none
  end.

debug(String) ->
  case get_debug_flag() of
    true -> io:format(String);
    _ -> none
  end.

debug_list(String, List) ->
  case get_debug_flag() of
    true -> print_list(String, List);
    _ -> none
  end.

print_list(String, List) ->
  io:format(String),
  io:format("~n"),
  print_list_rec(List),
  io:format("~n").

print_list_rec([]) -> ok;
print_list_rec([Struct | List]) ->
  erlang:display(Struct),
  print_list_rec(List).

debug_nodes(Nodes) ->
  lists:foreach(fun(Node) -> debug_node(Node) end, nodes_tree_values(Nodes)).

debug_node(Node) ->
  case get_debug_flag() of
    true ->
      print_struct("Node Label: ", Node#node.label),
      print_struct("Code: ", Node#node.code),
      print_struct("Phi: ", Node#node.phi),
      print_struct("PreLoop: ", Node#node.pre_loop),
      print_struct("Preds: ", Node#node.pred),
      print_struct("Succ: ", Node#node.succ),
      print_struct("Up Expr: ", Node#node.up_expr),
      print_struct("Kill : ", Node#node.killed_expr),
      print_struct("AnticIn: ", Node#node.antic_in), 
      print_struct("AnticOut: ", Node#node.antic_out),
      print_struct("SubInserts: ", Node#node.sub_inserts),
      print_struct("Inserts: ", Node#node.inserts),
      print_struct("NonStructDefs: ", Node#node.non_struct_defs),
      print_struct("Params: ", Node#node.struct_type),
      print_struct("Elems: ", Node#node.struct_elems),
      io:format("~n");
    _ -> none
  end.

-endif.