aboutsummaryrefslogblamecommitdiffstats
path: root/lib/hipe/llvm/elf_format.erl
blob: 13a00bfd38268c188c424962803520f787539866 (plain) (tree)

























                                                                          


                            







                                                                                


                           












                                                   

































                                                                                
                                                          









                                                                                   
                                











                                                                         
              


                                                                                

                            




                                                                                

                             






























































































                                                                                 
 


                                                                               

                                    
 
              
 


                                             
 





                                                     


                                                                 



                                                 

                                                    

              

























                                                                                







                                                                                




































                                                                                

                                
                                                                           
                                          


                                                                            

                                                               

                                                               













                                                                             










                                                       


                                                                              
                                                        
                                                





                                                                                
                               


                                                                    






                                                                                

                                                             
 



















                                                            









                                                                                


                                                             
                                                               
                                        
                      









                                                                








                                                                                

                                                
                         





                                                                         
 




                                                                                
                               
                               






                                                              


                                                                          


                                               
                          












                                                                          
 




























































































                                                                                 
              








                                                                         
       





















                                                                                
                                             
                                   
                                            


                                                                  




                                            




                                                                             






















                                                                               
%% -*- erlang-indent-level: 2 -*-

%%% @copyright 2011-2014 Yiannis Tsiouris <[email protected]>,
%%%                      Chris Stavrakakis <[email protected]>,
%%%                      Kostis Sagonas <[email protected]>
%%% @author Yiannis Tsiouris <[email protected]>
%%%    [http://www.softlab.ntua.gr/~gtsiour/]

%%% @doc This module contains functions for extracting various pieces of
%%%      information from an ELF formated Object file. To fully understand
%%%      the ELF format and the use of these functions please read
%%%      "[http://www.linuxjournal.com/article/1060?page=0,0]" carefully.

-module(elf_format).

-export([get_tab_entries/1,
         %% Relocations
         get_rodata_relocs/1,
         get_text_relocs/1,
         extract_rela/2,
         get_rela_addends/1,
         %% Note
         extract_note/2,
         %% Executable code
         extract_text/1,
         %% GCC Exception Table
	 get_exn_handlers/1,
	 %% Main interface
	 read/1
        ]).

-include("elf_format.hrl").

%%------------------------------------------------------------------------------
%% Types
%%------------------------------------------------------------------------------

-export_type([elf/0]).

-opaque elf()  :: binary().

-type lp()     :: non_neg_integer().  % landing pad
-type num()    :: non_neg_integer().
-type index()  :: non_neg_integer().
-type offset() :: non_neg_integer().
-type size()   :: non_neg_integer().
-type start()  :: non_neg_integer().

-type info()     :: index().
-type nameoff()  :: offset().
-type valueoff() :: offset().

-type name()       :: string().

%%------------------------------------------------------------------------------
%% Abstract Data Types and Accessors for ELF Structures.
%%------------------------------------------------------------------------------

%% File header
-record(elf_ehdr, {ident,                  % ELF identification
		   type,                    % Object file type
		   machine,                 % Machine Type
		   version,                 % Object file version
		   entry,                   % Entry point address
		   phoff,                   % Program header offset
		   shoff      :: offset(),  % Section header offset
		   flags,                   % Processor-specific flags
		   ehsize     :: size(),    % ELF header size
		   phentsize  :: size(),    % Size of program header entry
		   phnum      :: num(),     % Number of program header entries
		   shentsize  :: size(),    % Size of section header entry
		   shnum      :: num(),     % Number of section header entries
		   shstrndx   :: index()    % Section name string table index
		  }).
-type elf_ehdr() :: #elf_ehdr{}.

-record(elf_ehdr_ident, {class,                   % File class
			 data,                     % Data encoding
			 version,                  % File version
			 osabi,                    % OS/ABI identification
			 abiversion,               % ABI version
			 pad,                      % Start of padding bytes
			 nident                    % Size of e_ident[]
			}).
%% -type elf_ehdr_ident() :: #elf_ehdr_ident{}.

%% Section header entries
-record(elf_shdr, {name       :: string(),  % Section name
		   type,                    % Section type
		   flags,                   % Section attributes
		   addr,                    % Virtual address in memory
		   offset     :: offset(),  % Offset in file
		   size       :: size(),    % Size of section
		   link,                    % Link to other section
		   info,                    % Miscellaneous information
		   addralign,               % Address align boundary
		   entsize                  % Size of entries, if section has table
		  }).
-type elf_shdr() :: #elf_shdr{}.

%% Symbol table entries
-record(elf_sym, {name   :: nameoff(),     % Symbol name
		  info,                     % Type and Binding attributes
		  other,                    % Reserved
		  shndx,                    % Section table index
		  value  :: valueoff(),     % Symbol value
		  size   :: size()          % Size of object
		 }).
-type elf_sym() :: #elf_sym{}.

%% Relocations
-ifdef(BIT32).
-record(elf_rel, {r_offset  :: offset(),  % Address of reference
		  r_info    :: info()      % Symbol index and type of relocation
		 }).
-type reloc() :: #elf_rel{}.
-else.

-record(elf_rela, {r_offset  :: offset(), % Address of reference
		   r_info    :: info(),    % Symbol index and type of relocation
		   r_addend  :: offset()   % Constant part of expression
		  }).
-type reloc() :: #elf_rela{}.
-endif.

%% %% Program header table
%% -record(elf_phdr, {type,   % Type of segment
%% 		   flags,  % Segment attributes
%% 		   offset, % Offset in file
%% 		   vaddr,  % Virtual address in memory
%% 		   paddr,  % Reserved
%% 		   filesz, % Size of segment in file
%% 		   memsz,  % Size of segment in memory
%% 		   align   % Alignment of segment
%% 		  }).

%% %% GCC exception table
%% -record(elf_gccexntab, {lpbenc,    % Landing pad base encoding
%% 			lpbase,    % Landing pad base
%% 			ttenc,     % Type table encoding
%% 			ttoff,     % Type table offset
%% 			csenc,     % Call-site table encoding
%% 			cstabsize, % Call-site table size
%% 			cstab     :: cstab() % Call-site table
%% 		       }).
%% -type elf_gccexntab() :: #elf_gccexntab{}.

-record(elf_gccexntab_callsite, {start :: start(), % Call-site start
				 size  :: size(),   % Call-site size
				 lp    :: lp(),     % Call-site landing pad
                                                   %  (exception handler)
				 onaction           % On action (e.g. cleanup)
				}).
%% -type elf_gccexntab_callsite() :: #elf_gccexntab_callsite{}.

%%------------------------------------------------------------------------------
%% Accessor Functions
%%------------------------------------------------------------------------------

%% File header
%% -spec mk_ehdr(...) -> elf_ehrd().
mk_ehdr(Ident, Type, Machine, Version, Entry, Phoff, Shoff, Flags, Ehsize,
	Phentsize, Phnum, Shentsize, Shnum, Shstrndx) ->
    #elf_ehdr{ident = Ident, type = Type, machine = Machine, version = Version,
	      entry = Entry, phoff = Phoff, shoff = Shoff, flags = Flags,
	      ehsize = Ehsize, phentsize = Phentsize, phnum = Phnum,
	      shentsize = Shentsize, shnum = Shnum, shstrndx = Shstrndx}.

%% -spec ehdr_shoff(elf_ehdr()) -> offset().
%% ehdr_shoff(#elf_ehdr{shoff = Offset}) -> Offset.
%% 
%% -spec ehdr_shentsize(elf_ehdr()) -> size().
%% ehdr_shentsize(#elf_ehdr{shentsize = Size}) -> Size.
%% 
%% -spec ehdr_shnum(elf_ehdr()) -> num().
%% ehdr_shnum(#elf_ehdr{shnum = Num}) -> Num.
%% 
%% -spec ehdr_shstrndx(elf_ehdr()) -> index().
%% ehdr_shstrndx(#elf_ehdr{shstrndx = Index}) -> Index.


%%-spec mk_ehdr_ident(...) -> elf_ehdr_ident().
mk_ehdr_ident(Class, Data, Version, OsABI, AbiVersion, Pad, Nident) ->
  #elf_ehdr_ident{class = Class, data = Data, version = Version, osabi = OsABI,
		  abiversion = AbiVersion, pad = Pad, nident = Nident}.

%%%-------------------------
%%% Section header entries
%%%-------------------------
mk_shdr(Name, Type, Flags, Addr, Offset, Size, Link, Info, AddrAlign, EntSize) ->
    #elf_shdr{name = Name, type = Type, flags = Flags, addr = Addr,
	      offset = Offset, size = Size, link = Link, info = Info,
	      addralign = AddrAlign, entsize = EntSize}.

%% -spec shdr_offset(elf_shdr()) -> offset().
%% shdr_offset(#elf_shdr{offset = Offset}) -> Offset.
%% 
%% -spec shdr_size(elf_shdr()) -> size().
%% shdr_size(#elf_shdr{size = Size}) -> Size.

%%%-------------------------
%%% Symbol Table Entries
%%%-------------------------
mk_sym(Name, Info, Other, Shndx, Value, Size) ->
  #elf_sym{name = Name, info = Info, other = Other,
	   shndx = Shndx, value = Value, size = Size}.

-spec sym_name(elf_sym()) -> nameoff().
sym_name(#elf_sym{name = Name}) -> Name.

%% -spec sym_value(elf_sym()) -> valueoff().
%% sym_value(#elf_sym{value = Value}) -> Value.
%% 
%% -spec sym_size(elf_sym()) -> size().
%% sym_size(#elf_sym{size = Size}) -> Size.

%%%-------------------------
%%% Relocations
%%%-------------------------


%% The following two functions capitalize on the fact that the two kinds of
%% relocation records (for 32- and 64-bit architectures have similar structure.
-spec r_offset(reloc()) -> offset().
-spec r_info(reloc()) -> info().

-ifdef(BIT32).

-spec mk_rel(offset(), info()) -> reloc().
mk_rel(Offset, Info) ->
  #elf_rel{r_offset = Offset, r_info = Info}.

r_offset(#elf_rel{r_offset = Offset}) -> Offset.
r_info(#elf_rel{r_info = Info}) -> Info.

-else.%%BIT32

-spec mk_rela(offset(), info(), offset()) -> reloc().
mk_rela(Offset, Info, Addend) ->
  #elf_rela{r_offset = Offset, r_info = Info, r_addend = Addend}.

r_offset(#elf_rela{r_offset = Offset}) -> Offset.
r_info(#elf_rela{r_info = Info}) -> Info.

-spec rela_addend(reloc()) -> offset().
rela_addend(#elf_rela{r_addend = Addend}) -> Addend.

-endif.%%BIT32

%% %%%-------------------------
%% %%% GCC exception table
%% %%%-------------------------
%% -type cstab()  :: [elf_gccexntab_callsite()].
%%
%% mk_gccexntab(LPbenc, LPbase, TTenc, TToff, CSenc, CStabsize, CStab) ->
%%   #elf_gccexntab{lpbenc = LPbenc, lpbase = LPbase, ttenc = TTenc,
%% 		 ttoff = TToff, csenc = CSenc, cstabsize = CStabsize,
%% 		 cstab = CStab}.
%%
%% -spec gccexntab_cstab(elf_gccexntab()) -> cstab().
%% gccexntab_cstab(#elf_gccexntab{cstab = CSTab}) -> CSTab.

mk_gccexntab_callsite(Start, Size, LP, Action) ->
   #elf_gccexntab_callsite{start = Start, size=Size, lp=LP, onaction=Action}.

%% -spec gccexntab_callsite_start(elf_gccexntab_callsite()) -> start().
%% gccexntab_callsite_start(#elf_gccexntab_callsite{start = Start}) -> Start.
%% 
%% -spec gccexntab_callsite_size(elf_gccexntab_callsite()) -> size().
%% gccexntab_callsite_size(#elf_gccexntab_callsite{size = Size}) -> Size.
%% 
%% -spec gccexntab_callsite_lp(elf_gccexntab_callsite()) -> lp().
%% gccexntab_callsite_lp(#elf_gccexntab_callsite{lp = LP}) -> LP.

%%------------------------------------------------------------------------------
%% Main interface function
%%------------------------------------------------------------------------------

%% @doc Parses an ELF file.
-spec read(binary()) -> elf().
read(ElfBin) -> ElfBin.

%%------------------------------------------------------------------------------
%% Functions to manipulate the ELF File Header
%%------------------------------------------------------------------------------

%% @doc Extracts the File Header from an ELF formatted object file. Also sets
%%      the ELF class variable in the process dictionary (used by many functions
%%      in this and hipe_llvm_main modules).
-spec extract_header(elf()) -> elf_ehdr().
extract_header(Elf) ->
  Ehdr_bin = get_binary_segment(Elf, 0, ?ELF_EHDR_SIZE),
  << %% Structural pattern matching on fields.
     Ident_bin:?E_IDENT_SIZE/binary,
     Type:?bits(?E_TYPE_SIZE)/integer-little,
     Machine:?bits(?E_MACHINE_SIZE)/integer-little,
     Version:?bits(?E_VERSION_SIZE)/integer-little,
     Entry:?bits(?E_ENTRY_SIZE)/integer-little,
     Phoff:?bits(?E_PHOFF_SIZE)/integer-little,
     Shoff:?bits(?E_SHOFF_SIZE)/integer-little,
     Flags:?bits(?E_FLAGS_SIZE)/integer-little,
     Ehsize:?bits(?E_EHSIZE_SIZE)/integer-little,
     Phentsize:?bits(?E_PHENTSIZE_SIZE)/integer-little,
     Phnum:?bits(?E_PHNUM_SIZE)/integer-little,
     Shentsize:?bits(?E_SHENTSIZE_SIZE)/integer-little,
     Shnum:?bits(?E_SHENTSIZE_SIZE)/integer-little,
     Shstrndx:?bits(?E_SHSTRNDX_SIZE)/integer-little
  >> = Ehdr_bin,
  <<16#7f, $E, $L, $F, Class, Data, Version, Osabi, Abiversion,
    Pad:6/binary, Nident
  >> = Ident_bin,
  Ident = mk_ehdr_ident(Class, Data, Version, Osabi,
			Abiversion, Pad, Nident),
  mk_ehdr(Ident, Type, Machine, Version, Entry, Phoff, Shoff, Flags,
	  Ehsize, Phentsize, Phnum, Shentsize, Shnum, Shstrndx).

%%------------------------------------------------------------------------------
%% Functions to manipulate Section Header Entries
%%------------------------------------------------------------------------------

-type shdrtab() :: [elf_shdr()].

%% @doc Extracts the Section Header Table from an ELF formated Object File.
-spec extract_shdrtab(elf()) -> shdrtab().
extract_shdrtab(Elf) ->
  %% Extract File Header to get info about Section Header Offset (in bytes),
  %% Entry Size (in bytes) and Number of entries
  #elf_ehdr{shoff = ShOff, shentsize = ShEntsize, shnum = ShNum
	   ,shstrndx = ShStrNdx} = extract_header(Elf),
  %% Get actual Section header table (binary)
  ShdrBin = get_binary_segment(Elf, ShOff,  ShNum * ShEntsize),
  %% We need to lookup the offset and size of the section header string table
  %% before we can fully parse the section table. We compute its offset and
  %% extract the fields we need here.
  ShStrEntryOffset = ShStrNdx * ?ELF_SHDRENTRY_SIZE,
  <<_:ShStrEntryOffset/binary, _:?SH_NAME_SIZE/binary,
    _:?SH_TYPE_SIZE/binary, _:?SH_FLAGS_SIZE/binary, _:?SH_ADDR_SIZE/binary,
    ShStrOffset:?bits(?SH_OFFSET_SIZE)/little,
    ShStrSize:?bits(?SH_SIZE_SIZE)/little,
    _/binary>> = ShdrBin,
  ShStrTab = parse_strtab(get_binary_segment(Elf, ShStrOffset, ShStrSize)),
  get_shdrtab_entries(ShdrBin, ShStrTab).

get_shdrtab_entries(<<>>, _ShStrTab) -> [];
get_shdrtab_entries(ShdrTab, ShStrTab) ->
  <<%% Structural pattern matching on fields.
    Name:?bits(?SH_NAME_SIZE)/integer-little,
    Type:?bits(?SH_TYPE_SIZE)/integer-little,
    Flags:?bits(?SH_FLAGS_SIZE)/integer-little,
    Addr:?bits(?SH_ADDR_SIZE)/integer-little,
    Offset:?bits(?SH_OFFSET_SIZE)/integer-little,
    Size:?bits(?SH_SIZE_SIZE)/integer-little,
    Link:?bits(?SH_LINK_SIZE)/integer-little,
    Info:?bits(?SH_INFO_SIZE)/integer-little,
    Addralign:?bits(?SH_ADDRALIGN_SIZE)/integer-little,
    Entsize:?bits(?SH_ENTSIZE_SIZE)/integer-little,
    Rest/binary
  >> = ShdrTab,
  Entry = mk_shdr(get_strtab_entry(Name, ShStrTab), Type, Flags, Addr, Offset,
		  Size, Link, Info, Addralign, Entsize),
  [Entry | get_shdrtab_entries(Rest, ShStrTab)].

%%------------------------------------------------------------------------------

-spec get_tab_entries(elf()) -> [{name(), valueoff(), size()}].
get_tab_entries(Elf) ->
  SymTab = extract_symtab(Elf),
  StrTab = extract_strtab(Elf),
  [{get_strtab_entry(Name, StrTab), Value, Size div ?ELF_XWORD_SIZE}
   || #elf_sym{name = Name, value = Value, size = Size} <- SymTab,
      Name =/= 0].

%%------------------------------------------------------------------------------
%% Functions to manipulate Symbol Table
%%------------------------------------------------------------------------------

%% @doc Function that extracts Symbol Table from an ELF Object file.
extract_symtab(Elf) ->
  Symtab = extract_segment_by_name(Elf, ?SYMTAB),
  [parse_sym(Sym) || <<Sym:?ELF_SYM_SIZE/binary>> <= Symtab].

-ifdef(BIT32).
parse_sym(<<%% Structural pattern matching on fields.
	    Name:?bits(?ST_NAME_SIZE)/integer-little,
	    Value:?bits(?ST_VALUE_SIZE)/integer-little,
	    Size:?bits(?ST_SIZE_SIZE)/integer-little,
	    Info:?bits(?ST_INFO_SIZE)/integer-little,
	    Other:?bits(?ST_OTHER_SIZE)/integer-little,
	    Shndx:?bits(?ST_SHNDX_SIZE)/integer-little>>) ->
  mk_sym(Name, Info, Other, Shndx, Value, Size).
-else.
parse_sym(<<%% Same fields in different order:
	    Name:?bits(?ST_NAME_SIZE)/integer-little,
	    Info:?bits(?ST_INFO_SIZE)/integer-little,
	    Other:?bits(?ST_OTHER_SIZE)/integer-little,
	    Shndx:?bits(?ST_SHNDX_SIZE)/integer-little,
	    Value:?bits(?ST_VALUE_SIZE)/integer-little,
	    Size:?bits(?ST_SIZE_SIZE)/integer-little>>) ->
  mk_sym(Name, Info, Other, Shndx, Value, Size).
-endif.

%% @doc Extracts a specific entry from the Symbol Table (as binary).
%%      This function takes as arguments the Symbol Table (`SymTab')
%%      and the entry's serial number and returns that entry (`sym').
get_symtab_entry(SymTab, EntryNum) ->
  lists:nth(EntryNum + 1, SymTab).

%%------------------------------------------------------------------------------
%% Functions to manipulate String Table
%%------------------------------------------------------------------------------

%% ADT: get_strtab_entry/1 must be used to consume this type.
-type strtab() :: binary().

%% @doc Extracts String Table from an ELF formated Object File.
-spec extract_strtab(elf()) -> strtab().
extract_strtab(Elf) ->
  parse_strtab(extract_segment_by_name(Elf, ?STRTAB)).

-spec parse_strtab(binary()) -> strtab().
parse_strtab(StrTabSectionBin) -> StrTabSectionBin.

%% @doc Returns the name of the symbol at the given offset.
-spec get_strtab_entry(non_neg_integer(), strtab()) -> string().
get_strtab_entry(Offset, StrTab) ->
  <<_:Offset/binary, StrBin/binary>> = StrTab,
  bin_get_string(StrBin).

%%------------------------------------------------------------------------------
%% Functions to manipulate Relocations
%%------------------------------------------------------------------------------

%% @doc This function gets as argument an ELF binary file and returns a list
%%      with all .rela.rodata labels (i.e. constants and literals in code)
%%      or an empty list if no ".rela.rodata" section exists in code.
-spec get_rodata_relocs(elf()) -> [offset()].
-spec get_rela_addends([reloc()]) -> [offset()].
-ifdef(BIT32).
get_rodata_relocs(Elf) ->
  [SkipPadding || SkipPadding <- extract_rodata(Elf), SkipPadding =/= 0].
get_rela_addends(_RelaEntries) -> error(notsup).
-else.
get_rodata_relocs(Elf) -> get_rela_addends(extract_rela(Elf, ?RODATA)).
get_rela_addends(RelaEntries) -> [rela_addend(E) || E <- RelaEntries].
-endif.


%% @doc Extract a list of the form `[{SymbolName, Offset}]' with all relocatable
%%      symbols and their offsets in the code from the ".text" section.
-spec get_text_relocs(elf()) -> [{name(), offset()}].
get_text_relocs(Elf) ->
  Symtab = extract_symtab(Elf),
  Strtab = extract_strtab(Elf),
  [begin
     %% Find the names of the symbols:
     Symbol = get_symtab_entry(Symtab, ?ELF_R_SYM(r_info(E))),
     Name = get_strtab_entry(sym_name(Symbol), Strtab),
     %% Only care about the name and the offset:
     {Name, r_offset(E)}
   end || E <- extract_rela(Elf, ?TEXT)].

%% @doc Extract the Relocations segment for section `Name' (that is passed
%%      as second argument) from an ELF formated Object file binary.
-spec extract_rela(elf(), name()) -> [reloc()].

-ifdef(BIT32).
extract_rela(Elf, Name) ->
  %% Structural pattern matching on fields of a Rel Entry.
  [mk_rel(Offset, Info)
   || <<Offset:?bits(?R_OFFSET_SIZE)/little,
	Info:?bits(?R_INFO_SIZE)/little % ELF-32 uses ".rel"
      >> <= extract_segment_by_name(Elf, ?REL(Name))].
-else.
extract_rela(Elf, Name) ->
  [mk_rela(Offset, Info, Addend)
   || <<Offset:?bits(?R_OFFSET_SIZE)/little,
	Info:?bits(?R_INFO_SIZE)/little,
	Addend:?bits(?R_ADDEND_SIZE)/little % ...while ELF-64 uses ".rela"
      >> <= extract_segment_by_name(Elf, ?RELA(Name))].
-endif.

%%------------------------------------------------------------------------------
%% Functions to manipulate Executable Code segment
%%------------------------------------------------------------------------------

%% @doc This function gets as arguments an ELF formated binary file and
%%      returns the Executable Code (".text" segment) or an empty binary if it
%%      is not found.
-spec extract_text(elf()) -> binary().
extract_text(Elf) ->
  extract_segment_by_name(Elf, ?TEXT).

%%------------------------------------------------------------------------------
%% Functions to manipulate Note Section
%%------------------------------------------------------------------------------

%% @doc Extract specific Note Section from an ELF Object file. The function
%%      takes as first argument the object file (`Elf') and the `Name' of the
%%      wanted Note Section (<b>without</b> the ".note" prefix!). It returns
%%      the specified binary segment or an empty binary if no such section
%%      exists.
-spec extract_note(elf(), string()) -> binary().
extract_note(Elf, Name) ->
  extract_segment_by_name(Elf, ?NOTE(Name)).

%%------------------------------------------------------------------------------
%% Functions to manipulate GCC Exception Table segment
%%------------------------------------------------------------------------------

%% A description for the C++ exception table formats can be found at Exception
%% Handling Tables (http://www.codesourcery.com/cxx-abi/exceptions.pdf).

%% A list with `{Start, End, HandlerOffset}' for all call sites in the code
-spec get_exn_handlers(elf()) -> [{start(), start(), lp()}].
get_exn_handlers(Elf) ->
  CallSites = extract_gccexntab_callsites(Elf),
  [{Start, Start + Size, LP}
   || #elf_gccexntab_callsite{start = Start, size = Size, lp = LP} <- CallSites].

%% @doc This function gets as argument an ELF binary file and returns
%%      the table (list) of call sites which is stored in GCC
%%      Exception Table (".gcc_except_table") section.
%%      It returns an empty list if the Exception Table is not found.
%%      XXX: Assumes there is *no*  Action Record Table.
extract_gccexntab_callsites(Elf) ->
  case extract_segment_by_name(Elf, ?GCC_EXN_TAB) of
    <<>> ->
      [];
    ExnTab ->
      %% First byte of LSDA is Landing Pad base encoding.
      <<LBenc:8, More/binary>> = ExnTab,
      %% Second byte is the Landing Pad base (if its encoding is not
      %% DW_EH_PE_omit) (optional).
      {_LPBase, LSDACont} =
        case LBenc =:= ?DW_EH_PE_omit of
          true ->  % No landing pad base byte. (-1 denotes that)
            {-1, More};
          false -> % Landing pad base.
            <<Base:8, More2/binary>> = More,
            {Base, More2}
        end,
      %% Next byte of LSDA is the encoding of the Type Table.
      <<TTenc:8, More3/binary>> = LSDACont,
      %% Next byte is the Types Table offset encoded in U-LEB128 (optional).
      {_TTOff, LSDACont2} =
        case TTenc =:= ?DW_EH_PE_omit of
          true ->  % There is no Types Table pointer. (-1 denotes that)
            {-1, More3};
          false -> % The byte offset from this field to the start of the Types
                   % Table used for exception matching.
            leb128_decode(More3)
        end,
      %% Next byte of LSDA is the encoding of the fields in the Call-site Table.
      <<_CSenc:8, More4/binary>> = LSDACont2,
      %% Sixth byte is the size (in bytes) of the Call-site Table encoded in
      %% U-LEB128.
      {_CSTabSize, CSTab} = leb128_decode(More4),
      %% Extract all call site information
      get_gccexntab_callsites(CSTab, [])
  end.

get_gccexntab_callsites(<<>>, Acc) ->
  lists:reverse(Acc);
get_gccexntab_callsites(CSTab, Acc) ->
  %% We are only interested in the Landing Pad of every entry.
  <<Start:32/integer-little, Size:32/integer-little,
    LP:32/integer-little, OnAction:8, More/binary
  >> = CSTab,
  GccCS = mk_gccexntab_callsite(Start, Size, LP, OnAction),
  get_gccexntab_callsites(More, [GccCS | Acc]).

%%------------------------------------------------------------------------------
%% Functions to manipulate Read-only Data (.rodata)
%%------------------------------------------------------------------------------
-ifdef(BIT32).
extract_rodata(Elf) ->
  Rodata_bin = extract_segment_by_name(Elf, ?RODATA),
  get_rodata_entries(Rodata_bin, []).

get_rodata_entries(<<>>, Acc) ->
  lists:reverse(Acc);
get_rodata_entries(Rodata_bin, Acc) ->
  <<Num:?bits(?ELF_ADDR_SIZE)/integer-little, More/binary>> = Rodata_bin,
  get_rodata_entries(More, [Num | Acc]).
-endif.

%%------------------------------------------------------------------------------
%% Helper functions
%%------------------------------------------------------------------------------

%% @doc Returns the binary segment starting at `Offset' with length `Size'
%%      (bytes) from a binary file. If `Offset' is bigger than the byte size of
%%      the binary, an empty binary (`<<>>') is returned.
-spec get_binary_segment(binary(), offset(), size()) -> binary().
get_binary_segment(Bin, Offset, _Size) when Offset > byte_size(Bin) ->
  <<>>;
get_binary_segment(Bin, Offset, Size) ->
  <<_Hdr:Offset/binary, BinSeg:Size/binary, _More/binary>> = Bin,
  BinSeg.

%% @doc This function gets as arguments an ELF formated binary object and
%%      a string with the segments' name and returns the specified segment or
%%      an empty binary (`<<>>') if there exists no segment with that name.
%%      There are handy macros defined in elf_format.hrl for all Standard
%%      Section Names.
-spec extract_segment_by_name(elf(), string()) -> binary().
extract_segment_by_name(Elf, SectionName) ->
  %% Extract Section Header Table from binary
  SHdrTable = extract_shdrtab(Elf),
  %% Find Section Header Table entry by name
  case lists:keyfind(SectionName, #elf_shdr.name, SHdrTable) of
    %% Note: Same name.
    #elf_shdr{name = SectionName, offset = Offset, size = Size} ->
      get_binary_segment(Elf, Offset, Size);
    false -> %% Not found.
      <<>>
  end.

%% @doc Extracts a null-terminated string from a binary.
-spec bin_get_string(binary()) -> string().
%% FIXME: No regard for encoding (just happens to work for ASCII and Latin-1)
bin_get_string(<<0, _/binary>>) -> [];
bin_get_string(<<Char, Rest/binary>>) -> [Char|bin_get_string(Rest)].

%% @doc Little-Endian Base 128 (LEB128) Decoder
%%     This function extracts the <b>first</b> LEB128-encoded integer in a
%%     binary and returns that integer along with the remaining binary. This is
%%     done because a LEB128 number has variable bit-size and that is a way of
%%     extracting only one number in a binary and continuing parsing the binary
%%     for other kind of data (e.g. different encoding).
%% FIXME: Only decodes unsigned data!
-spec leb128_decode(binary()) -> {integer(), binary()}.
leb128_decode(LebNum) ->
  leb128_decode(LebNum, 0, <<>>).

-spec leb128_decode(binary(), integer(), binary()) -> {integer(), binary()}.
leb128_decode(LebNum, NoOfBits, Acc) ->
  <<Sentinel:1/bits, NextBundle:7/bits, MoreLebNums/bits>> = LebNum,
  case Sentinel of
    <<1:1>> -> % more bytes to follow
      leb128_decode(MoreLebNums, NoOfBits+7, <<NextBundle:7/bits, Acc/bits>>);
    <<0:1>> -> % byte bundle stop
      Size = NoOfBits+7,
      <<Num:Size/integer>> = <<NextBundle:7/bits, Acc/bits>>,
      {Num, MoreLebNums}
  end.