aboutsummaryrefslogblamecommitdiffstats
path: root/lib/hipe/llvm/hipe_rtl_to_llvm.erl
blob: 53aa8c57b2fa76ad4d8cc3daa46f5f1582eb8deb (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344














                                                                   

                                             





































                                                                                
                                           
                                           
                                                      








































































































































































































                                                                                
                                                                          










                                                                                 











                                                                 


















































































                                                                              
                                                                                      
































































                                                                                
                                                                         


                                       
               
                                                                                            

                                                           
                                                        
               
                                                                                      



























































                                                                                
                                                                                                




















































































































































































































































































































































































































































































































































                                                                                            





                                                                              












































































































































































































































































































                                                                                              
                                                 





















































































































                                                                                      
                                                                                          
                                                          
                                                                                      
                    

                                                                        













                                                                               
                        

                                                                       
 









































                                                                               
                                            














                                                                                
                                            














                                                                                
                                                                             
                 
                                                             


                                           
                                       





















































                                                                               












                                                                            
%% -*- erlang-indent-level: 2 -*-

-module(hipe_rtl_to_llvm).
-author("Chris Stavrakakis, Yiannis Tsiouris").

-export([translate/2]).    % the main function of this module
-export([fix_mfa_name/1]). % a help function used in hipe_llvm_main

-include("../rtl/hipe_rtl.hrl").
-include("../rtl/hipe_literals.hrl").
-include("hipe_llvm_arch.hrl").

-define(WORD_WIDTH, (?bytes_to_bits(hipe_rtl_arch:word_size()))).
-define(BRANCH_META_TAKEN, "0").
-define(BRANCH_META_NOT_TAKEN, "1").
-define(FIRST_FREE_META_NO, 2).
-define(HIPE_LITERALS_META, "hipe.literals").

%%------------------------------------------------------------------------------
%% @doc Main function for translating an RTL function to LLVM Assembly. Takes as
%%      input the RTL code and the variable indexes of possible garbage
%%      collection roots and returns the corresponing LLVM, a dictionary with
%%      all the relocations in the code and a hipe_consttab() with informaton
%%      about data.
%%------------------------------------------------------------------------------
translate(RTL, Roots) ->
  Fun = hipe_rtl:rtl_fun(RTL),
  Params = hipe_rtl:rtl_params(RTL),
  Data = hipe_rtl:rtl_data(RTL),
  Code = hipe_rtl:rtl_code(RTL),
  %% Init unique symbol generator and initialize the label counter to the last
  %% RTL label.
  hipe_gensym:init(llvm),
  {_, MaxLabel} = hipe_rtl:rtl_label_range(RTL),
  put({llvm,label_count}, MaxLabel + 1),
  %% Put first label of RTL code in process dictionary
  find_code_entry_label(Code),
  %% Initialize relocations symbol dictionary
  Relocs = dict:new(),
  %% Print RTL to file
  %% {ok, File_rtl} = file:open("rtl_" ++integer_to_list(random:uniform(2000))
  %%                            ++ ".rtl", [write]),
  %% hipe_rtl:pp(File_rtl, RTL),
  %% file:close(File_rtl),

  %% Pass on RTL code to handle exception handling and identify labels of Fail
  %% Blocks
  {Code1, FailLabels} = fix_code(Code),
  %% Allocate stack slots for each virtual register and declare gc roots
  AllocaStackCode = alloca_stack(Code1, Params, Roots),
  %% Translate Code
  {LLVM_Code1, Relocs1, NewData} =
    translate_instr_list(Code1, [], Relocs, Data),
  %% Create LLVM code to declare relocation symbols as external symbols along
  %% with local variables in order to use them as just any other variable
  {FinalRelocs, ExternalDecl0, LocalVars} =
    handle_relocations(Relocs1, Data, Fun),
  ExternalDecl = add_literals_metadata(ExternalDecl0),
  %% Pass on LLVM code in order to create Fail blocks and a landingpad
  %% instruction to each one
  LLVM_Code2 = add_landingpads(LLVM_Code1, FailLabels),
  %% Create LLVM Code for the compiled function
  LLVM_Code3 = create_function_definition(Fun, Params, LLVM_Code2,
                                          AllocaStackCode ++ LocalVars),
  %% Final Code = CompiledFunction + External Declarations
  FinalLLVMCode = [LLVM_Code3 | ExternalDecl],
  {FinalLLVMCode, FinalRelocs, NewData}.

find_code_entry_label([]) ->
  exit({?MODULE, find_code_entry_label, "Empty code"});
find_code_entry_label([I|_]) ->
  case hipe_rtl:is_label(I) of
    true ->
      put(first_label, hipe_rtl:label_name(I));
    false ->
      exit({?MODULE, find_code_entry_label, "First instruction is not a label"})
  end.

%% @doc Create a stack slot for each virtual register. The stack slots
%%      that correspond to possible garbage collection roots must be
%%      marked as such.
alloca_stack(Code, Params, Roots) ->
  %% Find all assigned virtual registers
  Destinations = collect_destinations(Code),
  %% Declare virtual registers, and declare garbage collection roots
  do_alloca_stack(Destinations++Params, Params, Roots).

collect_destinations(Code) ->
  lists:usort(lists:flatmap(fun insn_dst/1, Code)).

do_alloca_stack(Destinations, Params, Roots) ->
  do_alloca_stack(Destinations, Params, Roots, []).

do_alloca_stack([], _, _, Acc) ->
  Acc;
do_alloca_stack([D|Ds], Params, Roots, Acc) ->
  {Name, _I} = trans_dst(D),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
  case hipe_rtl:is_var(D) of
    true ->
      Num = hipe_rtl:var_index(D),
      I1 = hipe_llvm:mk_alloca(Name, WordTy, [], []),
      case lists:member(Num, Roots) of
        true -> %% Variable is a possible Root
          T1 = mk_temp(),
          BYTE_TYPE_PP = hipe_llvm:mk_pointer(ByteTyPtr),
          I2 =
            hipe_llvm:mk_conversion(T1, bitcast, WordTyPtr, Name, BYTE_TYPE_PP),
          GcRootArgs = [{BYTE_TYPE_PP, T1}, {ByteTyPtr, "@gc_metadata"}],
          I3 = hipe_llvm:mk_call([], false, [], [], hipe_llvm:mk_void(),
                                 "@llvm.gcroot", GcRootArgs, []),
          I4 = case lists:member(D, Params) of
                 false ->
		   hipe_llvm:mk_store(WordTy, "-5", WordTyPtr, Name,
				      [], [], false);
                 true -> []
               end,
          do_alloca_stack(Ds, Params, Roots, [I1, I2, I3, I4 | Acc]);
        false ->
          do_alloca_stack(Ds, Params, Roots, [I1|Acc])
      end;
    false ->
      case hipe_rtl:is_reg(D) andalso isPrecoloured(D) of
        true -> %% Precoloured registers are mapped to "special" stack slots
          do_alloca_stack(Ds, Params, Roots,  Acc);
        false ->
          I1 = case hipe_rtl:is_fpreg(D) of
		 true ->
		   FloatTy = hipe_llvm:mk_double(),
		   hipe_llvm:mk_alloca(Name, FloatTy, [], []);
		 false -> hipe_llvm:mk_alloca(Name, WordTy, [], [])
	       end,
	  do_alloca_stack(Ds, Params, Roots, [I1|Acc])
      end
  end.

%%------------------------------------------------------------------------------
%% @doc Translation of the linearized RTL Code. Each RTL instruction is
%%      translated to a list of LLVM Assembly instructions. The relocation
%%      dictionary is updated when needed.
%%------------------------------------------------------------------------------
translate_instr_list([], Acc, Relocs, Data) ->
  {lists:reverse(lists:flatten(Acc)), Relocs, Data};
translate_instr_list([I | Is], Acc, Relocs, Data) ->
  {Acc1, NewRelocs, NewData} = translate_instr(I, Relocs, Data),
  translate_instr_list(Is, [Acc1 | Acc], NewRelocs, NewData).

translate_instr(I, Relocs, Data) ->
  case I of
    #alu{} ->
      {I2, Relocs2} = trans_alu(I, Relocs),
      {I2, Relocs2, Data};
    #alub{} ->
      {I2, Relocs2} = trans_alub(I, Relocs),
      {I2, Relocs2, Data};
    #branch{} ->
      {I2, Relocs2} = trans_branch(I, Relocs),
      {I2, Relocs2, Data};
    #call{} ->
      {I2, Relocs2} =
        case hipe_rtl:call_fun(I) of
          %% In AMD64 this instruction does nothing!
          %% TODO: chech use of fwait in other architectures!
          fwait ->
            {[], Relocs};
          _ ->
            trans_call(I, Relocs)
        end,
      {I2, Relocs2, Data};
    #comment{} ->
      {I2, Relocs2} = trans_comment(I, Relocs),
      {I2, Relocs2, Data};
    #enter{} ->
      {I2, Relocs2} = trans_enter(I, Relocs),
      {I2, Relocs2, Data};
    #fconv{} ->
      {I2, Relocs2} = trans_fconv(I, Relocs),
      {I2, Relocs2, Data};
    #fload{} ->
      {I2, Relocs2} = trans_fload(I, Relocs),
      {I2, Relocs2, Data};
    #fmove{} ->
      {I2, Relocs2} = trans_fmove(I, Relocs),
      {I2, Relocs2, Data};
    #fp{} ->
      {I2, Relocs2} = trans_fp(I, Relocs),
      {I2, Relocs2, Data};
    #fp_unop{} ->
      {I2, Relocs2} = trans_fp_unop(I, Relocs),
      {I2, Relocs2, Data};
    #fstore{} ->
      {I2, Relocs2} = trans_fstore(I, Relocs),
      {I2, Relocs2, Data};
    #goto{} ->
      {I2, Relocs2} = trans_goto(I, Relocs),
      {I2, Relocs2, Data};
    #label{} ->
      {I2, Relocs2} = trans_label(I, Relocs),
      {I2, Relocs2, Data};
    #load{} ->
      {I2, Relocs2} = trans_load(I, Relocs),
      {I2, Relocs2, Data};
    #load_address{} ->
      {I2, Relocs2} = trans_load_address(I, Relocs),
      {I2, Relocs2, Data};
    #load_atom{} ->
      {I2, Relocs2} = trans_load_atom(I, Relocs),
      {I2, Relocs2, Data};
    #move{} ->
      {I2, Relocs2} = trans_move(I, Relocs),
      {I2, Relocs2, Data};
    #return{} ->
      {I2, Relocs2} = trans_return(I, Relocs),
      {I2, Relocs2, Data};
    #store{} ->
      {I2, Relocs2} = trans_store(I, Relocs),
      {I2, Relocs2, Data};
    #switch{} -> %% Only switch instruction updates Data
      {I2, Relocs2, NewData} = trans_switch(I, Relocs, Data),
      {I2, Relocs2, NewData};
    Other ->
      exit({?MODULE, translate_instr, {"Unknown RTL instruction", Other}})
  end.

%%
%% alu
%%
trans_alu(I, Relocs) ->
  RtlDst = hipe_rtl:alu_dst(I),
  TmpDst = mk_temp(),
  {Src1, I1} = trans_src(hipe_rtl:alu_src1(I)),
  {Src2, I2} = trans_src(hipe_rtl:alu_src2(I)),
  Op = trans_op(hipe_rtl:alu_op(I)),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  I3 = hipe_llvm:mk_operation(TmpDst, Op, WordTy, Src1, Src2, []),
  I4 = store_stack_dst(TmpDst, RtlDst),
  {[I4, I3, I2, I1], Relocs}.

%%
%% alub
%%
trans_alub(I, Relocs) ->
  case hipe_rtl:alub_cond(I) of
    Op when Op =:= overflow orelse Op =:= not_overflow ->
      trans_alub_overflow(I, signed, Relocs);
    ltu -> %% ltu means unsigned overflow
      trans_alub_overflow(I, unsigned, Relocs);
    _ ->
      trans_alub_no_overflow(I, Relocs)
  end.

trans_alub_overflow(I, Sign, Relocs) ->
  {Src1, I1} = trans_src(hipe_rtl:alub_src1(I)),
  {Src2, I2} = trans_src(hipe_rtl:alub_src2(I)),
  RtlDst = hipe_rtl:alub_dst(I),
  TmpDst = mk_temp(),
  Name = trans_alub_op(I, Sign),
  NewRelocs = relocs_store(Name, {call, remote, {llvm, Name, 2}}, Relocs),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  ReturnType = hipe_llvm:mk_struct([WordTy, hipe_llvm:mk_int(1)]),
  T1 = mk_temp(),
  I3 = hipe_llvm:mk_call(T1, false, [], [], ReturnType, "@" ++ Name,
			                   [{WordTy, Src1}, {WordTy, Src2}], []),
  %% T1{0}: result of the operation
  I4 = hipe_llvm:mk_extractvalue(TmpDst, ReturnType, T1 , "0", []),
  I5 = store_stack_dst(TmpDst, RtlDst),
  T2 = mk_temp(),
  %% T1{1}: Boolean variable indicating overflow
  I6 = hipe_llvm:mk_extractvalue(T2, ReturnType, T1, "1", []),
  {TrueLabel, FalseLabel, MetaData} =
    case hipe_rtl:alub_cond(I) of
      Op when Op =:= overflow orelse Op =:= ltu ->
	{mk_jump_label(hipe_rtl:alub_true_label(I)),
	 mk_jump_label(hipe_rtl:alub_false_label(I)),
	 branch_metadata(hipe_rtl:alub_pred(I))};
      not_overflow ->
	{mk_jump_label(hipe_rtl:alub_false_label(I)),
	 mk_jump_label(hipe_rtl:alub_true_label(I)),
	 branch_metadata(1 - hipe_rtl:alub_pred(I))}
    end,
  I7 = hipe_llvm:mk_br_cond(T2, TrueLabel, FalseLabel, MetaData),
  {[I7, I6, I5, I4, I3, I2, I1], NewRelocs}.

trans_alub_op(I, Sign) ->
  Name =
    case Sign of
      signed ->
        case hipe_rtl:alub_op(I) of
          add -> "llvm.sadd.with.overflow.";
          mul -> "llvm.smul.with.overflow.";
          sub -> "llvm.ssub.with.overflow.";
          Op  -> exit({?MODULE, trans_alub_op, {"Unknown alub operator", Op}})
        end;
      unsigned ->
        case hipe_rtl:alub_op(I) of
          add -> "llvm.uadd.with.overflow.";
          mul -> "llvm.umul.with.overflow.";
          sub -> "llvm.usub.with.overflow.";
          Op  -> exit({?MODULE, trans_alub_op, {"Unknown alub operator", Op}})
        end
    end,
  Type =
    case hipe_rtl_arch:word_size() of
      4 -> "i32";
      8 -> "i64"
      %% Other -> exit({?MODULE, trans_alub_op, {"Unknown type", Other}})
    end,
  Name ++ Type.

trans_alub_no_overflow(I, Relocs) ->
  %% alu
  T = hipe_rtl:mk_alu(hipe_rtl:alub_dst(I), hipe_rtl:alub_src1(I),
                      hipe_rtl:alub_op(I), hipe_rtl:alub_src2(I)),
  %% A trans_alu instruction cannot change relocations
  {I1, _} = trans_alu(T, Relocs),
  %% icmp
  %% Translate destination as src, to match with the semantics of instruction
  {Dst, I2} = trans_src(hipe_rtl:alub_dst(I)),
  Cond = trans_rel_op(hipe_rtl:alub_cond(I)),
  T3 = mk_temp(),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  I5 = hipe_llvm:mk_icmp(T3, Cond, WordTy, Dst, "0"),
  %% br
  Metadata = branch_metadata(hipe_rtl:alub_pred(I)),
  True_label = mk_jump_label(hipe_rtl:alub_true_label(I)),
  False_label = mk_jump_label(hipe_rtl:alub_false_label(I)),
  I6 = hipe_llvm:mk_br_cond(T3, True_label, False_label, Metadata),
  {[I6, I5, I2, I1], Relocs}.

%%
%% branch
%%
trans_branch(I, Relocs) ->
  {Src1, I1} = trans_src(hipe_rtl:branch_src1(I)),
  {Src2, I2} = trans_src(hipe_rtl:branch_src2(I)),
  Cond = trans_rel_op(hipe_rtl:branch_cond(I)),
  %% icmp
  T1 = mk_temp(),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  I3 = hipe_llvm:mk_icmp(T1, Cond, WordTy, Src1, Src2),
  %% br
  True_label = mk_jump_label(hipe_rtl:branch_true_label(I)),
  False_label = mk_jump_label(hipe_rtl:branch_false_label(I)),
  Metadata = branch_metadata(hipe_rtl:branch_pred(I)),
  I4 = hipe_llvm:mk_br_cond(T1, True_label, False_label, Metadata),
  {[I4, I3, I2, I1], Relocs}.

branch_metadata(X) when X =:= 0.5 -> [];
branch_metadata(X) when X > 0.5 -> ?BRANCH_META_TAKEN;
branch_metadata(X) when X < 0.5 -> ?BRANCH_META_NOT_TAKEN.

%%
%% call
%%
trans_call(I, Relocs) ->
  RtlCallArgList= hipe_rtl:call_arglist(I),
  RtlCallName = hipe_rtl:call_fun(I),
  {I0, Relocs1} = expose_closure(RtlCallName, RtlCallArgList, Relocs),
  TmpDst = mk_temp(),
  {CallArgs, I1} = trans_call_args(RtlCallArgList),
  FixedRegs = fixed_registers(),
  {LoadedFixedRegs, I2} = load_fixed_regs(FixedRegs),
  FinalArgs = fix_reg_args(LoadedFixedRegs) ++ CallArgs,
  {Name, I3, Relocs2} =
    trans_call_name(RtlCallName, hipe_rtl:call_type(I), Relocs1, CallArgs, FinalArgs),
  T1 = mk_temp(),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
  I4 =
    case hipe_rtl:call_fail(I) of
      %% Normal Call
      [] ->
        hipe_llvm:mk_call(T1, false, "cc 11", [], FunRetTy, Name, FinalArgs,
                          []);
      %% Call With Exception
      FailLabelNum ->
        TrueLabel = "L" ++ integer_to_list(hipe_rtl:call_normal(I)),
        FailLabel = "%FL" ++ integer_to_list(FailLabelNum),
        II1 =
          hipe_llvm:mk_invoke(T1, "cc 11", [], FunRetTy, Name, FinalArgs, [],
                              "%" ++ TrueLabel, FailLabel),
        II2 = hipe_llvm:mk_label(TrueLabel),
        [II2, II1]
    end,
  I5 = store_fixed_regs(FixedRegs, T1),
  I6 =
    case hipe_rtl:call_dstlist(I) of
      [] -> []; %% No return value
      [Destination] ->
        II3 =
          hipe_llvm:mk_extractvalue(TmpDst, FunRetTy, T1,
                                    integer_to_list(?NR_PINNED_REGS), []),
        II4 = store_stack_dst(TmpDst, Destination),
        [II4, II3]
    end,
  I7 =
    case hipe_rtl:call_continuation(I) of
      [] -> []; %% No continuation
      CC ->
        {II5, _} = trans_goto(hipe_rtl:mk_goto(CC), Relocs2),
        II5
    end,
  {[I7, I6, I5, I4, I3, I2, I1, I0], Relocs2}.

%% In case of call to a register (closure call) with more than ?NR_ARG_REGS
%% arguments we must track the offset this call in the code, in order to
%% to correct the stack descriptor. So, we insert a new Label and add this label
%% to the "table_closures"
%% --------------------------------|--------------------------------------------
%%        Old Code                 |           New Code
%% --------------------------------|--------------------------------------------
%%                                 |           br %ClosureLabel
%%        call %reg(Args)          |           ClosureLabel:
%%                                 |           call %reg(Args)
expose_closure(CallName, CallArgs, Relocs) ->
  CallArgsNr = length(CallArgs),
  case hipe_rtl:is_reg(CallName) andalso CallArgsNr > ?NR_ARG_REGS of
    true ->
      LabelNum = hipe_gensym:new_label(llvm),
      ClosureLabel = hipe_llvm:mk_label(mk_label(LabelNum)),
      JumpIns = hipe_llvm:mk_br(mk_jump_label(LabelNum)),
      Relocs1 =
        relocs_store({CallName, LabelNum},
                     {closure_label, LabelNum, CallArgsNr - ?NR_ARG_REGS},
                     Relocs),
      {[ClosureLabel, JumpIns], Relocs1};
    false ->
      {[], Relocs}
  end.

trans_call_name(RtlCallName, RtlCallType, Relocs, CallArgs, FinalArgs) ->
  case RtlCallName of
    PrimOp when is_atom(PrimOp) ->
      LlvmName = trans_prim_op(PrimOp),
      Relocs1 =
        relocs_store(LlvmName, {call, not_remote, {bif, PrimOp, length(CallArgs)}}, Relocs),
      {"@" ++ LlvmName, [], Relocs1};
    {M, F, A} when is_atom(M), is_atom(F), is_integer(A) ->
      LlvmName = trans_mfa_name({M, F, A}, RtlCallType),
      Relocs1 =
        relocs_store(LlvmName, {call, RtlCallType, {M, F, length(CallArgs)}}, Relocs),
      {"@" ++ LlvmName, [], Relocs1};
    Reg ->
      case hipe_rtl:is_reg(Reg) of
        true ->
	  %% In case of a closure call, the register holding the address
	  %% of the closure must be converted to function type in
	  %% order to make the call
          TT1 = mk_temp(),
          {RegName, II1} = trans_src(Reg),
          WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
          WordTyPtr = hipe_llvm:mk_pointer(WordTy),
          II2 =
            hipe_llvm:mk_conversion(TT1, inttoptr, WordTy, RegName, WordTyPtr),
          TT2 = mk_temp(),
          ArgsTypeList = lists:duplicate(length(FinalArgs), WordTy),
          FunRetTy =
            hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
          FunType = hipe_llvm:mk_fun(FunRetTy, ArgsTypeList),
          FunTypeP = hipe_llvm:mk_pointer(FunType),
          II3 = hipe_llvm:mk_conversion(TT2, bitcast, WordTyPtr, TT1, FunTypeP),
          {TT2, [II3, II2, II1], Relocs};
        false ->
          exit({?MODULE, trans_call, {"Unimplemented call to", RtlCallName}})
      end
  end.

%%
trans_call_args(ArgList) ->
  {Args, I} = lists:unzip(trans_args(ArgList)),
  %% Reverse arguments that are passed to stack to match with the Erlang
  %% calling convention. (Propably not needed in prim calls.)
  ReversedArgs =
    case erlang:length(Args) > ?NR_ARG_REGS of
      false ->
	Args;
      true ->
	{ArgsInRegs, ArgsInStack} = lists:split(?NR_ARG_REGS, Args),
	ArgsInRegs ++ lists:reverse(ArgsInStack)
    end,
  %% Reverse I, because some of the arguments may go out of scope and
  %% should be killed(store -5). When two or more arguments are they
  %% same, then order matters!
  {ReversedArgs, lists:reverse(I)}.

%%
%% trans_comment
%%
trans_comment(I, Relocs) ->
  I1 = hipe_llvm:mk_comment(hipe_rtl:comment_text(I)),
  {I1, Relocs}.

%%
%% enter
%%
trans_enter(I, Relocs) ->
  {CallArgs, I0} = trans_call_args(hipe_rtl:enter_arglist(I)),
  FixedRegs = fixed_registers(),
  {LoadedFixedRegs, I1} = load_fixed_regs(FixedRegs),
  FinalArgs = fix_reg_args(LoadedFixedRegs) ++ CallArgs,
  {Name, I2, NewRelocs} =
    trans_call_name(hipe_rtl:enter_fun(I), hipe_rtl:enter_type(I), Relocs, CallArgs, FinalArgs),
  T1 = mk_temp(),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
  I3 = hipe_llvm:mk_call(T1, true, "cc 11", [], FunRetTy, Name, FinalArgs, []),
  I4 = hipe_llvm:mk_ret([{FunRetTy, T1}]),
  {[I4, I3, I2, I1, I0], NewRelocs}.

%%
%% fconv
%%
trans_fconv(I, Relocs) ->
  %% XXX: Can a fconv destination be a precoloured reg?
  RtlDst = hipe_rtl:fconv_dst(I),
  TmpDst = mk_temp(),
  {Src, I1} =  trans_float_src(hipe_rtl:fconv_src(I)),
  FloatTy = hipe_llvm:mk_double(),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  I2 = hipe_llvm:mk_conversion(TmpDst, sitofp, WordTy, Src, FloatTy),
  I3 = store_float_stack(TmpDst, RtlDst),
  {[I3, I2, I1], Relocs}.


%% TODO: fload, fstore, fmove, and fp are almost the same with load, store, move
%% and alu. Maybe we should join them.

%%
%% fload
%%
trans_fload(I, Relocs) ->
  RtlDst = hipe_rtl:fload_dst(I),
  RtlSrc = hipe_rtl:fload_src(I),
  _Offset = hipe_rtl:fload_offset(I),
  TmpDst = mk_temp(),
  {Src, I1} = trans_float_src(RtlSrc),
  {Offset, I2} = trans_float_src(_Offset),
  T1 = mk_temp(),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  FloatTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_double()),
  I3 = hipe_llvm:mk_operation(T1, add, WordTy, Src, Offset, []),
  T2 = mk_temp(),
  I4 = hipe_llvm:mk_conversion(T2, inttoptr,  WordTy, T1, FloatTyPtr),
  I5 = hipe_llvm:mk_load(TmpDst, FloatTyPtr, T2, [], [], false),
  I6 = store_float_stack(TmpDst, RtlDst),
  {[I6, I5, I4, I3, I2, I1], Relocs}.

%%
%% fmove
%%
trans_fmove(I, Relocs) ->
  RtlDst = hipe_rtl:fmove_dst(I),
  RtlSrc = hipe_rtl:fmove_src(I),
  {Src, I1} = trans_float_src(RtlSrc),
  I2 = store_float_stack(Src, RtlDst),
  {[I2, I1], Relocs}.

%%
%% fp
%%
trans_fp(I, Relocs) ->
  %% XXX: Just copied trans_alu...think again..
  RtlDst = hipe_rtl:fp_dst(I),
  RtlSrc1 = hipe_rtl:fp_src1(I),
  RtlSrc2 = hipe_rtl:fp_src2(I),
  %% Destination cannot be a precoloured register
  FloatTy = hipe_llvm:mk_double(),
  FloatTyPtr = hipe_llvm:mk_pointer(FloatTy),
  TmpDst = mk_temp(),
  {Src1, I1} = trans_float_src(RtlSrc1),
  {Src2, I2} = trans_float_src(RtlSrc2),
  Op = trans_fp_op(hipe_rtl:fp_op(I)),
  I3 = hipe_llvm:mk_operation(TmpDst, Op, FloatTy, Src1, Src2, []),
  I4 = store_float_stack(TmpDst, RtlDst),
  %% Synchronization for floating point exceptions
  I5 = hipe_llvm:mk_store(FloatTy, TmpDst, FloatTyPtr, "%exception_sync", [],
                          [], true),
  T1 = mk_temp(),
  I6 = hipe_llvm:mk_load(T1, FloatTyPtr, "%exception_sync", [], [], true),
  {[I6, I5, I4, I3, I2, I1], Relocs}.

%%
%% fp_unop
%%
trans_fp_unop(I, Relocs) ->
  RtlDst = hipe_rtl:fp_unop_dst(I),
  RtlSrc = hipe_rtl:fp_unop_src(I),
  %% Destination cannot be a precoloured register
  TmpDst = mk_temp(),
  {Src, I1} = trans_float_src(RtlSrc),
  Op =  trans_fp_op(hipe_rtl:fp_unop_op(I)),
  FloatTy = hipe_llvm:mk_double(),
  I2 = hipe_llvm:mk_operation(TmpDst, Op, FloatTy, "0.0", Src, []),
  I3 = store_float_stack(TmpDst, RtlDst),
  {[I3, I2, I1], Relocs}.
%% TODO: Fix fp_unop in a way like the following. You must change trans_dest,
%% in order to call float_to_list in a case of float constant. Maybe the type
%% check is expensive...
%% Dst = hipe_rtl:fp_unop_dst(I),
%% Src = hipe_rtl:fp_unop_src(I),
%% Op = hipe_rtl:fp_unop_op(I),
%% Zero = hipe_rtl:mk_imm(0.0),
%% I1 = hipe_rtl:mk_fp(Dst, Zero, Op, Src),
%% trans_fp(I, Relocs1).

%%
%% fstore
%%
trans_fstore(I, Relocs) ->
  Base = hipe_rtl:fstore_base(I),
  case isPrecoloured(Base) of
    true ->
      trans_fstore_reg(I, Relocs);
    false ->
      exit({?MODULE, trans_fstore ,{"Not implemented yet", false}})
  end.

trans_fstore_reg(I, Relocs) ->
  {Base, I0}  = trans_reg(hipe_rtl:fstore_base(I), dst),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  FloatTy = hipe_llvm:mk_double(),
  FloatTyPtr = hipe_llvm:mk_pointer(FloatTy),
  T1 = mk_temp(),
  I1 = hipe_llvm:mk_load(T1, WordTyPtr, Base, [],  [], false),
  {Offset, I2} = trans_src(hipe_rtl:fstore_offset(I)),
  T2 = mk_temp(),
  I3 = hipe_llvm:mk_operation(T2, add, WordTy, T1, Offset, []),
  T3 = mk_temp(),
  I4 = hipe_llvm:mk_conversion(T3, inttoptr, WordTy, T2, FloatTyPtr),
  {Value, I5} = trans_src(hipe_rtl:fstore_src(I)),
  I6 = hipe_llvm:mk_store(FloatTy, Value, FloatTyPtr, T3, [], [], false),
  {[I6, I5, I4, I3, I2, I1, I0], Relocs}.

%%
%% goto
%%
trans_goto(I, Relocs) ->
  I1 = hipe_llvm:mk_br(mk_jump_label(hipe_rtl:goto_label(I))),
  {I1, Relocs}.

%%
%% label
%%
trans_label(I, Relocs) ->
  Label = mk_label(hipe_rtl:label_name(I)),
  I1 = hipe_llvm:mk_label(Label),
  {I1, Relocs}.

%%
%% load
%%
trans_load(I, Relocs) ->
  RtlDst = hipe_rtl:load_dst(I),
  TmpDst = mk_temp(),
  %% XXX: Why translate them independently? ------------------------
  {Src, I1} = trans_src(hipe_rtl:load_src(I)),
  {Offset, I2} = trans_src(hipe_rtl:load_offset(I)),
  T1 = mk_temp(),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  I3 = hipe_llvm:mk_operation(T1, add, WordTy, Src, Offset, []),
  %%----------------------------------------------------------------
  I4 = case hipe_rtl:load_size(I) of
         word ->
           T2 = mk_temp(),
           II1 = hipe_llvm:mk_conversion(T2, inttoptr, WordTy, T1, WordTyPtr),
           II2 = hipe_llvm:mk_load(TmpDst, WordTyPtr, T2, [], [], false),
           [II2, II1];
         Size ->
           LoadType = llvm_type_from_size(Size),
           LoadTypeP = hipe_llvm:mk_pointer(LoadType),
           T2 = mk_temp(),
           II1 = hipe_llvm:mk_conversion(T2, inttoptr, WordTy, T1, LoadTypeP),
           T3 = mk_temp(),
           LoadTypePointer = hipe_llvm:mk_pointer(LoadType),
           II2 = hipe_llvm:mk_load(T3, LoadTypePointer, T2, [], [], false),
           Conversion =
             case hipe_rtl:load_sign(I) of
               signed -> sext;
               unsigned -> zext
             end,
           II3 =
             hipe_llvm:mk_conversion(TmpDst, Conversion, LoadType, T3, WordTy),
           [II3, II2, II1]
       end,
  I5 = store_stack_dst(TmpDst, RtlDst),
  {[I5, I4, I3, I2, I1], Relocs}.

%%
%% load_address
%%
trans_load_address(I, Relocs) ->
  RtlDst = hipe_rtl:load_address_dst(I),
  RtlAddr = hipe_rtl:load_address_addr(I),
  {Addr, NewRelocs} =
    case hipe_rtl:load_address_type(I) of
      constant ->
        {"%DL" ++ integer_to_list(RtlAddr) ++ "_var", Relocs};
      closure  ->
        {{_, ClosureName, _}, _, _} = RtlAddr,
        FixedClosureName = fix_closure_name(ClosureName),
        Relocs1 = relocs_store(FixedClosureName, {closure, RtlAddr}, Relocs),
        {"%" ++ FixedClosureName ++ "_var", Relocs1};
      type ->
        exit({?MODULE, trans_load_address,
             {"Type not implemented in load_address", RtlAddr}})
    end,
  I1 = store_stack_dst(Addr, RtlDst),
  {[I1], NewRelocs}.

%%
%% load_atom
%%
trans_load_atom(I, Relocs) ->
  RtlDst = hipe_rtl:load_atom_dst(I),
  RtlAtom = hipe_rtl:load_atom_atom(I),
  AtomName = "atom_" ++ make_llvm_id(atom_to_list(RtlAtom)),
  AtomVar = "%" ++ AtomName ++ "_var",
  NewRelocs = relocs_store(AtomName, {atom, RtlAtom}, Relocs),
  I1 = store_stack_dst(AtomVar, RtlDst),
  {[I1], NewRelocs}.

%%
%% move
%%
trans_move(I, Relocs) ->
  RtlDst = hipe_rtl:move_dst(I),
  RtlSrc = hipe_rtl:move_src(I),
  {Src, I1} = trans_src(RtlSrc),
  I2 = store_stack_dst(Src, RtlDst),
  {[I2, I1], Relocs}.

%%
%% return
%%
trans_return(I, Relocs) ->
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  {VarRet, I1} =
    case hipe_rtl:return_varlist(I) of
      [] ->
	{[], []};
      [A] ->
	{Name, II1} = trans_src(A),
	{[{WordTy, Name}], II1}
    end,
  FixedRegs = fixed_registers(),
  {LoadedFixedRegs, I2} = load_fixed_regs(FixedRegs),
  FixedRet = [{WordTy, X} || X <- LoadedFixedRegs],
  Ret = FixedRet ++ VarRet,
  {RetTypes, _RetNames} = lists:unzip(Ret),
  Type = hipe_llvm:mk_struct(RetTypes),
  {RetStruct, I3} = mk_return_struct(Ret, Type),
  I4 = hipe_llvm:mk_ret([{Type, RetStruct}]),
  {[I4, I3, I2, I1], Relocs}.

%% @doc Create a structure to hold the return value and the precoloured
%%      registers.
mk_return_struct(RetValues, Type) ->
  mk_return_struct(RetValues, Type, [], "undef", 0).

mk_return_struct([], _, Acc, StructName, _) ->
  {StructName, Acc};
mk_return_struct([{ElemType, ElemName}|Rest], Type, Acc, StructName, Index) ->
  T1 = mk_temp(),
  I1 = hipe_llvm:mk_insertvalue(T1, Type, StructName, ElemType, ElemName,
                                integer_to_list(Index), []),
  mk_return_struct(Rest, Type, [I1 | Acc], T1, Index+1).

%%
%% store
%%
trans_store(I, Relocs) ->
  {Base, I1} = trans_src(hipe_rtl:store_base(I)),
  {Offset, I2} = trans_src(hipe_rtl:store_offset(I)),
  {Value, I3} = trans_src(hipe_rtl:store_src(I)),
  T1 = mk_temp(),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  I4 = hipe_llvm:mk_operation(T1, add, WordTy, Base, Offset, []),
  I5 =
    case hipe_rtl:store_size(I) of
      word ->
	T2 = mk_temp(),
	II1 = hipe_llvm:mk_conversion(T2, inttoptr, WordTy, T1, WordTyPtr),
	II2 = hipe_llvm:mk_store(WordTy, Value, WordTyPtr, T2, [], [],
				 false),
	[II2, II1];
      Size ->
	%% XXX: Is always trunc correct ?
	LoadType = llvm_type_from_size(Size),
	LoadTypePointer = hipe_llvm:mk_pointer(LoadType),
	T2 = mk_temp(),
	II1 = hipe_llvm:mk_conversion(T2, inttoptr, WordTy, T1, LoadTypePointer),
	T3 = mk_temp(),
	II2 = hipe_llvm:mk_conversion(T3, 'trunc', WordTy, Value, LoadType),
	II3 = hipe_llvm:mk_store(LoadType, T3, LoadTypePointer, T2, [], [], false),
	[II3, II2, II1]
    end,
  {[I5, I4, I3, I2, I1], Relocs}.

%%
%% switch
%%
trans_switch(I, Relocs, Data) ->
  RtlSrc = hipe_rtl:switch_src(I),
  {Src, I1} = trans_src(RtlSrc),
  Labels = hipe_rtl:switch_labels(I),
  JumpLabels = [mk_jump_label(L) || L <- Labels],
  SortOrder = hipe_rtl:switch_sort_order(I),
  NrLabels = length(Labels),
  ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
  TableType = hipe_llvm:mk_array(NrLabels, ByteTyPtr),
  TableTypeP = hipe_llvm:mk_pointer(TableType),
  TypedJumpLabels = [{hipe_llvm:mk_label_type(), X} || X <- JumpLabels],
  T1 = mk_temp(),
  {Src2, []} = trans_dst(RtlSrc),
  TableName = "table_" ++ tl(Src2),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  I2 = hipe_llvm:mk_getelementptr(T1, TableTypeP, "@"++TableName,
                                  [{WordTy, "0"}, {WordTy, Src}], false),
  T2 = mk_temp(),
  BYTE_TYPE_PP = hipe_llvm:mk_pointer(ByteTyPtr),
  I3 = hipe_llvm:mk_load(T2, BYTE_TYPE_PP, T1, [], [], false),
  I4 = hipe_llvm:mk_indirectbr(ByteTyPtr, T2, TypedJumpLabels),
  LMap = [{label, L} || L <- Labels],
  %% Update data with the info for the jump table
  {NewData, JTabLab} =
    case hipe_rtl:switch_sort_order(I) of
      [] ->
        hipe_consttab:insert_block(Data, word, LMap);
      SortOrder ->
        hipe_consttab:insert_sorted_block(Data, word, LMap, SortOrder)
    end,
  Relocs2 = relocs_store(TableName, {switch, {TableType, Labels, NrLabels,
					               SortOrder}, JTabLab}, Relocs),
  {[I4, I3, I2, I1], Relocs2, NewData}.

%% @doc Pass on RTL code in order to fix invoke and closure calls.
fix_code(Code) ->
  fix_calls(Code).

%% @doc Fix invoke calls and closure calls with more than ?NR_ARG_REGS
%%      arguments.
fix_calls(Code) ->
  fix_calls(Code, [], []).

fix_calls([], Acc, FailLabels) ->
  {lists:reverse(Acc), FailLabels};
fix_calls([I | Is], Acc, FailLabels) ->
  case hipe_rtl:is_call(I) of
    true ->
      {NewCall, NewFailLabels} =
        case hipe_rtl:call_fail(I) of
          [] ->
            {I, FailLabels};
          FailLabel ->
            fix_invoke_call(I, FailLabel, FailLabels)
        end,
      fix_calls(Is, [NewCall|Acc], NewFailLabels);
    false ->
      fix_calls(Is, [I|Acc], FailLabels)
  end.

%% @doc When a call has a fail continuation label it must be extended with a
%%      normal continuation label to go with the LLVM's invoke instruction.
%%      FailLabels is the list of labels of all fail blocks, which are needed to
%%      be declared as landing pads. Furtermore, we must add to fail labels a
%%      call to hipe_bifs:llvm_fix_pinned_regs/0 in order to avoid reloading old
%%      values of pinned registers. This may happen because the result of an
%%      invoke instruction is not available at fail-labels, and, thus, we cannot
%%      get the correct values of pinned registers. Finally, the stack needs to
%%      be re-adjusted when there are stack arguments.
fix_invoke_call(I, FailLabel, FailLabels) ->
  NewLabel = hipe_gensym:new_label(llvm),
  NewCall1 = hipe_rtl:call_normal_update(I, NewLabel),
  SpAdj = find_sp_adj(hipe_rtl:call_arglist(I)),
  case lists:keyfind(FailLabel, 1, FailLabels) of
    %% Same fail label with same Stack Pointer adjustment
    {FailLabel, NewFailLabel, SpAdj} ->
      NewCall2 = hipe_rtl:call_fail_update(NewCall1, NewFailLabel),
      {NewCall2, FailLabels};
    %% Same fail label but with different Stack Pointer adjustment
    {_, _, _} ->
      NewFailLabel = hipe_gensym:new_label(llvm),
      NewCall2 = hipe_rtl:call_fail_update(NewCall1, NewFailLabel),
      {NewCall2, [{FailLabel, NewFailLabel, SpAdj} | FailLabels]};
    %% New Fail label
    false ->
      NewFailLabel = hipe_gensym:new_label(llvm),
      NewCall2 = hipe_rtl:call_fail_update(NewCall1, NewFailLabel),
      {NewCall2, [{FailLabel, NewFailLabel, SpAdj} | FailLabels]}
  end.

find_sp_adj(ArgList) ->
  NrArgs = length(ArgList),
  case NrArgs > ?NR_ARG_REGS of
    true ->
      (NrArgs - ?NR_ARG_REGS) * hipe_rtl_arch:word_size();
    false ->
      0
  end.

%% @doc Add landingpad instruction in Fail Blocks.
add_landingpads(LLVM_Code, FailLabels) ->
  FailLabels2 = [convert_label(T) || T <- FailLabels],
  add_landingpads(LLVM_Code, FailLabels2, []).

add_landingpads([], _, Acc) ->
  lists:reverse(Acc);
add_landingpads([I | Is], FailLabels, Acc) ->
  case hipe_llvm:is_label(I) of
    true ->
      Label = hipe_llvm:label_label(I),
      Ins = create_fail_blocks(Label, FailLabels),
      add_landingpads(Is, FailLabels, [I | Ins] ++ Acc);
    false ->
      add_landingpads(Is, FailLabels, [I | Acc])
  end.

convert_label({X,Y,Z}) ->
  {"L" ++ integer_to_list(X), "FL" ++ integer_to_list(Y), Z}.

%% @doc Create a fail block wich.
create_fail_blocks(_, []) -> [];
create_fail_blocks(Label, FailLabels) ->
  create_fail_blocks(Label, FailLabels, []).

create_fail_blocks(Label, FailLabels, Acc) ->
  case lists:keytake(Label, 1, FailLabels) of
    false ->
      Acc;
    {value, {Label, FailLabel, SpAdj}, RestFailLabels} ->
      WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
      I1 = hipe_llvm:mk_label(FailLabel),
      LP = hipe_llvm:mk_landingpad(),
      I2 =
        case SpAdj > 0 of
          true ->
            StackPointer = ?ARCH_REGISTERS:reg_name(?ARCH_REGISTERS:sp()),
            hipe_llvm:mk_adj_stack(integer_to_list(SpAdj), StackPointer,
                                   WordTy);
          false -> []
        end,
      T1 = mk_temp(),
      FixedRegs = fixed_registers(),
      FunRetTy =
        hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
      I3 = hipe_llvm:mk_call(T1, false, "cc 11", [], FunRetTy,
			                       "@hipe_bifs.llvm_fix_pinned_regs.0", [], []),
      I4 = store_fixed_regs(FixedRegs, T1),
      I5 = hipe_llvm:mk_br("%" ++ Label),
      Ins = lists:flatten([I5, I4, I3, I2, LP,I1]),
      create_fail_blocks(Label, RestFailLabels, Ins ++ Acc)
  end.

%%------------------------------------------------------------------------------
%% Miscellaneous Functions
%%------------------------------------------------------------------------------

%% @doc Convert RTL argument list to LLVM argument list.
trans_args(ArgList) ->
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  MakeArg =
    fun(A) ->
      {Name, I1} = trans_src(A),
      {{WordTy, Name}, I1}
    end,
  [MakeArg(A) || A <- ArgList].

%% @doc Convert a list of Precoloured registers to LLVM argument list.
fix_reg_args(ArgList) ->
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  [{WordTy, A} || A <- ArgList].

%% @doc Load Precoloured registers.
load_fixed_regs(RegList) ->
  Names = [mk_temp_reg(R) || R <- RegList],
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  Fun1 =
    fun (X, Y) ->
      hipe_llvm:mk_load(X, WordTyPtr, "%" ++ Y ++ "_reg_var", [], [], false)
    end,
  Ins = lists:zipwith(Fun1, Names, RegList),
  {Names, Ins}.

%% @doc  Store Precoloured registers.
store_fixed_regs(RegList, Name) ->
  Names = [mk_temp_reg(R) || R <- RegList],
  Indexes = lists:seq(0, erlang:length(RegList) - 1),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
  Fun1 =
    fun(X,Y) ->
      hipe_llvm:mk_extractvalue(X, FunRetTy, Name, integer_to_list(Y), [])
    end,
  I1 = lists:zipwith(Fun1, Names, Indexes),
  Fun2 =
    fun (X, Y) ->
      hipe_llvm:mk_store(WordTy, X, WordTyPtr, "%" ++ Y ++ "_reg_var", [], [],
                         false)
    end,
  I2 = lists:zipwith(Fun2, Names, RegList),
  [I2, I1].

%%------------------------------------------------------------------------------
%% Translation of Names
%%------------------------------------------------------------------------------

%% @doc Fix F in MFA tuple to acceptable LLVM identifier (case of closure).
-spec fix_mfa_name(mfa()) -> mfa().
fix_mfa_name({Mod_Name, Closure_Name, Arity}) ->
  Fun_Name = list_to_atom(fix_closure_name(Closure_Name)),
  {Mod_Name, Fun_Name, Arity}.

%% @doc Make an acceptable LLVM identifier for a closure name.
fix_closure_name(ClosureName) ->
  make_llvm_id(atom_to_list(ClosureName)).

%% @doc Create an acceptable LLVM identifier.
make_llvm_id(Name) ->
  case Name of
    "" -> "Empty";
    Other -> lists:flatten([llvm_id(C) || C <- Other])
  end.

llvm_id(C) when C=:=46; C>47 andalso C<58; C>64 andalso C<91; C=:=95;
                C>96 andalso C<123 ->
  C;
llvm_id(C) ->
 io_lib:format("_~2.16.0B_",[C]).

%% @doc Create an acceptable LLVM identifier for an MFA.
trans_mfa_name({M,F,A}, Linkage) ->
  N0 = atom_to_list(M) ++ "." ++ atom_to_list(F) ++ "." ++ integer_to_list(A),
  N = case Linkage of
	not_remote -> N0;
	remote -> "rem." ++ N0
      end,
  make_llvm_id(N).

%%------------------------------------------------------------------------------
%% Creation of Labels and Temporaries
%%------------------------------------------------------------------------------
mk_label(N) ->
  "L" ++ integer_to_list(N).

mk_jump_label(N) ->
  "%L" ++ integer_to_list(N).

mk_temp() ->
  "%t" ++ integer_to_list(hipe_gensym:new_var(llvm)).

mk_temp_reg(Name) ->
  "%" ++ Name ++ integer_to_list(hipe_gensym:new_var(llvm)).

%%----------------------------------------------------------------------------
%% Translation of Operands
%%----------------------------------------------------------------------------

store_stack_dst(TempDst, Dst) ->
  {Dst2, II1} = trans_dst(Dst),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  II2 = hipe_llvm:mk_store(WordTy, TempDst, WordTyPtr, Dst2, [], [], false),
  [II2, II1].

store_float_stack(TempDst, Dst) ->
  {Dst2, II1} = trans_dst(Dst),
  FloatTy = hipe_llvm:mk_double(),
  FloatTyPtr = hipe_llvm:mk_pointer(FloatTy),
  II2 = hipe_llvm:mk_store(FloatTy, TempDst, FloatTyPtr, Dst2, [], [], false),
  [II2, II1].

trans_float_src(Src) ->
  case hipe_rtl:is_const_label(Src) of
    true ->
      Name = "@DL" ++ integer_to_list(hipe_rtl:const_label_label(Src)),
      T1 = mk_temp(),
      %% XXX: Hardcoded offset
      ByteTy = hipe_llvm:mk_int(8),
      ByteTyPtr = hipe_llvm:mk_pointer(ByteTy),
      I1 = hipe_llvm:mk_getelementptr(T1, ByteTyPtr, Name,
           [{ByteTy, integer_to_list(?FLOAT_OFFSET)}], true),
      T2 = mk_temp(),
      FloatTy = hipe_llvm:mk_double(),
      FloatTyPtr = hipe_llvm:mk_pointer(FloatTy),
      I2 = hipe_llvm:mk_conversion(T2, bitcast, ByteTyPtr, T1, FloatTyPtr),
      T3 = mk_temp(),
      I3 = hipe_llvm:mk_load(T3, FloatTyPtr, T2, [], [], false),
      {T3, [I3, I2, I1]};
    false ->
      trans_src(Src)
  end.

trans_src(A) ->
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  case hipe_rtl:is_imm(A) of
    true ->
      Value = integer_to_list(hipe_rtl:imm_value(A)),
      {Value, []};
    false ->
      case hipe_rtl:is_reg(A) of
        true ->
          case isPrecoloured(A) of
            true -> trans_reg(A, src);
            false ->
              {Name, []} = trans_reg(A, src),
              T1 = mk_temp(),
              I1 = hipe_llvm:mk_load(T1, WordTyPtr, Name, [], [], false),
              {T1, [I1]}
          end;
        false ->
          case hipe_rtl:is_var(A) of
            true ->
              RootName = "%vr" ++ integer_to_list(hipe_rtl:var_index(A)),
              T1 = mk_temp(),
              I1 = hipe_llvm:mk_load(T1, WordTyPtr, RootName, [], [], false),
              I2 =
		case hipe_rtl:var_liveness(A) of
		  live ->
		    [];
		  dead ->
		    NilValue = hipe_tagscheme:mk_nil(),
		    hipe_llvm:mk_store(WordTy, integer_to_list(NilValue), WordTyPtr, RootName,
		                       [], [], false)
		end,
              {T1, [I2, I1]};
            false ->
              case hipe_rtl:is_fpreg(A) of
                true ->
                  {Name, []} = trans_dst(A),
                  T1 = mk_temp(),
                  FloatTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_double()),
                  I1 = hipe_llvm:mk_load(T1, FloatTyPtr, Name, [], [], false),
                  {T1, [I1]};
                false -> trans_dst(A)
              end
          end
      end
  end.

trans_dst(A) ->
  case hipe_rtl:is_reg(A) of
    true ->
      trans_reg(A, dst);
    false ->
      Name = case hipe_rtl:is_var(A) of
	       true ->
		 "%vr" ++ integer_to_list(hipe_rtl:var_index(A));
	       false ->
		 case hipe_rtl:is_fpreg(A) of
		   true -> "%fr" ++ integer_to_list(hipe_rtl:fpreg_index(A));
		   false ->
		     case hipe_rtl:is_const_label(A) of
		       true ->
			 "%DL" ++ integer_to_list(hipe_rtl:const_label_label(A)) ++ "_var";
		       false ->
			 exit({?MODULE, trans_dst, {"Bad RTL argument",A}})
		     end
		 end
	     end,
      {Name, []}
  end.

%% @doc Translate a register. If it is precoloured it must be mapped to the
%%      correct stack slot that holds the precoloured register value.
trans_reg(Arg, Position) ->
  Index = hipe_rtl:reg_index(Arg),
  case isPrecoloured(Arg) of
    true ->
      Name = map_precoloured_reg(Index),
      case Position of
        src -> fix_reg_src(Name);
        dst -> fix_reg_dst(Name)
      end;
    false ->
      {hipe_rtl_arch:reg_name(Index), []}
  end.

map_precoloured_reg(Index) ->
  case hipe_rtl_arch:reg_name(Index) of
    "%r15" -> "%hp_reg_var";
    "%rbp" -> "%p_reg_var";
    "%esi" -> "%hp_reg_var";
    "%ebp" -> "%p_reg_var";
    "%fcalls" ->
      {"%p_reg_var", ?ARCH_REGISTERS:proc_offset(?ARCH_REGISTERS:fcalls())};
    "%hplim" ->
      {"%p_reg_var", ?ARCH_REGISTERS:proc_offset(?ARCH_REGISTERS:heap_limit())};
    _ ->
      exit({?MODULE, map_precoloured_reg, {"Register not mapped yet", Index}})
  end.

%% @doc Load precoloured dst register.
fix_reg_dst(Register) ->
  case Register of
    {Name, Offset} -> %% Case of %fcalls, %hplim
      WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
      pointer_from_reg(Name, WordTy, Offset);
    Name -> %% Case of %p and %hp
      {Name, []}
  end.

%% @doc Load precoloured src register.
fix_reg_src(Register) ->
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  case Register of
    {Name, Offset} -> %% Case of %fcalls, %hplim
      {T1, I1} = pointer_from_reg(Name, WordTy, Offset),
      T2 = mk_temp(),
      I2 = hipe_llvm:mk_load(T2, WordTyPtr, T1, [], [] , false),
      {T2, [I2, I1]};
    Name -> %% Case of %p and %hp
      T1 = mk_temp(),
      {T1, hipe_llvm:mk_load(T1, WordTyPtr, Name, [], [], false)}
  end.

%% @doc Load %fcalls and %hplim.
pointer_from_reg(RegName, Type, Offset) ->
  PointerType = hipe_llvm:mk_pointer(Type),
  T1 = mk_temp(),
  I1 = hipe_llvm:mk_load(T1, PointerType, RegName, [], [] ,false),
  T2 = mk_temp(),
  I2 = hipe_llvm:mk_conversion(T2, inttoptr, Type, T1, PointerType),
  T3 = mk_temp(),
  %% XXX: Offsets should be a power of 2.
  I3 = hipe_llvm:mk_getelementptr(T3, PointerType, T2,
    [{Type, integer_to_list(Offset div hipe_rtl_arch:word_size())}], true),
  {T3, [I3, I2, I1]}.

isPrecoloured(X) ->
  hipe_rtl_arch:is_precoloured(X).

%%------------------------------------------------------------------------------
%% Translation of operators
%%------------------------------------------------------------------------------

trans_op(Op) ->
  case Op of
    add -> add;
    sub -> sub;
    'or' -> 'or';
    'and' -> 'and';
    'xor' -> 'xor';
    sll -> shl;
    srl -> lshr;
    sra -> ashr;
    mul -> mul;
    'fdiv' -> fdiv;
    'sdiv' -> sdiv;
    'srem' -> srem;
    Other -> exit({?MODULE, trans_op, {"Unknown RTL operator", Other}})
  end.

trans_rel_op(Op) ->
  case Op of
    eq -> eq;
    ne -> ne;
    gtu -> ugt;
    geu -> uge;
    ltu -> ult;
    leu -> ule;
    gt -> sgt;
    ge -> sge;
    lt -> slt;
    le -> sle
  end.

trans_prim_op(Op) ->
  case Op of
    '+' -> "bif_add";
    '-' -> "bif_sub";
    '*' -> "bif_mul";
    'div' -> "bif_div";
    '/' -> "bif_div";
    Other -> atom_to_list(Other)
  end.

trans_fp_op(Op) ->
  case Op of
    fadd -> fadd;
    fsub -> fsub;
    fdiv -> fdiv;
    fmul -> fmul;
    fchs -> fsub;
    Other -> exit({?MODULE, trans_fp_op, {"Unknown RTL float operator",Other}})
  end.

%% Misc.
insn_dst(I) ->
  case I of
    #alu{} ->
      [hipe_rtl:alu_dst(I)];
    #alub{} ->
      [hipe_rtl:alub_dst(I)];
    #call{} ->
      case hipe_rtl:call_dstlist(I) of
        [] -> [];
        [Dst] -> [Dst]
      end;
    #load{} ->
      [hipe_rtl:load_dst(I)];
    #load_address{} ->
      [hipe_rtl:load_address_dst(I)];
    #load_atom{} ->
      [hipe_rtl:load_atom_dst(I)];
    #move{} ->
      [hipe_rtl:move_dst(I)];
    #phi{} ->
      [hipe_rtl:phi_dst(I)];
    #fconv{} ->
      [hipe_rtl:fconv_dst(I)];
    #fload{} ->
      [hipe_rtl:fload_dst(I)];
    #fmove{} ->
      [hipe_rtl:fmove_dst(I)];
    #fp{} ->
      [hipe_rtl:fp_dst(I)];
    #fp_unop{} ->
      [hipe_rtl:fp_unop_dst(I)];
    _ ->
      []
  end.

llvm_type_from_size(Size) ->
  case Size of
    byte  -> hipe_llvm:mk_int(8);
    int16 -> hipe_llvm:mk_int(16);
    int32 -> hipe_llvm:mk_int(32);
    word  -> hipe_llvm:mk_int(64)
  end.

%% @doc Create definition for the compiled function. The parameters that are
%%      passed to the stack must be reversed to match with the CC. Also
%%      precoloured registers that are passed as arguments must be stored to
%%      the corresonding stack slots.
create_function_definition(Fun, Params, Code, LocalVars) ->
  FunctionName = trans_mfa_name(Fun, not_remote),
  FixedRegs = fixed_registers(),
  %% Reverse parameters to match with the Erlang calling convention
  ReversedParams =
    case erlang:length(Params) > ?NR_ARG_REGS of
		  false ->
		    Params;
		  true ->
		    {ParamsInRegs, ParamsInStack} = lists:split(?NR_ARG_REGS, Params),
		    ParamsInRegs ++ lists:reverse(ParamsInStack)
		end,
  Args = header_regs(FixedRegs) ++ header_params(ReversedParams),
  EntryLabel = hipe_llvm:mk_label("Entry"),
  FloatTy = hipe_llvm:mk_double(),
  ExceptionSync = hipe_llvm:mk_alloca("%exception_sync", FloatTy, [], []),
  I2 = load_regs(FixedRegs),
  I3 = hipe_llvm:mk_br(mk_jump_label(get(first_label))),
  StoredParams = store_params(Params),
  EntryBlock =
    lists:flatten([EntryLabel, ExceptionSync, I2, LocalVars, StoredParams, I3]),
  Final_Code = EntryBlock ++ Code,
  FunctionOptions = [nounwind, noredzone, list_to_atom("gc \"erlang\"")],
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
  hipe_llvm:mk_fun_def([], [], "cc 11", [], FunRetTy, FunctionName, Args,
                       FunctionOptions, [], Final_Code).

header_params(Params) ->
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  [{WordTy, "%v" ++ integer_to_list(hipe_rtl:var_index(P))} || P <- Params].

store_params(Params) ->
  Fun1 =
    fun(X) ->
      Index = hipe_rtl:var_index(X),
      {Name, _} = trans_dst(X),
      ParamName = "%v" ++ integer_to_list(Index),
      WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
      WordTyPtr = hipe_llvm:mk_pointer(WordTy),
      hipe_llvm:mk_store(WordTy, ParamName, WordTyPtr, Name, [], [], false)
    end,
  lists:map(Fun1, Params).

fixed_registers() ->
  case get(hipe_target_arch) of
    x86 ->
      ["hp", "p"];
    amd64 ->
      ["hp", "p"];
    Other ->
      exit({?MODULE, map_registers, {"Unknown architecture", Other}})
  end.

header_regs(Registers) ->
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  [{WordTy, "%" ++ X ++ "_in"} || X <- Registers].

load_regs(Registers) ->
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  Fun1 =
    fun(X) ->
	I1 = hipe_llvm:mk_alloca("%" ++ X ++ "_reg_var", WordTy, [], []),
	I2 = hipe_llvm:mk_store(WordTy, "%" ++ X ++ "_in", WordTyPtr,
			 "%" ++ X ++ "_reg_var", [], [], false),
	[I1, I2]
    end,
  lists:map(Fun1, Registers).

%%------------------------------------------------------------------------------
%% Relocation-specific Stuff
%%------------------------------------------------------------------------------

relocs_store(Key, Value, Relocs) ->
  dict:store(Key, Value, Relocs).

relocs_to_list(Relocs) ->
  dict:to_list(Relocs).

%% @doc This function is responsible for the actions needed to handle
%%      relocations:
%%      1) Updates relocations with constants and switch jump tables.
%%      2) Creates LLVM code to declare relocations as external
%%         functions/constants.
%%      3) Creates LLVM code in order to create local variables for the external
%%         constants/labels.
handle_relocations(Relocs, Data, Fun) ->
  RelocsList = relocs_to_list(Relocs),
  %% Seperate Relocations according to their type
  {CallList, AtomList, ClosureList, ClosureLabels, SwitchList} =
    seperate_relocs(RelocsList),
  %% Create code to declare atoms
  AtomDecl = [declare_atom(A) || A <- AtomList],
  %% Create code to create local name for atoms
  AtomLoad = [load_atom(A) || A <- AtomList],
  %% Create code to declare closures
  ClosureDecl = [declare_closure(C) || C <- ClosureList],
  %% Create code to create local name for closures
  ClosureLoad = [load_closure(C) || C <- ClosureList],
  %% Find function calls
  IsExternalCall = fun (X) -> is_external_call(X, Fun) end,
  ExternalCallList = lists:filter(IsExternalCall, CallList),
  %% Create code to declare external function
  FunDecl = fixed_fun_decl() ++ [call_to_decl(C) || C <- ExternalCallList],
  %% Extract constant labels from Constant Map (remove duplicates)
  ConstLabels = hipe_consttab:labels(Data),
  %% Create code to declare constants
  ConstDecl = [declare_constant(C) || C <- ConstLabels],
  %% Create code to create local name for constants
  ConstLoad = [load_constant(C) || C <- ConstLabels],
  %% Create code to create jump tables
  SwitchDecl = declare_switches(SwitchList, Fun),
  %% Create code to create a table with the labels of all closure calls
  {ClosureLabelDecl, Relocs1} =
    declare_closure_labels(ClosureLabels, Relocs, Fun),
  %% Enter constants to relocations
  Relocs2 = lists:foldl(fun const_to_dict/2, Relocs1, ConstLabels),
  %% Temporary Store inc_stack and llvm_fix_pinned_regs to Dictionary
  %% TODO: Remove this
  Relocs3 = dict:store("inc_stack_0", {call, not_remote, {bif, inc_stack_0, 0}}, Relocs2),
  Relocs4 = dict:store("hipe_bifs.llvm_fix_pinned_regs.0",
                       {call, remote, {hipe_bifs, llvm_fix_pinned_regs, 0}}, Relocs3),
  BranchMetaData = [
    hipe_llvm:mk_meta(?BRANCH_META_TAKEN,     ["branch_weights", 99, 1])
  , hipe_llvm:mk_meta(?BRANCH_META_NOT_TAKEN, ["branch_weights", 1, 99])
  ],
  ExternalDeclarations = AtomDecl ++ ClosureDecl ++ ConstDecl ++ FunDecl ++
    ClosureLabelDecl ++ SwitchDecl ++ BranchMetaData,
  LocalVariables = AtomLoad ++ ClosureLoad ++ ConstLoad,
  {Relocs4, ExternalDeclarations, LocalVariables}.

%% @doc Seperate relocations according to their type.
seperate_relocs(Relocs) ->
  seperate_relocs(Relocs, [], [], [], [], []).

seperate_relocs([], CallAcc, AtomAcc, ClosureAcc, LabelAcc, JmpTableAcc) ->
  {CallAcc, AtomAcc, ClosureAcc, LabelAcc, JmpTableAcc};
seperate_relocs([R|Rs], CallAcc, AtomAcc, ClosureAcc, LabelAcc, JmpTableAcc) ->
  case R of
    {_, {call, _, _}} ->
      seperate_relocs(Rs, [R | CallAcc], AtomAcc, ClosureAcc, LabelAcc,
                      JmpTableAcc);

    {_, {atom, _}} ->
      seperate_relocs(Rs, CallAcc, [R | AtomAcc], ClosureAcc, LabelAcc,
                      JmpTableAcc);
    {_, {closure, _}} ->
      seperate_relocs(Rs, CallAcc, AtomAcc, [R | ClosureAcc], LabelAcc,
                      JmpTableAcc);
    {_, {switch, _, _}} ->
      seperate_relocs(Rs, CallAcc, AtomAcc, ClosureAcc, LabelAcc,
                      [R | JmpTableAcc]);
    {_, {closure_label, _, _}} ->
      seperate_relocs(Rs, CallAcc, AtomAcc, ClosureAcc, [R | LabelAcc],
                      JmpTableAcc)
  end.

%% @doc External declaration of an atom.
declare_atom({AtomName, _}) ->
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  hipe_llvm:mk_const_decl("@" ++ AtomName, "external constant", WordTy, "").

%% @doc Creation of local variable for an atom.
load_atom({AtomName, _}) ->
  Dst = "%" ++ AtomName ++ "_var",
  Name = "@" ++ AtomName,
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  WordTyPtr = hipe_llvm:mk_pointer(WordTy),
  hipe_llvm:mk_conversion(Dst, ptrtoint, WordTyPtr, Name, WordTy).

%% @doc External declaration of a closure.
declare_closure({ClosureName, _})->
  ByteTy = hipe_llvm:mk_int(8),
  hipe_llvm:mk_const_decl("@" ++ ClosureName, "external constant", ByteTy, "").

%% @doc Creation of local variable for a closure.
load_closure({ClosureName, _})->
  Dst = "%" ++ ClosureName ++ "_var",
  Name = "@" ++ ClosureName,
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
  hipe_llvm:mk_conversion(Dst, ptrtoint, ByteTyPtr, Name, WordTy).

%% @doc Declaration of a local variable for a switch jump table.
declare_switches(JumpTableList, Fun) ->
  FunName = trans_mfa_name(Fun, not_remote),
  [declare_switch_table(X, FunName) || X <- JumpTableList].

declare_switch_table({Name, {switch, {TableType, Labels, _, _}, _}}, FunName) ->
  LabelList = [mk_jump_label(L) || L <- Labels],
  Fun1 = fun(X) -> "i8* blockaddress(@" ++ FunName ++ ", " ++ X ++ ")" end,
  List2 = lists:map(Fun1, LabelList),
  List3 = string:join(List2, ",\n"),
  List4 = "[\n" ++ List3 ++ "\n]\n",
  hipe_llvm:mk_const_decl("@" ++ Name, "constant", TableType, List4).

%% @doc Declaration of a variable for a table with the labels of all closure
%%      calls in the code.
declare_closure_labels([], Relocs, _Fun) ->
  {[], Relocs};
declare_closure_labels(ClosureLabels, Relocs, Fun) ->
  FunName = trans_mfa_name(Fun, not_remote),
  {LabelList, ArityList} =
    lists:unzip([{mk_jump_label(Label), A} ||
		  {_, {closure_label, Label, A}} <- ClosureLabels]),
  Relocs1 = relocs_store("table_closures", {table_closures, ArityList}, Relocs),
  List2 =
    ["i8* blockaddress(@" ++ FunName ++ ", " ++ L ++ ")" || L <- LabelList],
  List3 = string:join(List2, ",\n"),
  List4 = "[\n" ++ List3 ++ "\n]\n",
  NrLabels = length(LabelList),
  ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
  TableType = hipe_llvm:mk_array(NrLabels, ByteTyPtr),
  ConstDecl =
    hipe_llvm:mk_const_decl("@table_closures", "constant", TableType, List4),
  {[ConstDecl], Relocs1}.

%% @doc A call is treated as non external only in a case of a local recursive
%%      function.
is_external_call({_, {call, not_remote, MFA}}, MFA) -> false;
is_external_call(_, _) -> true.

%% @doc External declaration of a function.
call_to_decl({Name, {call, _, MFA}}) ->
  {M, _F, A} = MFA,
  CConv = "cc 11",
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
  {Type, Args} =
    case M of
      llvm ->
        {hipe_llvm:mk_struct([WordTy, hipe_llvm:mk_int(1)]), [1, 2]};
      %% +precoloured regs
      _ ->
        {FunRetTy, lists:seq(1, A + ?NR_PINNED_REGS)}
    end,
  ArgsTypes = lists:duplicate(length(Args), WordTy),
  hipe_llvm:mk_fun_decl([], [], CConv, [], Type, "@" ++ Name, ArgsTypes, []).

%% @doc These functions are always declared, even if not used.
fixed_fun_decl() ->
  ByteTy = hipe_llvm:mk_int(8),
  ByteTyPtr = hipe_llvm:mk_pointer(ByteTy),
  LandPad = hipe_llvm:mk_fun_decl([], [], [], [], hipe_llvm:mk_int(32),
    "@__gcc_personality_v0", [hipe_llvm:mk_int(32), hipe_llvm:mk_int(64),
    ByteTyPtr, ByteTyPtr], []),
  GCROOTDecl = hipe_llvm:mk_fun_decl([], [], [], [], hipe_llvm:mk_void(),
    "@llvm.gcroot", [hipe_llvm:mk_pointer(ByteTyPtr), ByteTyPtr], []),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  FunRetTy = hipe_llvm:mk_struct(lists:duplicate(?NR_PINNED_REGS + 1, WordTy)),
  FixPinnedRegs = hipe_llvm:mk_fun_decl([], [], [], [], FunRetTy,
    "@hipe_bifs.llvm_fix_pinned_regs.0", [], []),
  GcMetadata = hipe_llvm:mk_const_decl("@gc_metadata", "external constant",
                                       ByteTy, ""),
  [LandPad, GCROOTDecl, FixPinnedRegs, GcMetadata].

%% @doc Declare an External Consant. We declare all constants as i8 in order to
%%      be able to calcucate pointers of the form DL+6, with the getelementptr
%%      instruction. Otherwise we have to convert constants form pointers to
%%      values, add the offset and convert them again to pointers.
declare_constant(Label) ->
  Name = "@DL" ++ integer_to_list(Label),
  ByteTy = hipe_llvm:mk_int(8),
  hipe_llvm:mk_const_decl(Name, "external constant", ByteTy, "").

%% @doc Load a constant is achieved by converting a pointer to an integer of
%%      the correct width.
load_constant(Label) ->
  Dst = "%DL" ++ integer_to_list(Label) ++ "_var",
  Name = "@DL" ++ integer_to_list(Label),
  WordTy = hipe_llvm:mk_int(?WORD_WIDTH),
  ByteTyPtr = hipe_llvm:mk_pointer(hipe_llvm:mk_int(8)),
  hipe_llvm:mk_conversion(Dst, ptrtoint, ByteTyPtr, Name, WordTy).

%% @doc Store external constants and calls to dictionary.
const_to_dict(Elem, Dict) ->
  Name = "DL" ++ integer_to_list(Elem),
  dict:store(Name, {'constant', Elem}, Dict).

%% @doc Export the hipe literals that LLVM needs to generate the prologue as
%% metadata.
add_literals_metadata(ExternalDecls) ->
  Pairs = [hipe_llvm:mk_meta(integer_to_list(?FIRST_FREE_META_NO),
			     ["P_NSP_LIMIT", ?P_NSP_LIMIT])
	  ,hipe_llvm:mk_meta(integer_to_list(?FIRST_FREE_META_NO + 1),
			     ["X86_LEAF_WORDS", ?X86_LEAF_WORDS])
	  ,hipe_llvm:mk_meta(integer_to_list(?FIRST_FREE_META_NO + 2),
			     ["AMD64_LEAF_WORDS", ?AMD64_LEAF_WORDS])
	  ],
  [hipe_llvm:mk_meta(?HIPE_LITERALS_META, Pairs) |
   Pairs ++ ExternalDecls].