aboutsummaryrefslogblamecommitdiffstats
path: root/lib/hipe/opt/hipe_bb_weights.erl
blob: 8ef113b94cbcdbe674f452b369c1133455c91409 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
































































































































































































































































































































































































































































                                                                                
%% -*- erlang-indent-level: 2 -*-
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%%     http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%@doc
%%	                BASIC BLOCK WEIGHTING
%%
%% Computes basic block weights by using branch probabilities as weights in a
%% linear equation system, that is then solved using Gauss-Jordan Elimination.
%%
%% The equation system representation is intentionally sparse, since most blocks
%% have at most two successors.
-module(hipe_bb_weights).
-export([compute/3, compute_fast/3, weight/2, call_exn_pred/0]).
-export_type([bb_weights/0]).

-compile(inline).

%%-define(DO_ASSERT,1).
%%-define(DEBUG,1).
-include("../main/hipe.hrl").

%% If the equation system is large, it might take too long to solve it exactly.
%% Thus, if there are more than ?HEUR_MAX_SOLVE labels, we use the iterative
%% approximation.
-define(HEUR_MAX_SOLVE, 10000).

-opaque bb_weights() :: #{label() => float()}.

-type cfg() :: any().
-type target_module() :: module().
-type target_context() :: any().
-type target() :: {target_module(), target_context()}.

-type label()            :: integer().
-type var()              :: label().
-type assignment()       :: {var(), float()}.
-type eq_assoc()         :: [{var(), key()}].
-type solution()         :: [assignment()].

%% Constant. Predicted probability of a call resulting in an exception.
-spec call_exn_pred() -> float().
call_exn_pred() -> 0.01.

-spec compute(cfg(), target_module(), target_context()) -> bb_weights().
compute(CFG, TgtMod, TgtCtx) ->
  Target = {TgtMod, TgtCtx},
  Labels = labels(CFG, Target),
  if length(Labels) > ?HEUR_MAX_SOLVE ->
      ?debug_msg("~w: Too many labels (~w), approximating.~n",
		 [?MODULE, length(Labels)]),
      compute_fast(CFG, TgtMod, TgtCtx);
     true ->
      {EqSys, EqAssoc} = build_eq_system(CFG, Labels, Target),
      case solve(EqSys, EqAssoc) of
	{ok, Solution} ->
	  maps:from_list(Solution)
      end
  end.

-spec build_eq_system(cfg(), [label()], target()) -> {eq_system(), eq_assoc()}.
build_eq_system(CFG, Labels, Target) ->
  StartLb = hipe_gen_cfg:start_label(CFG),
  EQS0 = eqs_new(),
  {EQS1, Assoc} = build_eq_system(Labels, CFG, Target, [], EQS0),
  {StartLb, StartKey} = lists:keyfind(StartLb, 1, Assoc),
  StartRow0 = eqs_get(StartKey, EQS1),
  StartRow = row_set_const(-1.0, StartRow0), % -1.0 since StartLb coef is -1.0
  EQS = eqs_put(StartKey, StartRow, EQS1),
  {EQS, Assoc}.

build_eq_system([], _CFG, _Target, Map, EQS) -> {EQS, lists:reverse(Map)};
build_eq_system([L|Ls], CFG, Target, Map, EQS0) ->
  PredProb = pred_prob(L, CFG, Target),
  {Key, EQS} = eqs_insert(row_new([{L, -1.0}|PredProb], 0.0), EQS0),
  build_eq_system(Ls, CFG, Target, [{L, Key}|Map], EQS).

pred_prob(L, CFG, Target) ->
  [begin
     BB = bb(CFG, Pred, Target),
     Ps = branch_preds(hipe_bb:last(BB), Target),
     ?ASSERT(length(lists:ukeysort(1, Ps))
	     =:= length(hipe_gen_cfg:succ(CFG, Pred))),
     case lists:keyfind(L, 1, Ps) of
       {L, Prob} when is_float(Prob) -> {Pred, Prob}
     end
   end || Pred <- hipe_gen_cfg:pred(CFG, L)].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-spec triangelise(eq_system(), eq_assoc()) -> {eq_system(), eq_assoc()}.
triangelise(EQS, VKs) ->
  triangelise_1(mk_triix(EQS, VKs), []).

triangelise_1(TIX0, Acc) ->
  case triix_is_empty(TIX0) of
    true -> {triix_eqs(TIX0), lists:reverse(Acc)};
    false ->
      {V,Key,TIX1} = triix_pop_smallest(TIX0),
      Row0 = triix_get(Key, TIX1),
      case row_get(V, Row0) of
	Coef when Coef > -0.0001, Coef < 0.0001 ->
	  throw(error);
	_ ->
	  Row = row_normalise(V, Row0),
	  TIX2 = triix_put(Key, Row, TIX1),
	  TIX = eliminate_triix(V, Key, Row, TIX2),
	  triangelise_1(TIX, [{V,Key}|Acc])
      end
  end.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Triangelisation maintains its own index, outside of eqs. This index is
%% essentially a BST (used as a heap) of all equations by size, with {Key,Var}
%% as the values and only containing a subset of all the keys in the whole
%% equation system. The key operation is triix_pop_smallest/1, which pops a
%% {Key,Var} from the heap corresponding to one of the smallest equations. This
%% is critical in order to prevent the equations from growing during
%% triangelisation, which would make the algorithm O(n^2) in the common case.
-type tri_eq_system() :: {eq_system(),
			  gb_trees:tree(non_neg_integer(),
					gb_trees:tree(key(), var()))}.

triix_eqs({EQS, _}) -> EQS.
triix_get(Key, {EQS, _}) -> eqs_get(Key, EQS).
triix_is_empty({_, Tree}) -> gb_trees:is_empty(Tree).
triix_lookup(V, {EQS, _}) -> eqs_lookup(V, EQS).

mk_triix(EQS, VKs) ->
  {EQS,
   lists:foldl(fun({V,Key}, Tree) ->
		   Size = row_size(eqs_get(Key, EQS)),
		   sitree_insert(Size, Key, V, Tree)
	       end, gb_trees:empty(), VKs)}.

sitree_insert(Size, Key, V, SiTree) ->
  SubTree1 =
    case gb_trees:lookup(Size, SiTree) of
      none -> gb_trees:empty();
      {value, SubTree0} -> SubTree0
    end,
  SubTree = gb_trees:insert(Key, V, SubTree1),
  gb_trees:enter(Size, SubTree, SiTree).

sitree_update_subtree(Size, SubTree, SiTree) ->
  case gb_trees:is_empty(SubTree) of
    true -> gb_trees:delete(Size, SiTree);
    false -> gb_trees:update(Size, SubTree, SiTree)
  end.

triix_put(Key, Row, {EQS, Tree0}) ->
  OldSize = row_size(eqs_get(Key, EQS)),
  case row_size(Row) of
    OldSize -> {eqs_put(Key, Row, EQS), Tree0};
    Size ->
      Tree =
	case gb_trees:lookup(OldSize, Tree0) of
	  none -> Tree0;
	  {value, SubTree0} ->
	    case gb_trees:lookup(Key, SubTree0) of
	      none -> Tree0;
	      {value, V} ->
		SubTree = gb_trees:delete(Key, SubTree0),
		Tree1 = sitree_update_subtree(OldSize, SubTree, Tree0),
		sitree_insert(Size, Key, V, Tree1)
	    end
	end,
      {eqs_put(Key, Row, EQS), Tree}
  end.

triix_pop_smallest({EQS, Tree}) ->
  {Size, SubTree0} = gb_trees:smallest(Tree),
  {Key, V, SubTree} = gb_trees:take_smallest(SubTree0),
  {V, Key, {EQS, sitree_update_subtree(Size, SubTree, Tree)}}.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

row_normalise(Var, Row) ->
  %% Normalise v's coef to 1.0
  %% row_set_coef ensures the coef is exactly 1.0 (no rounding errors)
  row_set_coef(Var, 1.0, row_scale(Row, 1.0/row_get(Var, Row))).

%% Precondition: Row must be normalised; i.e. Vars coef must be 1.0 (mod
%% rounding errors)
-spec eliminate(var(), key(), row(), eq_system()) -> eq_system().
eliminate(Var, Key, Row, TIX0) ->
  eliminate_abstr(Var, Key, Row, TIX0,
		  fun eqs_get/2, fun eqs_lookup/2, fun eqs_put/3).

-spec eliminate_triix(var(), key(), row(), tri_eq_system()) -> tri_eq_system().
eliminate_triix(Var, Key, Row, TIX0) ->
  eliminate_abstr(Var, Key, Row, TIX0,
		  fun triix_get/2, fun triix_lookup/2, fun triix_put/3).

%% The same function implemented for two data types, eqs and triix.
-compile({inline, eliminate_abstr/7}).
-spec eliminate_abstr(var(), key(), row(), ADT, fun((key(), ADT) -> row()),
		      fun((var(), ADT) -> [key()]),
		      fun((key(), row(), ADT) -> ADT)) -> ADT.
eliminate_abstr(Var, Key, Row, ADT0, GetFun, LookupFun, PutFun) ->
  ?ASSERT(1.0 =:= row_get(Var, Row)),
  ADT =
    lists:foldl(fun(RK, ADT1) when RK =:= Key -> ADT1;
		   (RK, ADT1) ->
		    R = GetFun(RK, ADT1),
		    PutFun(RK, row_addmul(R, Row, -row_get(Var, R)), ADT1)
		end, ADT0, LookupFun(Var, ADT0)),
  [Key] = LookupFun(Var, ADT),
  ADT.

-spec solve(eq_system(), eq_assoc()) -> error | {ok, solution()}.
solve(EQS0, EqAssoc0) ->
  try triangelise(EQS0, EqAssoc0)
  of {EQS1, EqAssoc} ->
      {ok, solve_1(EqAssoc, maps:from_list(EqAssoc), EQS1, [])}
  catch error -> error
  end.

solve_1([], _VarEqs, _EQS, Acc) -> Acc;
solve_1([{V,K}|Ps], VarEqs, EQS0, Acc0) ->
  Row0 = eqs_get(K, EQS0),
  VarsToKill = [Var || {Var, _} <- row_coefs(Row0), Var =/= V],
  Row1 = kill_vars(VarsToKill, VarEqs, EQS0, Row0),
  [{V,_}] = row_coefs(Row1), % assertion
  Row = row_normalise(V, Row1),
  [{V,1.0}] = row_coefs(Row), % assertion
  EQS = eliminate(V, K, Row, EQS0),
  [K] = eqs_lookup(V, EQS),
  solve_1(Ps, VarEqs, eqs_remove(K, EQS), [{V, row_const(Row)}|Acc0]).

kill_vars([], _VarEqs, _EQS, Row) -> Row;
kill_vars([V|Vs], VarEqs, EQS, Row0) ->
  VRow0 = eqs_get(maps:get(V, VarEqs), EQS),
  VRow = row_normalise(V, VRow0),
  ?ASSERT(1.0 =:= row_get(V, VRow)),
  Row = row_addmul(Row0, VRow, -row_get(V, Row0)),
  ?ASSERT(0.0 =:= row_get(V, Row)), % V has been killed
  kill_vars(Vs, VarEqs, EQS, Row).

-spec weight(label(), bb_weights()) -> float().
weight(Lbl, Weights) ->
  maps:get(Lbl, Weights).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Row datatype
%% Invariant: No 0.0 coefficiets!
-spec row_empty() -> row().
row_empty() -> {orddict:new(), 0.0}.

-spec row_new([{var(), float()}], float()) -> row().
row_new(Coefs, Const) when is_float(Const) ->
  row_ensure_invar({row_squash_multiples(lists:keysort(1, Coefs)), Const}).

row_squash_multiples([{K, C1},{K, C2}|Ps]) ->
  row_squash_multiples([{K,C1+C2}|Ps]);
row_squash_multiples([P|Ps]) -> [P|row_squash_multiples(Ps)];
row_squash_multiples([]) -> [].

row_ensure_invar({Coef, Const}) ->
  {orddict:filter(fun(_, 0.0) -> false; (_, F) when is_float(F) -> true end,
		  Coef), Const}.

row_const({_, Const}) -> Const.
row_coefs({Coefs, _}) -> orddict:to_list(Coefs).
row_size({Coefs, _}) -> orddict:size(Coefs).

row_get(Var, {Coefs, _}) ->
  case lists:keyfind(Var, 1, Coefs) of
    false -> 0.0;
    {_, Coef} -> Coef
  end.

row_set_coef(Var, 0.0, {Coefs, Const}) ->
  {orddict:erase(Var, Coefs), Const};
row_set_coef(Var, Coef, {Coefs, Const}) ->
  {orddict:store(Var, Coef, Coefs), Const}.

row_set_const(Const, {Coefs, _}) -> {Coefs, Const}.

%% Lhs + Rhs*Factor
-spec row_addmul(row(), row(), float()) -> row().
row_addmul({LhsCoefs, LhsConst}, {RhsCoefs, RhsConst}, Factor)
  when is_float(Factor) ->
  Coefs = row_addmul_coefs(LhsCoefs, RhsCoefs, Factor),
  Const = LhsConst + RhsConst * Factor,
  {Coefs, Const}.

row_addmul_coefs(Ls, [], Factor) when is_float(Factor) -> Ls;
row_addmul_coefs([], Rs, Factor) when is_float(Factor) ->
  row_scale_coefs(Rs, Factor);
row_addmul_coefs([L={LV, _}|Ls], Rs=[{RV,_}|_], Factor)
  when LV < RV, is_float(Factor) ->
  [L|row_addmul_coefs(Ls, Rs, Factor)];
row_addmul_coefs(Ls=[{LV, _}|_], [{RV, RC}|Rs], Factor)
  when LV > RV, is_float(RC), is_float(Factor) ->
  [{RV, RC*Factor}|row_addmul_coefs(Ls, Rs, Factor)];
row_addmul_coefs([{V, LC}|Ls], [{V, RC}|Rs], Factor)
  when is_float(LC), is_float(RC), is_float(Factor) ->
  case LC + RC * Factor of
    0.0 ->      row_addmul_coefs(Ls, Rs, Factor);
    C -> [{V,C}|row_addmul_coefs(Ls, Rs, Factor)]
  end.

row_scale(_, 0.0) -> row_empty();
row_scale({RowCoefs, RowConst}, Factor) when is_float(Factor) ->
  {row_scale_coefs(RowCoefs, Factor), RowConst * Factor}.

row_scale_coefs([{V,C}|Cs], Factor) when is_float(Factor), is_float(C) ->
  [{V,C*Factor}|row_scale_coefs(Cs, Factor)];
row_scale_coefs([], Factor) when is_float(Factor) ->
  [].

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Equation system ADT
%%
%% Stores a linear equation system, allowing for efficient updates and efficient
%% queries for all equations mentioning a variable.
%%
%% It is sort of like a "database" table of {Primary, Terms, Const} indexed both
%% on Primary as well as the vars (map keys) in Terms.
-type row()       :: {Terms :: orddict:orddict(var(), float()),
		      Const :: float()}.
-type key()       :: non_neg_integer().
-type rev_index() :: #{var() => ordsets:ordset(key())}.
-record(eq_system, {
	  rows = #{}              :: #{key() => row()},
	  revidx = revidx_empty() :: rev_index(),
	  next_key = 0            :: key()
	 }).
-type eq_system() :: #eq_system{}.

eqs_new() -> #eq_system{}.

-spec eqs_insert(row(), eq_system()) -> {key(), eq_system()}.
eqs_insert(Row, EQS=#eq_system{next_key=NextKey0}) ->
  Key = NextKey0,
  NextKey = NextKey0 + 1,
  {Key, eqs_insert(Key, Row, EQS#eq_system{next_key=NextKey})}.

eqs_insert(Key, Row, EQS=#eq_system{rows=Rows, revidx=RevIdx0}) ->
  RevIdx = revidx_add(Key, Row, RevIdx0),
  EQS#eq_system{rows=Rows#{Key => Row}, revidx=RevIdx}.

eqs_put(Key, Row, EQS0) ->
  eqs_insert(Key, Row, eqs_remove(Key, EQS0)).

eqs_remove(Key, EQS=#eq_system{rows=Rows, revidx=RevIdx0}) ->
  OldRow = maps:get(Key, Rows),
  RevIdx = revidx_remove(Key, OldRow, RevIdx0),
  EQS#eq_system{rows = maps:remove(Key, Rows), revidx=RevIdx}.

-spec eqs_get(key(), eq_system()) -> row().
eqs_get(Key, #eq_system{rows=Rows}) -> maps:get(Key, Rows).

%% Keys of all equations containing a nonzero coefficient for Var
-spec eqs_lookup(var(), eq_system()) -> ordsets:ordset(key()).
eqs_lookup(Var, #eq_system{revidx=RevIdx}) -> maps:get(Var, RevIdx).

%% eqs_rows(#eq_system{rows=Rows}) -> maps:to_list(Rows).

%% eqs_print(EQS) ->
%%   lists:foreach(fun({_, Row}) ->
%% 		    row_print(Row)
%% 		end, lists:sort(eqs_rows(EQS))).

%% row_print(Row) ->
%%   CoefStrs = [io_lib:format("~wl~w", [Coef, Var])
%% 	      || {Var, Coef} <- row_coefs(Row)],
%%   CoefStr = lists:join(" + ", CoefStrs),
%%   io:format("~w = ~s~n", [row_const(Row), CoefStr]).

revidx_empty() -> #{}.

-spec revidx_add(key(), row(), rev_index()) -> rev_index().
revidx_add(Key, Row, RevIdx0) ->
  orddict:fold(fun(Var, _Coef, RevIdx1) ->
		?ASSERT(_Coef /= 0.0),
		RevIdx1#{Var => ordsets:add_element(
				  Key, maps:get(Var, RevIdx1, ordsets:new()))}
	    end, RevIdx0, row_coefs(Row)).

-spec revidx_remove(key(), row(), rev_index()) -> rev_index().
revidx_remove(Key, {Coefs, _}, RevIdx0) ->
  orddict:fold(fun(Var, _Coef, RevIdx1) ->
		case RevIdx1 of
		  #{Var := Keys0} ->
		    case ordsets:del_element(Key, Keys0) of
		      [] -> maps:remove(Var, RevIdx1);
		      Keys -> RevIdx1#{Var := Keys}
		    end
		end
	    end, RevIdx0, Coefs).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-define(FAST_ITERATIONS, 5).

%% @doc Computes a rough approximation of BB weights. The approximation is
%% particularly poor (converges slowly) for recursive functions and loops.
-spec compute_fast(cfg(), target_module(), target_context()) -> bb_weights().
compute_fast(CFG, TgtMod, TgtCtx) ->
  Target = {TgtMod, TgtCtx},
  StartLb = hipe_gen_cfg:start_label(CFG),
  RPO = reverse_postorder(CFG, Target),
  PredProbs = [{L, pred_prob(L, CFG, Target)} || L <- RPO, L =/= StartLb],
  Probs0 = (maps:from_list([{L, 0.0} || L <- RPO]))#{StartLb := 1.0},
  fast_iterate(?FAST_ITERATIONS, PredProbs, Probs0).

fast_iterate(0, _Pred, Probs) -> Probs;
fast_iterate(Iters, Pred, Probs0) ->
  fast_iterate(Iters-1, Pred,
	       fast_one(Pred, Probs0)).

fast_one([{L, Pred}|Ls], Probs0) ->
  Weight = fast_sum(Pred, Probs0, 0.0),
  Probs = Probs0#{L => Weight},
  fast_one(Ls, Probs);
fast_one([], Probs) ->
  Probs.

fast_sum([{P,EWt}|Pred], Probs, Acc) when is_float(EWt), is_float(Acc) ->
  case Probs of
    #{P := PWt} when is_float(PWt) ->
      fast_sum(Pred, Probs, Acc + PWt * EWt)
  end;
fast_sum([], _Probs, Acc) when is_float(Acc) ->
  Acc.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Target module interface functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-define(TGT_IFACE_0(N), N(         {M,C}) -> M:N(         C)).
-define(TGT_IFACE_1(N), N(A1,      {M,C}) -> M:N(A1,      C)).
-define(TGT_IFACE_2(N), N(A1,A2,   {M,C}) -> M:N(A1,A2,   C)).
-define(TGT_IFACE_3(N), N(A1,A2,A3,{M,C}) -> M:N(A1,A2,A3,C)).

?TGT_IFACE_2(bb).
?TGT_IFACE_1(branch_preds).
?TGT_IFACE_1(labels).
?TGT_IFACE_1(reverse_postorder).