%% -*- erlang-indent-level: 2 -*-
%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2004-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(hipe_ppc).
-export([
mk_temp/2,
mk_new_temp/1,
mk_new_nonallocatable_temp/1,
is_temp/1,
temp_reg/1,
temp_type/1,
temp_is_allocatable/1,
temp_is_precoloured/1,
mk_simm16/1,
mk_uimm16/1,
mk_mfa/3,
mk_prim/1,
is_prim/1,
prim_prim/1,
mk_sdesc/4,
mk_alu/4,
mk_b_fun/2,
mk_b_label/1,
mk_bc/3,
mk_bctr/1,
mk_bctrl/1,
mk_bl/3,
mk_blr/0,
mk_cmp/3,
mk_comment/1,
mk_label/1,
is_label/1,
label_label/1,
mk_li/2,
mk_li/3,
mk_addi/4,
mk_load/4,
mk_loadx/4,
mk_load/6,
ldop_to_ldxop/1,
mk_mfspr/2,
mk_mtcr/1,
mk_mtspr/2,
mk_pseudo_bc/4,
negate_bcond/1,
mk_pseudo_call/4,
pseudo_call_contlab/1,
pseudo_call_func/1,
pseudo_call_sdesc/1,
pseudo_call_linkage/1,
mk_pseudo_call_prepare/1,
pseudo_call_prepare_nrstkargs/1,
mk_pseudo_li/2,
mk_pseudo_move/2,
is_pseudo_move/1,
pseudo_move_dst/1,
pseudo_move_src/1,
mk_pseudo_tailcall/4,
pseudo_tailcall_func/1,
pseudo_tailcall_stkargs/1,
pseudo_tailcall_linkage/1,
mk_pseudo_tailcall_prepare/0,
mk_store/4,
mk_storex/4,
mk_store/6,
stop_to_stxop/1,
mk_unary/3,
mk_lfd/3,
mk_lfdx/3,
mk_fload/4,
%% mk_stfd/3,
mk_stfdx/3,
mk_fstore/4,
mk_fp_binary/4,
mk_fp_unary/3,
mk_pseudo_fmove/2,
is_pseudo_fmove/1,
pseudo_fmove_dst/1,
pseudo_fmove_src/1,
mk_defun/8,
defun_mfa/1,
defun_formals/1,
defun_is_closure/1,
defun_is_leaf/1,
defun_code/1,
defun_data/1,
defun_var_range/1]).
-include("hipe_ppc.hrl").
mk_temp(Reg, Type, Allocatable) ->
#ppc_temp{reg=Reg, type=Type, allocatable=Allocatable}.
mk_temp(Reg, Type) -> mk_temp(Reg, Type, true).
mk_new_temp(Type, Allocatable) ->
mk_temp(hipe_gensym:get_next_var(ppc), Type, Allocatable).
mk_new_temp(Type) -> mk_new_temp(Type, true).
mk_new_nonallocatable_temp(Type) -> mk_new_temp(Type, false).
is_temp(X) -> case X of #ppc_temp{} -> true; _ -> false end.
temp_reg(#ppc_temp{reg=Reg}) -> Reg.
temp_type(#ppc_temp{type=Type}) -> Type.
temp_is_allocatable(#ppc_temp{allocatable=A}) -> A.
temp_is_precoloured(#ppc_temp{reg=Reg,type=Type}) ->
case Type of
'double' -> hipe_ppc_registers:is_precoloured_fpr(Reg);
_ -> hipe_ppc_registers:is_precoloured_gpr(Reg)
end.
mk_simm16(Value) -> #ppc_simm16{value=Value}.
mk_uimm16(Value) -> #ppc_uimm16{value=Value}.
mk_mfa(M, F, A) -> #ppc_mfa{m=M, f=F, a=A}.
mk_prim(Prim) -> #ppc_prim{prim=Prim}.
is_prim(X) -> case X of #ppc_prim{} -> true; _ -> false end.
prim_prim(#ppc_prim{prim=Prim}) -> Prim.
mk_sdesc(ExnLab, FSize, Arity, Live) ->
#ppc_sdesc{exnlab=ExnLab, fsize=FSize, arity=Arity, live=Live}.
mk_alu(AluOp, Dst, Src1, Src2) ->
#alu{aluop=AluOp, dst=Dst, src1=Src1, src2=Src2}.
mk_b_fun(Fun, Linkage) -> #b_fun{'fun'=Fun, linkage=Linkage}.
mk_b_label(Label) -> #b_label{label=Label}.
mk_bc(BCond, Label, Pred) -> #bc{bcond=BCond, label=Label, pred=Pred}.
mk_bctr(Labels) -> #bctr{labels=Labels}.
mk_bctrl(SDesc) -> #bctrl{sdesc=SDesc}.
mk_bl(Fun, SDesc, Linkage) -> #bl{'fun'=Fun, sdesc=SDesc, linkage=Linkage}.
mk_blr() -> #blr{}.
mk_cmp(CmpOp, Src1, Src2) -> #cmp{cmpop=CmpOp, src1=Src1, src2=Src2}.
mk_comment(Term) -> #comment{term=Term}.
mk_label(Label) -> #label{label=Label}.
is_label(I) -> case I of #label{} -> true; _ -> false end.
label_label(#label{label=Label}) -> Label.
%%% Load an integer constant into a register.
mk_li(Dst, Value) -> mk_li(Dst, Value, []).
mk_li(Dst, Value, Tail) ->
R0 = mk_temp(0, 'untagged'),
mk_addi(Dst, R0, Value, Tail).
mk_addi(Dst, R0, Value, Tail) ->
Low = at_l(Value),
High = at_ha(Value),
case High of
0 ->
[mk_alu('addi', Dst, R0, mk_simm16(Low)) |
Tail];
_ ->
case Low of
0 ->
[mk_alu('addis', Dst, R0, mk_simm16(High)) |
Tail];
_ ->
[mk_alu('addi', Dst, R0, mk_simm16(Low)),
mk_alu('addis', Dst, Dst, mk_simm16(High)) |
Tail]
end
end.
at_l(Value) ->
simm16sext(Value band 16#FFFF).
at_ha(Value) ->
simm16sext(((Value + 16#8000) bsr 16) band 16#FFFF).
simm16sext(Value) ->
if Value >= 32768 -> (-1 bsl 16) bor Value;
true -> Value
end.
mk_li_new(Dst, Value, Tail) -> % Dst may be R0
R0 = mk_temp(0, 'untagged'),
case at_ha(Value) of
0 ->
%% Value[31:16] are the sign-extension of Value[15].
%% Use a single addi to load and sign-extend 16 bits.
[mk_alu('addi', Dst, R0, mk_simm16(at_l(Value))) |
Tail];
_ ->
%% Use addis to load the high 16 bits, followed by an
%% optional ori to load non sign-extended low 16 bits.
High = simm16sext((Value bsr 16) band 16#FFFF),
[mk_alu('addis', Dst, R0, mk_simm16(High)) |
case (Value band 16#FFFF) of
0 -> Tail;
Low ->
[mk_alu('ori', Dst, Dst, mk_uimm16(Low)) |
Tail]
end]
end.
mk_load(LDop, Dst, Disp, Base) ->
#load{ldop=LDop, dst=Dst, disp=Disp, base=Base}.
mk_loadx(LdxOp, Dst, Base1, Base2) ->
#loadx{ldxop=LdxOp, dst=Dst, base1=Base1, base2=Base2}.
mk_load(LdOp, Dst, Offset, Base, Scratch, Rest) when is_integer(Offset) ->
if Offset >= -32768, Offset =< 32767 ->
[mk_load(LdOp, Dst, Offset, Base) | Rest];
true ->
LdxOp = ldop_to_ldxop(LdOp),
Index =
begin
DstReg = temp_reg(Dst),
BaseReg = temp_reg(Base),
if DstReg =/= BaseReg -> Dst;
true -> mk_scratch(Scratch)
end
end,
mk_li_new(Index, Offset,
[mk_loadx(LdxOp, Dst, Base, Index) | Rest])
end.
ldop_to_ldxop(LdOp) ->
case LdOp of
'lbz' -> 'lbzx';
'lha' -> 'lhax';
'lhz' -> 'lhzx';
'lwz' -> 'lwzx'
end.
mk_scratch(Scratch) ->
case Scratch of
0 -> mk_temp(0, 'untagged');
'new' -> mk_new_temp('untagged')
end.
mk_mfspr(Dst, Spr) -> #mfspr{dst=Dst, spr=Spr}.
mk_mtcr(Src) -> #mtcr{src=Src}.
mk_mtspr(Spr, Src) -> #mtspr{spr=Spr, src=Src}.
mk_pseudo_bc(BCond, TrueLab, FalseLab, Pred) ->
if Pred >= 0.5 ->
mk_pseudo_bc_simple(negate_bcond(BCond), FalseLab,
TrueLab, 1.0-Pred);
true ->
mk_pseudo_bc_simple(BCond, TrueLab, FalseLab, Pred)
end.
mk_pseudo_bc_simple(BCond, TrueLab, FalseLab, Pred) when Pred =< 0.5 ->
#pseudo_bc{bcond=BCond, true_label=TrueLab,
false_label=FalseLab, pred=Pred}.
negate_bcond(BCond) ->
case BCond of
'lt' -> 'ge';
'ge' -> 'lt';
'gt' -> 'le';
'le' -> 'gt';
'eq' -> 'ne';
'ne' -> 'eq';
'so' -> 'ns';
'ns' -> 'so'
end.
mk_pseudo_call(FunC, SDesc, ContLab, Linkage) ->
#pseudo_call{func=FunC, sdesc=SDesc, contlab=ContLab, linkage=Linkage}.
pseudo_call_func(#pseudo_call{func=FunC}) -> FunC.
pseudo_call_sdesc(#pseudo_call{sdesc=SDesc}) -> SDesc.
pseudo_call_contlab(#pseudo_call{contlab=ContLab}) -> ContLab.
pseudo_call_linkage(#pseudo_call{linkage=Linkage}) -> Linkage.
mk_pseudo_call_prepare(NrStkArgs) ->
#pseudo_call_prepare{nrstkargs=NrStkArgs}.
pseudo_call_prepare_nrstkargs(#pseudo_call_prepare{nrstkargs=NrStkArgs}) ->
NrStkArgs.
mk_pseudo_li(Dst, Imm) -> #pseudo_li{dst=Dst, imm=Imm}.
mk_pseudo_move(Dst, Src) -> #pseudo_move{dst=Dst, src=Src}.
is_pseudo_move(I) -> case I of #pseudo_move{} -> true; _ -> false end.
pseudo_move_dst(#pseudo_move{dst=Dst}) -> Dst.
pseudo_move_src(#pseudo_move{src=Src}) -> Src.
mk_pseudo_tailcall(FunC, Arity, StkArgs, Linkage) ->
#pseudo_tailcall{func=FunC, arity=Arity, stkargs=StkArgs, linkage=Linkage}.
pseudo_tailcall_func(#pseudo_tailcall{func=FunC}) -> FunC.
pseudo_tailcall_stkargs(#pseudo_tailcall{stkargs=StkArgs}) -> StkArgs.
pseudo_tailcall_linkage(#pseudo_tailcall{linkage=Linkage}) -> Linkage.
mk_pseudo_tailcall_prepare() -> #pseudo_tailcall_prepare{}.
mk_store(STop, Src, Disp, Base) ->
#store{stop=STop, src=Src, disp=Disp, base=Base}.
mk_storex(StxOp, Src, Base1, Base2) ->
#storex{stxop=StxOp, src=Src, base1=Base1, base2=Base2}.
mk_store(StOp, Src, Offset, Base, Scratch, Rest)when is_integer(Offset) ->
if Offset >= -32768, Offset =< 32767 ->
[mk_store(StOp, Src, Offset, Base) | Rest];
true ->
StxOp = stop_to_stxop(StOp),
Index = mk_scratch(Scratch),
mk_li_new(Index, Offset,
[mk_storex(StxOp, Src, Base, Index) | Rest])
end.
stop_to_stxop(StOp) ->
case StOp of
'stb' -> 'stbx';
'sth' -> 'sthx';
'stw' -> 'stwx'
end.
mk_unary(UnOp, Dst, Src) -> #unary{unop=UnOp, dst=Dst, src=Src}.
mk_lfd(Dst, Disp, Base) -> #lfd{dst=Dst, disp=Disp, base=Base}.
mk_lfdx(Dst, Base1, Base2) -> #lfdx{dst=Dst, base1=Base1, base2=Base2}.
mk_fload(Dst, Offset, Base, Scratch) when is_integer(Offset) ->
if Offset >= -32768, Offset =< 32767 ->
[mk_lfd(Dst, Offset, Base)];
true ->
Index = mk_scratch(Scratch),
mk_li_new(Index, Offset, [mk_lfdx(Dst, Base, Index)])
end.
mk_stfd(Src, Disp, Base) -> #stfd{src=Src, disp=Disp, base=Base}.
mk_stfdx(Src, Base1, Base2) -> #stfdx{src=Src, base1=Base1, base2=Base2}.
mk_fstore(Src, Offset, Base, Scratch) when is_integer(Offset) ->
if Offset >= -32768, Offset =< 32767 ->
[mk_stfd(Src, Offset, Base)];
true ->
Index = mk_scratch(Scratch),
mk_li_new(Index, Offset, [mk_stfdx(Src, Base, Index)])
end.
mk_fp_binary(FpBinOp, Dst, Src1, Src2) ->
#fp_binary{fp_binop=FpBinOp, dst=Dst, src1=Src1, src2=Src2}.
mk_fp_unary(FpUnOp, Dst, Src) -> #fp_unary{fp_unop=FpUnOp, dst=Dst, src=Src}.
mk_pseudo_fmove(Dst, Src) -> #pseudo_fmove{dst=Dst, src=Src}.
is_pseudo_fmove(I) -> case I of #pseudo_fmove{} -> true; _ -> false end.
pseudo_fmove_dst(#pseudo_fmove{dst=Dst}) -> Dst.
pseudo_fmove_src(#pseudo_fmove{src=Src}) -> Src.
mk_defun(MFA, Formals, IsClosure, IsLeaf, Code, Data, VarRange, LabelRange) ->
#defun{mfa=MFA, formals=Formals, code=Code, data=Data,
isclosure=IsClosure, isleaf=IsLeaf,
var_range=VarRange, label_range=LabelRange}.
defun_mfa(#defun{mfa=MFA}) -> MFA.
defun_formals(#defun{formals=Formals}) -> Formals.
defun_is_closure(#defun{isclosure=IsClosure}) -> IsClosure.
defun_is_leaf(#defun{isleaf=IsLeaf}) -> IsLeaf.
defun_code(#defun{code=Code}) -> Code.
defun_data(#defun{data=Data}) -> Data.
defun_var_range(#defun{var_range=VarRange}) -> VarRange.