%%% -*- erlang-indent-level: 2 -*-
%%%
%%% %CopyrightBegin%
%%%
%%% Copyright Ericsson AB 2001-2012. All Rights Reserved.
%%%
%%% Licensed under the Apache License, Version 2.0 (the "License");
%%% you may not use this file except in compliance with the License.
%%% You may obtain a copy of the License at
%%%
%%% http://www.apache.org/licenses/LICENSE-2.0
%%%
%%% Unless required by applicable law or agreed to in writing, software
%%% distributed under the License is distributed on an "AS IS" BASIS,
%%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%%% See the License for the specific language governing permissions and
%%% limitations under the License.
%%%
%%% %CopyrightEnd%
%%%
%%% HiPE/x86 assembler
%%%
%%% TODO:
%%% - Simplify combine_label_maps and mk_data_relocs.
-ifdef(HIPE_AMD64).
-define(HIPE_X86_ASSEMBLE, hipe_amd64_assemble).
-define(HIPE_X86_ENCODE, hipe_amd64_encode).
-define(HIPE_X86_REGISTERS, hipe_amd64_registers).
-define(HIPE_X86_PP, hipe_amd64_pp).
-ifdef(AMD64_SIMULATE_NSP).
-define(X86_SIMULATE_NSP, ?AMD64_SIMULATE_NSP).
-endif.
-define(EAX, rax).
-define(REGArch, reg64).
-define(RMArch, rm64).
-define(EA_DISP32_ABSOLUTE, ea_disp32_sindex).
-else.
-define(HIPE_X86_ASSEMBLE, hipe_x86_assemble).
-define(HIPE_X86_ENCODE, hipe_x86_encode).
-define(HIPE_X86_REGISTERS, hipe_x86_registers).
-define(HIPE_X86_PP, hipe_x86_pp).
-define(EAX, eax).
-define(REGArch, reg32).
-define(RMArch, rm32).
-define(EA_DISP32_ABSOLUTE, ea_disp32).
-endif.
-module(?HIPE_X86_ASSEMBLE).
-export([assemble/4]).
-define(DEBUG,true).
-include("../main/hipe.hrl").
-include("../x86/hipe_x86.hrl").
-include("../../kernel/src/hipe_ext_format.hrl").
-include("../rtl/hipe_literals.hrl").
-include("../misc/hipe_sdi.hrl").
-undef(ASSERT).
-define(ASSERT(G), if G -> [] ; true -> exit({assertion_failed,?MODULE,?LINE,??G}) end).
assemble(CompiledCode, Closures, Exports, Options) ->
?when_option(time, Options, ?start_timer("x86 assembler")),
print("****************** Assembling *******************\n", [], Options),
%%
Code = [{MFA,
hipe_x86:defun_code(Defun),
hipe_x86:defun_data(Defun)}
|| {MFA, Defun} <- CompiledCode],
%%
{ConstAlign,ConstSize,ConstMap,RefsFromConsts} =
hipe_pack_constants:pack_constants(Code, ?HIPE_X86_REGISTERS:alignment()),
%%
{CodeSize,CodeBinary,AccRefs,LabelMap,ExportMap} =
encode(translate(Code, ConstMap, Options), Options),
print("Total num bytes=~w\n", [CodeSize], Options),
%% put(code_size, CodeSize),
%% put(const_size, ConstSize),
%% ?when_option(verbose, Options,
%% ?debug_msg("Constants are ~w bytes\n",[ConstSize])),
%%
SC = hipe_pack_constants:slim_constmap(ConstMap),
DataRelocs = hipe_pack_constants:mk_data_relocs(RefsFromConsts, LabelMap),
SSE = hipe_pack_constants:slim_sorted_exportmap(ExportMap,Closures,Exports),
SlimRefs = hipe_pack_constants:slim_refs(AccRefs),
Bin = term_to_binary([{?VERSION_STRING(),?HIPE_SYSTEM_CRC},
ConstAlign, ConstSize,
SC,
DataRelocs, % nee LM, LabelMap
SSE,
CodeSize,CodeBinary,SlimRefs,
0,[] % ColdCodeSize, SlimColdRefs
]),
%%
%% ?when_option(time, Options, ?stop_timer("x86 assembler")),
Bin.
%%%
%%% Assembly Pass 1.
%%% Process initial {MFA,Code,Data} list.
%%% Translate each MFA's body, choosing operand & instruction kinds.
%%%
%%% Assembly Pass 2.
%%% Perform short/long form optimisation for jumps.
%%% Build LabelMap for each MFA.
%%%
%%% Result is {MFA,NewCode,CodeSize,LabelMap} list.
%%%
translate(Code, ConstMap, Options) ->
translate_mfas(Code, ConstMap, [], Options).
translate_mfas([{MFA,Insns,_Data}|Code], ConstMap, NewCode, Options) ->
{NewInsns,CodeSize,LabelMap} =
translate_insns(Insns, {MFA,ConstMap}, hipe_sdi:pass1_init(), 0, [], Options),
translate_mfas(Code, ConstMap, [{MFA,NewInsns,CodeSize,LabelMap}|NewCode], Options);
translate_mfas([], _ConstMap, NewCode, _Options) ->
lists:reverse(NewCode).
translate_insns([I|Insns], Context, SdiPass1, Address, NewInsns, Options) ->
NewIs = translate_insn(I, Context, Options),
add_insns(NewIs, Insns, Context, SdiPass1, Address, NewInsns, Options);
translate_insns([], _Context, SdiPass1, Address, NewInsns, _Options) ->
{LabelMap,CodeSizeIncr} = hipe_sdi:pass2(SdiPass1),
{lists:reverse(NewInsns), Address+CodeSizeIncr, LabelMap}.
add_insns([I|Is], Insns, Context, SdiPass1, Address, NewInsns, Options) ->
NewSdiPass1 =
case I of
{'.label',L,_} ->
hipe_sdi:pass1_add_label(SdiPass1, Address, L);
{jcc_sdi,{_,{label,L}},_} ->
SdiInfo = #sdi_info{incr=(6-2),lb=(-128)+2,ub=127+2},
hipe_sdi:pass1_add_sdi(SdiPass1, Address, L, SdiInfo);
{jmp_sdi,{{label,L}},_} ->
SdiInfo = #sdi_info{incr=(5-2),lb=(-128)+2,ub=127+2},
hipe_sdi:pass1_add_sdi(SdiPass1, Address, L, SdiInfo);
_ ->
SdiPass1
end,
Address1 = Address + insn_size(I),
add_insns(Is, Insns, Context, NewSdiPass1, Address1, [I|NewInsns], Options);
add_insns([], Insns, Context, SdiPass1, Address, NewInsns, Options) ->
translate_insns(Insns, Context, SdiPass1, Address, NewInsns, Options).
insn_size(I) ->
case I of
{'.label',_,_} -> 0;
{'.sdesc',_,_} -> 0;
{jcc_sdi,_,_} -> 2;
{jmp_sdi,_,_} -> 2;
{Op,Arg,_Orig} -> ?HIPE_X86_ENCODE:insn_sizeof(Op, Arg)
end.
translate_insn(I, Context, Options) ->
case I of
#alu{} ->
Arg = resolve_alu_args(hipe_x86:alu_src(I), hipe_x86:alu_dst(I), Context),
[{hipe_x86:alu_op(I), Arg, I}];
#call{} ->
translate_call(I);
#cmovcc{} ->
{Dst,Src} = resolve_move_args(
hipe_x86:cmovcc_src(I), hipe_x86:cmovcc_dst(I),
Context),
CC = {cc,?HIPE_X86_ENCODE:cc(hipe_x86:cmovcc_cc(I))},
Arg = {CC,Dst,Src},
[{cmovcc, Arg, I}];
#cmp{} ->
Arg = resolve_alu_args(hipe_x86:cmp_src(I), hipe_x86:cmp_dst(I), Context),
[{cmp, Arg, I}];
#comment{} ->
[];
#fmove{} ->
{Op,Arg} = resolve_sse2_fmove_args(hipe_x86:fmove_src(I),
hipe_x86:fmove_dst(I)),
[{Op, Arg, I}];
#fp_binop{} ->
case proplists:get_bool(x87, Options) of
true -> % x87
Arg = resolve_x87_binop_args(hipe_x86:fp_binop_src(I),
hipe_x86:fp_binop_dst(I)),
[{hipe_x86:fp_binop_op(I), Arg, I}];
false -> % sse2
Arg = resolve_sse2_binop_args(hipe_x86:fp_binop_src(I),
hipe_x86:fp_binop_dst(I)),
[{resolve_sse2_op(hipe_x86:fp_binop_op(I)), Arg, I}]
end;
#fp_unop{} ->
case proplists:get_bool(x87, Options) of
true -> % x87
Arg = resolve_x87_unop_arg(hipe_x86:fp_unop_arg(I)),
[{hipe_x86:fp_unop_op(I), Arg, I}];
false -> % sse2
case hipe_x86:fp_unop_op(I) of
'fchs' ->
Arg = resolve_sse2_fchs_arg(hipe_x86:fp_unop_arg(I)),
[{'xorpd', Arg, I}];
'fwait' -> % no op on sse2, magic on x87
[]
end
end;
#imul{} ->
translate_imul(I, Context);
#jcc{} ->
Cc = {cc,?HIPE_X86_ENCODE:cc(hipe_x86:jcc_cc(I))},
Label = translate_label(hipe_x86:jcc_label(I)),
[{jcc_sdi, {Cc,Label}, I}];
#jmp_fun{} ->
%% call and jmp are patched the same, so no need to distinguish
%% call from tailcall
PatchTypeExt =
case hipe_x86:jmp_fun_linkage(I) of
remote -> ?CALL_REMOTE;
not_remote -> ?CALL_LOCAL
end,
Arg = translate_fun(hipe_x86:jmp_fun_fun(I), PatchTypeExt),
[{jmp, {Arg}, I}];
#jmp_label{} ->
Arg = translate_label(hipe_x86:jmp_label_label(I)),
[{jmp_sdi, {Arg}, I}];
#jmp_switch{} ->
RM32 = resolve_jmp_switch_arg(I, Context),
[{jmp, {RM32}, I}];
#label{} ->
[{'.label', hipe_x86:label_label(I), I}];
#lea{} ->
Arg = resolve_lea_args(hipe_x86:lea_mem(I), hipe_x86:lea_temp(I)),
[{lea, Arg, I}];
#move{} ->
Arg = resolve_move_args(hipe_x86:move_src(I), hipe_x86:move_dst(I),
Context),
[{mov, Arg, I}];
#move64{} ->
translate_move64(I, Context);
#movsx{} ->
Arg = resolve_movx_args(hipe_x86:movsx_src(I), hipe_x86:movsx_dst(I)),
[{movsx, Arg, I}];
#movzx{} ->
Arg = resolve_movx_args(hipe_x86:movzx_src(I), hipe_x86:movzx_dst(I)),
[{movzx, Arg, I}];
%% pseudo_call: eliminated before assembly
%% pseudo_jcc: eliminated before assembly
%% pseudo_tailcall: eliminated before assembly
%% pseudo_tailcall_prepare: eliminated before assembly
#pop{} ->
Arg = translate_dst(hipe_x86:pop_dst(I)),
[{pop, {Arg}, I}];
#push{} ->
Arg = translate_src(hipe_x86:push_src(I), Context),
[{push, {Arg}, I}];
#ret{} ->
translate_ret(I);
#shift{} ->
Arg = resolve_shift_args(hipe_x86:shift_src(I), hipe_x86:shift_dst(I), Context),
[{hipe_x86:shift_op(I), Arg, I}];
#test{} ->
Arg = resolve_test_args(hipe_x86:test_src(I), hipe_x86:test_dst(I), Context),
[{test, Arg, I}]
end.
-ifdef(X86_SIMULATE_NSP).
-ifdef(HIPE_AMD64).
translate_call(I) ->
WordSize = hipe_amd64_registers:wordsize(),
RegSP = 2#100, % esp/rsp
TempSP = hipe_x86:mk_temp(RegSP, untagged),
FunOrig = hipe_x86:call_fun(I),
Fun =
case FunOrig of
#x86_mem{base=#x86_temp{reg=4}, off=#x86_imm{value=Off}} ->
FunOrig#x86_mem{off=#x86_imm{value=Off+WordSize}};
_ -> FunOrig
end,
RegRA =
begin
RegTemp0 = hipe_amd64_registers:temp0(),
RegTemp1 = hipe_amd64_registers:temp1(),
case Fun of
#x86_temp{reg=RegTemp0} -> RegTemp1;
#x86_mem{base=#x86_temp{reg=RegTemp0}} -> RegTemp1;
_ -> RegTemp0
end
end,
TempRA = hipe_x86:mk_temp(RegRA, untagged),
PatchTypeExt =
case hipe_x86:call_linkage(I) of
remote -> ?CALL_REMOTE;
not_remote -> ?CALL_LOCAL
end,
JmpArg = translate_fun(Fun, PatchTypeExt),
I4 = {'.sdesc', hipe_x86:call_sdesc(I), #comment{term=sdesc}},
I3 = {jmp, {JmpArg}, #comment{term=call}},
Size3 = hipe_amd64_encode:insn_sizeof(jmp, {JmpArg}),
MovArgs = {mem_to_rmArch(hipe_x86:mk_mem(TempSP,
hipe_x86:mk_imm(0),
untagged)),
temp_to_regArch(TempRA)},
I2 = {mov, MovArgs, #comment{term=call}},
Size2 = hipe_amd64_encode:insn_sizeof(mov, MovArgs),
I1 = {lea, {temp_to_regArch(TempRA),
{ea, hipe_amd64_encode:ea_disp32_rip(Size2+Size3)}},
#comment{term=call}},
I0 = {sub, {temp_to_rmArch(TempSP), {imm8,WordSize}}, I},
[I0,I1,I2,I3,I4].
-else.
translate_call(I) ->
WordSize = ?HIPE_X86_REGISTERS:wordsize(),
RegSP = 2#100, % esp/rsp
TempSP = hipe_x86:mk_temp(RegSP, untagged),
FunOrig = hipe_x86:call_fun(I),
Fun =
case FunOrig of
#x86_mem{base=#x86_temp{reg=4}, off=#x86_imm{value=Off}} ->
FunOrig#x86_mem{off=#x86_imm{value=Off+WordSize}};
_ -> FunOrig
end,
PatchTypeExt =
case hipe_x86:call_linkage(I) of
remote -> ?CALL_REMOTE;
not_remote -> ?CALL_LOCAL
end,
JmpArg = translate_fun(Fun, PatchTypeExt),
I3 = {'.sdesc', hipe_x86:call_sdesc(I), #comment{term=sdesc}},
I2 = {jmp, {JmpArg}, #comment{term=call}},
Size2 = ?HIPE_X86_ENCODE:insn_sizeof(jmp, {JmpArg}),
I1 = {mov, {mem_to_rmArch(hipe_x86:mk_mem(TempSP,
hipe_x86:mk_imm(0),
untagged)),
{imm32,{?X86ABSPCREL,4+Size2}}},
#comment{term=call}},
I0 = {sub, {temp_to_rmArch(TempSP), {imm8,WordSize}}, I},
[I0,I1,I2,I3].
-endif.
translate_ret(I) ->
NPOP = hipe_x86:ret_npop(I) + ?HIPE_X86_REGISTERS:wordsize(),
RegSP = 2#100, % esp/rsp
TempSP = hipe_x86:mk_temp(RegSP, untagged),
RegRA = 2#011, % ebx/rbx
TempRA = hipe_x86:mk_temp(RegRA, untagged),
[{mov,
{temp_to_regArch(TempRA),
mem_to_rmArch(hipe_x86:mk_mem(TempSP,
hipe_x86:mk_imm(0),
untagged))},
I},
{add,
{temp_to_rmArch(TempSP),
case NPOP < 128 of
true -> {imm8,NPOP};
false -> {imm32,NPOP}
end},
#comment{term=ret}},
{jmp,
{temp_to_rmArch(TempRA)},
#comment{term=ret}}].
-else. % not X86_SIMULATE_NSP
translate_call(I) ->
%% call and jmp are patched the same, so no need to distinguish
%% call from tailcall
PatchTypeExt =
case hipe_x86:call_linkage(I) of
remote -> ?CALL_REMOTE;
not_remote -> ?CALL_LOCAL
end,
Arg = translate_fun(hipe_x86:call_fun(I), PatchTypeExt),
SDesc = hipe_x86:call_sdesc(I),
[{call, {Arg}, I}, {'.sdesc', SDesc, #comment{term=sdesc}}].
translate_ret(I) ->
Arg =
case hipe_x86:ret_npop(I) of
0 -> {};
N -> {{imm16,N}}
end,
[{ret, Arg, I}].
-endif. % X86_SIMULATE_NSP
translate_imul(I, Context) ->
Temp = temp_to_regArch(hipe_x86:imul_temp(I)),
Src = temp_or_mem_to_rmArch(hipe_x86:imul_src(I)),
Args =
case hipe_x86:imul_imm_opt(I) of
[] -> {Temp,Src};
Imm -> {Temp,Src,translate_imm(Imm, Context, true)}
end,
[{'imul', Args, I}].
temp_or_mem_to_rmArch(Src) ->
case Src of
#x86_temp{} -> temp_to_rmArch(Src);
#x86_mem{} -> mem_to_rmArch(Src)
end.
translate_label(Label) when is_integer(Label) ->
{label,Label}. % symbolic, since offset is not yet computable
translate_fun(Arg, PatchTypeExt) ->
case Arg of
#x86_temp{} ->
temp_to_rmArch(Arg);
#x86_mem{} ->
mem_to_rmArch(Arg);
#x86_mfa{m=M,f=F,a=A} ->
{rel32,{PatchTypeExt,{M,F,A}}};
#x86_prim{prim=Prim} ->
{rel32,{PatchTypeExt,Prim}}
end.
translate_src(Src, Context) ->
case Src of
#x86_imm{} ->
translate_imm(Src, Context, true);
_ ->
translate_dst(Src)
end.
%%% MayTrunc8 controls whether negative Imm8s should be truncated
%%% to 8 bits or not. Truncation should always be done, except when
%%% the caller will widen the Imm8 to an Imm32 or Imm64.
translate_imm(#x86_imm{value=Imm}, Context, MayTrunc8) ->
if is_atom(Imm) ->
{imm32,{?LOAD_ATOM,Imm}};
is_integer(Imm) ->
case (Imm =< 127) and (Imm >= -128) of
true ->
Imm8 =
case MayTrunc8 of
true -> Imm band 16#FF;
false -> Imm
end,
{imm8,Imm8};
false ->
{imm32,Imm}
end;
true ->
Val =
case Imm of
{Label,constant} ->
{MFA,ConstMap} = Context,
ConstNo = hipe_pack_constants:find_const({MFA,Label}, ConstMap),
{constant,ConstNo};
{Label,closure} ->
{closure,Label};
{Label,c_const} ->
{c_const,Label}
end,
{imm32,{?LOAD_ADDRESS,Val}}
end.
translate_dst(Dst) ->
case Dst of
#x86_temp{} ->
temp_to_regArch(Dst);
#x86_mem{type='double'} ->
mem_to_rm64fp(Dst);
#x86_mem{} ->
mem_to_rmArch(Dst);
#x86_fpreg{} ->
fpreg_to_stack(Dst)
end.
%%%
%%% Assembly Pass 3.
%%% Process final {MFA,Code,CodeSize,LabelMap} list from pass 2.
%%% Translate to a single binary code segment.
%%% Collect relocation patches.
%%% Build ExportMap (MFA-to-address mapping).
%%% Combine LabelMaps to a single one (for mk_data_relocs/2 compatibility).
%%% Return {CombinedCodeSize,BinaryCode,Relocs,CombinedLabelMap,ExportMap}.
%%%
encode(Code, Options) ->
CodeSize = compute_code_size(Code, 0),
ExportMap = build_export_map(Code, 0, []),
{AccCode,Relocs} = encode_mfas(Code, 0, [], [], Options),
CodeBinary = list_to_binary(lists:reverse(AccCode)),
?ASSERT(CodeSize =:= byte_size(CodeBinary)),
CombinedLabelMap = combine_label_maps(Code, 0, gb_trees:empty()),
{CodeSize,CodeBinary,Relocs,CombinedLabelMap,ExportMap}.
nr_pad_bytes(Address) -> (4 - (Address rem 4)) rem 4. % XXX: 16 or 32 instead?
align_entry(Address) -> Address + nr_pad_bytes(Address).
compute_code_size([{_MFA,_Insns,CodeSize,_LabelMap}|Code], Size) ->
compute_code_size(Code, align_entry(Size+CodeSize));
compute_code_size([], Size) -> Size.
build_export_map([{{M,F,A},_Insns,CodeSize,_LabelMap}|Code], Address, ExportMap) ->
build_export_map(Code, align_entry(Address+CodeSize), [{Address,M,F,A}|ExportMap]);
build_export_map([], _Address, ExportMap) -> ExportMap.
combine_label_maps([{MFA,_Insns,CodeSize,LabelMap}|Code], Address, CLM) ->
NewCLM = merge_label_map(gb_trees:to_list(LabelMap), MFA, Address, CLM),
combine_label_maps(Code, align_entry(Address+CodeSize), NewCLM);
combine_label_maps([], _Address, CLM) -> CLM.
merge_label_map([{Label,Offset}|Rest], MFA, Address, CLM) ->
NewCLM = gb_trees:insert({MFA,Label}, Address+Offset, CLM),
merge_label_map(Rest, MFA, Address, NewCLM);
merge_label_map([], _MFA, _Address, CLM) -> CLM.
encode_mfas([{MFA,Insns,CodeSize,LabelMap}|Code], Address, AccCode, Relocs, Options) ->
print("Generating code for:~w\n", [MFA], Options),
print("Offset | Opcode | Instruction\n", [], Options),
{Address1,Relocs1,AccCode1} =
encode_insns(Insns, Address, Address, LabelMap, Relocs, AccCode, Options),
ExpectedAddress = align_entry(Address + CodeSize),
?ASSERT(Address1 =:= ExpectedAddress),
print("Finished.\n\n", [], Options),
encode_mfas(Code, Address1, AccCode1, Relocs1, Options);
encode_mfas([], _Address, AccCode, Relocs, _Options) ->
{AccCode, Relocs}.
encode_insns([I|Insns], Address, FunAddress, LabelMap, Relocs, AccCode, Options) ->
case I of
{'.label',L,_} ->
LabelAddress = gb_trees:get(L, LabelMap) + FunAddress,
?ASSERT(Address =:= LabelAddress), % sanity check
print_insn(Address, [], I, Options),
encode_insns(Insns, Address, FunAddress, LabelMap, Relocs, AccCode, Options);
{'.sdesc',SDesc,_} ->
#x86_sdesc{exnlab=ExnLab,fsize=FSize,arity=Arity,live=Live} = SDesc,
ExnRA =
case ExnLab of
[] -> []; % don't cons up a new one
ExnLab -> gb_trees:get(ExnLab, LabelMap) + FunAddress
end,
Reloc = {?SDESC, Address,
?STACK_DESC(ExnRA, FSize, Arity, Live)},
encode_insns(Insns, Address, FunAddress, LabelMap, [Reloc|Relocs], AccCode, Options);
_ ->
{Op,Arg,_} = fix_jumps(I, Address, FunAddress, LabelMap),
{Bytes, NewRelocs} = ?HIPE_X86_ENCODE:insn_encode(Op, Arg, Address),
print_insn(Address, Bytes, I, Options),
Segment = list_to_binary(Bytes),
Size = byte_size(Segment),
NewAccCode = [Segment|AccCode],
encode_insns(Insns, Address+Size, FunAddress, LabelMap, NewRelocs++Relocs, NewAccCode, Options)
end;
encode_insns([], Address, FunAddress, LabelMap, Relocs, AccCode, Options) ->
case nr_pad_bytes(Address) of
0 ->
{Address,Relocs,AccCode};
NrPadBytes -> % triggers at most once per function body
Padding = lists:duplicate(NrPadBytes, {nop,{},#comment{term=padding}}),
encode_insns(Padding, Address, FunAddress, LabelMap, Relocs, AccCode, Options)
end.
fix_jumps(I, InsnAddress, FunAddress, LabelMap) ->
case I of
{jcc_sdi,{CC,{label,L}},OrigI} ->
LabelAddress = gb_trees:get(L, LabelMap) + FunAddress,
ShortOffset = LabelAddress - (InsnAddress + 2),
if is_integer(ShortOffset), ShortOffset >= -128, ShortOffset =< 127 ->
{jcc,{CC,{rel8,ShortOffset band 16#FF}},OrigI};
true ->
LongOffset = LabelAddress - (InsnAddress + 6),
{jcc,{CC,{rel32,LongOffset}},OrigI}
end;
{jmp_sdi,{{label,L}},OrigI} ->
LabelAddress = gb_trees:get(L, LabelMap) + FunAddress,
ShortOffset = LabelAddress - (InsnAddress + 2),
if is_integer(ShortOffset), ShortOffset >= -128, ShortOffset =< 127 ->
{jmp,{{rel8,ShortOffset band 16#FF}},OrigI};
true ->
LongOffset = LabelAddress - (InsnAddress + 5),
{jmp,{{rel32,LongOffset}},OrigI}
end;
_ -> I
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fpreg_to_stack(#x86_fpreg{reg=Reg}) ->
{fpst, Reg}.
temp_to_regArch(#x86_temp{reg=Reg}) ->
{?REGArch, Reg}.
-ifdef(HIPE_AMD64).
temp_to_reg64(#x86_temp{reg=Reg}) ->
{reg64, Reg}.
-endif.
temp_to_reg32(#x86_temp{reg=Reg}) ->
{reg32, Reg}.
temp_to_reg16(#x86_temp{reg=Reg}) ->
{reg16, Reg}.
temp_to_reg8(#x86_temp{reg=Reg}) ->
{reg8, Reg}.
temp_to_xmm(#x86_temp{reg=Reg}) ->
{xmm, Reg}.
-ifdef(HIPE_AMD64).
temp_to_rm64(#x86_temp{reg=Reg}) ->
{rm64, hipe_amd64_encode:rm_reg(Reg)}.
-endif.
temp_to_rmArch(#x86_temp{reg=Reg}) ->
{?RMArch, ?HIPE_X86_ENCODE:rm_reg(Reg)}.
temp_to_rm64fp(#x86_temp{reg=Reg}) ->
{rm64fp, ?HIPE_X86_ENCODE:rm_reg(Reg)}.
mem_to_ea(Mem) ->
EA = mem_to_ea_common(Mem),
{ea, EA}.
mem_to_rm32(Mem) ->
EA = mem_to_ea_common(Mem),
{rm32, ?HIPE_X86_ENCODE:rm_mem(EA)}.
mem_to_rmArch(Mem) ->
EA = mem_to_ea_common(Mem),
{?RMArch, ?HIPE_X86_ENCODE:rm_mem(EA)}.
mem_to_rm64fp(Mem) ->
EA = mem_to_ea_common(Mem),
{rm64fp, ?HIPE_X86_ENCODE:rm_mem(EA)}.
%%%%%%%%%%%%%%%%%
mem_to_rm8(Mem) ->
EA = mem_to_ea_common(Mem),
{rm8, ?HIPE_X86_ENCODE:rm_mem(EA)}.
mem_to_rm16(Mem) ->
EA = mem_to_ea_common(Mem),
{rm16, ?HIPE_X86_ENCODE:rm_mem(EA)}.
%%%%%%%%%%%%%%%%%
mem_to_ea_common(#x86_mem{base=[], off=#x86_imm{value=Off}}) ->
?HIPE_X86_ENCODE:?EA_DISP32_ABSOLUTE(Off);
mem_to_ea_common(#x86_mem{base=#x86_temp{reg=Base}, off=#x86_temp{reg=Index}}) ->
case Base band 2#111 of
5 -> % ebp/rbp or r13
case Index band 2#111 of
5 -> % ebp/rbp or r13
SINDEX = ?HIPE_X86_ENCODE:sindex(0, Index),
SIB = ?HIPE_X86_ENCODE:sib(Base, SINDEX),
?HIPE_X86_ENCODE:ea_disp8_sib(0, SIB);
_ ->
SINDEX = ?HIPE_X86_ENCODE:sindex(0, Base),
SIB = ?HIPE_X86_ENCODE:sib(Index, SINDEX),
?HIPE_X86_ENCODE:ea_sib(SIB)
end;
_ ->
SINDEX = ?HIPE_X86_ENCODE:sindex(0, Index),
SIB = ?HIPE_X86_ENCODE:sib(Base, SINDEX),
?HIPE_X86_ENCODE:ea_sib(SIB)
end;
mem_to_ea_common(#x86_mem{base=#x86_temp{reg=Base}, off=#x86_imm{value=Off}}) ->
if
Off =:= 0 ->
case Base of
4 -> %esp, use SIB w/o disp8
SIB = ?HIPE_X86_ENCODE:sib(Base),
?HIPE_X86_ENCODE:ea_sib(SIB);
5 -> %ebp, use disp8 w/o SIB
?HIPE_X86_ENCODE:ea_disp8_base(Off, Base);
12 -> %r12, use SIB w/o disp8
SIB = ?HIPE_X86_ENCODE:sib(Base),
?HIPE_X86_ENCODE:ea_sib(SIB);
13 -> %r13, use disp8 w/o SIB
?HIPE_X86_ENCODE:ea_disp8_base(Off, Base);
_ -> %neither SIB nor disp8 needed
?HIPE_X86_ENCODE:ea_base(Base)
end;
Off >= -128, Off =< 127 ->
Disp8 = Off band 16#FF,
case Base of
4 -> %esp, must use SIB
SIB = ?HIPE_X86_ENCODE:sib(Base),
?HIPE_X86_ENCODE:ea_disp8_sib(Disp8, SIB);
12 -> %r12, must use SIB
SIB = ?HIPE_X86_ENCODE:sib(Base),
?HIPE_X86_ENCODE:ea_disp8_sib(Disp8, SIB);
_ -> %use disp8 w/o SIB
?HIPE_X86_ENCODE:ea_disp8_base(Disp8, Base)
end;
true ->
case Base of
4 -> %esp, must use SIB
SIB = ?HIPE_X86_ENCODE:sib(Base),
?HIPE_X86_ENCODE:ea_disp32_sib(Off, SIB);
12 -> %r12, must use SIB
SIB = ?HIPE_X86_ENCODE:sib(Base),
?HIPE_X86_ENCODE:ea_disp32_sib(Off, SIB);
_ ->
?HIPE_X86_ENCODE:ea_disp32_base(Off, Base)
end
end.
%% jmp_switch
-ifdef(HIPE_AMD64).
resolve_jmp_switch_arg(I, _Context) ->
Base = hipe_x86:temp_reg(hipe_x86:jmp_switch_jtab(I)),
Index = hipe_x86:temp_reg(hipe_x86:jmp_switch_temp(I)),
SINDEX = hipe_amd64_encode:sindex(3, Index),
SIB = hipe_amd64_encode:sib(Base, SINDEX),
EA =
if (Base =:= 5) or (Base =:= 13) ->
hipe_amd64_encode:ea_disp8_sib(0, SIB);
true ->
hipe_amd64_encode:ea_sib(SIB)
end,
{rm64,hipe_amd64_encode:rm_mem(EA)}.
-else.
resolve_jmp_switch_arg(I, {MFA,ConstMap}) ->
ConstNo = hipe_pack_constants:find_const({MFA,hipe_x86:jmp_switch_jtab(I)}, ConstMap),
Disp32 = {?LOAD_ADDRESS,{constant,ConstNo}},
SINDEX = ?HIPE_X86_ENCODE:sindex(2, hipe_x86:temp_reg(hipe_x86:jmp_switch_temp(I))),
EA = ?HIPE_X86_ENCODE:ea_disp32_sindex(Disp32, SINDEX), % this creates a SIB implicitly
{rm32,?HIPE_X86_ENCODE:rm_mem(EA)}.
-endif.
%% lea reg, mem
resolve_lea_args(Src=#x86_mem{}, Dst=#x86_temp{}) ->
{temp_to_regArch(Dst),mem_to_ea(Src)}.
resolve_sse2_op(Op) ->
case Op of
fadd -> addsd;
fdiv -> divsd;
fmul -> mulsd;
fsub -> subsd;
_ -> exit({?MODULE, unknown_sse2_operator, Op})
end.
%% OP xmm, mem
resolve_sse2_binop_args(Src=#x86_mem{type=double},
Dst=#x86_temp{type=double}) ->
{temp_to_xmm(Dst),mem_to_rm64fp(Src)};
%% movsd mem, xmm
resolve_sse2_binop_args(Src=#x86_temp{type=double},
Dst=#x86_mem{type=double}) ->
{mem_to_rm64fp(Dst),temp_to_xmm(Src)};
%% OP xmm, xmm
resolve_sse2_binop_args(Src=#x86_temp{type=double},
Dst=#x86_temp{type=double}) ->
{temp_to_xmm(Dst),temp_to_rm64fp(Src)}.
%%% fmove -> cvtsi2sd or movsd
resolve_sse2_fmove_args(Src, Dst) ->
case {Src,Dst} of
{#x86_temp{type=untagged}, #x86_temp{type=double}} -> % cvtsi2sd xmm, reg
{cvtsi2sd, {temp_to_xmm(Dst),temp_to_rmArch(Src)}};
{#x86_mem{type=untagged}, #x86_temp{type=double}} -> % cvtsi2sd xmm, mem
{cvtsi2sd, {temp_to_xmm(Dst),mem_to_rmArch(Src)}};
_ -> % movsd
{movsd, resolve_sse2_binop_args(Src, Dst)}
end.
%%% xorpd xmm, mem
resolve_sse2_fchs_arg(Dst=#x86_temp{type=double}) ->
{temp_to_xmm(Dst),
{rm64fp, {rm_mem, ?HIPE_X86_ENCODE:?EA_DISP32_ABSOLUTE(
{?LOAD_ADDRESS,
{c_const, sse2_fnegate_mask}})}}}.
%% mov mem, imm
resolve_move_args(#x86_imm{value=ImmSrc}, Dst=#x86_mem{type=Type}, Context) ->
case Type of % to support byte, int16 and int32 stores
byte ->
ByteImm = ImmSrc band 255, %to ensure that it is a bytesized imm
{mem_to_rm8(Dst),{imm8,ByteImm}};
int16 ->
{mem_to_rm16(Dst),{imm16,ImmSrc band 16#FFFF}};
int32 ->
{_,Imm} = translate_imm(#x86_imm{value=ImmSrc}, Context, false),
{mem_to_rm32(Dst),{imm32,Imm}};
_ ->
RMArch = mem_to_rmArch(Dst),
{_,Imm} = translate_imm(#x86_imm{value=ImmSrc}, Context, false),
{RMArch,{imm32,Imm}}
end;
%% mov reg,mem
resolve_move_args(Src=#x86_mem{type=Type}, Dst=#x86_temp{}, _Context) ->
case Type of
int32 -> % must be unsigned
{temp_to_reg32(Dst),mem_to_rm32(Src)};
_ ->
{temp_to_regArch(Dst),mem_to_rmArch(Src)}
end;
%% mov mem,reg
resolve_move_args(Src=#x86_temp{}, Dst=#x86_mem{type=Type}, _Context) ->
case Type of % to support byte, int16 and int32 stores
byte ->
{mem_to_rm8(Dst),temp_to_reg8(Src)};
int16 ->
{mem_to_rm16(Dst),temp_to_reg16(Src)};
int32 ->
{mem_to_rm32(Dst),temp_to_reg32(Src)};
tagged -> % tagged, untagged
{mem_to_rmArch(Dst),temp_to_regArch(Src)};
untagged -> % tagged, untagged
{mem_to_rmArch(Dst),temp_to_regArch(Src)}
end;
%% mov reg,reg
resolve_move_args(Src=#x86_temp{}, Dst=#x86_temp{}, _Context) ->
{temp_to_regArch(Dst),temp_to_rmArch(Src)};
%% mov reg,imm
resolve_move_args(Src=#x86_imm{value=_ImmSrc}, Dst=#x86_temp{}, Context) ->
{_,Imm} = translate_imm(Src, Context, false),
imm_move_args(Dst, Imm).
-ifdef(HIPE_AMD64).
imm_move_args(Dst, Imm) ->
if is_number(Imm), Imm >= 0 ->
{temp_to_reg32(Dst),{imm32,Imm}};
true ->
{temp_to_rm64(Dst),{imm32,Imm}}
end.
-else.
imm_move_args(Dst, Imm) ->
{temp_to_reg32(Dst),{imm32,Imm}}.
-endif.
-ifdef(HIPE_AMD64).
translate_move64(I, Context) ->
Arg = resolve_move64_args(hipe_x86:move64_src(I),
hipe_x86:move64_dst(I),
Context),
[{mov, Arg, I}].
%% mov reg,imm64
resolve_move64_args(Src=#x86_imm{}, Dst=#x86_temp{}, Context) ->
{_,Imm} = translate_imm(Src, Context, false),
{temp_to_reg64(Dst),{imm64,Imm}}.
-else.
translate_move64(I, _Context) -> exit({?MODULE, I}).
-endif.
%%% mov{s,z}x
resolve_movx_args(Src=#x86_mem{type=Type}, Dst=#x86_temp{}) ->
{temp_to_regArch(Dst),
case Type of
byte ->
mem_to_rm8(Src);
int16 ->
mem_to_rm16(Src);
int32 ->
mem_to_rm32(Src)
end}.
%%% alu/cmp (_not_ test)
resolve_alu_args(Src, Dst, Context) ->
case {Src,Dst} of
{#x86_imm{}, #x86_mem{}} ->
{mem_to_rmArch(Dst), translate_imm(Src, Context, true)};
{#x86_mem{}, #x86_temp{}} ->
{temp_to_regArch(Dst), mem_to_rmArch(Src)};
{#x86_temp{}, #x86_mem{}} ->
{mem_to_rmArch(Dst), temp_to_regArch(Src)};
{#x86_temp{}, #x86_temp{}} ->
{temp_to_regArch(Dst), temp_to_rmArch(Src)};
{#x86_imm{}, #x86_temp{reg=0}} -> % eax,imm
NewSrc = translate_imm(Src, Context, true),
NewDst =
case NewSrc of
{imm8,_} -> temp_to_rmArch(Dst);
{imm32,_} -> ?EAX
end,
{NewDst, NewSrc};
{#x86_imm{}, #x86_temp{}} ->
{temp_to_rmArch(Dst), translate_imm(Src, Context, true)}
end.
%%% test
resolve_test_args(Src, Dst, Context) ->
case Src of
#x86_imm{} -> % imm8 not allowed
{_ImmSize,ImmValue} = translate_imm(Src, Context, false),
NewDst =
case Dst of
#x86_temp{reg=0} -> ?EAX;
#x86_temp{} -> temp_to_rmArch(Dst);
#x86_mem{} -> mem_to_rmArch(Dst)
end,
{NewDst, {imm32,ImmValue}};
#x86_temp{} ->
NewDst =
case Dst of
#x86_temp{} -> temp_to_rmArch(Dst);
#x86_mem{} -> mem_to_rmArch(Dst)
end,
{NewDst, temp_to_regArch(Src)}
end.
%%% shifts
resolve_shift_args(Src, Dst, Context) ->
RM32 =
case Dst of
#x86_temp{} -> temp_to_rmArch(Dst);
#x86_mem{} -> mem_to_rmArch(Dst)
end,
Count =
case Src of
#x86_imm{value=1} -> 1;
#x86_imm{} -> translate_imm(Src, Context, true); % must be imm8
#x86_temp{reg=1} -> cl % temp must be ecx
end,
{RM32, Count}.
%% x87_binop mem
resolve_x87_unop_arg(Arg=#x86_mem{type=Type})->
case Type of
'double' -> {mem_to_rm64fp(Arg)};
'untagged' -> {mem_to_rmArch(Arg)};
_ -> ?EXIT({fmovArgNotSupported,{Arg}})
end;
resolve_x87_unop_arg(Arg=#x86_fpreg{}) ->
{fpreg_to_stack(Arg)};
resolve_x87_unop_arg([]) ->
[].
%% x87_binop mem, st(i)
resolve_x87_binop_args(Src=#x86_fpreg{}, Dst=#x86_mem{})->
{mem_to_rm64fp(Dst),fpreg_to_stack(Src)};
%% x87_binop st(0), st(i)
resolve_x87_binop_args(Src=#x86_fpreg{}, Dst=#x86_fpreg{})->
{fpreg_to_stack(Dst),fpreg_to_stack(Src)}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%
%%% Assembly listing support (pp_asm option).
%%%
print(String, Arglist, Options) ->
?when_option(pp_asm, Options, io:format(String, Arglist)).
print_insn(Address, Bytes, I, Options) ->
?when_option(pp_asm, Options, print_insn_2(Address, Bytes, I)),
?when_option(pp_cxmon, Options, print_code_list_2(Bytes)).
print_code_list_2([H | Tail]) ->
print_byte(H),
io:format(","),
print_code_list_2(Tail);
print_code_list_2([]) ->
io:format("").
print_insn_2(Address, Bytes, {_,_,OrigI}) ->
io:format("~8.16b | ", [Address]),
print_code_list(Bytes, 0),
?HIPE_X86_PP:pp_insn(OrigI).
print_code_list([Byte|Rest], Len) ->
print_byte(Byte),
print_code_list(Rest, Len+1);
print_code_list([], Len) ->
fill_spaces(24-(Len*2)),
io:format(" | ").
print_byte(Byte) ->
io:format("~2.16.0b", [Byte band 16#FF]).
fill_spaces(N) when N > 0 ->
io:format(" "),
fill_spaces(N-1);
fill_spaces(0) ->
[].