%%%
%%% %CopyrightBegin%
%%%
%%% Copyright Ericsson AB 2001-2009. All Rights Reserved.
%%%
%%% The contents of this file are subject to the Erlang Public License,
%%% Version 1.1, (the "License"); you may not use this file except in
%%% compliance with the License. You should have received a copy of the
%%% Erlang Public License along with this software. If not, it can be
%%% retrieved online at http://www.erlang.org/.
%%%
%%% Software distributed under the License is distributed on an "AS IS"
%%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%%% the License for the specific language governing rights and limitations
%%% under the License.
%%%
%%% %CopyrightEnd%
%%%
%%% Copyright (C) 2000-2005 Mikael Pettersson
%%%
%%% This is the syntax of x86 r/m operands:
%%%
%%% opnd ::= reg mod == 11
%%% | MEM[ea] mod != 11
%%%
%%% ea ::= disp32(reg) mod == 10, r/m != ESP
%%% | disp32 sib12 mod == 10, r/m == 100
%%% | disp8(reg) mod == 01, r/m != ESP
%%% | disp8 sib12 mod == 01, r/m == 100
%%% | (reg) mod == 00, r/m != ESP and EBP
%%% | sib0 mod == 00, r/m == 100
%%% | disp32 mod == 00, r/m == 101 [on x86-32]
%%% | disp32(%rip) mod == 00, r/m == 101 [on x86-64]
%%%
%%% // sib0: mod == 00
%%% sib0 ::= disp32(,index,scale) base == EBP, index != ESP
%%% | disp32 base == EBP, index == 100
%%% | (base,index,scale) base != EBP, index != ESP
%%% | (base) base != EBP, index == 100
%%%
%%% // sib12: mod == 01 or 10
%%% sib12 ::= (base,index,scale) index != ESP
%%% | (base) index == 100
%%%
%%% scale ::= 00 | 01 | 10 | 11 index << scale
%%%
%%% Notes:
%%%
%%% 1. ESP cannot be used as index register.
%%% 2. Use of ESP as base register requires a SIB byte.
%%% 3. disp(reg), when reg != ESP, can be represented without
%%% [r/m == reg] or with [r/m == 100, base == reg] a SIB byte.
%%% 4. disp32 can be represented without [mod == 00, r/m == 101]
%%% or with [mod == 00, r/m == 100, base == 101, index == 100]
%%% a SIB byte.
%%% 5. x86-32 and x86-64 interpret mod==00b r/m==101b EAs differently:
%%% on x86-32 the disp32 is an absolute address, but on x86-64 the
%%% disp32 is relative to the %rip of the next instruction.
%%% Absolute disp32s need a SIB on x86-64.
-module(hipe_x86_encode).
-export([% condition codes
cc/1,
% 8-bit registers
%% al/0, cl/0, dl/0, bl/0, ah/0, ch/0, dh/0, bh/0,
% 32-bit registers
%% eax/0, ecx/0, edx/0, ebx/0, esp/0, ebp/0, esi/0, edi/0,
% operands
sindex/2, sib/1, sib/2,
ea_disp32_base/2, ea_disp32_sib/2,
ea_disp8_base/2, ea_disp8_sib/2,
ea_base/1,
%% ea_disp32_sindex/1, % XXX: do not use on x86-32, only on x86-64
ea_disp32_sindex/2,
ea_sib/1, ea_disp32/1,
rm_reg/1, rm_mem/1,
% instructions
insn_encode/3, insn_sizeof/2]).
%%-define(DO_HIPE_X86_ENCODE_TEST,true).
-ifdef(DO_HIPE_X86_ENCODE_TEST).
-export([dotest/0, dotest/1]). % for testing, don't use
-endif.
-define(ASSERT(F,G), if G -> [] ; true -> exit({?MODULE,F}) end).
%-define(ASSERT(F,G), []).
%%% condition codes
-define(CC_O, 2#0000). % overflow
-define(CC_NO, 2#0001). % no overflow
-define(CC_B, 2#0010). % below, <u
-define(CC_AE, 2#0011). % above or equal, >=u
-define(CC_E, 2#0100). % equal
-define(CC_NE, 2#0101). % not equal
-define(CC_BE, 2#0110). % below or equal, <=u
-define(CC_A, 2#0111). % above, >u
-define(CC_S, 2#1000). % sign, +
-define(CC_NS, 2#1001). % not sign, -
-define(CC_PE, 2#1010). % parity even
-define(CC_PO, 2#1011). % parity odd
-define(CC_L, 2#1100). % less than, <s
-define(CC_GE, 2#1101). % greater or equal, >=s
-define(CC_LE, 2#1110). % less or equal, <=s
-define(CC_G, 2#1111). % greater than, >s
cc(o) -> ?CC_O;
cc(no) -> ?CC_NO;
cc(b) -> ?CC_B;
cc(ae) -> ?CC_AE;
cc(e) -> ?CC_E;
cc(ne) -> ?CC_NE;
cc(be) -> ?CC_BE;
cc(a) -> ?CC_A;
cc(s) -> ?CC_S;
cc(ns) -> ?CC_NS;
cc(pe) -> ?CC_PE;
cc(po) -> ?CC_PO;
cc(l) -> ?CC_L;
cc(ge) -> ?CC_GE;
cc(le) -> ?CC_LE;
cc(g) -> ?CC_G.
%%% 8-bit registers
-define(AL, 2#000).
-define(CL, 2#001).
-define(DL, 2#010).
-define(BL, 2#011).
-define(AH, 2#100).
-define(CH, 2#101).
-define(DH, 2#110).
-define(BH, 2#111).
%% al() -> ?AL.
%% cl() -> ?CL.
%% dl() -> ?DL.
%% bl() -> ?BL.
%% ah() -> ?AH.
%% ch() -> ?CH.
%% dh() -> ?DH.
%% bh() -> ?BH.
%%% 32-bit registers
-define(EAX, 2#000).
-define(ECX, 2#001).
-define(EDX, 2#010).
-define(EBX, 2#011).
-define(ESP, 2#100).
-define(EBP, 2#101).
-define(ESI, 2#110).
-define(EDI, 2#111).
%% eax() -> ?EAX.
%% ecx() -> ?ECX.
%% edx() -> ?EDX.
%% ebx() -> ?EBX.
%% esp() -> ?ESP.
%% ebp() -> ?EBP.
%% esi() -> ?ESI.
%% edi() -> ?EDI.
%%% r/m operands
sindex(Scale, Index) when is_integer(Scale), is_integer(Index) ->
?ASSERT(sindex, Scale >= 0),
?ASSERT(sindex, Scale =< 3),
?ASSERT(sindex, Index =/= ?ESP),
{sindex, Scale, Index}.
-record(sib, {sindex_opt, base :: integer()}).
sib(Base) when is_integer(Base) -> #sib{sindex_opt=none, base=Base}.
sib(Base, Sindex) when is_integer(Base) -> #sib{sindex_opt=Sindex, base=Base}.
ea_disp32_base(Disp32, Base) when is_integer(Base) ->
?ASSERT(ea_disp32_base, Base =/= ?ESP),
{ea_disp32_base, Disp32, Base}.
ea_disp32_sib(Disp32, SIB) -> {ea_disp32_sib, Disp32, SIB}.
ea_disp8_base(Disp8, Base) when is_integer(Base) ->
?ASSERT(ea_disp8_base, Base =/= ?ESP),
{ea_disp8_base, Disp8, Base}.
ea_disp8_sib(Disp8, SIB) -> {ea_disp8_sib, Disp8, SIB}.
ea_base(Base) when is_integer(Base) ->
?ASSERT(ea_base, Base =/= ?ESP),
?ASSERT(ea_base, Base =/= ?EBP),
{ea_base, Base}.
%% ea_disp32_sindex(Disp32) -> {ea_disp32_sindex, Disp32, none}.
ea_disp32_sindex(Disp32, Sindex) -> {ea_disp32_sindex, Disp32, Sindex}.
ea_sib(SIB) ->
?ASSERT(ea_sib, SIB#sib.base =/= ?EBP),
{ea_sib, SIB}.
ea_disp32(Disp32) -> {ea_disp32, Disp32}.
rm_reg(Reg) -> {rm_reg, Reg}.
rm_mem(EA) -> {rm_mem, EA}.
mk_modrm(Mod, RO, RM) ->
(Mod bsl 6) bor (RO bsl 3) bor RM.
mk_sib(Scale, Index, Base) ->
(Scale bsl 6) bor (Index bsl 3) bor Base.
le16(Word, Tail) ->
[Word band 16#FF, (Word bsr 8) band 16#FF | Tail].
le32(Word, Tail) when is_integer(Word) ->
[Word band 16#FF, (Word bsr 8) band 16#FF,
(Word bsr 16) band 16#FF, (Word bsr 24) band 16#FF | Tail];
le32({Tag,Val}, Tail) -> % a relocatable datum
[{le32,Tag,Val} | Tail].
enc_sindex_opt({sindex,Scale,Index}) -> {Scale, Index};
enc_sindex_opt(none) -> {2#00, 2#100}.
enc_sib(#sib{sindex_opt=SindexOpt, base=Base}) ->
{Scale, Index} = enc_sindex_opt(SindexOpt),
mk_sib(Scale, Index, Base).
enc_ea(EA, RO, Tail) ->
case EA of
{ea_disp32_base, Disp32, Base} ->
[mk_modrm(2#10, RO, Base) | le32(Disp32, Tail)];
{ea_disp32_sib, Disp32, SIB} ->
[mk_modrm(2#10, RO, 2#100), enc_sib(SIB) | le32(Disp32, Tail)];
{ea_disp8_base, Disp8, Base} ->
[mk_modrm(2#01, RO, Base), Disp8 | Tail];
{ea_disp8_sib, Disp8, SIB} ->
[mk_modrm(2#01, RO, 2#100), enc_sib(SIB), Disp8 | Tail];
{ea_base, Base} ->
[mk_modrm(2#00, RO, Base) | Tail];
{ea_disp32_sindex, Disp32, SindexOpt} ->
{Scale, Index} = enc_sindex_opt(SindexOpt),
SIB = mk_sib(Scale, Index, 2#101),
MODRM = mk_modrm(2#00, RO, 2#100),
[MODRM, SIB | le32(Disp32, Tail)];
{ea_sib, SIB} ->
[mk_modrm(2#00, RO, 2#100), enc_sib(SIB) | Tail];
{ea_disp32, Disp32} ->
[mk_modrm(2#00, RO, 2#101) | le32(Disp32, Tail)]
end.
encode_rm(RM, RO, Tail) ->
case RM of
{rm_reg, Reg} -> [mk_modrm(2#11, RO, Reg) | Tail];
{rm_mem, EA} -> enc_ea(EA, RO, Tail)
end.
sizeof_ea(EA) ->
case element(1, EA) of
ea_disp32_base -> 5;
ea_disp32_sib -> 6;
ea_disp8_base -> 2;
ea_disp8_sib -> 3;
ea_base -> 1;
ea_disp32_sindex -> 6;
ea_sib -> 2;
ea_disp32 -> 5
end.
sizeof_rm(RM) ->
case RM of
{rm_reg, _} -> 1;
{rm_mem, EA} -> sizeof_ea(EA)
end.
%%% Floating point stack positions
-define(ST0, 2#000).
-define(ST1, 2#001).
-define(ST2, 2#010).
-define(ST3, 2#011).
-define(ST4, 2#100).
-define(ST5, 2#101).
-define(ST6, 2#110).
-define(ST7, 2#111).
st(0) -> ?ST0;
st(1) -> ?ST1;
st(2) -> ?ST2;
st(3) -> ?ST3;
st(4) -> ?ST4;
st(5) -> ?ST5;
st(6) -> ?ST6;
st(7) -> ?ST7.
%%% Instructions
%%%
%%% Insn ::= {Op,Opnds}
%%% Opnds ::= {Opnd1,...,Opndn} (n >= 0)
%%% Opnd ::= eax | ax | al | 1 | cl
%%% | {imm32,Imm32} | {imm16,Imm16} | {imm8,Imm8}
%%% | {rm32,RM32} | {rm16,RM16} | {rm8,RM8}
%%% | {rel32,Rel32} | {rel8,Rel8}
%%% | {moffs32,Moffs32} | {moffs16,Moffs16} | {moffs8,Moffs8}
%%% | {cc,CC}
%%% | {reg32,Reg32} | {reg16,Reg16} | {reg8,Reg8}
%%% | {ea,EA}
-define(PFX_OPND, 16#66).
arith_binop_encode(SubOpcode, Opnds) ->
%% add, or, adc, sbb, and, sub, xor, cmp
case Opnds of
{eax, {imm32,Imm32}} ->
[16#05 bor (SubOpcode bsl 3) | le32(Imm32, [])];
{{rm32,RM32}, {imm32,Imm32}} ->
[16#81 | encode_rm(RM32, SubOpcode, le32(Imm32, []))];
{{rm32,RM32}, {imm8,Imm8}} ->
[16#83 | encode_rm(RM32, SubOpcode, [Imm8])];
{{rm32,RM32}, {reg32,Reg32}} ->
[16#01 bor (SubOpcode bsl 3) | encode_rm(RM32, Reg32, [])];
{{reg32,Reg32}, {rm32,RM32}} ->
[16#03 bor (SubOpcode bsl 3) | encode_rm(RM32, Reg32, [])]
end.
arith_binop_sizeof(Opnds) ->
%% add, or, adc, sbb, and, sub, xor, cmp
case Opnds of
{eax, {imm32,_}} ->
1 + 4;
{{rm32,RM32}, {imm32,_}} ->
1 + sizeof_rm(RM32) + 4;
{{rm32,RM32}, {imm8,_}} ->
1 + sizeof_rm(RM32) + 1;
{{rm32,RM32}, {reg32,_}} ->
1 + sizeof_rm(RM32);
{{reg32,_}, {rm32,RM32}} ->
1 + sizeof_rm(RM32)
end.
bs_op_encode(Opcode, {{reg32,Reg32}, {rm32,RM32}}) -> % bsf, bsr
[16#0F, Opcode | encode_rm(RM32, Reg32, [])].
bs_op_sizeof({{reg32,_}, {rm32,RM32}}) -> % bsf, bsr
2 + sizeof_rm(RM32).
bswap_encode({{reg32,Reg32}}) ->
[16#0F, 16#C8 bor Reg32].
bswap_sizeof({{reg32,_}}) ->
2.
bt_op_encode(SubOpcode, Opnds) -> % bt, btc, btr, bts
case Opnds of
{{rm32,RM32}, {reg32,Reg32}} ->
[16#0F, 16#A3 bor (SubOpcode bsl 3) | encode_rm(RM32, Reg32, [])];
{{rm32,RM32}, {imm8,Imm8}} ->
[16#0F, 16#BA | encode_rm(RM32, SubOpcode, [Imm8])]
end.
bt_op_sizeof(Opnds) -> % bt, btc, btr, bts
case Opnds of
{{rm32,RM32}, {reg32,_}} ->
2 + sizeof_rm(RM32);
{{rm32,RM32}, {imm8,_}} ->
2 + sizeof_rm(RM32) + 1
end.
call_encode(Opnds) ->
case Opnds of
{{rel32,Rel32}} ->
[16#E8 | le32(Rel32, [])];
{{rm32,RM32}} ->
[16#FF | encode_rm(RM32, 2#010, [])]
end.
call_sizeof(Opnds) ->
case Opnds of
{{rel32,_}} ->
1 + 4;
{{rm32,RM32}} ->
1 + sizeof_rm(RM32)
end.
cbw_encode({}) ->
[?PFX_OPND, 16#98].
cbw_sizeof({}) ->
2.
nullary_op_encode(Opcode, {}) ->
%% cdq, clc, cld, cmc, cwde, into, leave, nop, prefix_fs, stc, std
[Opcode].
nullary_op_sizeof({}) ->
%% cdq, clc, cld, cmc, cwde, into, leave, nop, prefix_fs, stc, std
1.
cmovcc_encode({{cc,CC}, {reg32,Reg32}, {rm32,RM32}}) ->
[16#0F, 16#40 bor CC | encode_rm(RM32, Reg32, [])].
cmovcc_sizeof({{cc,_}, {reg32,_}, {rm32,RM32}}) ->
2 + sizeof_rm(RM32).
incdec_encode(SubOpcode, Opnds) -> % SubOpcode is either 0 or 1
case Opnds of
{{rm32,RM32}} ->
[16#FF | encode_rm(RM32, SubOpcode, [])];
{{reg32,Reg32}} ->
[16#40 bor (SubOpcode bsl 3) bor Reg32]
end.
incdec_sizeof(Opnds) ->
case Opnds of
{{rm32,RM32}} ->
1 + sizeof_rm(RM32);
{{reg32,_}} ->
1
end.
arith_unop_encode(Opcode, {{rm32,RM32}}) -> % div, idiv, mul, neg, not
[16#F7 | encode_rm(RM32, Opcode, [])].
arith_unop_sizeof({{rm32,RM32}}) -> % div, idiv, mul, neg, not
1 + sizeof_rm(RM32).
enter_encode({{imm16,Imm16}, {imm8,Imm8}}) ->
[16#C8 | le16(Imm16, [Imm8])].
enter_sizeof({{imm16,_}, {imm8,_}}) ->
1 + 2 + 1.
imul_encode(Opnds) ->
case Opnds of
{{rm32,RM32}} -> % <edx,eax> *= rm32
[16#F7 | encode_rm(RM32, 2#101, [])];
{{reg32,Reg32}, {rm32,RM32}} -> % reg *= rm32
[16#0F, 16#AF | encode_rm(RM32, Reg32, [])];
{{reg32,Reg32}, {rm32,RM32}, {imm8,Imm8}} -> % reg := rm32 * sext(imm8)
[16#6B | encode_rm(RM32, Reg32, [Imm8])];
{{reg32,Reg32}, {rm32,RM32}, {imm32,Imm32}} -> % reg := rm32 * imm32
[16#69 | encode_rm(RM32, Reg32, le32(Imm32, []))]
end.
imul_sizeof(Opnds) ->
case Opnds of
{{rm32,RM32}} ->
1 + sizeof_rm(RM32);
{{reg32,_}, {rm32,RM32}} ->
2 + sizeof_rm(RM32);
{{reg32,_}, {rm32,RM32}, {imm8,_}} ->
1 + sizeof_rm(RM32) + 1;
{{reg32,_}, {rm32,RM32}, {imm32,_}} ->
1 + sizeof_rm(RM32) + 4
end.
jcc_encode(Opnds) ->
case Opnds of
{{cc,CC}, {rel8,Rel8}} ->
[16#70 bor CC, Rel8];
{{cc,CC}, {rel32,Rel32}} ->
[16#0F, 16#80 bor CC | le32(Rel32, [])]
end.
jcc_sizeof(Opnds) ->
case Opnds of
{{cc,_}, {rel8,_}} ->
2;
{{cc,_}, {rel32,_}} ->
2 + 4
end.
jmp8_op_encode(Opcode, {{rel8,Rel8}}) -> % jecxz, loop, loope, loopne
[Opcode, Rel8].
jmp8_op_sizeof({{rel8,_}}) -> % jecxz, loop, loope, loopne
2.
jmp_encode(Opnds) ->
case Opnds of
{{rel8,Rel8}} ->
[16#EB, Rel8];
{{rel32,Rel32}} ->
[16#E9 | le32(Rel32, [])];
{{rm32,RM32}} ->
[16#FF | encode_rm(RM32, 2#100, [])]
end.
jmp_sizeof(Opnds) ->
case Opnds of
{{rel8,_}} ->
2;
{{rel32,_}} ->
1 + 4;
{{rm32,RM32}} ->
1 + sizeof_rm(RM32)
end.
lea_encode({{reg32,Reg32}, {ea,EA}}) ->
[16#8D | enc_ea(EA, Reg32, [])].
lea_sizeof({{reg32,_}, {ea,EA}}) ->
1 + sizeof_ea(EA).
mov_encode(Opnds) ->
case Opnds of
{{rm8,RM8}, {reg8,Reg8}} ->
[16#88 | encode_rm(RM8, Reg8, [])];
{{rm16,RM16}, {reg16,Reg16}} ->
[?PFX_OPND, 16#89 | encode_rm(RM16, Reg16, [])];
{{rm32,RM32}, {reg32,Reg32}} ->
[16#89 | encode_rm(RM32, Reg32, [])];
{{reg8,Reg8}, {rm8,RM8}} ->
[16#8A | encode_rm(RM8, Reg8, [])];
{{reg16,Reg16}, {rm16,RM16}} ->
[?PFX_OPND, 16#8B | encode_rm(RM16, Reg16, [])];
{{reg32,Reg32}, {rm32,RM32}} ->
[16#8B | encode_rm(RM32, Reg32, [])];
{al, {moffs8,Moffs8}} ->
[16#A0 | le32(Moffs8, [])];
{ax, {moffs16,Moffs16}} ->
[?PFX_OPND, 16#A1 | le32(Moffs16, [])];
{eax, {moffs32,Moffs32}} ->
[16#A1 | le32(Moffs32, [])];
{{moffs8,Moffs8}, al} ->
[16#A2 | le32(Moffs8, [])];
{{moffs16,Moffs16}, ax} ->
[?PFX_OPND, 16#A3 | le32(Moffs16, [])];
{{moffs32,Moffs32}, eax} ->
[16#A3 | le32(Moffs32, [])];
{{reg8,Reg8}, {imm8,Imm8}} ->
[16#B0 bor Reg8, Imm8];
{{reg16,Reg16}, {imm16,Imm16}} ->
[?PFX_OPND, 16#B8 bor Reg16 | le16(Imm16, [])];
{{reg32,Reg32}, {imm32,Imm32}} ->
[16#B8 bor Reg32 | le32(Imm32, [])];
{{rm8,RM8}, {imm8,Imm8}} ->
[16#C6 | encode_rm(RM8, 2#000, [Imm8])];
{{rm16,RM16}, {imm16,Imm16}} ->
[?PFX_OPND, 16#C7 | encode_rm(RM16, 2#000, le16(Imm16, []))];
{{rm32,RM32}, {imm32,Imm32}} ->
[16#C7 | encode_rm(RM32, 2#000, le32(Imm32, []))]
end.
mov_sizeof(Opnds) ->
case Opnds of
{{rm8,RM8}, {reg8,_}} ->
1 + sizeof_rm(RM8);
{{rm16,RM16}, {reg16,_}} ->
2 + sizeof_rm(RM16);
{{rm32,RM32}, {reg32,_}} ->
1 + sizeof_rm(RM32);
{{reg8,_}, {rm8,RM8}} ->
1 + sizeof_rm(RM8);
{{reg16,_}, {rm16,RM16}} ->
2 + sizeof_rm(RM16);
{{reg32,_}, {rm32,RM32}} ->
1 + sizeof_rm(RM32);
{al, {moffs8,_}} ->
1 + 4;
{ax, {moffs16,_}} ->
2 + 4;
{eax, {moffs32,_}} ->
1 + 4;
{{moffs8,_}, al} ->
1 + 4;
{{moffs16,_}, ax} ->
2 + 4;
{{moffs32,_}, eax} ->
1 + 4;
{{reg8,_}, {imm8,_}} ->
2;
{{reg16,_}, {imm16,_}} ->
2 + 2;
{{reg32,_}, {imm32,_}} ->
1 + 4;
{{rm8,RM8}, {imm8,_}} ->
1 + sizeof_rm(RM8) + 1;
{{rm16,RM16}, {imm16,_}} ->
2 + sizeof_rm(RM16) + 2;
{{rm32,RM32}, {imm32,_}} ->
1 + sizeof_rm(RM32) + 4
end.
movx_op_encode(Opcode, Opnds) -> % movsx, movzx
case Opnds of
{{reg16,Reg16}, {rm8,RM8}} ->
[?PFX_OPND, 16#0F, Opcode | encode_rm(RM8, Reg16, [])];
{{reg32,Reg32}, {rm8,RM8}} ->
[16#0F, Opcode | encode_rm(RM8, Reg32, [])];
{{reg32,Reg32}, {rm16,RM16}} ->
[16#0F, Opcode bor 1 | encode_rm(RM16, Reg32, [])]
end.
movx_op_sizeof(Opnds) ->
case Opnds of
{{reg16,_}, {rm8,RM8}} ->
3 + sizeof_rm(RM8);
{{reg32,_}, {rm8,RM8}} ->
2 + sizeof_rm(RM8);
{{reg32,_}, {rm16,RM16}} ->
2 + sizeof_rm(RM16)
end.
pop_encode(Opnds) ->
case Opnds of
{{rm32,RM32}} ->
[16#8F | encode_rm(RM32, 2#000, [])];
{{reg32,Reg32}} ->
[16#58 bor Reg32]
end.
pop_sizeof(Opnds) ->
case Opnds of
{{rm32,RM32}} ->
1 + sizeof_rm(RM32);
{{reg32,_}} ->
1
end.
push_encode(Opnds) ->
case Opnds of
{{rm32,RM32}} ->
[16#FF | encode_rm(RM32, 2#110, [])];
{{reg32,Reg32}} ->
[16#50 bor Reg32];
{{imm8,Imm8}} -> % sign-extended
[16#6A, Imm8];
{{imm32,Imm32}} ->
[16#68 | le32(Imm32, [])]
end.
push_sizeof(Opnds) ->
case Opnds of
{{rm32,RM32}} ->
1 + sizeof_rm(RM32);
{{reg32,_}} ->
1;
{{imm8,_}} ->
2;
{{imm32,_}} ->
1 + 4
end.
shift_op_encode(SubOpcode, Opnds) -> % rcl, rcr, rol, ror, sar, shl, shr
case Opnds of
{{rm32,RM32}, 1} ->
[16#D1 | encode_rm(RM32, SubOpcode, [])];
{{rm32,RM32}, cl} ->
[16#D3 | encode_rm(RM32, SubOpcode, [])];
{{rm32,RM32}, {imm8,Imm8}} ->
[16#C1 | encode_rm(RM32, SubOpcode, [Imm8])];
{{rm16,RM16}, {imm8,Imm8}} ->
[?PFX_OPND, 16#C1 | encode_rm(RM16, SubOpcode, [Imm8])]
end.
shift_op_sizeof(Opnds) -> % rcl, rcr, rol, ror, sar, shl, shr
case Opnds of
{{rm32,RM32}, 1} ->
1 + sizeof_rm(RM32);
{{rm32,RM32}, cl} ->
1 + sizeof_rm(RM32);
{{rm32,RM32}, {imm8,_Imm8}} ->
1 + sizeof_rm(RM32) + 1;
{{rm16,RM16}, {imm8,_Imm8}} ->
1 + 1 + sizeof_rm(RM16) + 1
end.
ret_encode(Opnds) ->
case Opnds of
{} ->
[16#C3];
{{imm16,Imm16}} ->
[16#C2 | le16(Imm16, [])]
end.
ret_sizeof(Opnds) ->
case Opnds of
{} ->
1;
{{imm16,_}} ->
1 + 2
end.
setcc_encode({{cc,CC}, {rm8,RM8}}) ->
[16#0F, 16#90 bor CC | encode_rm(RM8, 2#000, [])].
setcc_sizeof({{cc,_}, {rm8,RM8}}) ->
2 + sizeof_rm(RM8).
shd_op_encode(Opcode, Opnds) ->
case Opnds of
{{rm32,RM32}, {reg32,Reg32}, {imm8,Imm8}} ->
[16#0F, Opcode | encode_rm(RM32, Reg32, [Imm8])];
{{rm32,RM32}, {reg32,Reg32}, cl} ->
[16#0F, Opcode bor 1 | encode_rm(RM32, Reg32, [])]
end.
shd_op_sizeof(Opnds) ->
case Opnds of
{{rm32,RM32}, {reg32,_}, {imm8,_}} ->
2 + sizeof_rm(RM32) + 1;
{{rm32,RM32}, {reg32,_}, cl} ->
2 + sizeof_rm(RM32)
end.
test_encode(Opnds) ->
case Opnds of
{eax, {imm32,Imm32}} ->
[16#A9 | le32(Imm32, [])];
{{rm32,RM32}, {imm32,Imm32}} ->
[16#F7 | encode_rm(RM32, 2#000, le32(Imm32, []))];
{{rm32,RM32}, {reg32,Reg32}} ->
[16#85 | encode_rm(RM32, Reg32, [])]
end.
test_sizeof(Opnds) ->
case Opnds of
{eax, {imm32,_}} ->
1 + 4;
{{rm32,RM32}, {imm32,_}} ->
1 + sizeof_rm(RM32) + 4;
{{rm32,RM32}, {reg32,_}} ->
1 + sizeof_rm(RM32)
end.
fild_encode(Opnds) ->
%% The operand cannot be a register!
{{rm32, RM32}} = Opnds,
[16#DB | encode_rm(RM32, 2#000, [])].
fild_sizeof(Opnds) ->
{{rm32, RM32}} = Opnds,
1 + sizeof_rm(RM32).
fld_encode(Opnds) ->
case Opnds of
{{rm64fp, RM64fp}} ->
[16#DD | encode_rm(RM64fp, 2#000, [])];
{{fpst, St}} ->
[16#D9, 16#C0 bor st(St)]
end.
fld_sizeof(Opnds) ->
case Opnds of
{{rm64fp, RM64fp}} ->
1 + sizeof_rm(RM64fp);
{{fpst, _}} ->
2
end.
fp_comm_arith_encode(OpCode, Opnds) ->
%% fadd, fmul
case Opnds of
{{rm64fp, RM64fp}} ->
[16#DC | encode_rm(RM64fp, OpCode, [])];
{{fpst,0}, {fpst,St}} ->
[16#D8, (16#C0 bor (OpCode bsl 3)) bor st(St)];
{{fpst,St}, {fpst,0}} ->
[16#DC, (16#C0 bor (OpCode bsl 3)) bor st(St)]
end.
fp_comm_arith_pop_encode(OpCode, Opnds) ->
%% faddp, fmulp
case Opnds of
[] ->
[16#DE, 16#C0 bor (OpCode bsl 3) bor st(1)];
{{fpst,St},{fpst,0}} ->
[16#DE, 16#C0 bor (OpCode bsl 3) bor st(St)]
end.
fp_arith_encode(OpCode, Opnds) ->
%% fdiv, fsub
case Opnds of
{{rm64fp, RM64fp}} ->
[16#DC | encode_rm(RM64fp, OpCode, [])];
{{fpst,0}, {fpst,St}} ->
OpCode0 = OpCode band 2#110,
[16#D8, 16#C0 bor (OpCode0 bsl 3) bor st(St)];
{{fpst,St}, {fpst,0}} ->
OpCode0 = OpCode bor 1,
[16#DC, 16#C0 bor (OpCode0 bsl 3) bor st(St)]
end.
fp_arith_pop_encode(OpCode, Opnds) ->
%% fdivp, fsubp
OpCode0 = OpCode bor 1,
case Opnds of
[] ->
[16#DE, 16#C8 bor (OpCode0 bsl 3) bor st(1)];
{{fpst,St}, {fpst,0}} ->
[16#DE, 16#C8 bor (OpCode0 bsl 3) bor st(St)]
end.
fp_arith_rev_encode(OpCode, Opnds) ->
%% fdivr, fsubr
case Opnds of
{{rm64fp, RM64fp}} ->
[16#DC | encode_rm(RM64fp, OpCode, [])];
{{fpst,0}, {fpst,St}} ->
OpCode0 = OpCode bor 1,
[16#D8, 16#C0 bor (OpCode0 bsl 3) bor st(St)];
{{fpst,St}, {fpst,0}} ->
OpCode0 = OpCode band 2#110,
[16#DC, 16#C0 bor (OpCode0 bsl 3) bor st(St)]
end.
fp_arith_rev_pop_encode(OpCode, Opnds) ->
%% fdivrp, fsubrp
OpCode0 = OpCode band 2#110,
case Opnds of
[] ->
[16#DE, 16#C0 bor (OpCode0 bsl 3) bor st(1)];
{{fpst,St}, {fpst, 0}} ->
[16#DE, 16#C0 bor (OpCode0 bsl 3) bor st(St)]
end.
fp_arith_sizeof(Opnds) ->
case Opnds of
{{rm64fp, RM64fp}} ->
1 + sizeof_rm(RM64fp);
{{fpst,0}, {fpst,_}} ->
2;
{{fpst,_}, {fpst,0}} ->
2
end.
fst_encode(OpCode, Opnds) ->
case Opnds of
{{rm64fp, RM64fp}} ->
[16#DD | encode_rm(RM64fp, OpCode, [])];
{{fpst, St}} ->
[16#DD, 16#C0 bor (OpCode bsl 3) bor st(St)]
end.
fst_sizeof(Opnds) ->
case Opnds of
{{rm64fp, RM64fp}} ->
1 + sizeof_rm(RM64fp);
{{fpst, _}} ->
2
end.
fchs_encode() ->
[16#D9, 16#E0].
fchs_sizeof() ->
2.
ffree_encode({{fpst, St}})->
[16#DD, 16#C0 bor st(St)].
ffree_sizeof() ->
2.
fwait_encode() ->
[16#9B].
fwait_sizeof() ->
1.
fxch_encode(Opnds) ->
case Opnds of
[] ->
[16#D9, 16#C8 bor st(1)];
{{fpst, St}} ->
[16#D9, 16#C8 bor st(St)]
end.
fxch_sizeof() ->
2.
insn_encode(Op, Opnds, Offset) ->
Bytes = insn_encode_internal(Op, Opnds),
case has_relocs(Bytes) of
false -> % the common case
{Bytes, []};
_ ->
fix_relocs(Bytes, Offset, [], [])
end.
has_relocs([{le32,_,_}|_]) -> true;
has_relocs([_|Bytes]) -> has_relocs(Bytes);
has_relocs([]) -> false.
fix_relocs([{le32,Tag,Val}|Bytes], Offset, Code, Relocs) ->
fix_relocs(Bytes, Offset+4,
[16#00, 16#00, 16#00, 16#00 | Code],
[{Tag,Offset,Val}|Relocs]);
fix_relocs([Byte|Bytes], Offset, Code, Relocs) ->
fix_relocs(Bytes, Offset+1, [Byte|Code], Relocs);
fix_relocs([], _Offset, Code, Relocs) ->
{lists:reverse(Code), lists:reverse(Relocs)}.
insn_encode_internal(Op, Opnds) ->
case Op of
'adc' -> arith_binop_encode(2#010, Opnds);
'add' -> arith_binop_encode(2#000, Opnds);
'and' -> arith_binop_encode(2#100, Opnds);
'bsf' -> bs_op_encode(16#BC, Opnds);
'bsr' -> bs_op_encode(16#BD, Opnds);
'bswap' -> bswap_encode(Opnds);
'bt' -> bt_op_encode(2#100, Opnds);
'btc' -> bt_op_encode(2#111, Opnds);
'btr' -> bt_op_encode(2#110, Opnds);
'bts' -> bt_op_encode(2#101, Opnds);
'call' -> call_encode(Opnds);
'cbw' -> cbw_encode(Opnds);
'cdq' -> nullary_op_encode(16#99, Opnds);
'clc' -> nullary_op_encode(16#F8, Opnds);
'cld' -> nullary_op_encode(16#FC, Opnds);
'cmc' -> nullary_op_encode(16#F5, Opnds);
'cmovcc' -> cmovcc_encode(Opnds);
'cmp' -> arith_binop_encode(2#111, Opnds);
'cwde' -> nullary_op_encode(16#98, Opnds);
'dec' -> incdec_encode(2#001, Opnds);
'div' -> arith_unop_encode(2#110, Opnds);
'enter' -> enter_encode(Opnds);
'fadd' -> fp_comm_arith_encode(2#000, Opnds);
'faddp' -> fp_comm_arith_pop_encode(2#000, Opnds);
'fchs' -> fchs_encode();
'fdiv' -> fp_arith_encode(2#110, Opnds);
'fdivp' -> fp_arith_pop_encode(2#110, Opnds);
'fdivr' -> fp_arith_rev_encode(2#111, Opnds);
'fdivrp' -> fp_arith_rev_pop_encode(2#111, Opnds);
'ffree' -> ffree_encode(Opnds);
'fild' -> fild_encode(Opnds);
'fld' -> fld_encode(Opnds);
'fmul' -> fp_comm_arith_encode(2#001, Opnds);
'fmulp' -> fp_comm_arith_pop_encode(2#001, Opnds);
'fst' -> fst_encode(2#010, Opnds);
'fstp' -> fst_encode(2#011, Opnds);
'fsub' -> fp_arith_encode(2#100, Opnds);
'fsubp' -> fp_arith_pop_encode(2#100, Opnds);
'fsubr' -> fp_arith_rev_encode(2#101, Opnds);
'fsubrp' -> fp_arith_rev_pop_encode(2#101, Opnds);
'fwait' -> fwait_encode();
'fxch' -> fxch_encode(Opnds);
'idiv' -> arith_unop_encode(2#111, Opnds);
'imul' -> imul_encode(Opnds);
'inc' -> incdec_encode(2#000, Opnds);
'into' -> nullary_op_encode(16#CE, Opnds);
'jcc' -> jcc_encode(Opnds);
'jecxz' -> jmp8_op_encode(16#E3, Opnds);
'jmp' -> jmp_encode(Opnds);
'lea' -> lea_encode(Opnds);
'leave' -> nullary_op_encode(16#C9, Opnds);
'loop' -> jmp8_op_encode(16#E2, Opnds);
'loope' -> jmp8_op_encode(16#E1, Opnds);
'loopne' -> jmp8_op_encode(16#E0, Opnds);
'mov' -> mov_encode(Opnds);
'movsx' -> movx_op_encode(16#BE, Opnds);
'movzx' -> movx_op_encode(16#B6, Opnds);
'mul' -> arith_unop_encode(2#100, Opnds);
'neg' -> arith_unop_encode(2#011, Opnds);
'nop' -> nullary_op_encode(16#90, Opnds);
'not' -> arith_unop_encode(2#010, Opnds);
'or' -> arith_binop_encode(2#001, Opnds);
'pop' -> pop_encode(Opnds);
'prefix_fs' -> nullary_op_encode(16#64, Opnds);
'push' -> push_encode(Opnds);
'rcl' -> shift_op_encode(2#010, Opnds);
'rcr' -> shift_op_encode(2#011, Opnds);
'ret' -> ret_encode(Opnds);
'rol' -> shift_op_encode(2#000, Opnds);
'ror' -> shift_op_encode(2#001, Opnds);
'sar' -> shift_op_encode(2#111, Opnds);
'sbb' -> arith_binop_encode(2#011, Opnds);
'setcc' -> setcc_encode(Opnds);
'shl' -> shift_op_encode(2#100, Opnds);
'shld' -> shd_op_encode(16#A4, Opnds);
'shr' -> shift_op_encode(2#101, Opnds);
'shrd' -> shd_op_encode(16#AC, Opnds);
'stc' -> nullary_op_encode(16#F9, Opnds);
'std' -> nullary_op_encode(16#FD, Opnds);
'sub' -> arith_binop_encode(2#101, Opnds);
'test' -> test_encode(Opnds);
'xor' -> arith_binop_encode(2#110, Opnds);
_ -> exit({?MODULE,insn_encode,Op})
end.
insn_sizeof(Op, Opnds) ->
case Op of
'adc' -> arith_binop_sizeof(Opnds);
'add' -> arith_binop_sizeof(Opnds);
'and' -> arith_binop_sizeof(Opnds);
'bsf' -> bs_op_sizeof(Opnds);
'bsr' -> bs_op_sizeof(Opnds);
'bswap' -> bswap_sizeof(Opnds);
'bt' -> bt_op_sizeof(Opnds);
'btc' -> bt_op_sizeof(Opnds);
'btr' -> bt_op_sizeof(Opnds);
'bts' -> bt_op_sizeof(Opnds);
'call' -> call_sizeof(Opnds);
'cbw' -> cbw_sizeof(Opnds);
'cdq' -> nullary_op_sizeof(Opnds);
'clc' -> nullary_op_sizeof(Opnds);
'cld' -> nullary_op_sizeof(Opnds);
'cmc' -> nullary_op_sizeof(Opnds);
'cmovcc' -> cmovcc_sizeof(Opnds);
'cmp' -> arith_binop_sizeof(Opnds);
'cwde' -> nullary_op_sizeof(Opnds);
'dec' -> incdec_sizeof(Opnds);
'div' -> arith_unop_sizeof(Opnds);
'enter' -> enter_sizeof(Opnds);
'fadd' -> fp_arith_sizeof(Opnds);
'faddp' -> fp_arith_sizeof(Opnds);
'fchs' -> fchs_sizeof();
'fdiv' -> fp_arith_sizeof(Opnds);
'fdivp' -> fp_arith_sizeof(Opnds);
'fdivr' -> fp_arith_sizeof(Opnds);
'fdivrp' -> fp_arith_sizeof(Opnds);
'ffree' -> ffree_sizeof();
'fild' -> fild_sizeof(Opnds);
'fld' -> fld_sizeof(Opnds);
'fmul' -> fp_arith_sizeof(Opnds);
'fmulp' -> fp_arith_sizeof(Opnds);
'fst' -> fst_sizeof(Opnds);
'fstp' -> fst_sizeof(Opnds);
'fsub' -> fp_arith_sizeof(Opnds);
'fsubp' -> fp_arith_sizeof(Opnds);
'fsubr' -> fp_arith_sizeof(Opnds);
'fsubrp' -> fp_arith_sizeof(Opnds);
'fwait' -> fwait_sizeof();
'fxch' -> fxch_sizeof();
'idiv' -> arith_unop_sizeof(Opnds);
'imul' -> imul_sizeof(Opnds);
'inc' -> incdec_sizeof(Opnds);
'into' -> nullary_op_sizeof(Opnds);
'jcc' -> jcc_sizeof(Opnds);
'jecxz' -> jmp8_op_sizeof(Opnds);
'jmp' -> jmp_sizeof(Opnds);
'lea' -> lea_sizeof(Opnds);
'leave' -> nullary_op_sizeof(Opnds);
'loop' -> jmp8_op_sizeof(Opnds);
'loope' -> jmp8_op_sizeof(Opnds);
'loopne' -> jmp8_op_sizeof(Opnds);
'mov' -> mov_sizeof(Opnds);
'movsx' -> movx_op_sizeof(Opnds);
'movzx' -> movx_op_sizeof(Opnds);
'mul' -> arith_unop_sizeof(Opnds);
'neg' -> arith_unop_sizeof(Opnds);
'nop' -> nullary_op_sizeof(Opnds);
'not' -> arith_unop_sizeof(Opnds);
'or' -> arith_binop_sizeof(Opnds);
'pop' -> pop_sizeof(Opnds);
'prefix_fs' -> nullary_op_sizeof(Opnds);
'push' -> push_sizeof(Opnds);
'rcl' -> shift_op_sizeof(Opnds);
'rcr' -> shift_op_sizeof(Opnds);
'ret' -> ret_sizeof(Opnds);
'rol' -> shift_op_sizeof(Opnds);
'ror' -> shift_op_sizeof(Opnds);
'sar' -> shift_op_sizeof(Opnds);
'sbb' -> arith_binop_sizeof(Opnds);
'setcc' -> setcc_sizeof(Opnds);
'shl' -> shift_op_sizeof(Opnds);
'shld' -> shd_op_sizeof(Opnds);
'shr' -> shift_op_sizeof(Opnds);
'shrd' -> shd_op_sizeof(Opnds);
'stc' -> nullary_op_sizeof(Opnds);
'std' -> nullary_op_sizeof(Opnds);
'sub' -> arith_binop_sizeof(Opnds);
'test' -> test_sizeof(Opnds);
'xor' -> arith_binop_sizeof(Opnds);
_ -> exit({?MODULE,insn_sizeof,Op})
end.
%%=====================================================================
%% testing interface
%%=====================================================================
-ifdef(DO_HIPE_X86_ENCODE_TEST).
say(OS, Str) ->
file:write(OS, Str).
digit16(Dig0) ->
Dig = Dig0 band 16#F,
if Dig >= 16#A -> $A + (Dig - 16#A);
true -> $0 + Dig
end.
say_byte(OS, Byte) ->
say(OS, "0x"),
say(OS, [digit16(Byte bsr 4)]),
say(OS, [digit16(Byte)]).
init(OS) ->
say(OS, "\t.text\n").
say_bytes(OS, Byte0, Bytes0) ->
say_byte(OS, Byte0),
case Bytes0 of
[] ->
say(OS, "\n");
[Byte1|Bytes1] ->
say(OS, ","),
say_bytes(OS, Byte1, Bytes1)
end.
t(OS, Op, Opnds) ->
insn_sizeof(Op, Opnds),
{[Byte|Bytes],[]} = insn_encode(Op, Opnds, 0),
say(OS, "\t.byte "),
say_bytes(OS, Byte, Bytes).
dotest1(OS) ->
init(OS),
% exercise all rm32 types
t(OS,lea,{{reg32,?EAX},{ea,ea_disp32(16#87654321)}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_sib(sib(?ECX))}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_sib(sib(?ECX,sindex(2#10,?EDI)))}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_disp32_sindex(16#87654321)}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_disp32_sindex(16#87654321,sindex(2#10,?EDI))}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_base(?ECX)}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_disp8_sib(16#03,sib(?ECX))}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_disp8_sib(16#03,sib(?ECX,sindex(2#10,?EDI)))}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_disp8_base(16#3,?ECX)}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_disp32_sib(16#87654321,sib(?ECX))}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_disp32_sib(16#87654321,sib(?ECX,sindex(2#10,?EDI)))}}),
t(OS,lea,{{reg32,?EAX},{ea,ea_disp32_base(16#87654321,?EBP)}}),
t(OS,call,{{rm32,rm_reg(?EAX)}}),
t(OS,call,{{rm32,rm_mem(ea_disp32_sindex(16#87654321,sindex(2#10,?EDI)))}}),
t(OS,call,{{rel32,-5}}),
% default parameters for the tests below
Word32 = 16#87654321,
Word16 = 16#F00F,
Word8 = 16#80,
Imm32 = {imm32,Word32},
Imm16 = {imm16,Word16},
Imm8 = {imm8,Word8},
RM32 = {rm32,rm_reg(?EDX)},
RM16 = {rm16,rm_reg(?EDX)},
RM8 = {rm8,rm_reg(?EDX)},
Rel32 = {rel32,Word32},
Rel8 = {rel8,Word8},
Moffs32 = {moffs32,Word32},
Moffs16 = {moffs16,Word32},
Moffs8 = {moffs8,Word32},
CC = {cc,?CC_G},
Reg32 = {reg32,?EAX},
Reg16 = {reg16,?EAX},
Reg8 = {reg8,?AH},
EA = {ea,ea_base(?ECX)},
% exercise each instruction definition
t(OS,'adc',{eax,Imm32}),
t(OS,'adc',{RM32,Imm32}),
t(OS,'adc',{RM32,Imm8}),
t(OS,'adc',{RM32,Reg32}),
t(OS,'adc',{Reg32,RM32}),
t(OS,'add',{eax,Imm32}),
t(OS,'add',{RM32,Imm32}),
t(OS,'add',{RM32,Imm8}),
t(OS,'add',{RM32,Reg32}),
t(OS,'add',{Reg32,RM32}),
t(OS,'and',{eax,Imm32}),
t(OS,'and',{RM32,Imm32}),
t(OS,'and',{RM32,Imm8}),
t(OS,'and',{RM32,Reg32}),
t(OS,'and',{Reg32,RM32}),
t(OS,'bsf',{Reg32,RM32}),
t(OS,'bsr',{Reg32,RM32}),
t(OS,'bswap',{Reg32}),
t(OS,'bt',{RM32,Reg32}),
t(OS,'bt',{RM32,Imm8}),
t(OS,'btc',{RM32,Reg32}),
t(OS,'btc',{RM32,Imm8}),
t(OS,'btr',{RM32,Reg32}),
t(OS,'btr',{RM32,Imm8}),
t(OS,'bts',{RM32,Reg32}),
t(OS,'bts',{RM32,Imm8}),
t(OS,'call',{Rel32}),
t(OS,'call',{RM32}),
t(OS,'cbw',{}),
t(OS,'cdq',{}),
t(OS,'clc',{}),
t(OS,'cld',{}),
t(OS,'cmc',{}),
t(OS,'cmovcc',{CC,Reg32,RM32}),
t(OS,'cmp',{eax,Imm32}),
t(OS,'cmp',{RM32,Imm32}),
t(OS,'cmp',{RM32,Imm8}),
t(OS,'cmp',{RM32,Reg32}),
t(OS,'cmp',{Reg32,RM32}),
t(OS,'cwde',{}),
t(OS,'dec',{RM32}),
t(OS,'dec',{Reg32}),
t(OS,'div',{RM32}),
t(OS,'enter',{Imm16,{imm8,3}}),
t(OS,'idiv',{RM32}),
t(OS,'imul',{RM32}),
t(OS,'imul',{Reg32,RM32}),
t(OS,'imul',{Reg32,RM32,Imm8}),
t(OS,'imul',{Reg32,RM32,Imm32}),
t(OS,'inc',{RM32}),
t(OS,'inc',{Reg32}),
t(OS,'into',{}),
t(OS,'jcc',{CC,Rel8}),
t(OS,'jcc',{CC,Rel32}),
t(OS,'jecxz',{Rel8}),
t(OS,'jmp',{Rel8}),
t(OS,'jmp',{Rel32}),
t(OS,'jmp',{RM32}),
t(OS,'lea',{Reg32,EA}),
t(OS,'leave',{}),
t(OS,'loop',{Rel8}),
t(OS,'loope',{Rel8}),
t(OS,'loopne',{Rel8}),
t(OS,'mov',{RM8,Reg8}),
t(OS,'mov',{RM16,Reg16}),
t(OS,'mov',{RM32,Reg32}),
t(OS,'mov',{Reg8,RM8}),
t(OS,'mov',{Reg16,RM16}),
t(OS,'mov',{Reg32,RM32}),
t(OS,'mov',{al,Moffs8}),
t(OS,'mov',{ax,Moffs16}),
t(OS,'mov',{eax,Moffs32}),
t(OS,'mov',{Moffs8,al}),
t(OS,'mov',{Moffs16,ax}),
t(OS,'mov',{Moffs32,eax}),
t(OS,'mov',{Reg8,Imm8}),
t(OS,'mov',{Reg16,Imm16}),
t(OS,'mov',{Reg32,Imm32}),
t(OS,'mov',{RM8,Imm8}),
t(OS,'mov',{RM16,Imm16}),
t(OS,'mov',{RM32,Imm32}),
t(OS,'movsx',{Reg16,RM8}),
t(OS,'movsx',{Reg32,RM8}),
t(OS,'movsx',{Reg32,RM16}),
t(OS,'movzx',{Reg16,RM8}),
t(OS,'movzx',{Reg32,RM8}),
t(OS,'movzx',{Reg32,RM16}),
t(OS,'mul',{RM32}),
t(OS,'neg',{RM32}),
t(OS,'nop',{}),
t(OS,'not',{RM32}),
t(OS,'or',{eax,Imm32}),
t(OS,'or',{RM32,Imm32}),
t(OS,'or',{RM32,Imm8}),
t(OS,'or',{RM32,Reg32}),
t(OS,'or',{Reg32,RM32}),
t(OS,'pop',{RM32}),
t(OS,'pop',{Reg32}),
t(OS,'push',{RM32}),
t(OS,'push',{Reg32}),
t(OS,'push',{Imm8}),
t(OS,'push',{Imm32}),
t(OS,'rcl',{RM32,1}),
t(OS,'rcl',{RM32,cl}),
t(OS,'rcl',{RM32,Imm8}),
t(OS,'rcl',{RM16,Imm8}),
t(OS,'rcr',{RM32,1}),
t(OS,'rcr',{RM32,cl}),
t(OS,'rcr',{RM32,Imm8}),
t(OS,'rcr',{RM16,Imm8}),
t(OS,'ret',{}),
t(OS,'ret',{Imm16}),
t(OS,'rol',{RM32,1}),
t(OS,'rol',{RM32,cl}),
t(OS,'rol',{RM32,Imm8}),
t(OS,'rol',{RM16,Imm8}),
t(OS,'ror',{RM32,1}),
t(OS,'ror',{RM32,cl}),
t(OS,'ror',{RM32,Imm8}),
t(OS,'ror',{RM16,Imm8}),
t(OS,'sar',{RM32,1}),
t(OS,'sar',{RM32,cl}),
t(OS,'sar',{RM32,Imm8}),
t(OS,'sar',{RM16,Imm8}),
t(OS,'sbb',{eax,Imm32}),
t(OS,'sbb',{RM32,Imm32}),
t(OS,'sbb',{RM32,Imm8}),
t(OS,'sbb',{RM32,Reg32}),
t(OS,'sbb',{Reg32,RM32}),
t(OS,'setcc',{CC,RM8}),
t(OS,'shl',{RM32,1}),
t(OS,'shl',{RM32,cl}),
t(OS,'shl',{RM32,Imm8}),
t(OS,'shl',{RM16,Imm8}),
t(OS,'shld',{RM32,Reg32,Imm8}),
t(OS,'shld',{RM32,Reg32,cl}),
t(OS,'shr',{RM32,1}),
t(OS,'shr',{RM32,cl}),
t(OS,'shr',{RM32,Imm8}),
t(OS,'shr',{RM16,Imm8}),
t(OS,'shrd',{RM32,Reg32,Imm8}),
t(OS,'shrd',{RM32,Reg32,cl}),
t(OS,'stc',{}),
t(OS,'std',{}),
t(OS,'sub',{eax,Imm32}),
t(OS,'sub',{RM32,Imm32}),
t(OS,'sub',{RM32,Imm8}),
t(OS,'sub',{RM32,Reg32}),
t(OS,'sub',{Reg32,RM32}),
t(OS,'test',{eax,Imm32}),
t(OS,'test',{RM32,Imm32}),
t(OS,'test',{RM32,Reg32}),
t(OS,'xor',{eax,Imm32}),
t(OS,'xor',{RM32,Imm32}),
t(OS,'xor',{RM32,Imm8}),
t(OS,'xor',{RM32,Reg32}),
t(OS,'xor',{Reg32,RM32}),
t(OS,'prefix_fs',{}), t(OS,'add',{{reg32,?EAX},{rm32,rm_mem(ea_disp32(16#20))}}),
[].
dotest() -> dotest1(group_leader()). % stdout == group_leader
dotest(File) ->
{ok,OS} = file:open(File, [write]),
dotest1(OS),
file:close(OS).
-endif.