%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1997-2010. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
-module(inet_parse).
%% Parser for all kinds of ineternet configuration files
%% Avoid warning for local function error/2 clashing with autoimported BIF.
-compile({no_auto_import,[error/2]}).
-export([hosts/1, hosts/2]).
-export([hosts_vxworks/1]).
-export([protocols/1, protocols/2]).
-export([netmasks/1, netmasks/2]).
-export([networks/1, networks/2]).
-export([services/1, services/2]).
-export([rpc/1, rpc/2]).
-export([resolv/1, resolv/2]).
-export([host_conf_linux/1, host_conf_linux/2]).
-export([host_conf_freebsd/1, host_conf_freebsd/2]).
-export([host_conf_bsdos/1, host_conf_bsdos/2]).
-export([nsswitch_conf/1, nsswitch_conf/2]).
-export([ipv4_address/1, ipv6_address/1]).
-export([ipv4strict_address/1, ipv6strict_address/1]).
-export([address/1, strict_address/1]).
-export([visible_string/1, domain/1]).
-export([ntoa/1, dots/1]).
-export([split_line/1]).
-import(lists, [reverse/1]).
-include_lib("kernel/include/file.hrl").
%% --------------------------------------------------------------------------
%% Parse services internet style
%% Syntax:
%% Name Port/Protocol [Aliases] \n
%% # comment
%% --------------------------------------------------------------------------
services(File) ->
services(noname, File).
services(Fname, File) ->
Fn = fun([Name, PortProto | Aliases]) ->
{Proto,Port} = port_proto(PortProto, 0),
{Name,Proto,Port,Aliases}
end,
parse_file(Fname, File, Fn).
%% --------------------------------------------------------------------------
%% Parse rpc program names
%% Syntax:
%% Name Program [Aliases] \n |
%% # comment
%% --------------------------------------------------------------------------
rpc(File) ->
rpc(noname, File).
rpc(Fname, File) ->
Fn = fun([Name,Program | Aliases]) ->
Prog = list_to_integer(Program),
{Name,Prog,Aliases}
end,
parse_file(Fname, File, Fn).
%% --------------------------------------------------------------------------
%% Parse hosts file unix style
%% Syntax:
%% IP Name [Aliases] \n |
%% # comment
%% --------------------------------------------------------------------------
hosts(File) ->
hosts(noname,File).
hosts(Fname,File) ->
Fn = fun([Address, Name | Aliases]) ->
%% XXX Fix for link-local IPv6 addresses that specify
%% interface with a %if suffix. These kind of
%% addresses maybe need to be gracefully handled
%% throughout inet* and inet_drv.
case string:tokens(Address, "%") of
[Addr,_] ->
{ok,_} = address(Addr),
skip;
_ ->
{ok,IP} = address(Address),
{IP, Name, Aliases}
end
end,
parse_file(Fname, File, Fn).
%% --------------------------------------------------------------------------
%% Parse hostShow vxworks style
%% Syntax:
%% Name IP [Aliases] \n
%% --------------------------------------------------------------------------
hosts_vxworks(Hosts) ->
Fn = fun([Name, Address | Aliases]) ->
{ok,IP} = address(Address),
{IP, Name, Aliases}
end,
parse_file(Hosts, Fn).
%% --------------------------------------------------------------------------
%% Parse resolv file unix style
%% Syntax:
%% domain Domain \n
%% nameserver IP \n
%% search Dom1 Dom2 ... \n
%% lookup Method1 Method2 Method3 \n
%% # comment
%% --------------------------------------------------------------------------
resolv(File) ->
resolv(noname,File).
resolv(Fname, File) ->
Fn = fun(["domain", Domain]) ->
{domain, Domain};
(["nameserver", Address]) ->
{ok,IP} = address(Address),
{nameserver,IP};
(["search" | List]) ->
{search, List};
(["lookup" | Types]) ->
{lookup, Types};
(_) ->
skip %% there are too many local options, we MUST skip
end,
parse_file(Fname, File, Fn).
%% --------------------------------------------------------------------------
%%
%% Parse Linux host.conf file
%% find "order" only.
%%
%% --------------------------------------------------------------------------
host_conf_linux(File) ->
host_conf_linux(noname,File).
host_conf_linux(Fname, File) ->
Fn = fun(["order" | Order]) ->
%% XXX remove ',' between entries
{lookup, split_comma(Order)};
(_) ->
skip
end,
parse_file(Fname, File, Fn).
%% --------------------------------------------------------------------------
%%
%% Parse Freebsd/Netbsd host.conf file
%% find "order" only.
%%
%% --------------------------------------------------------------------------
host_conf_freebsd(File) ->
host_conf_freebsd(noname,File).
host_conf_freebsd(Fname, File) ->
Fn = fun([Type]) -> Type end,
case parse_file(Fname, File, Fn) of
{ok, Ls} -> {ok, [{lookup, Ls}]};
Error -> Error
end.
%% --------------------------------------------------------------------------
%%
%% Parse BSD/OS irs.conf file
%% find "hosts" only and ignore options.
%%
%% Syntax:
%% Map AccessMethod [,AccessMethod] [continue|merge [,merge|,continue]] \n
%% # comment
%% --------------------------------------------------------------------------
host_conf_bsdos(File) ->
host_conf_bsdos(noname,File).
host_conf_bsdos(Fname, File) ->
Fn = fun(["hosts" | List]) ->
delete_options(split_comma(List));
(_) ->
skip
end,
case parse_file(Fname, File, Fn) of
{ok, Ls} ->
{ok, [{lookup, lists:append(Ls)}]};
Error -> Error
end.
delete_options(["continue"|T]) ->
delete_options(T);
delete_options(["merge"|T]) ->
delete_options(T);
delete_options([H|T]) ->
[H|delete_options(T)];
delete_options([]) ->
[].
%% --------------------------------------------------------------------------
%%
%% Parse Solaris nsswitch.conf
%% find "hosts:" only
%%
%% --------------------------------------------------------------------------
nsswitch_conf(File) ->
nsswitch_conf(noname,File).
nsswitch_conf(Fname, File) ->
Fn = fun(["hosts:" | Types]) ->
{lookup, Types};
(_) -> skip
end,
parse_file(Fname, File, Fn).
%% --------------------------------------------------------------------------
%% Parse protocol file unix style
%% Syntax:
%% name protocol number name \n
%% # comment
%% --------------------------------------------------------------------------
protocols(File) ->
protocols(noname,File).
protocols(Fname, File) ->
Fn = fun([Name, Number, DName]) ->
{list_to_atom(Name), list_to_integer(Number), DName}
end,
parse_file(Fname, File, Fn).
%% --------------------------------------------------------------------------
%% Parse netmasks file unix style
%% Syntax:
%% Network Subnetmask
%% # comment
%% --------------------------------------------------------------------------
netmasks(File) ->
netmasks(noname, File).
netmasks(Fname, File) ->
Fn = fun([Net, Subnetmask]) ->
{ok, NetIP} = address(Net),
{ok, Mask} = address(Subnetmask),
{NetIP, Mask}
end,
parse_file(Fname, File, Fn).
%% --------------------------------------------------------------------------
%% Parse networks file unix style
%% Syntax:
%% network-name network-number aliases ...
%% # comment
%% --------------------------------------------------------------------------
networks(File) ->
networks(noname, File).
networks(Fname, File) ->
Fn = fun([NetName, NetNumber]) ->
Number = list_to_integer(NetNumber),
{NetName, Number}
end,
parse_file(Fname, File, Fn).
%% --------------------------------------------------------------------------
%%
%% Simple Line by Line parser
%%
%% --------------------------------------------------------------------------
parse_file(File, Fn) ->
parse_file(noname, File, Fn).
parse_file(Fname, {fd,Fd}, Fn) ->
parse_fd(Fname,Fd, 1, Fn, []);
parse_file(Fname, {chars,Cs}, Fn) when is_list(Cs) ->
parse_cs(Fname, Cs, 1, Fn, []);
parse_file(Fname, {chars,Cs}, Fn) when is_binary(Cs) ->
parse_cs(Fname, binary_to_list(Cs), 1, Fn, []);
parse_file(_, File, Fn) ->
case file:open(File, [read]) of
{ok, Fd} ->
Result = parse_fd(File,Fd, 1, Fn, []),
file:close(Fd),
Result;
Error -> Error
end.
parse_fd(Fname,Fd, Line, Fun, Ls) ->
case read_line(Fd) of
eof -> {ok, reverse(Ls)};
Cs ->
case split_line(Cs) of
[] -> parse_fd(Fname, Fd, Line+1, Fun, Ls);
Toks ->
case catch Fun(Toks) of
{'EXIT',_} ->
error("~p:~p: erroneous line, SKIPPED~n",[Fname,Line]),
parse_fd(Fname, Fd,Line+1,Fun,Ls);
{warning,Wlist,Val} ->
warning("~p:~p: warning! strange domain name(s) ~p ~n",[Fname,Line,Wlist]),
parse_fd(Fname, Fd,Line+1,Fun,[Val|Ls]);
skip ->
parse_fd(Fname, Fd, Line+1, Fun, Ls);
Val -> parse_fd(Fname, Fd, Line+1, Fun, [Val|Ls])
end
end
end.
parse_cs(Fname, Chars, Line, Fun, Ls) ->
case get_line(Chars) of
eof -> {ok, reverse(Ls)};
{Cs,Chars1} ->
case split_line(Cs) of
[] -> parse_cs(Fname, Chars1, Line+1, Fun, Ls);
Toks ->
case catch Fun(Toks) of
{'EXIT',_} ->
error("~p:~p: erroneous line, SKIPPED~n",[Fname,Line]),
parse_cs(Fname, Chars1, Line+1, Fun, Ls);
{warning,Wlist,Val} ->
warning("~p:~p: warning! strange domain name(s) ~p ~n",[Fname,Line,Wlist]),
parse_cs(Fname, Chars1, Line+1, Fun, [Val|Ls]);
skip -> parse_cs(Fname, Chars1, Line+1, Fun, Ls);
Val -> parse_cs(Fname, Chars1, Line+1, Fun, [Val|Ls])
end
end
end.
get_line([]) -> eof;
get_line(Chars) -> get_line(Chars,[]).
get_line([], Acc) -> {reverse(Acc), []};
get_line([$\r, $\n | Cs], Acc) -> {reverse([$\n|Acc]), Cs};
get_line([$\n | Cs], Acc) -> {reverse([$\n|Acc]), Cs};
get_line([C | Cs], Acc) -> get_line(Cs, [C|Acc]).
%%
%% Read a line
%%
read_line(Fd) when is_pid(Fd) -> io:get_line(Fd, '');
read_line(Fd = #file_descriptor{}) ->
collect_line(Fd, []).
collect_line(Fd, Cs) ->
case file:read(Fd, 80) of
{ok, Line} when is_binary(Line) ->
collect_line(Fd, byte_size(Line), binary_to_list(Line), Cs);
{ok, Line} ->
collect_line(Fd, length(Line), Line, Cs);
eof when Cs =:= [] ->
eof;
eof -> reverse(Cs)
end.
collect_line(Fd, N, [$\r, $\n|_], Cs) ->
{ok, _} = file:position(Fd, {cur,-(N-2)}),
reverse([$\n|Cs]);
collect_line(Fd, N, [$\n|_], Cs) ->
{ok, _} = file:position(Fd, {cur,-(N-1)}),
reverse([$\n|Cs]);
collect_line(Fd, _, [], Cs) ->
collect_line(Fd, Cs);
collect_line(Fd, N, [X|Xs], Cs) ->
collect_line(Fd, N-1, Xs, [X|Cs]).
%% split Port/Proto -> {Port, Proto}
port_proto([X|Xs], N) when X >= $0, X =< $9 ->
port_proto(Xs, N*10 + (X - $0));
port_proto([$/ | Proto], Port) when Port =/= 0 ->
{list_to_atom(Proto), Port}.
%%
%% Check if a String is a string with visible characters #21..#7E
%% visible_string(String) -> Bool
%%
visible_string([H|T]) ->
is_vis1([H|T]);
visible_string(_) ->
false.
is_vis1([C | Cs]) when C >= 16#21, C =< 16#7e -> is_vis1(Cs);
is_vis1([]) -> true;
is_vis1(_) -> false.
%%
%% Check if a String is a domain name according to RFC XXX.
%% domain(String) -> Bool
%%
domain([H|T]) ->
is_dom1([H|T]);
domain(_) ->
false.
is_dom1([C | Cs]) when C >= $a, C =< $z -> is_dom_ldh(Cs);
is_dom1([C | Cs]) when C >= $A, C =< $Z -> is_dom_ldh(Cs);
is_dom1([C | Cs]) when C >= $0, C =< $9 ->
case is_dom_ldh(Cs) of
true -> is_dom2(string:tokens([C | Cs],"."));
false -> false
end;
is_dom1(_) -> false.
is_dom_ldh([C | Cs]) when C >= $a, C =< $z -> is_dom_ldh(Cs);
is_dom_ldh([C | Cs]) when C >= $A, C =< $Z -> is_dom_ldh(Cs);
is_dom_ldh([C | Cs]) when C >= $0, C =< $9 -> is_dom_ldh(Cs);
is_dom_ldh([$-,$. | _]) -> false;
is_dom_ldh([$_,$. | _]) -> false;
is_dom_ldh([$_ | Cs]) -> is_dom_ldh(Cs);
is_dom_ldh([$- | Cs]) -> is_dom_ldh(Cs);
is_dom_ldh([$. | Cs]) -> is_dom1(Cs);
is_dom_ldh([]) -> true;
is_dom_ldh(_) -> false.
%%% Check that we don't get a IP-address as a domain name.
-define(L2I(L), (catch list_to_integer(L))).
is_dom2([A,B,C,D]) ->
case ?L2I(D) of
Di when is_integer(Di) ->
case {?L2I(A),?L2I(B),?L2I(C)} of
{Ai,Bi,Ci} when is_integer(Ai),
is_integer(Bi),
is_integer(Ci) -> false;
_ -> true
end;
_ -> true
end;
is_dom2(_) ->
true.
%%
%% Parse ipv4 address or ipv6 address
%% Return {ok, Address} | {error, Reason}
%%
address(Cs) when is_list(Cs) ->
case ipv4_address(Cs) of
{ok,IP} ->
{ok,IP};
_ ->
ipv6strict_address(Cs)
end;
address(_) ->
{error, einval}.
%%Parse ipv4 strict address or ipv6 strict address
strict_address(Cs) when is_list(Cs) ->
case ipv4strict_address(Cs) of
{ok,IP} ->
{ok,IP};
_ ->
ipv6strict_address(Cs)
end;
strict_address(Cs) ->
{error, einval}.
%%
%% Parse IPv4 address:
%% d1.d2.d3.d4
%% d1.d2.d4
%% d1.d4
%% d4
%% Any d may be octal, hexadecimal or decimal by C language standards.
%% d4 fills all LSB bytes. This is legacy behaviour from Solaris
%% and FreeBSD. And partly Linux that behave the same except
%% it does not accept hexadecimal.
%%
%% Return {ok, IP} | {error, einval}
%%
ipv4_address(Cs) ->
try ipv4_addr(Cs) of
Addr ->
{ok,Addr}
catch
error:badarg ->
{error,einval}
end.
ipv4_addr(Cs) ->
case ipv4_addr(Cs, []) of
[D] when D < (1 bsl 32) ->
<<D1,D2,D3,D4>> = <<D:32>>,
{D1,D2,D3,D4};
[D,D1] when D < (1 bsl 24), D1 < 256 ->
<<D2,D3,D4>> = <<D:24>>,
{D1,D2,D3,D4};
[D,D2,D1] when D < (1 bsl 16), (D2 bor D1) < 256 ->
<<D3,D4>> = <<D:16>>,
{D1,D2,D3,D4};
[D4,D3,D2,D1] when (D4 bor D3 bor D2 bor D1) < 256 ->
{D1,D2,D3,D4};
_ ->
erlang:error(badarg)
end.
ipv4_addr([_|_], [_,_,_,_]) ->
%% Early bailout for extra characters
erlang:error(badarg);
ipv4_addr("0x"++Cs, Ds) ->
ipv4_addr(strip0(Cs), Ds, [], 16, 8);
ipv4_addr("0X"++Cs, Ds) ->
ipv4_addr(strip0(Cs), Ds, [], 16, 8);
ipv4_addr("0"++Cs, Ds) ->
ipv4_addr(strip0(Cs), Ds, [$0], 8, 11);
ipv4_addr(Cs, Ds) when is_list(Cs) ->
ipv4_addr(Cs, Ds, [], 10, 10).
ipv4_addr(Cs0, Ds, Rs, Base, N) ->
case ipv4_field(Cs0, N, Rs, Base) of
{D,""} ->
[D|Ds];
{D,[$.|[_|_]=Cs]} ->
ipv4_addr(Cs, [D|Ds]);
{_,_} ->
erlang:error(badarg)
end.
strip0("0"++Cs) ->
strip0(Cs);
strip0(Cs) when is_list(Cs) ->
Cs.
%%
%% Parse IPv4 strict dotted decimal address, no leading zeros:
%% d1.d2.d3.d4
%%
%% Return {ok, IP} | {error, einval}
%%
ipv4strict_address(Cs) ->
try ipv4strict_addr(Cs) of
Addr ->
{ok,Addr}
catch
error:badarg ->
{error,einval}
end.
ipv4strict_addr(Cs) ->
case ipv4strict_addr(Cs, []) of
[D4,D3,D2,D1] when (D4 bor D3 bor D2 bor D1) < 256 ->
{D1,D2,D3,D4};
_ ->
erlang:error(badarg)
end.
ipv4strict_addr([_|_], [_,_,_,_]) ->
%% Early bailout for extra characters
erlang:error(badarg);
ipv4strict_addr("0", Ds) ->
[0|Ds];
ipv4strict_addr("0."++Cs, Ds) ->
ipv4strict_addr(Cs, [0|Ds]);
ipv4strict_addr(Cs0, Ds) when is_list(Cs0) ->
case ipv4_field(Cs0, 3, [], 10) of
{D,""} ->
[D|Ds];
{D,[$.|[_|_]=Cs]} ->
ipv4strict_addr(Cs, [D|Ds]);
{_,_} ->
erlang:error(badarg)
end.
ipv4_field("", _, Rs, Base) ->
{ipv4_field(Rs, Base),""};
ipv4_field("."++_=Cs, _, Rs, Base) ->
{ipv4_field(Rs, Base),Cs};
ipv4_field("0"++_, _, [], _) ->
erlang:error(badarg);
ipv4_field([C|Cs], N, Rs, Base) when N > 0 ->
ipv4_field(Cs, N-1, [C|Rs], Base);
ipv4_field(Cs, _, _, _) when is_list(Cs) ->
erlang:error(badarg).
ipv4_field(Rs, Base) ->
V = erlang:list_to_integer(lists:reverse(Rs), Base),
if V < 0 ->
erlang:error(badarg);
true ->
V
end.
%%
%% Forgiving IPv6 address
%%
%% Accepts IPv4 address and returns it as a IPv4 compatible IPv6 address
%%
ipv6_address(Cs) ->
case ipv4_address(Cs) of
{ok,{D1,D2,D3,D4}} ->
{ok,{0,0,0,0,0,16#ffff,(D1 bsl 8) bor D2,(D3 bsl 8) bor D4}};
_ ->
ipv6strict_address(Cs)
end.
%%
%% Parse IPv6 address according to RFC 4291:
%% x1:x2:x3:x4:x5:x6:x7:x8
%% x1:x2::x7:x8
%% ::x7:x8
%% x1:x2::
%% ::
%% x1:x2:x3:x4:x5:x6:d7a.d7b.d8a.d8b
%% x1:x2::x5:x6:d7a.d7b.d8a.d8b
%% ::x5:x6:d7a.d7b.d8a.d8b
%% x1:x2::d7a.d7b.d8a.d8b
%% ::d7a.d7b.d8a.d8b
%% etc
%%
%% Return {ok, IP} | {error, einval}
%%
ipv6strict_address(Cs) ->
try ipv6_addr(Cs) of
Addr ->
{ok,Addr}
catch
error:badarg ->
{error,einval}
end.
ipv6_addr("::") ->
ipv6_addr_done([], [], 0);
ipv6_addr("::"++Cs) ->
ipv6_addr(hex(Cs), [], [], 0);
ipv6_addr(Cs) ->
ipv6_addr(hex(Cs), [], 0).
%% Before "::"
ipv6_addr({Cs0,[]}, A, N) when N == 7 ->
ipv6_addr_done([hex_to_int(Cs0)|A]);
ipv6_addr({Cs0,"::"}, A, N) when N =< 6 ->
ipv6_addr_done([hex_to_int(Cs0)|A], [], N+1);
ipv6_addr({Cs0,"::"++Cs1}, A, N) when N =< 5 ->
ipv6_addr(hex(Cs1), [hex_to_int(Cs0)|A], [], N+1);
ipv6_addr({Cs0,":"++Cs1}, A, N) when N =< 6 ->
ipv6_addr(hex(Cs1), [hex_to_int(Cs0)|A], N+1);
ipv6_addr({Cs0,"."++_=Cs1}, A, N) when N == 6 ->
ipv6_addr_done(A, [], N, ipv4strict_addr(Cs0++Cs1));
ipv6_addr(_, _, _) ->
erlang:error(badarg).
%% After "::"
ipv6_addr({Cs0,[]}, A, B, N) when N =< 6 ->
ipv6_addr_done(A, [hex_to_int(Cs0)|B], N+1);
ipv6_addr({Cs0,":"++Cs1}, A, B, N) when N =< 5 ->
ipv6_addr(hex(Cs1), A, [hex_to_int(Cs0)|B], N+1);
ipv6_addr({Cs0,"."++_=Cs1}, A, B, N) when N =< 5 ->
ipv6_addr_done(A, B, N, ipv4strict_addr(Cs0++Cs1));
ipv6_addr(_, _, _, _) ->
erlang:error(badarg).
ipv6_addr_done(Ar, Br, N, {D1,D2,D3,D4}) ->
ipv6_addr_done(Ar, [((D3 bsl 8) bor D4),((D1 bsl 8) bor D2)|Br], N+2).
ipv6_addr_done(Ar, Br, N) ->
ipv6_addr_done(Br++dup(8-N, 0, Ar)).
ipv6_addr_done(Ar) ->
list_to_tuple(lists:reverse(Ar)).
%% Collect Hex digits
hex(Cs) -> hex(Cs, []).
%%
hex([C|Cs], R) when C >= $0, C =< $9 ->
hex(Cs, [C|R]);
hex([C|Cs], R) when C >= $a, C =< $f ->
hex(Cs, [C|R]);
hex([C|Cs], R) when C >= $A, C =< $F ->
hex(Cs, [C|R]);
hex(Cs, [_|_]=R) when is_list(Cs) ->
{lists:reverse(R),Cs};
hex(_, _) ->
erlang:error(badarg).
%% Hex string to integer
hex_to_int(Cs0) ->
case strip0(Cs0) of
Cs when length(Cs) =< 4 ->
erlang:list_to_integer("0"++Cs, 16);
_ ->
erlang:error(badarg)
end.
%% Dup onto head of existing list
dup(0, _, L) ->
L;
dup(N, E, L) when is_integer(N), N >= 1 ->
dup(N-1, E, [E|L]).
%% Convert IPv4 adress to ascii
%% Convert IPv6 / IPV4 adress to ascii (plain format)
ntoa({A,B,C,D}) ->
integer_to_list(A) ++ "." ++ integer_to_list(B) ++ "." ++
integer_to_list(C) ++ "." ++ integer_to_list(D);
%% ANY
ntoa({0,0,0,0,0,0,0,0}) -> "::";
%% LOOPBACK
ntoa({0,0,0,0,0,0,0,1}) -> "::1";
%% IPV4 ipv6 host address
ntoa({0,0,0,0,0,0,A,B}) -> "::" ++ dig_to_dec(A) ++ "." ++ dig_to_dec(B);
%% IPV4 non ipv6 host address
ntoa({0,0,0,0,0,16#ffff,A,B}) ->
"::FFFF:" ++ dig_to_dec(A) ++ "." ++ dig_to_dec(B);
ntoa({_,_,_,_,_,_,_,_}=T) ->
%% Find longest sequence of zeros, at least 2, to replace with "::"
ntoa(tuple_to_list(T), []).
%% Find first double zero
ntoa([], R) ->
ntoa_done(R);
ntoa([0,0|T], R) ->
ntoa(T, R, 2);
ntoa([D|T], R) ->
ntoa(T, [D|R]).
%% Count consecutive zeros
ntoa([], R, _) ->
ntoa_done(R, []);
ntoa([0|T], R, N) ->
ntoa(T, R, N+1);
ntoa([D|T], R, N) ->
ntoa(T, R, N, [D]).
%% Find alternate double zero
ntoa([], R1, _N1, R2) ->
ntoa_done(R1, R2);
ntoa([0,0|T], R1, N1, R2) ->
ntoa(T, R1, N1, R2, 2);
ntoa([D|T], R1, N1, R2) ->
ntoa(T, R1, N1, [D|R2]).
%% Count consecutive alternate zeros
ntoa(T, R1, N1, R2, N2) when N2 > N1 ->
%% Alternate zero sequence is longer - use it instead
ntoa(T, R2++dup(N1, 0, R1), N2);
ntoa([], R1, _N1, R2, N2) ->
ntoa_done(R1, dup(N2, 0, R2));
ntoa([0|T], R1, N1, R2, N2) ->
ntoa(T, R1, N1, R2, N2+1);
ntoa([D|T], R1, N1, R2, N2) ->
ntoa(T, R1, N1, [D|dup(N2, 0, R2)]).
ntoa_done(R1, R2) ->
lists:append(
separate(":", lists:map(fun dig_to_hex/1, lists:reverse(R1)))++
["::"|separate(":", lists:map(fun dig_to_hex/1, lists:reverse(R2)))]).
ntoa_done(R) ->
lists:append(separate(":", lists:map(fun dig_to_hex/1, lists:reverse(R)))).
separate(_E, []) ->
[];
separate(E, [_|_]=L) ->
separate(E, L, []).
separate(E, [H|[_|_]=T], R) ->
separate(E, T, [E,H|R]);
separate(_E, [H], R) ->
lists:reverse(R, [H]).
%% convert to A.B decimal form
dig_to_dec(0) -> "0.0";
dig_to_dec(X) ->
integer_to_list((X bsr 8) band 16#ff) ++ "." ++
integer_to_list(X band 16#ff).
%% Convert a integer to hex string
dig_to_hex(X) ->
erlang:integer_to_list(X, 16).
%%
%% Count number of '.' in a name
%% return {Number of non-terminating dots, has-terminating dot?}
%% {integer, bool}
%%
dots(Name) -> dots(Name, 0).
dots([$.], N) -> {N, true};
dots([$. | T], N) -> dots(T, N+1);
dots([_C | T], N) -> dots(T, N);
dots([], N) -> {N, false}.
split_line(Line) ->
split_line(Line, []).
split_line([$# | _], Tokens) -> reverse(Tokens);
split_line([$\s| L], Tokens) -> split_line(L, Tokens);
split_line([$\t | L], Tokens) -> split_line(L, Tokens);
split_line([$\n | L], Tokens) -> split_line(L, Tokens);
split_line([], Tokens) -> reverse(Tokens);
split_line([C|Cs], Tokens) -> split_mid(Cs, [C], Tokens).
split_mid([$# | _Cs], Acc, Tokens) -> split_end(Acc, Tokens);
split_mid([$\s | Cs], Acc, Tokens) -> split_line(Cs, [reverse(Acc) | Tokens]);
split_mid([$\t | Cs], Acc, Tokens) -> split_line(Cs, [reverse(Acc) | Tokens]);
split_mid([$\r, $\n | Cs], Acc, Tokens) -> split_line(Cs, [reverse(Acc) | Tokens]);
split_mid([$\n | Cs], Acc, Tokens) -> split_line(Cs, [reverse(Acc) | Tokens]);
split_mid([], Acc, Tokens) -> split_end(Acc, Tokens);
split_mid([C|Cs], Acc, Tokens) -> split_mid(Cs, [C|Acc], Tokens).
split_end(Acc, Tokens) -> reverse([reverse(Acc) | Tokens]).
%% Split a comma separated tokens. Because we already have split on
%% spaces we may have the cases
%%
%% ",foo"
%% "foo,"
%% "foo,bar..."
split_comma([]) ->
[];
split_comma([Token | Tokens]) ->
split_comma(Token, []) ++ split_comma(Tokens).
split_comma([], Tokens) -> reverse(Tokens);
split_comma([$, | L], Tokens) -> split_comma(L, Tokens);
split_comma([C|Cs], Tokens) -> split_mid_comma(Cs, [C], Tokens).
split_mid_comma([$, | Cs], Acc, Tokens) ->
split_comma(Cs, [reverse(Acc) | Tokens]);
split_mid_comma([], Acc, Tokens) ->
split_end(Acc, Tokens);
split_mid_comma([C|Cs], Acc, Tokens) ->
split_mid_comma(Cs, [C|Acc], Tokens).
%%
warning(Fmt, Args) ->
case application:get_env(kernel,inet_warnings) of
{ok,on} ->
error_logger:info_msg("inet_parse:" ++ Fmt, Args);
_ ->
ok
end.
error(Fmt, Args) ->
error_logger:info_msg("inet_parse:" ++ Fmt, Args).