%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 1996-2009. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%% Yacc like LALR-1 parser generator for Erlang.
%% Ref: Aho & Johnson: "LR Parsing", ACM Computing Surveys, vol. 6:2, 1974.
%% Auxiliary files: yeccgramm.yrl, yeccparser.erl, yeccpre.hrl, yeccscan.erl.
%%
-module(yecc).
-export([compile/3, file/1, file/2, format_error/1]).
%% Kept for compatibility with R10B.
-export([yecc/2, yecc/3, yecc/4]).
-import(lists, [append/1, append/2, concat/1, delete/2, filter/2,
flatmap/2, foldl/3, foldr/3, foreach/2, keydelete/3,
keysort/2, last/1, map/2, member/2, reverse/1,
sort/1, usort/1]).
-include("erl_compile.hrl").
-include("ms_transform.hrl").
-record(yecc, {
infile,
outfile,
includefile,
includefile_version,
module,
options = [],
verbose = false,
file_attrs = true,
errors = [],
warnings = [],
conflicts_done = false,
shift_reduce = [],
reduce_reduce = [],
n_states = 0,
inport,
outport,
line,
parse_actions,
symbol_tab,
inv_symbol_tab,
state_tab,
prec_tab,
goto_tab,
terminals = [],
nonterminals = [],
all_symbols = [],
prec = [],
rules_list = [],
rules, % a tuple of rules_list
rule_pointer2rule,
rootsymbol = [],
endsymbol = [],
expect_shift_reduce = [],
expect_n_states = [],
header = [],
erlang_code = none
}).
-record(rule, {
n, % rule n in the grammar file
line,
symbols, % the names of symbols
tokens,
is_guard, % the action is a guard (not used)
is_well_formed % can be parsed (without macro expansion)
}).
-record(reduce, {
rule_nmbr,
head,
nmbr_of_daughters,
prec,
unused % assure that #reduce{} comes before #shift{} when sorting
}).
-record(shift, {
state,
pos,
prec,
rule_nmbr
}).
-record(user_code, {state, terminal, funname, action}).
-record(symbol, {line = none, name}).
%% ACCEPT is neither an atom nor a non-terminal.
-define(ACCEPT, {}).
%% During the phase 'compute_states' terminals in lookahead sets are
%% coded as integers; sets of terminals are integer bit masks. This is
%% for efficiency only. '$empty' is always given the mask 1. The
%% behaviour can be turned off by un-defining SYMBOLS_AS_CODES (useful
%% when debugging).
%% Non-terminals are also given integer codes, starting with -1. The
%% absolut value of the code is used for indexing a tuple of lists of
%% rules.
-define(SYMBOLS_AS_CODES, true).
-ifdef(SYMBOLS_AS_CODES).
-define(EMPTY, 0).
-else.
-define(EMPTY, '$empty').
-endif.
%%%
%%% Exported functions
%%%
%%% Interface to erl_compile.
compile(Input0, Output0,
#options{warning = WarnLevel, verbose=Verbose, includes=Includes}) ->
Input = shorten_filename(Input0),
Output = shorten_filename(Output0),
Includefile = lists:sublist(Includes, 1),
Opts = [{parserfile,Output}, {includefile,Includefile}, {verbose,Verbose},
{report_errors, true}, {report_warnings, WarnLevel > 0}],
case file(Input, Opts) of
{ok, _OutFile} ->
ok;
error ->
error
end.
format_error(bad_declaration) ->
io_lib:fwrite("unknown or bad declaration, ignored", []);
format_error({bad_expect, SymName}) ->
io_lib:fwrite("argument ~s of Expect is not an integer",
[format_symbol(SymName)]);
format_error({bad_rootsymbol, SymName}) ->
io_lib:fwrite("rootsymbol ~s is not a nonterminal",
[format_symbol(SymName)]);
format_error({bad_states, SymName}) ->
io_lib:fwrite("argument ~s of States is not an integer",
[format_symbol(SymName)]);
format_error({conflict, Conflict}) ->
format_conflict(Conflict);
format_error({conflicts, SR, RR}) ->
io_lib:fwrite("conflicts: ~w shift/reduce, ~w reduce/reduce", [SR, RR]);
format_error({duplicate_declaration, Tag}) ->
io_lib:fwrite("duplicate declaration of ~s", [atom_to_list(Tag)]);
format_error({duplicate_nonterminal, Nonterminal}) ->
io_lib:fwrite("duplicate non-terminals ~s",
[format_symbol(Nonterminal)]);
format_error({duplicate_precedence, Op}) ->
io_lib:fwrite("duplicate precedence operator ~s",
[format_symbol(Op)]);
format_error({duplicate_terminal, Terminal}) ->
io_lib:fwrite("duplicate terminal ~s",
[format_symbol(Terminal)]);
format_error({endsymbol_is_nonterminal, Symbol}) ->
io_lib:fwrite("endsymbol ~s is a nonterminal",
[format_symbol(Symbol)]);
format_error({endsymbol_is_terminal, Symbol}) ->
io_lib:fwrite("endsymbol ~s is a terminal",
[format_symbol(Symbol)]);
format_error({error, Module, Error}) ->
Module:format_error(Error);
format_error({file_error, Reason}) ->
io_lib:fwrite("~s",[file:format_error(Reason)]);
format_error(illegal_empty) ->
io_lib:fwrite("illegal use of empty symbol", []);
format_error({internal_error, Error}) ->
io_lib:fwrite("internal yecc error: ~w", [Error]);
format_error({missing_syntax_rule, Nonterminal}) ->
io_lib:fwrite("no syntax rule for non-terminal symbol ~s",
[format_symbol(Nonterminal)]);
format_error({n_states, Exp, N}) ->
io_lib:fwrite("expected ~w states, but got ~p states", [Exp, N]);
format_error(no_grammar_rules) ->
io_lib:fwrite("grammar rules are missing", []);
format_error(nonterminals_missing) ->
io_lib:fwrite("Nonterminals is missing", []);
format_error({precedence_op_is_endsymbol, SymName}) ->
io_lib:fwrite("precedence operator ~s is endsymbol",
[format_symbol(SymName)]);
format_error({precedence_op_is_unknown, SymName}) ->
io_lib:fwrite("unknown precedence operator ~s",
[format_symbol(SymName)]);
format_error({reserved, N}) ->
io_lib:fwrite("the use of ~w should be avoided", [N]);
format_error({symbol_terminal_and_nonterminal, SymName}) ->
io_lib:fwrite("symbol ~s is both a terminal and nonterminal",
[format_symbol(SymName)]);
format_error(rootsymbol_missing) ->
io_lib:fwrite("Rootsymbol is missing", []);
format_error(terminals_missing) ->
io_lib:fwrite("Terminals is missing", []);
format_error({undefined_nonterminal, Symbol}) ->
io_lib:fwrite("undefined nonterminal: ~s", [format_symbol(Symbol)]);
format_error({undefined_pseudo_variable, Atom}) ->
io_lib:fwrite("undefined pseudo variable ~w", [Atom]);
format_error({undefined_symbol, SymName}) ->
io_lib:fwrite("undefined rhs symbol ~s", [format_symbol(SymName)]);
format_error({unused_nonterminal, Nonterminal}) ->
io_lib:fwrite("non-terminal symbol ~s not used",
[format_symbol(Nonterminal)]);
format_error({unused_terminal, Terminal}) ->
io_lib:fwrite("terminal symbol ~s not used",
[format_symbol(Terminal)]).
file(File) ->
file(File, [report_errors, report_warnings]).
file(File, Options) ->
case is_filename(File) of
no -> erlang:error(badarg, [File, Options]);
_ -> ok
end,
case options(Options) of
badarg ->
erlang:error(badarg, [File, Options]);
OptionValues ->
Self = self(),
Flag = process_flag(trap_exit, false),
Pid = spawn_link(fun() -> infile(Self, File, OptionValues) end),
receive
{Pid, Rep} ->
receive after 1 -> ok end,
process_flag(trap_exit, Flag),
Rep
end
end.
%% Kept for backward compatibility.
yecc(Infile, Outfile) ->
yecc(Infile, Outfile, false, []).
yecc(Infile, Outfile, Verbose) ->
yecc(Infile, Outfile, Verbose, []).
yecc(Infilex, Outfilex, Verbose, Includefilex) ->
statistics(runtime),
case file(Infilex, [{parserfile, Outfilex},
{verbose, Verbose},
{report, true},
{includefile, Includefilex}]) of
{ok, _File} ->
statistics(runtime);
error ->
exit(error)
end.
%%%
%%% Local functions
%%%
options(Options0) when is_list(Options0) ->
try
Options = flatmap(fun(return) -> short_option(return, true);
(report) -> short_option(report, true);
({return,T}) -> short_option(return, T);
({report,T}) -> short_option(report, T);
(T) -> [T]
end, Options0),
options(Options, [file_attributes, includefile, parserfile,
report_errors, report_warnings, return_errors,
return_warnings, time, verbose], [])
catch error: _ -> badarg
end;
options(Option) ->
options([Option]).
short_option(return, T) ->
[{return_errors,T}, {return_warnings,T}];
short_option(report, T) ->
[{report_errors,T}, {report_warnings,T}].
options(Options0, [Key | Keys], L) when is_list(Options0) ->
Options = case member(Key, Options0) of
true ->
[atom_option(Key) | delete(Key, Options0)];
false ->
Options0
end,
V = case lists:keyfind(Key, 1, Options) of
{Key, Filename0} when Key =:= includefile;
Key =:= parserfile ->
case is_filename(Filename0) of
no ->
badarg;
Filename ->
{ok, [{Key, Filename}]}
end;
{Key, Bool} = KB when is_boolean(Bool) ->
{ok, [KB]};
{Key, _} ->
badarg;
false ->
{ok, [{Key, default_option(Key)}]}
end,
case V of
badarg ->
badarg;
{ok, KeyValueL} ->
NewOptions = keydelete(Key, 1, Options),
options(NewOptions, Keys, KeyValueL ++ L)
end;
options([], [], L) ->
foldl(fun({_,false}, A) -> A;
({Tag,true}, A) -> [Tag | A];
(F, A) -> [F | A]
end, [], L);
options(_Options, _, _L) ->
badarg.
default_option(file_attributes) -> true;
default_option(includefile) -> [];
default_option(parserfile) -> [];
default_option(report_errors) -> true;
default_option(report_warnings) -> true;
default_option(return_errors) -> false;
default_option(return_warnings) -> false;
default_option(time) -> false;
default_option(verbose) -> false.
atom_option(file_attributes) -> {file_attributes, true};
atom_option(report_errors) -> {report_errors, true};
atom_option(report_warnings) -> {report_warnings, true};
atom_option(return_errors) -> {return_errors, true};
atom_option(return_warnings) -> {return_warnings, true};
atom_option(time) -> {time, true};
atom_option(verbose) -> {verbose, true};
atom_option(Key) -> Key.
is_filename(T) ->
try filename:flatten(T) of
Filename -> Filename
catch error: _ -> no
end.
shorten_filename(Name0) ->
{ok,Cwd} = file:get_cwd(),
case lists:prefix(Cwd, Name0) of
false -> Name0;
true ->
case lists:nthtail(length(Cwd), Name0) of
"/"++N -> N;
N -> N
end
end.
start(Infilex, Options) ->
Infile = assure_extension(Infilex, ".yrl"),
{_, Outfilex0} = lists:keyfind(parserfile, 1, Options),
{_, Includefilex} = lists:keyfind(includefile, 1, Options),
Outfilex = case Outfilex0 of
[] -> filename:rootname(Infilex, ".yrl");
_ -> Outfilex0
end,
Includefile = case Includefilex of
[] -> [];
_ -> assure_extension(Includefilex,".hrl")
end,
IncludefileVersion = includefile_version(Includefile),
Outfile = assure_extension(Outfilex, ".erl"),
Module = list_to_atom(filename:basename(Outfile, ".erl")),
#yecc{infile = Infile,
outfile = Outfile,
includefile = Includefile,
includefile_version = IncludefileVersion,
module = Module,
options = Options,
verbose = member(verbose, Options),
file_attrs = member(file_attributes, Options)}.
assure_extension(File, Ext) ->
concat([strip_extension(File, Ext), Ext]).
%% Assumes File is a filename.
strip_extension(File, Ext) ->
case filename:extension(File) of
Ext -> filename:rootname(File);
_Other -> File
end.
infile(Parent, Infilex, Options) ->
St0 = start(Infilex, Options),
St = case file:open(St0#yecc.infile, [read, read_ahead]) of
{ok, Inport} ->
try
outfile(St0#yecc{inport = Inport})
after
ok = file:close(Inport)
end;
{error, Reason} ->
add_error(St0#yecc.infile, none, {file_error, Reason}, St0)
end,
case St#yecc.errors of
[] -> ok;
_ -> _ = file:delete(St#yecc.outfile)
end,
Parent ! {self(), yecc_ret(St)}.
outfile(St0) ->
case file:open(St0#yecc.outfile, [write, delayed_write]) of
{ok, Outport} ->
try
generate(St0#yecc{outport = Outport, line = 1})
catch
throw: St1 ->
St1;
exit: Reason ->
add_error({internal_error, Reason}, St0)
after
ok = file:close(Outport)
end;
{error, Reason} ->
add_error(St0#yecc.outfile, none, {file_error, Reason}, St0)
end.
os_process_size() ->
case os:type() of
{unix, sunos} ->
Size = os:cmd("ps -o vsz -p " ++ os:getpid() ++ " | tail -1"),
list_to_integer(lib:nonl(Size));
_ ->
0
end.
timeit(Name, Fun, St0) ->
Time = runtime,
%% Time = wall_clock,
{Before, _} = statistics(Time),
St = Fun(St0),
{After, _} = statistics(Time),
Mem0 = erts_debug:flat_size(St)*erlang:system_info(wordsize),
Mem = lists:flatten(io_lib:format("~.1f kB", [Mem0/1024])),
Sz = lists:flatten(io_lib:format("~.1f MB", [os_process_size()/1024])),
io:fwrite(" ~-30w: ~10.2f s ~12s ~10s\n",
[Name, (After-Before)/1000, Mem, Sz]),
St.
-define(PASS(P), {P, fun P/1}).
generate(St0) ->
Passes = [?PASS(parse_grammar), ?PASS(check_grammar),
?PASS(states_and_goto_table), ?PASS(parse_actions),
?PASS(action_conflicts), ?PASS(write_file)],
F = case member(time, St0#yecc.options) of
true ->
io:fwrite(<<"Generating parser from grammar in ~s\n">>,
[format_filename(St0#yecc.infile)]),
fun timeit/3;
false ->
fun(_Name, Fn, St) -> Fn(St) end
end,
Fun = fun({Name, Fun}, St) ->
St2 = F(Name, Fun, St),
if
St2#yecc.errors =:= [] -> St2;
true -> throw(St2)
end
end,
foldl(Fun, St0, Passes).
parse_grammar(St) ->
parse_grammar(St#yecc.inport, 1, St).
parse_grammar(Inport, Line, St) ->
{NextLine, Grammar} = read_grammar(Inport, Line),
parse_grammar(Grammar, Inport, NextLine, St).
parse_grammar(eof, _Inport, _NextLine, St) ->
St;
parse_grammar({#symbol{name = 'Header'}, Ss}, Inport, NextLine, St0) ->
St1 = St0#yecc{header = [S || {string,_,S} <- Ss]},
parse_grammar(Inport, NextLine, St1);
parse_grammar({#symbol{name = 'Erlang'}, [#symbol{name = code}]}, _Inport,
NextLine, St) ->
St#yecc{erlang_code = NextLine};
parse_grammar(Grammar, Inport, NextLine, St0) ->
St = parse_grammar(Grammar, St0),
parse_grammar(Inport, NextLine, St).
parse_grammar({error,ErrorLine,Error}, St) ->
add_error(ErrorLine, Error, St);
parse_grammar({rule, Rule, Tokens}, St0) ->
NmbrOfDaughters = case Rule of
[_, #symbol{name = '$empty'}] -> 0;
_ -> length(Rule) - 1
end,
{IsGuard, IsWellFormed} = check_action(Tokens),
{Tokens1, St} = subst_pseudo_vars(Tokens,
NmbrOfDaughters,
St0),
RuleDef = #rule{symbols = Rule,
tokens = Tokens1,
is_guard = IsGuard,
is_well_formed = IsWellFormed},
St#yecc{rules_list = [RuleDef | St#yecc.rules_list]};
parse_grammar({prec, Prec}, St) ->
St#yecc{prec = Prec ++ St#yecc.prec};
parse_grammar({#symbol{line = Line, name = Name}, Symbols}, St) ->
CF = fun(I) ->
case element(I, St) of
[] ->
setelement(I, St, Symbols);
_ ->
add_error(Line, {duplicate_declaration, Name}, St)
end
end,
OneSymbol = length(Symbols) =:= 1,
case Name of
'Nonterminals' -> CF(#yecc.nonterminals);
'Terminals' -> CF(#yecc.terminals);
'Rootsymbol' when OneSymbol -> CF(#yecc.rootsymbol);
'Endsymbol' when OneSymbol -> CF(#yecc.endsymbol);
'Expect' when OneSymbol -> CF(#yecc.expect_shift_reduce);
'States' when OneSymbol -> CF(#yecc.expect_n_states); % undocumented
_ -> add_warning(Line, bad_declaration, St)
end.
read_grammar(Inport, Line) ->
case yeccscan:scan(Inport, '', Line) of
{eof, NextLine} ->
{NextLine, eof};
{error, {ErrorLine, Mod, What}, NextLine} ->
{NextLine, {error, ErrorLine, {error, Mod, What}}};
{ok, Input, NextLine} ->
{NextLine, case yeccparser:parse(Input) of
{error, {ErrorLine, Mod, Message}} ->
{error, ErrorLine, {error, Mod, Message}};
{ok, {rule, Rule, {erlang_code, Tokens}}} ->
{rule, Rule, Tokens};
{ok, {#symbol{name=P},
[#symbol{name=I} | OpL]}=Ss} ->
A = precedence(P),
if
A =/= unknown,
is_integer(I),
OpL =/= [] ->
Ps = [{Op, I , A} || Op <- OpL],
{prec, Ps};
true ->
Ss
end;
{ok, Ss} ->
Ss
end}
end.
precedence('Left') -> left;
precedence('Right') -> right;
precedence('Unary') -> unary;
precedence('Nonassoc') -> nonassoc;
precedence(_) -> unknown.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
check_grammar(St0) ->
Empty = #symbol{line = none, name = '$empty'},
AllSymbols = St0#yecc.nonterminals ++ St0#yecc.terminals ++ [Empty],
St1 = St0#yecc{all_symbols = AllSymbols},
Cs = [fun check_nonterminals/1, fun check_terminals/1,
fun check_rootsymbol/1, fun check_endsymbol/1,
fun check_expect/1, fun check_states/1,
fun check_precedences/1, fun check_rules/1],
foldl(fun(F, St) -> F(St) end, St1, Cs).
check_nonterminals(St) ->
case St#yecc.nonterminals of
[] ->
add_error(nonterminals_missing, St);
Nonterminals ->
{Unique, Dups} = duplicates(names(Nonterminals)),
St1 = add_warnings(Dups, duplicate_nonterminal, St),
St2 = check_reserved(Unique, St1),
St2#yecc{nonterminals = [?ACCEPT | Unique]}
end.
check_terminals(St0) ->
case St0#yecc.terminals of
[] ->
add_error(terminals_missing, St0);
Terminals ->
{Unique, Dups} = duplicates(names(Terminals)),
St1 = add_warnings(Dups, duplicate_terminal, St0),
Common = intersect(St1#yecc.nonterminals, Unique),
St2 = add_errors(Common, symbol_terminal_and_nonterminal, St1),
St3 = check_reserved(Unique, St2),
St3#yecc{terminals = ['$empty' | Unique]}
end.
check_reserved(Names, St) ->
add_errors(intersect(Names, ['$empty', '$end', '$undefined']),
reserved, St).
check_rootsymbol(St) ->
case St#yecc.rootsymbol of
[] ->
add_error(rootsymbol_missing, St);
[#symbol{line = Line, name = SymName}] ->
case kind_of_symbol(St, SymName) of
nonterminal ->
St#yecc{rootsymbol = SymName};
_ ->
add_error(Line, {bad_rootsymbol, SymName}, St)
end
end.
check_endsymbol(St) ->
case St#yecc.endsymbol of
[] ->
St#yecc{endsymbol = '$end'};
[#symbol{line = Line, name = SymName}] ->
case kind_of_symbol(St, SymName) of
nonterminal ->
add_error(Line, {endsymbol_is_nonterminal, SymName}, St);
terminal ->
add_error(Line, {endsymbol_is_terminal, SymName}, St);
_ ->
St#yecc{endsymbol = SymName}
end
end.
check_expect(St0) ->
case St0#yecc.expect_shift_reduce of
[] ->
St0#yecc{expect_shift_reduce = 0};
[#symbol{name = Expect}] when is_integer(Expect) ->
St0#yecc{expect_shift_reduce = Expect};
[#symbol{line = Line, name = Name}] ->
St1 = add_error(Line, {bad_expect, Name}, St0),
St1#yecc{expect_shift_reduce = 0}
end.
check_states(St) ->
case St#yecc.expect_n_states of
[] ->
St;
[#symbol{name = NStates}] when is_integer(NStates) ->
St#yecc{expect_n_states = NStates};
[#symbol{line = Line, name = Name}] ->
add_error(Line, {bad_states, Name}, St)
end.
check_precedences(St0) ->
{St1, _} =
foldr(fun({#symbol{line = Line, name = Op},_I,_A}, {St,Ps}) ->
case member(Op, Ps) of
true ->
{add_error(Line, {duplicate_precedence,Op}, St),
Ps};
false ->
{St, [Op | Ps]}
end
end, {St0,[]}, St0#yecc.prec),
foldl(fun({#symbol{line = Line, name = Op},I,A}, St) ->
case kind_of_symbol(St, Op) of
endsymbol ->
add_error(Line,{precedence_op_is_endsymbol,Op}, St);
unknown ->
add_error(Line, {precedence_op_is_unknown, Op}, St);
_ ->
St#yecc{prec = [{Op,I,A} | St#yecc.prec]}
end
end, St1#yecc{prec = []}, St1#yecc.prec).
check_rule(Rule0, {St0,Rules}) ->
Symbols = Rule0#rule.symbols,
#symbol{line = HeadLine, name = Head} = hd(Symbols),
case member(Head, St0#yecc.nonterminals) of
false ->
{add_error(HeadLine, {undefined_nonterminal, Head}, St0), Rules};
true ->
St = check_rhs(tl(Symbols), St0),
Rule = Rule0#rule{line = HeadLine, symbols = names(Symbols)},
{St, [Rule | Rules]}
end.
check_rules(St0) ->
{St,Rules0} = foldl(fun check_rule/2, {St0,[]}, St0#yecc.rules_list),
case St#yecc.rules_list of
[] ->
add_error(no_grammar_rules, St);
_ ->
Rule = #rule{line = none,
symbols = [?ACCEPT, St#yecc.rootsymbol],
tokens = []},
Rules1 = [Rule | Rules0],
Rules = map(fun({R,I}) -> R#rule{n = I} end, count(0, Rules1)),
St#yecc{rules_list = Rules, rules = list_to_tuple(Rules)}
end.
duplicates(List) ->
Unique = usort(List),
{Unique, List -- Unique}.
names(Symbols) ->
map(fun(Symbol) -> Symbol#symbol.name end, Symbols).
symbol_line(Name, St) ->
#symbol{line = Line} = symbol_find(Name, St#yecc.all_symbols),
Line.
symbol_member(Symbol, Symbols) ->
symbol_find(Symbol#symbol.name, Symbols) =/= false.
symbol_find(Name, Symbols) ->
lists:keyfind(Name, #symbol.name, Symbols).
states_and_goto_table(St0) ->
St1 = create_symbol_table(St0),
St = compute_states(St1),
create_precedence_table(St).
parse_actions(St) ->
erase(), % the pd is used when decoding lookahead sets
ParseActions = compute_parse_actions(St#yecc.n_states, St, []),
erase(),
St#yecc{parse_actions = ParseActions, state_tab = []}.
action_conflicts(St0) ->
St = find_action_conflicts(St0),
St#yecc{conflicts_done = true}.
-record(state_info, {reduce_only, state_repr, comment}).
write_file(St0) ->
#yecc{parse_actions = ParseActions, goto_tab = GotoTab} = St0,
Sorted = sort_parse_actions(ParseActions),
StateReprs = find_identical_shift_states(Sorted),
StateInfo = collect_some_state_info(Sorted, StateReprs),
StateJumps = find_partial_shift_states(Sorted, StateReprs),
UserCodeActions = find_user_code(Sorted, St0),
#yecc{infile = Infile, outfile = Outfile,
inport = Inport, outport = Outport,
nonterminals = Nonterminals} = St0,
{St10, N_lines, LastErlangCodeLine} =
output_prelude(Outport, Inport, St0),
St20 = St10#yecc{line = St10#yecc.line + N_lines},
St25 = nl(St20),
St30 = output_file_directive(St25, Outfile, St25#yecc.line),
St40 = nl(St30),
St50 = output_actions(St40, StateJumps, StateInfo),
Go0 = [{Symbol,{From,To}} || {{From,Symbol},To} <- ets:tab2list(GotoTab)],
Go = family_with_domain(Go0, Nonterminals),
St60 = output_goto(St50, Go, StateInfo),
St70 = output_inlined(St60, UserCodeActions, Infile),
St = nl(St70),
case LastErlangCodeLine of
%% Just in case warnings or errors are emitted after the last
%% line of the file.
{last_erlang_code_line, Last_line} ->
output_file_directive(St, Infile, Last_line);
no_erlang_code ->
St
end.
yecc_ret(St0) ->
St = check_expected(St0),
report_errors(St),
report_warnings(St),
Es = pack_errors(St#yecc.errors),
Ws = pack_warnings(St#yecc.warnings),
if
Es =:= [] ->
case member(return_warnings, St#yecc.options) of
true -> {ok, St#yecc.outfile, Ws};
false -> {ok, St#yecc.outfile}
end;
true ->
case member(return_errors, St#yecc.options) of
true -> {error, Es, Ws};
false -> error
end
end.
check_expected(St0) ->
#yecc{shift_reduce = SR, reduce_reduce = RR, expect_shift_reduce = ExpSR,
n_states = NStates0, expect_n_states = ExpStates,
conflicts_done = Done} = St0,
N_RR = length(usort(RR)),
N_SR = length(usort(SR)),
St1 = if
not Done ->
St0;
N_SR =:= ExpSR, N_RR =:= 0 ->
St0;
true ->
add_warning(none, {conflicts, N_SR, N_RR}, St0)
end,
NStates = NStates0 + 1,
if
(not Done) or (ExpStates =:= []) or (NStates =:= ExpStates) ->
St1;
true ->
add_warning(none, {n_states, ExpStates, NStates}, St1)
end.
pack_errors([{File,_} | _] = Es) ->
[{File, flatmap(fun({_,E}) -> [E] end, sort(Es))}];
pack_errors([]) ->
[].
pack_warnings([{File,_} | _] = Ws) ->
[{File, flatmap(fun({_,W}) -> [W] end, sort(Ws))}];
pack_warnings([]) ->
[].
report_errors(St) ->
case member(report_errors, St#yecc.options) of
true ->
foreach(fun({File,{none,Mod,E}}) ->
io:fwrite(<<"~s: ~s\n">>,
[File,Mod:format_error(E)]);
({File,{Line,Mod,E}}) ->
io:fwrite(<<"~s:~w: ~s\n">>,
[File,Line,Mod:format_error(E)])
end, sort(St#yecc.errors));
false ->
ok
end.
report_warnings(St) ->
case member(report_warnings, St#yecc.options) of
true ->
foreach(fun({File,{none,Mod,W}}) ->
io:fwrite(<<"~s: Warning: ~s\n">>,
[File,Mod:format_error(W)]);
({File,{Line,Mod,W}}) ->
io:fwrite(<<"~s:~w: Warning: ~s\n">>,
[File,Line,Mod:format_error(W)])
end, sort(St#yecc.warnings));
false ->
ok
end.
add_error(E, St) ->
add_error(none, E, St).
add_error(Line, E, St) ->
add_error(St#yecc.infile, Line, E, St).
add_error(File, Line, E, St) ->
St#yecc{errors = [{File,{Line,?MODULE,E}}|St#yecc.errors]}.
add_errors(SymNames, E0, St0) ->
foldl(fun(SymName, St) ->
add_error(symbol_line(SymName, St), {E0, SymName}, St)
end, St0, SymNames).
add_warning(Line, W, St) ->
St#yecc{warnings = [{St#yecc.infile,{Line,?MODULE,W}}|St#yecc.warnings]}.
add_warnings(SymNames, W0, St0) ->
foldl(fun(SymName, St) ->
add_warning(symbol_line(SymName, St), {W0, SymName}, St)
end, St0, SymNames).
check_rhs([#symbol{name = '$empty'}], St) ->
St;
check_rhs(Rhs, St0) ->
case symbol_find('$empty', Rhs) of
#symbol{line = Line} ->
add_error(Line, illegal_empty, St0);
false ->
foldl(fun(Sym, St) ->
case symbol_member(Sym, St#yecc.all_symbols) of
true ->
St;
false ->
E = {undefined_symbol,Sym#symbol.name},
add_error(Sym#symbol.line, E, St)
end
end, St0, Rhs)
end.
check_action(Tokens) ->
case erl_parse:parse_exprs(add_roberts_dot(Tokens, 0)) of
{error, _Error} ->
{false, false};
{ok, [Expr | Exprs]} ->
IsGuard = Exprs =:= [] andalso erl_lint:is_guard_test(Expr),
{IsGuard, true}
end.
add_roberts_dot([], Line) ->
[{'dot', Line}];
add_roberts_dot([{'dot', Line} | _], _) ->
[{'dot', Line}];
add_roberts_dot([Token | Tokens], _) ->
[Token | add_roberts_dot(Tokens, element(2, Token))].
subst_pseudo_vars([], _, St) ->
{[], St};
subst_pseudo_vars([H0 | T0], NmbrOfDaughters, St0) ->
{H, St1} = subst_pseudo_vars(H0, NmbrOfDaughters, St0),
{T, St} = subst_pseudo_vars(T0, NmbrOfDaughters, St1),
{[H | T], St};
subst_pseudo_vars({atom, Line, Atom}, NmbrOfDaughters, St0) ->
case atom_to_list(Atom) of
[$$ | Rest] ->
try list_to_integer(Rest) of
N when N > 0, N =< NmbrOfDaughters ->
{{var, Line, list_to_atom(append("__", Rest))}, St0};
_ ->
St = add_error(Line, {undefined_pseudo_variable, Atom},
St0),
{{atom, Line, '$undefined'}, St}
catch
error: _ -> {{atom, Line, Atom}, St0}
end;
_ ->
{{atom, Line, Atom}, St0}
end;
subst_pseudo_vars(Tuple, NmbrOfDaughters, St0) when is_tuple(Tuple) ->
{L, St} = subst_pseudo_vars(tuple_to_list(Tuple), NmbrOfDaughters, St0),
{list_to_tuple(L), St};
subst_pseudo_vars(Something_else, _, St) ->
{Something_else, St}.
kind_of_symbol(St, SymName) ->
case member(SymName, St#yecc.nonterminals) of
false ->
case member(SymName, St#yecc.terminals) of
false ->
case St#yecc.endsymbol of
SymName ->
endsymbol;
_ ->
unknown
end;
true ->
terminal
end;
true ->
nonterminal
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Computing parse states and goto table from grammar.
% Start item: {0, [Endsymbol]} <->
% (['ACCEPT' '.', Rootsymbol], {'$'}) in Aho & Johnson
% where '$end' is the default end of input symbol of the
% scanner if no 'Endsymbol' has been declared in the syntax file.
-record(tabs, {
symbols, % ETS-set, keypos 1: {SymbolName, SymbolCode}
inv_symbols, % ETS-set, keypos 2: {SymbolName, SymbolCode}
state_id, % ETS-bag, keypos 1: {StateId, StateNum}
% StateId is not unique for a state.
rp_rhs, % rule pointer -> the remaining rhs symbols
rp_info, % rule pointer -> expanding rules and lookahead
goto % ETS-bag, keypos 1: first
% {{FromStateNum, Symbol, ToStateNum}}, then
% {{FromStateNum, Symbol}, ToStateNum}
}).
-record(item, { % what states are made of
rule_pointer,
look_ahead,
rhs
}).
compute_states(St0) ->
SymbolTab = St0#yecc.symbol_tab,
CodedRules = map(fun(#rule{symbols = Syms} = R) ->
R#rule{symbols = code_symbols(Syms, SymbolTab)}
end, St0#yecc.rules_list),
CodedNonterminals = code_symbols(St0#yecc.nonterminals, SymbolTab),
%% Only coded in this phase; StC is thrown away.
StC = St0#yecc{rules_list = CodedRules,
rules = list_to_tuple(CodedRules),
nonterminals = CodedNonterminals},
{RuleIndex, RulePointer2Rule} =
make_rule_index(StC, St0#yecc.rules_list),
StateTab0 = {},
StateIdTab = ets:new(yecc_state_id, [set]),
GotoTab = ets:new(yecc_goto, [bag]),
RulePointerRhs = make_rhs_index(StC#yecc.rules_list),
RulePointerInfo = make_rule_pointer_info(StC, RulePointerRhs, RuleIndex),
Tables = #tabs{symbols = SymbolTab,
state_id = StateIdTab,
rp_rhs = RulePointerRhs,
rp_info = RulePointerInfo,
goto = GotoTab},
erase(),
EndsymCode = code_terminal(StC#yecc.endsymbol, StC#yecc.symbol_tab),
{StateId, State0} = compute_state([{EndsymCode, 1}], Tables),
StateNum0 = first_state(),
FirstState = {StateNum0, State0},
StateTab1 = insert_state(Tables, StateTab0, FirstState, StateId),
{StateTab, N} =
compute_states1([{StateNum0, get_current_symbols(State0)}],
FirstState, StateTab1, Tables),
true = ets:delete(StateIdTab),
St = St0#yecc{state_tab = StateTab, goto_tab = GotoTab, n_states = N,
rule_pointer2rule = RulePointer2Rule},
decode_goto(GotoTab, St#yecc.inv_symbol_tab),
check_usage(St).
first_state() ->
0.
decode_goto(GotoTab, InvSymTab) ->
G = ets:tab2list(GotoTab),
ets:delete_all_objects(GotoTab),
ets:insert(GotoTab,
map(fun({{From, Sym, Next}}) ->
{{From, decode_symbol(Sym, InvSymTab)}, Next}
end, G)).
check_usage(St0) ->
SelSyms = ets:fun2ms(fun({{_,Sym},_}) -> Sym end),
UsedSymbols = ets:select(St0#yecc.goto_tab, SelSyms),
Syms = ordsets:from_list([?ACCEPT, '$empty' | UsedSymbols]),
NonTerms = ordsets:from_list(St0#yecc.nonterminals),
UnusedNonTerms = ordsets:to_list(ordsets:subtract(NonTerms, Syms)),
St1 = add_warnings(UnusedNonTerms, unused_nonterminal, St0),
Terms = ordsets:from_list(St0#yecc.terminals),
St2 = add_warnings(ordsets:to_list(ordsets:subtract(Terms, Syms)),
unused_terminal, St1),
DefinedNonTerminals = map(fun(#rule{symbols = [Name | _]}) ->
Name
end, St2#yecc.rules_list),
DefNonTerms = ordsets:from_list(DefinedNonTerminals),
UndefNonTerms = ordsets:subtract(NonTerms, DefNonTerms),
add_errors(ordsets:to_list(ordsets:subtract(UndefNonTerms,
UnusedNonTerms)),
missing_syntax_rule, St2).
%% States are sometimes big, should not be copied to ETS tables.
%% Here an "extendible" tuple is used.
lookup_state(StateTab, N) ->
element(N+1, StateTab).
insert_state(#tabs{state_id = StateIdTab}, StateTab0, State, StateId) ->
{N, _Items} = State,
insert_state_id(StateIdTab, N, StateId),
StateTab = if
tuple_size(StateTab0) > N ->
StateTab0;
true ->
list_to_tuple(tuple_to_list(StateTab0) ++
lists:duplicate(round(1 + N * 1.5), []))
end,
setelement(N+1, StateTab, State).
insert_state_id(StateIdTab, N, StateId) ->
true = ets:insert(StateIdTab, {StateId, N}).
compute_states1([], {N, _}=_CurrState, StateTab0, _Tables) ->
{StateTab0, N};
compute_states1([{N, Symbols} | Try], CurrState, StateTab, Tables) ->
{_N, S} = lookup_state(StateTab, N),
Seeds = state_seeds(S, Symbols),
compute_states2(Seeds, N, Try, CurrState, StateTab, Tables).
compute_states2([], _N, Try, CurrState, StateTab, Tables) ->
compute_states1(Try, CurrState, StateTab, Tables);
compute_states2([{Sym,Seed} | Seeds], N, Try, CurrState, StateTab, Tables) ->
{StateId, NewState} = compute_state(Seed, Tables),
case check_states(NewState, StateId, StateTab, Tables) of
add ->
{M, _} = CurrState,
%% io:fwrite(<<"Adding state ~w\n">>, [M + 1]),
CurrentSymbols = get_current_symbols(NewState),
Next = M + 1,
NextState = {Next, NewState},
NewStateTab = insert_state(Tables, StateTab, NextState, StateId),
insert_goto(Tables, N, Sym, Next),
compute_states2(Seeds, N, [{Next, CurrentSymbols} | Try],
NextState, NewStateTab, Tables);
{old, M} ->
%% io:fwrite(<<"Identical to old state ~w\n">>, [M]),
insert_goto(Tables, N, Sym, M),
compute_states2(Seeds, N, Try, CurrState, StateTab, Tables);
{merge, M, NewCurrent} ->
%% io:fwrite(<<"Merging with state ~w\n">>, [M]),
Try1 = case lists:keyfind(M, 1, Try) of
false ->
[{M, NewCurrent} | Try];
{_, OldCurrent} ->
case ordsets:is_subset(NewCurrent, OldCurrent) of
true ->
Try;
false ->
[{M, ordsets:union(NewCurrent, OldCurrent)}
| keydelete(M, 1, Try)]
end
end,
NewStateTab = merge_states(NewState, StateTab, Tables, M,StateId),
insert_goto(Tables, N, Sym, M),
compute_states2(Seeds, N, Try1, CurrState, NewStateTab, Tables)
end.
insert_goto(Tables, From, Sym, To) ->
true = ets:insert(Tables#tabs.goto, {{From, Sym, To}}).
%% Create an ets table for faster lookups.
create_symbol_table(St) ->
#yecc{terminals = Terminals, endsymbol = Endsymbol} = St,
SymbolTab = ets:new(yecc_symbols, [{keypos,1}]),
%% '$empty' is always assigned 0
Ts = ['$empty', Endsymbol | delete('$empty', Terminals)],
TsC = count(0, Ts),
NTsC = map(fun({NT,I}) -> {NT,-I} end, count(1, St#yecc.nonterminals)),
Cs = TsC++NTsC,
true = ets:insert(SymbolTab, Cs),
InvSymTable = ets:new(yecc_inverted_terminals, [{keypos,2}]),
true = ets:insert(InvSymTable, Cs),
St#yecc{symbol_tab = SymbolTab, inv_symbol_tab = InvSymTable}.
get_current_symbols(State) ->
usort(get_current_symbols1(State, [])).
get_current_symbols1([], Syms) ->
Syms;
get_current_symbols1([#item{rhs = Rhs} | Items], Syms) ->
case Rhs of
[] ->
get_current_symbols1(Items, Syms);
[Symbol | _] ->
get_current_symbols1(Items, [Symbol | Syms])
end.
state_seeds(Items, Symbols) ->
L = [{S,{LA,RP + 1}} || #item{rule_pointer = RP, look_ahead = LA,
rhs = [S | _]} <- Items],
state_seeds1(keysort(1, L), Symbols).
state_seeds1(_L, []) ->
[];
state_seeds1(L, [Symbol | Symbols]) ->
state_seeds(L, Symbol, Symbols, []).
state_seeds([{Symbol, Item} | L], Symbol, Symbols, Is) ->
state_seeds(L, Symbol, Symbols, [Item | Is]);
state_seeds([{S, _Item} | L], Symbol, Symbols, Is) when S < Symbol ->
state_seeds(L, Symbol, Symbols, Is);
state_seeds(L, Symbol, Symbols, Is) ->
[{Symbol, Is} | state_seeds1(L, Symbols)].
compute_state(Seed, Tables) ->
RpInfo = Tables#tabs.rp_info,
foreach(fun({LA, RulePointer}) -> put(RulePointer, LA) end, Seed),
foreach(fun({LA, RP}) -> compute_closure(LA, RP, RpInfo) end, Seed),
Closure = keysort(1, erase()),
state_items(Closure, [], [], Tables#tabs.rp_rhs).
%% Collects a uniqe id for the state (all rule pointers).
state_items([{RP, LA} | L], Is, Id, RpRhs) ->
I = #item{rule_pointer = RP, look_ahead = LA, rhs = element(RP, RpRhs)},
state_items(L, [I | Is], [RP | Id], RpRhs);
state_items(_, Is, Id, _RpRhs) ->
{Id, Is}.
-compile({inline,[compute_closure/3]}).
compute_closure(Lookahead, RulePointer, RpInfo) ->
case element(RulePointer, RpInfo) of
[]=Void -> % no followers, or terminal
Void;
{no_union, ExpandingRules, NewLookahead} ->
compute_closure1(ExpandingRules, NewLookahead, RpInfo);
{union, ExpandingRules, Lookahead0} ->
NewLookahead = set_union(Lookahead0, Lookahead),
compute_closure1(ExpandingRules, NewLookahead, RpInfo);
ExpandingRules ->
compute_closure1(ExpandingRules, Lookahead, RpInfo)
end.
compute_closure1([RulePointer | Tail], NewLookahead, RpInfo) ->
compute_closure1(Tail, NewLookahead, RpInfo),
case get(RulePointer) of
undefined -> % New
put(RulePointer, NewLookahead),
compute_closure(NewLookahead, RulePointer, RpInfo);
Lookahead2 ->
Lookahead = set_union(Lookahead2, NewLookahead),
if
Lookahead =:= Lookahead2 -> % Old
Lookahead2; % void()
true -> % Merge
put(RulePointer, Lookahead),
compute_closure(NewLookahead, RulePointer, RpInfo)
end
end;
compute_closure1(Nil, _, _RpInfo) ->
Nil.
%% Check if some old state is a superset of our NewState
check_states(NewState, StateId, StateTab, #tabs{state_id = StateIdTab}) ->
try ets:lookup_element(StateIdTab, StateId, 2) of
N ->
{_N, OldState} = lookup_state(StateTab, N),
check_state1(NewState, OldState, [], N)
catch error:_ -> add
end.
check_state1([#item{look_ahead = Lookahead1, rhs = Rhs} | Items1],
[#item{look_ahead = Lookahead2} | Items2], Symbols, N) ->
case set_is_subset(Lookahead1, Lookahead2) of
true ->
check_state1(Items1, Items2, Symbols, N);
false ->
case Rhs of
[] ->
check_state2(Items1, Items2, Symbols, N);
[Symbol | _] ->
check_state2(Items1, Items2, [Symbol | Symbols], N)
end
end;
check_state1([], [], _Symbols, N) ->
{old, N}.
check_state2([#item{look_ahead = Lookahead1, rhs = Rhs} | Items1],
[#item{look_ahead = Lookahead2} | Items2], Symbols, N) ->
case set_is_subset(Lookahead1, Lookahead2) of
true ->
check_state2(Items1, Items2, Symbols, N);
false ->
case Rhs of
[] ->
check_state2(Items1, Items2, Symbols, N);
[Symbol | _] ->
check_state2(Items1, Items2, [Symbol | Symbols], N)
end
end;
check_state2([], [], Symbols, N) ->
{merge, N, usort(Symbols)}.
merge_states(NewState, StateTab, Tables, M, StateId) ->
{_M, Old_state} = lookup_state(StateTab, M),
MergedState = merge_states1(NewState, Old_state),
insert_state(Tables, StateTab, {M, MergedState}, StateId).
merge_states1([Item1 | Items1], [Item2 | Items2]) ->
LA1 = Item1#item.look_ahead,
LA2 = Item2#item.look_ahead,
if
LA1 =:= LA2 ->
[Item1 | merge_states1(Items1, Items2)];
true ->
[Item1#item{look_ahead = set_union(LA1, LA2)}
| merge_states1(Items1, Items2)]
end;
merge_states1(_, _) ->
[].
%% RulePointer -> Rhs. Every position Rhs in has its unique "rule pointer".
make_rhs_index(RulesList) ->
Index = flatmap(fun(#rule{symbols = [_Non | Daughters]}) ->
suffixes0(Daughters)
end, RulesList),
list_to_tuple(Index).
suffixes0([?EMPTY]) ->
[[], []];
suffixes0(L) ->
suffixes(L).
suffixes([]=L) ->
[L];
suffixes([_ | T]=L) ->
[L | suffixes(T)].
%% Setup info about lookahead and expanding rules for each point
%% ("rule pointer") in the grammar.
make_rule_pointer_info(StC, RpRhs, RuleIndex) ->
SymbolTab = StC#yecc.symbol_tab,
LcTab = make_left_corner_table(StC),
LA_index = map(fun(Syms) ->
rp_info(Syms, SymbolTab, LcTab, RuleIndex)
end, tuple_to_list(RpRhs)),
list_to_tuple(LA_index).
rp_info([], _SymbolTab, _LcTab, _RuleIndex) ->
[];
rp_info([Category | Followers], SymbolTab, LcTab, RuleIndex) ->
case dict:find(Category, RuleIndex) of
error -> % terminal
[];
{ok, ExpandingRules} when Followers =:= [] ->
ExpandingRules;
{ok, ExpandingRules} ->
case make_lookahead(Followers, SymbolTab, LcTab, set_empty()) of
{empty, LA} ->
{union, ExpandingRules, LA};
LA ->
{no_union, ExpandingRules, LA}
end
end.
%% Lookahead computation is complicated by the possible existence
%% of null string rewriting rules, such as A -> '$empty'.
make_lookahead([], _, _, LA) ->
{empty, LA};
make_lookahead([Symbol | Symbols], SymbolTab, LcTab, LA) ->
case dict:find(Symbol, LcTab) of
{ok, LeftCorner} -> % nonterminal
case empty_member(LeftCorner) of
true ->
make_lookahead(Symbols, SymbolTab, LcTab,
set_union(empty_delete(LeftCorner), LA));
false ->
set_union(LeftCorner, LA)
end;
error -> % terminal
set_add(Symbol, LA)
end.
%% -> dict-of({Nonterminal, [Terminal]}).
%% The algorithm FIRST/1 from the Dragon Book.
%% Left corner table, all terminals (including '$empty') that can
%% begin strings generated by Nonterminal.
make_left_corner_table(#yecc{rules_list = RulesList} = St) ->
SymbolTab = left_corner_symbol_table(St),
Rules = map(fun(#rule{symbols = [Lhs | Rhs]}) ->
{Lhs,{Lhs, Rhs}}
end, RulesList),
LeftHandTab = dict:from_list(family(Rules)),
X0 = [{S,H} || {H,{H,Rhs}} <- Rules,
S <- Rhs,
not is_terminal(SymbolTab, S)],
XL = family_with_domain(X0, St#yecc.nonterminals),
X = dict:from_list(XL),
Xref = fun(NT) -> dict:fetch(NT, X) end,
E = set_empty(),
LC0 = dict:from_list([{H, E} || {H,_} <- XL]),
%% Handle H -> a S, where a is a terminal ('$empty' inclusive).
{Q, LC1} =
foldl(fun({H,{H,[S | _]}}, {Q0, LC}) ->
case ets:lookup(SymbolTab, S) of
[{_,Num}=SymbolAndNum] when Num >= 0 ->
F = set_add_terminal(SymbolAndNum, E),
{[Xref(H) | Q0], upd_first(H, F, LC)};
_ ->
{Q0, LC}
end
end, {[], LC0}, Rules),
left_corners(Q, LC1, LeftHandTab, SymbolTab, Xref).
left_corners(Q0, LC0, LeftHandTab, SymbolTab, Xref) ->
case usort(append(Q0)) of
[] ->
LC0;
Q1 ->
Rs = flatmap(fun(NT) -> dict:fetch(NT, LeftHandTab) end, Q1),
{LC, Q} = left_corners2(Rs, LC0, [], SymbolTab, Xref),
left_corners(Q, LC, LeftHandTab, SymbolTab, Xref)
end.
left_corners2([], LC, Q, _SymbolTab, _Xref) ->
{LC, Q};
left_corners2([{Head,Rhs} | Rs], LC, Q0, SymbolTab, Xref) ->
Ts = left_corner_rhs(Rhs, Head, LC, set_empty(), SymbolTab),
First0 = dict:fetch(Head, LC),
case set_is_subset(Ts, First0) of
true ->
left_corners2(Rs, LC, Q0, SymbolTab, Xref);
false ->
LC1 = upd_first(Head, Ts, LC),
left_corners2(Rs, LC1, [Xref(Head) | Q0], SymbolTab, Xref)
end.
upd_first(NT, Ts, LC) ->
dict:update(NT, fun(First) -> set_union(First, Ts) end, LC).
left_corner_rhs([S | Ss], Head, LC, Ts, SymbolTab) ->
case ets:lookup(SymbolTab, S) of
[{_,Num}=SymbolAndNum] when Num >= 0 ->
set_add_terminal(SymbolAndNum, Ts);
[_NonTerminalSymbol] ->
First = dict:fetch(S, LC),
case empty_member(First) of
true ->
NTs = set_union(empty_delete(First), Ts),
left_corner_rhs(Ss, Head, LC, NTs, SymbolTab);
false ->
set_union(First, Ts)
end
end;
left_corner_rhs([], _Head, _LC, Ts, _SymbolTab) ->
set_add(?EMPTY, Ts).
%% For every non-terminal return a list of "rule pointers" for rules
%% expanding the non-terminal.
%% Also assigns a unique number to each point in the grammar, "rule pointer".
make_rule_index(#yecc{nonterminals = Nonterminals,
rules_list = RulesList}, RulesListNoCodes) ->
{RulesL, _N} =
lists:mapfoldl(fun(#rule{symbols = [Nonterminal | Daughters]}, I) ->
I1 = I + length(Daughters)+1,
{{Nonterminal, I}, I1}
end, 1, RulesList),
IndexedTab = family_with_domain(RulesL, Nonterminals),
Symbol2Rule = [{Foo,R} || #rule{symbols = Symbols}=R <- RulesListNoCodes,
Foo <- Symbols],
Pointer2Rule = [{I, R} || {{_Foo,R},I} <- count(1, Symbol2Rule)],
{dict:from_list(IndexedTab), dict:from_list(Pointer2Rule)}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Computing parse action table from list of states and goto table:
compute_parse_actions(N, St, StateActions) ->
case N < first_state() of
true ->
StateActions;
false ->
{N, StateN} = lookup_state(St#yecc.state_tab, N),
%% There can be duplicates in Actions.
Actions = compute_parse_actions1(StateN, N, St),
compute_parse_actions(N - 1, St, [{N, Actions} | StateActions])
end.
compute_parse_actions1([], _, _) ->
[];
compute_parse_actions1([#item{rule_pointer = RulePointer,
look_ahead = Lookahead0,
rhs = Rhs} | Items], N, St) ->
case Rhs of
[] ->
Lookahead = decode_terminals(Lookahead0, St#yecc.inv_symbol_tab),
case rule(RulePointer, St) of
{[?ACCEPT | _], _RuleLine, _} ->
[{Lookahead, accept}
| compute_parse_actions1(Items, N, St)];
%% Head is placed after the daughters when finding the
%% precedence. This is how giving precedence to
%% non-terminals takes effect.
{[Head | Daughters0], _RuleLine, _} ->
Daughters = delete('$empty', Daughters0),
[{Lookahead,
#reduce{rule_nmbr = RulePointer, head = Head,
nmbr_of_daughters = length(Daughters),
prec = get_prec(Daughters ++ [Head], St)}}
| compute_parse_actions1(Items, N, St)]
end;
[Symbol | Daughters] ->
case is_terminal(St#yecc.symbol_tab, Symbol) of
true ->
DecSymbol = decode_symbol(Symbol, St#yecc.inv_symbol_tab),
{[Head | _], _RuleLine, _} = rule(RulePointer, St),
%% A bogus shift-shift conflict can be introduced
%% here if some terminal occurs in different rules
%% which have been given precedence "one level up".
Prec1 = case Daughters of
[] -> get_prec([DecSymbol, Head], St);
_ -> get_prec([DecSymbol], St)
end,
Pos = case Daughters of
[] -> z;
_ -> a
end,
[{[DecSymbol],
#shift{state = goto(N, DecSymbol, St),
pos = Pos,
prec = Prec1,
rule_nmbr = RulePointer}}
| compute_parse_actions1(Items, N, St)];
false ->
compute_parse_actions1(Items, N, St)
end
end.
get_prec(Symbols, St) ->
get_prec1(Symbols, St#yecc.prec_tab, {0, none}).
get_prec1([], _, P) ->
P;
get_prec1([Symbol | T], PrecTab, P) ->
case ets:lookup(PrecTab, Symbol) of
[] ->
get_prec1(T, PrecTab, P);
[{_, N, Ass}] ->
get_prec1(T, PrecTab, {N, Ass})
end.
create_precedence_table(St) ->
PrecTab = ets:new(yecc_precedences, []),
true = ets:insert(PrecTab, St#yecc.prec),
St#yecc{prec_tab = PrecTab}.
-record(cxt, {terminal, state_n, yecc, res}).
%% Detects shift-reduce and reduce-reduce conflicts.
%% Also removes all but one conflicting action. As a consequence the
%% lookahead sets for a state are always disjoint.
%% Reduce/reduce conflicts are considered errors.
find_action_conflicts(St0) ->
Cxt0 = #cxt{yecc = St0, res = []},
{#cxt{yecc = St, res = Res}, NewParseActions0} =
foldl(fun({N, Actions0}, {Cxt1, StateActions}) ->
L = [{Terminal, Act} || {Lookahead, Act} <- Actions0,
Terminal <- Lookahead],
{Cxt, Actions} =
foldl(fun({Terminal, As}, {Cxt2,Acts0}) ->
Cxt3 = Cxt2#cxt{terminal = Terminal,
state_n = N},
{Action, Cxt} =
find_action_conflicts2(As, Cxt3),
{Cxt,[{Action,Terminal} | Acts0]}
end, {Cxt1,[]}, family(L)),
{Cxt,[{N,inverse(family(Actions))} | StateActions]}
end, {Cxt0, []}, St0#yecc.parse_actions),
if
length(Res) > 0, St#yecc.verbose ->
io:fwrite(<<"\n*** Conflicts resolved by operator "
"precedences:\n\n">>),
foreach(fun({Confl, Name}) ->
report_conflict(Confl, St, Name, prec)
end, reverse(Res)),
io:fwrite(<<"*** End of resolved conflicts\n\n">>);
true ->
ok
end,
NewParseActions = reverse(NewParseActions0),
St#yecc{parse_actions = NewParseActions}.
find_action_conflicts2([Action], Cxt) ->
{Action, Cxt};
find_action_conflicts2([#shift{state = St, pos = Pos, prec = Prec},
#shift{state = St}=S | As],
Cxt) when Pos =:= a; Prec =:= {0,none} ->
%% This is a kludge to remove the bogus shift-shift conflict
%% introduced in compute_parse_actions1().
find_action_conflicts2([S | As], Cxt);
find_action_conflicts2([#shift{state = NewState, pos = z}=S1,
#shift{state = NewState}=S2 | _], Cxt) ->
%% This is even worse than last clause. Give up.
Confl = conflict(S1, S2, Cxt),
#cxt{yecc = St0} = Cxt,
St = conflict_error(Confl, St0),
{S1, Cxt#cxt{yecc = St}}; % return any action
find_action_conflicts2([#shift{prec = {P1, Ass1}}=S | Rs], Cxt0) ->
{R, Cxt1} = find_reduce_reduce(Rs, Cxt0),
#cxt{res = Res0, yecc = St0} = Cxt1,
#reduce{prec = {P2, Ass2}} = R,
Confl = conflict(R, S, Cxt1),
if
P1 > P2 ->
{S, Cxt1#cxt{res = [{Confl, shift} | Res0]}};
P2 > P1 ->
{R, Cxt1#cxt{res = [{Confl, reduce} | Res0]}};
Ass1 =:= left, Ass2 =:= left ->
{R, Cxt1#cxt{res = [{Confl, reduce} | Res0]}};
Ass1 =:= right, Ass2 =:= right ->
{S, Cxt1#cxt{res = [{Confl, shift} | Res0]}};
Ass1 =:= nonassoc, Ass2 =:= nonassoc ->
{nonassoc, Cxt1};
P1 =:= 0, P2 =:= 0 ->
report_conflict(Confl, St0, shift, default),
St = add_conflict(Confl, St0),
{S, Cxt1#cxt{yecc = St}};
true ->
St = conflict_error(Confl, St0),
{S, Cxt1#cxt{yecc = St}} % return any action
end;
find_action_conflicts2(Rs, Cxt0) ->
find_reduce_reduce(Rs, Cxt0).
find_reduce_reduce([R], Cxt) ->
{R, Cxt};
find_reduce_reduce([#reduce{head = Categ1, prec = {P1, _}}=R1,
#reduce{head = Categ2, prec = {P2, _}}=R2 | Rs], Cxt0) ->
#cxt{res = Res0, yecc = St0} = Cxt0,
Confl = conflict(R1, R2, Cxt0),
{R, Res, St} =
if
P1 > P2 ->
{R1, [{Confl, Categ1} | Res0], St0};
P2 > P1 ->
{R2, [{Confl, Categ2} | Res0], St0};
true ->
St1 = conflict_error(Confl, St0),
{R1, Res0, St1}
end,
Cxt = Cxt0#cxt{res = Res, yecc = St},
find_reduce_reduce([R | Rs], Cxt).
%% Since the lookahead sets are disjoint (assured by
%% find_action_conflicts), the order between actions can be chosen
%% almost arbitrarily. nonassoc has to come last, though (but is later
%% discarded!). And shift has to come before reduce.
sort_parse_actions([]) ->
[];
sort_parse_actions([{N, La_actions} | Tail]) ->
[{N, sort_parse_actions1(La_actions)} | sort_parse_actions(Tail)].
sort_parse_actions1(LaActions) ->
As = filter(fun({_LA, A}) -> A =:= accept end, LaActions),
Ss = filter(fun({_LA, A}) -> is_record(A, shift) end, LaActions),
Rs = filter(fun({_LA, A}) -> is_record(A, reduce) end, LaActions),
Ns = filter(fun({_LA, A}) -> A =:= nonassoc end, LaActions),
As ++ Ss ++ Rs ++ Ns.
%% -> {State, StateRepr}. StateRepr has the same set of shift actions
%% as State. No code will be output for State if State =/= StateRepr.
find_identical_shift_states(StateActions) ->
L1 = [{Actions, State} || {State,Actions} <- StateActions],
{SO, NotSO} = lists:partition(fun({Actions,_States}) ->
shift_actions_only(Actions)
end, family(L1)),
R = [{State, hd(States)} || {_Actions, States} <- SO, State <- States]
++
[{State, State} || {_Actions, States} <- NotSO, State <- States],
lists:keysort(1, R).
-record(part_data, {name, eq_state, actions, n_actions, states}).
%% Replace {SStates,Actions} with {SStates,{Actions,Jump}} where
%% Jump describes which clauses that have been extracted from shift
%% states so that they can be used from other states. Some space is
%% saved.
find_partial_shift_states(StateActionsL, StateReprs) ->
L = [{State, Actions} || {{State,Actions}, {State,State}} <-
lists:zip(StateActionsL, StateReprs),
shift_actions_only(Actions)],
StateActions = sofs:family(L, [{state,[action]}]),
StateAction = sofs:family_to_relation(StateActions),
%% Two actions are equal if they occur in the same states:
Parts = sofs:partition(sofs:range(StateActions)),
PartsL = sofs:to_external(Parts),
%% Assign temporary names to the parts of the partition (of actions):
PartNameL = lists:zip(seq1(length(PartsL)), PartsL),
ActPartL = [{Action,PartName} ||
{PartName,Actions} <- PartNameL,
Action <- Actions],
ActionPartName = sofs:relation(ActPartL, [{action,partname}]),
StatePartName = sofs:relative_product(StateAction, ActionPartName),
PartInStates = sofs:relation_to_family(sofs:converse(StatePartName)),
%% Parts that equal all actions of a state:
PartActions = sofs:family(PartNameL, [{partname,[action]}]),
PartState =
sofs:relative_product(PartActions, sofs:converse(StateActions)),
PartStates = sofs_family_with_domain(PartState, sofs:domain(PartActions)),
PartDataL = [#part_data{name = Nm, eq_state = EqS, actions = P,
n_actions = length(P),
states = ordsets:from_list(S)} ||
{{Nm,P}, {Nm,S}, {Nm,EqS}} <-
lists:zip3(PartNameL,
sofs:to_external(PartInStates),
sofs:to_external(PartStates))],
true = length(PartDataL) =:= length(PartNameL),
Ps = select_parts(PartDataL),
J1 = [{State, Actions, {jump_some,hd(States)}} ||
{_W, #part_data{actions = Actions, eq_state = [],
states = States}} <- Ps,
State <- States],
J2 = [{State, Actions, {jump_all,To}} ||
{_W, #part_data{actions = Actions, eq_state = EqS,
states = States}} <- Ps,
To <- EqS,
State <- States,
State =/= To],
J = lists:keysort(1, J1 ++ J2),
JumpStates = ordsets:from_list([S || {S,_,_} <- J]),
{JS, NJS} =
sofs:partition(1, sofs:relation(StateActionsL, [{state, actions}]),
sofs:set(JumpStates, [state])),
R =
[{S, {Actions,jump_none}} || {S,Actions} <- sofs:to_external(NJS)]
++
[{S, {Actions--Part, {Tag,ToS,Part}}} ||
{{S,Actions}, {S,Part,{Tag,ToS}}} <-
lists:zip(sofs:to_external(JS), J)],
true = length(StateActionsL) =:= length(R),
lists:keysort(1, R).
%% Very greedy. By no means optimal.
select_parts([]) ->
[];
select_parts(PartDataL) ->
T1 = [{score(PD), PD} || PD <- PartDataL],
[{W, PD} | Ws] = lists:reverse(lists:keysort(1, T1)),
#part_data{n_actions = NActions, states = S} = PD,
if
W < 8 -> % don't bother
[];
true ->
%% Cannot extract more clauses from the chosen part's states:
NL = [D#part_data{states = NewS} ||
{W1, #part_data{states = S0}=D} <- Ws,
W1 > 0,
(NewS = ordsets:subtract(S0, S)) =/= []],
if
length(S) =:= 1; NActions =:= 1 ->
select_parts(NL);
true ->
[{W,PD} | select_parts(NL)]
end
end.
%% Does it pay off to extract clauses into a new function?
%% Assumptions:
%% - a call costs 8 (C = 8);
%% - a clause (per action) costs 20 plus 8 (select) (Cl = 28);
%% - a new function costs 20 (funinfo) plus 16 (select) (F = 36).
%% A is number of actions, S is number of states.
%% Special case (the part equals all actions of some state):
%% C * (S - 1) < (S - 1) * A * Cl
%% Normal case (introduce new function):
%% F + A * Cl + C * S < S * A * Cl
score(#part_data{n_actions = NActions, eq_state = [], states = S}) ->
(length(S) * NActions * 28) - (36 + NActions * 28 + length(S) * 8);
score(#part_data{n_actions = NActions, states = S}) ->
((length(S) - 1) * NActions * 28) - (8 * (length(S) - 1)).
shift_actions_only(Actions) ->
length([foo || {_Ts,{shift,_,_,_,_}} <- Actions]) =:= length(Actions).
collect_some_state_info(StateActions, StateReprs) ->
RF = fun({_LA, A}) -> is_record(A, reduce) end,
L = [{State,
begin
RO = lists:all(RF, LaActions),
%% C is currently always ""; identical states are all shift.
C = [io_lib:fwrite(<<" %% ~w\n">>, [State]) ||
true <- [RO], Repr =/= State],
#state_info{reduce_only = RO, state_repr = Repr, comment = C}
end} ||
{{State, LaActions}, {State, Repr}} <-
lists:zip(StateActions, StateReprs)],
list_to_tuple(L).
conflict_error(Conflict, St0) ->
St1 = add_conflict(Conflict, St0),
add_error({conflict, Conflict}, St1).
report_conflict(Conflict, St, ActionName, How) ->
if
St#yecc.verbose ->
io:fwrite(<<"~s\n">>, [format_conflict(Conflict)]),
Formated = format_symbol(ActionName),
case How of
prec ->
io:fwrite(<<"Resolved in favor of ~s.\n\n">>, [Formated]);
default ->
io:fwrite(<<"Conflict resolved in favor of ~s.\n\n">>,
[Formated])
end;
true ->
ok
end.
add_conflict(Conflict, St) ->
case Conflict of
{Symbol, StateN, _, {reduce, _, _, _}} ->
St#yecc{reduce_reduce = [{StateN,Symbol} |St#yecc.reduce_reduce]};
{Symbol, StateN, _, {shift, _, _}} ->
St#yecc{shift_reduce = [{StateN,Symbol} | St#yecc.shift_reduce]};
{_Symbol, _StateN, {one_level_up, _, _}, _Confl} ->
St
end.
conflict(#shift{prec = Prec1, rule_nmbr = RuleNmbr1},
#shift{prec = Prec2, rule_nmbr = RuleNmbr2}, Cxt) ->
%% Conflict due to precedences "one level up". Kludge.
#cxt{terminal = Symbol, state_n = N, yecc = St} = Cxt,
{_, L1, RuleN1} = rule(RuleNmbr1, St),
{_, L2, RuleN2} = rule(RuleNmbr2, St),
Confl = {one_level_up, {L1, RuleN1, Prec1}, {L2, RuleN2, Prec2}},
{Symbol, N, Confl, Confl};
conflict(#reduce{rule_nmbr = RuleNmbr1}, NewAction, Cxt) ->
#cxt{terminal = Symbol, state_n = N, yecc = St} = Cxt,
{R1, RuleLine1, RuleN1} = rule(RuleNmbr1, St),
Confl = case NewAction of
#reduce{rule_nmbr = RuleNmbr2} ->
{R2, RuleLine2, RuleN2} = rule(RuleNmbr2, St),
{reduce, R2, RuleN2, RuleLine2};
#shift{state = NewState} ->
{shift, NewState, last(R1)}
end,
{Symbol, N, {R1, RuleN1, RuleLine1}, Confl}.
format_conflict({Symbol, N, _, {one_level_up,
{L1, RuleN1, {P1, Ass1}},
{L2, RuleN2, {P2, Ass2}}}}) ->
S1 = io_lib:fwrite(<<"Conflicting precedences of symbols when "
"scanning ~s in state ~w:\n">>,
[format_symbol(Symbol), N]),
S2 = io_lib:fwrite(<<" ~s ~w (rule ~w at line ~w)\n"
" vs.\n">>,
[format_assoc(Ass1), P1, RuleN1, L1]),
S3 = io_lib:fwrite(<<" ~s ~w (rule ~w at line ~w)\n">>,
[format_assoc(Ass2), P2, RuleN2, L2]),
[S1, S2, S3];
format_conflict({Symbol, N, Reduce, Confl}) ->
S1 = io_lib:fwrite(<<"Parse action conflict scanning symbol "
"~s in state ~w:\n">>, [format_symbol(Symbol), N]),
S2 = case Reduce of
{[HR | TR], RuleNmbr, RuleLine} ->
io_lib:fwrite(<<" Reduce to ~s from ~s (rule ~w at "
"line ~w)\n vs.\n">>,
[format_symbol(HR), format_symbols(TR),
RuleNmbr, RuleLine])
end,
S3 = case Confl of
{reduce, [HR2|TR2], RuleNmbr2, RuleLine2} ->
io_lib:fwrite(<<" reduce to ~s from ~s "
"(rule ~w at line ~w).">>,
[format_symbol(HR2), format_symbols(TR2),
RuleNmbr2, RuleLine2]);
{shift, NewState, Sym} ->
io_lib:fwrite(<<" shift to state ~w, adding right "
"sisters to ~s.">>,
[NewState, format_symbol(Sym)])
end,
[S1, S2, S3].
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Code generation:
%% The version up to and including parsetools-1.3 is called "1.0".
%%
%% "1.1", parsetools-1.4:
%% - the prologue file has been updated;
%% - nonassoc is new;
%% - different order of clauses;
%% - never more than one clause matching a given symbol in a given state;
%% - file attributes relate messages to .yrl file;
%% - actions put in inlined functions;
%% - a few other minor fixes.
%%
%% "1.2", parsetools-1.4.2:
%% - the generated code has been changed as follows:
%% - yeccpars2() calls the functions yeccpars2_State();
%% - several states can share yeccpars2_State(), which reduces code size;
%% - yeccgoto() has been split on one function per nonterminal;
%% - several minor changes have made the loaded code smaller.
%% - the include file yeccpre.hrl has been changed incompatibly.
%%
%% "1.3", parsetools-1.4.4:
%% - the generated code has been changed as follows:
%% - yeccgoto_T() no longer returns the next state, but calls yeccpars_S();
%% - yeccpars2() is not called when it is known which yeccpars2_S() to call;
%% - "__Stack" has been substituted for "Stack";
%% - several states can share yeccpars2_S_cont(), which reduces code size;
%% - instead if calling lists:nthtail() matching code is emitted.
-define(CODE_VERSION, "1.3").
-define(YECC_BUG(M, A),
iolist_to_binary([" erlang:error({yecc_bug,\"",?CODE_VERSION,"\",",
io_lib:fwrite(M, A), "}).\n\n"])).
%% Returns number of newlines in included files.
output_prelude(Outport, Inport, St0) when St0#yecc.includefile =:= [] ->
St5 = output_header(St0),
#yecc{infile = Infile, module = Module} = St5,
St10 = fwrite(St5, <<"-module(~w).\n">>, [Module]),
St20 =
fwrite(St10,
<<"-export([parse/1, parse_and_scan/1, format_error/1]).\n">>,
[]),
{St25, N_lines_1, LastErlangCodeLine} =
case St20#yecc.erlang_code of
none ->
{St20, 0, no_erlang_code};
Next_line ->
St_10 = output_file_directive(St20, Infile, Next_line-1),
Nmbr_of_lines = include1([], Inport, Outport),
{St_10, Nmbr_of_lines,
{last_erlang_code_line, Next_line+Nmbr_of_lines}}
end,
St30 = nl(St25),
IncludeFile =
filename:join([code:lib_dir(parsetools), "include","yeccpre.hrl"]),
%% Maybe one could assume there are no warnings in this file.
St = output_file_directive(St30, IncludeFile, 0),
N_lines_2 = include(St, IncludeFile, Outport),
{St, N_lines_1 + N_lines_2, LastErlangCodeLine};
output_prelude(Outport, Inport, St0) ->
St5 = output_header(St0),
#yecc{infile = Infile, module = Module, includefile = Includefile} = St5,
St10 = fwrite(St5, <<"-module(~w).\n">>, [Module]),
St20 = output_file_directive(St10, Includefile, 0),
N_lines_1 = include(St20, Includefile, Outport),
St30 = nl(St20),
case St30#yecc.erlang_code of
none ->
{St30, N_lines_1, no_erlang_code};
Next_line ->
St = output_file_directive(St30, Infile, Next_line-1),
Nmbr_of_lines = include1([], Inport, Outport),
{St, Nmbr_of_lines + N_lines_1,
{last_erlang_code_line, Next_line+Nmbr_of_lines}}
end.
output_header(St0) ->
lists:foldl(fun(Str, St) -> fwrite(St, <<"~s\n">>, [Str])
end, St0, St0#yecc.header).
output_goto(St, [{_Nonterminal, []} | Go], StateInfo) ->
output_goto(St, Go, StateInfo);
output_goto(St0, [{Nonterminal, List} | Go], StateInfo) ->
F = function_name(yeccgoto, Nonterminal),
St10 = output_goto1(St0, List, F, StateInfo, true),
St = output_goto_fini(F, Nonterminal, St10),
output_goto(St, Go, StateInfo);
output_goto(St, [], _StateInfo) ->
St.
output_goto1(St0, [{From, To} | Tail], F, StateInfo, IsFirst) ->
St10 = delim(St0, IsFirst),
{To, ToInfo} = lookup_state(StateInfo, To),
#state_info{reduce_only = RO, state_repr = Repr, comment = C} = ToInfo,
if
RO ->
%% Reduce actions do not use the state, so we just pass
%% the old (now bogus) on:
FromS = io_lib:fwrite("~w=_S", [From]),
ToS = "_S";
true ->
FromS = io_lib:fwrite("~w", [From]),
ToS = io_lib:fwrite("~w", [To])
end,
St20 = fwrite(St10, <<"~w(~s, Cat, Ss, Stack, T, Ts, Tzr) ->\n">>,
[F,FromS]),
St30 = fwrite(St20, <<"~s">>, [C]),
%% Short-circuit call to yeccpars2:
St = fwrite(St30, <<" yeccpars2_~w(~s, Cat, Ss, Stack, T, Ts, Tzr)">>,
[Repr, ToS]),
output_goto1(St, Tail, F, StateInfo, false);
output_goto1(St, [], _F, _StateInfo, _IsFirst) ->
St.
output_goto_fini(F, NT, #yecc{includefile_version = {1,1}}=St0) ->
%% Backward compatibility.
St10 = delim(St0, false),
St = fwrite(St10, <<"~w(State, _Cat, _Ss, _Stack, _T, _Ts, _Tzr) ->\n">>,
[F]),
fwrite(St,
?YECC_BUG(<<"{~w, State, missing_in_goto_table}">>, [NT]),
[]);
output_goto_fini(_F, _NT, St) ->
fwrite(St, <<".\n\n">>, []).
%% Find actions having user code.
find_user_code(ParseActions, St) ->
[#user_code{state = State,
terminal = Terminal,
funname = inlined_function_name(State, Terminal),
action = Action} ||
{State, La_actions} <- ParseActions,
{Action, Terminals, RuleNmbr, NmbrOfDaughters}
<- find_user_code2(La_actions),
case tokens(RuleNmbr, St) of
[{var, _, '__1'}] -> NmbrOfDaughters =/= 1;
_ -> true
end,
Terminal <- Terminals].
find_user_code2([]) ->
[];
find_user_code2([{_, #reduce{rule_nmbr = RuleNmbr,
nmbr_of_daughters = NmbrOfDaughters}
=Action}]) ->
%% Same optimization as in output_state_actions.
[{Action, ["Cat"], RuleNmbr, NmbrOfDaughters}];
find_user_code2([{La, #reduce{rule_nmbr = RuleNmbr,
nmbr_of_daughters = NmbrOfDaughters}
=Action} | T]) ->
[{Action,La, RuleNmbr, NmbrOfDaughters} | find_user_code2(T)];
find_user_code2([_ | T]) ->
find_user_code2(T).
output_actions(St0, StateJumps, StateInfo) ->
%% Not all the clauses of the dispatcher function yeccpars2() can
%% be reached. Only when shifting, that is, calling yeccpars1(),
%% will yeccpars2() be called.
Y2CL = [NewState || {_State,{Actions,_J}} <- StateJumps,
{_LA, #shift{state = NewState}} <- Actions],
Y2CS = ordsets:from_list([0 | Y2CL]),
Y2S = ordsets:from_list([S || {S,_} <- StateJumps]),
NY2CS = ordsets:subtract(Y2S, Y2CS),
Sel = [{S,true} || S <- ordsets:to_list(Y2CS)] ++
[{S,false} || S <- ordsets:to_list(NY2CS)],
SelS = [{State,Called} ||
{{State,_JActions}, {State,Called}} <-
lists:zip(StateJumps, lists:keysort(1, Sel))],
St10 = foldl(fun({State, Called}, St_0) ->
{State, #state_info{state_repr = IState}} =
lookup_state(StateInfo, State),
output_state_selection(St_0, State, IState, Called)
end, St0, SelS),
St20 = fwrite(St10, <<"yeccpars2(Other, _, _, _, _, _, _) ->\n">>, []),
St = fwrite(St20,
?YECC_BUG(<<"{missing_state_in_action_table, Other}">>, []),
[]),
foldl(fun({State, JActions}, St_0) ->
{State, #state_info{state_repr = IState}} =
lookup_state(StateInfo, State),
output_state_actions(St_0, State, IState,
JActions, StateInfo)
end, St, StateJumps).
output_state_selection(St0, State, IState, Called) ->
Comment = [<<"%% ">> || false <- [Called]],
St = fwrite(St0, <<"~syeccpars2(~w=S, Cat, Ss, Stack, T, Ts, Tzr) ->\n">>,
[Comment, State]),
fwrite(St,
<<"~s yeccpars2_~w(S, Cat, Ss, Stack, T, Ts, Tzr);\n">>,
[Comment, IState]).
output_state_actions(St, State, State, {Actions,jump_none}, SI) ->
output_state_actions1(St, State, Actions, true, normal, SI);
output_state_actions(St0, State, State, {Actions, Jump}, SI) ->
{Tag, To, Common} = Jump,
CS = case Tag of
jump_some -> list_to_atom(lists:concat([cont_, To]));
jump_all -> To
end,
St = output_state_actions1(St0, State, Actions, true, {to, CS}, SI),
if
To =:= State ->
output_state_actions1(St, CS, Common, true, normal, SI);
true ->
St
end;
output_state_actions(St, State, JState, _XActions, _SI) ->
fwrite(St, <<"%% yeccpars2_~w: see yeccpars2_~w\n\n">>, [State, JState]).
output_state_actions1(St, State, [], _IsFirst, normal, _SI) ->
output_state_actions_fini(State, St);
output_state_actions1(St0, State, [], IsFirst, {to, ToS}, _SI) ->
St = delim(St0, IsFirst),
fwrite(St,
<<"yeccpars2_~w(S, Cat, Ss, Stack, T, Ts, Tzr) ->\n"
" yeccpars2_~w(S, Cat, Ss, Stack, T, Ts, Tzr).\n\n">>,
[State, ToS]);
output_state_actions1(St0, State, [{_, #reduce{}=Action}],
IsFirst, _End, SI) ->
St = output_reduce(St0, State, "Cat", Action, IsFirst, SI),
fwrite(St, <<".\n\n">>, []);
output_state_actions1(St0, State, [{Lookahead,Action} | Tail],
IsFirst, End, SI) ->
{_, St} =
foldl(fun(Terminal, {IsFst,St_0}) ->
{false,
output_action(St_0, State, Terminal, Action, IsFst,SI)}
end, {IsFirst,St0}, Lookahead),
output_state_actions1(St, State, Tail, false, End, SI).
output_action(St, State, Terminal, #reduce{}=Action, IsFirst, SI) ->
output_reduce(St, State, Terminal, Action, IsFirst, SI);
output_action(St0, State, Terminal, #shift{state = NewState}, IsFirst, _SI) ->
St10 = delim(St0, IsFirst),
St = fwrite(St10, <<"yeccpars2_~w(S, ~s, Ss, Stack, T, Ts, Tzr) ->\n">>,
[State, quoted_atom(Terminal)]),
output_call_to_includefile(NewState, St);
output_action(St0, State, Terminal, accept, IsFirst, _SI) ->
St10 = delim(St0, IsFirst),
St = fwrite(St10,
<<"yeccpars2_~w(_S, ~s, _Ss, Stack, _T, _Ts, _Tzr) ->\n">>,
[State, quoted_atom(Terminal)]),
fwrite(St, <<" {ok, hd(Stack)}">>, []);
output_action(St, _State, _Terminal, nonassoc, _IsFirst, _SI) ->
St.
output_call_to_includefile(NewState, #yecc{includefile_version = {1,1}}=St) ->
%% Backward compatibility.
fwrite(St, <<" yeccpars1(Ts, Tzr, ~w, [S | Ss], [T | Stack])">>,
[NewState]);
output_call_to_includefile(NewState, St) ->
fwrite(St, <<" yeccpars1(S, ~w, Ss, Stack, T, Ts, Tzr)">>,
[NewState]).
output_state_actions_fini(State, #yecc{includefile_version = {1,1}}=St0) ->
%% Backward compatibility.
St10 = delim(St0, false),
St = fwrite(St10, <<"yeccpars2_~w(_, _, _, _, T, _, _) ->\n">>, [State]),
fwrite(St, <<" yeccerror(T).\n\n">>, []);
output_state_actions_fini(_State, St) ->
fwrite(St, <<".\n\n">>, []).
output_reduce(St0, State, Terminal0,
#reduce{rule_nmbr = RuleNmbr,
head = Head,
nmbr_of_daughters = NmbrOfDaughters},
IsFirst, StateInfo) ->
St10 = delim(St0, IsFirst),
Terminal = if
is_atom(Terminal0) -> quoted_atom(Terminal0);
true -> Terminal0
end,
St20 = fwrite(St10,
<<"yeccpars2_~w(_S, ~s, Ss, Stack, T, Ts, Tzr) ->\n">>,
[State, Terminal]),
St30 =
if
NmbrOfDaughters < 2 ->
Ns = "Ss",
St20;
true ->
Ns = "Nss",
Tmp = string:join(lists:duplicate(NmbrOfDaughters - 1, "_"),
","),
fwrite(St20, <<" [~s|Nss] = Ss,\n">>, [Tmp])
end,
St40 = case tokens(RuleNmbr, St30) of
[{var, _, '__1'}] when NmbrOfDaughters =:= 1 ->
NewStack = "Stack",
St30;
_ ->
NewStack = "NewStack",
fwrite(St30, <<" NewStack = ~w(Stack),\n">>,
[inlined_function_name(State, Terminal0)])
end,
if
NmbrOfDaughters =:= 0 ->
NextState = goto(State, Head, St40),
{NextState, I} = lookup_state(StateInfo, NextState),
#state_info{reduce_only = RO, state_repr = Repr, comment = C} = I,
%% Reduce actions do not use the state, so we just pass
%% the old (now bogus) on:
if
RO -> NextS = "_S";
true -> NextS = io_lib:fwrite("~w", [NextState])
end,
St = fwrite(St40, <<"~s">>, [C]),
%% Short-circuit call to yeccpars2:
fwrite(St,
<<" yeccpars2_~w(~s, ~s, [~w | Ss], ~s, T, Ts, Tzr)">>,
[Repr, NextS, Terminal, State, NewStack]);
true ->
fwrite(St40,
<<" ~w(hd(~s), ~s, ~s, ~s, T, Ts, Tzr)">>,
[function_name(yeccgoto, Head), Ns,
Terminal, Ns, NewStack])
end.
delim(St, true) ->
St;
delim(St, false) ->
fwrite(St, <<";\n">>, []).
quoted_atom(Atom) ->
io_lib:fwrite(<<"~w">>, [Atom]).
output_inlined(St, UserCodeActions, Infile) ->
foldl(fun(#user_code{funname = InlinedFunctionName,
action = Action}, St_0) ->
output_inlined(St_0, InlinedFunctionName,
Action, Infile)
end, St, UserCodeActions).
%% Each action with user code is placed in a separate inlined function.
%% The purpose is to be able to pinpoint errors and warnings correctly.
output_inlined(St0, FunctionName, Reduce, Infile) ->
#reduce{rule_nmbr = RuleNmbr, nmbr_of_daughters = N_daughters} = Reduce,
#rule{tokens = Tokens, is_well_formed = WF} = get_rule(RuleNmbr, St0),
Line0 = first_line(Tokens),
NLines = last_line(Tokens) - Line0,
St5 = if
WF ->
St0;
not WF ->
%% The compiler will generate an error message for
%% the inlined function (unless the reason that yecc
%% failed to parse the action was some macro). The
%% line number of the message will be correct since
%% we are keeping track of the current line of the
%% output file...
#yecc{outfile = Outfile, line = CurLine} = St0,
output_file_directive(St0, Outfile, CurLine)
end,
CodeStartLine = lists:max([0, Line0 - 4]),
St10 = fwrite(St5, <<"-compile({inline,~w/1}).\n">>, [FunctionName]),
St20 = output_file_directive(St10, Infile, CodeStartLine),
St30 = fwrite(St20, <<"~w(__Stack0) ->\n">>, [FunctionName]),
%% Currently the (old) inliner emits less code if matching the
%% stack inside the body rather than in the head...
St40 = case N_daughters of
0 ->
Stack = "__Stack0",
St30;
_ ->
Stack = "__Stack",
A = concat(flatmap(fun(I) -> [",__",I] end,
lists:seq(N_daughters, 1, -1))),
fwrite(St30, <<" ~s = __Stack0,\n">>,
[append(["[", tl(A), " | __Stack]"])])
end,
St = St40#yecc{line = St40#yecc.line + NLines},
fwrite(St, <<" [begin\n ~s\n end | ~s].\n\n">>,
[pp_tokens(Tokens, Line0), Stack]).
inlined_function_name(State, "Cat") ->
inlined_function_name(State, "");
inlined_function_name(State, Terminal) ->
list_to_atom(concat([yeccpars2_, State, '_', Terminal])).
-compile({nowarn_unused_function,function_name/2}).
function_name(Name, Suf) ->
list_to_atom(concat([Name, '_' | quoted_atom(Suf)])).
rule(RulePointer, St) ->
#rule{n = N, line = Line, symbols = Symbols} =
dict:fetch(RulePointer, St#yecc.rule_pointer2rule),
{Symbols, Line, N}.
get_rule(RuleNmbr, St) ->
dict:fetch(RuleNmbr, St#yecc.rule_pointer2rule).
tokens(RuleNmbr, St) ->
Rule = dict:fetch(RuleNmbr, St#yecc.rule_pointer2rule),
Rule#rule.tokens.
goto(From, Symbol, St) ->
case ets:lookup(St#yecc.goto_tab, {From, Symbol}) of
[{_, To}] ->
To;
[] ->
erlang:error({error_in_goto_table, From, Symbol})
end.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Auxiliaries:
-ifdef(SYMBOLS_AS_CODES).
%%% Bit mask operations.
-compile({inline,[set_empty/0]}).
set_empty() ->
0.
set_add(I, BM) ->
(1 bsl I) bor BM.
-compile({inline,[set_member/2]}).
set_member(I, BM) ->
((1 bsl I) band BM) =/= 0.
%% Assumes I is a member...
-compile({inline,[set_delete/2]}).
set_delete(I, BM) ->
(1 bsl I) bxor BM.
-compile({inline,[set_union/2]}).
set_union(BM1, BM2) ->
BM1 bor BM2.
-compile({inline,[set_is_subset/2]}).
set_is_subset(BM1, BM2) ->
(BM1 band BM2) =:= BM1.
empty_member(BM) ->
set_member(0, BM).
empty_delete(BM) ->
set_delete(0, BM).
code_symbols(Ss, SymbolTable) ->
map(fun(S) -> ets:lookup_element(SymbolTable, S, 2) end, Ss).
decode_symbol(C, InvSymbolTable) ->
ets:lookup_element(InvSymbolTable, C, 1).
code_terminal(T, SymbolTab) ->
set_add(ets:lookup_element(SymbolTab, T, 2), 0).
decode_terminals(BM, InvSymbolTab) ->
case get(BM) of
undefined ->
Symbols = decode_terminals(BM, 0, InvSymbolTab),
put(BM, Symbols),
Symbols;
Symbols ->
Symbols
end.
decode_terminals(0, _I, _InvSymbolTab) ->
[];
decode_terminals(BM, I, InvSymbolTab) ->
case set_member(I, BM) of
true ->
[ets:lookup_element(InvSymbolTab, I, 1)
| decode_terminals(set_delete(I, BM), I+1, InvSymbolTab)];
false ->
decode_terminals(BM, I+1, InvSymbolTab)
end.
set_add_terminal({_Symbol, TerminalNum}, BM) ->
set_add(TerminalNum, BM).
-compile({inline,[is_terminal/2]}).
is_terminal(_Tab, SymbolCode) ->
SymbolCode >= 0.
left_corner_symbol_table(St) ->
St#yecc.inv_symbol_tab.
-else.
set_empty() ->
[].
set_add(Symbol, L) ->
ordsets:union([Symbol], L).
set_union(Es1, Es2) ->
ordsets:union(Es1, Es2).
set_is_subset(Es1, Es2) ->
ordsets:is_subset(Es1, Es2).
code_symbols(Ss, _SymbolTab) ->
Ss.
decode_symbol(S, _InvSymbolTab) ->
S.
code_terminal(T, _SymbolTab) ->
[T].
decode_terminals(Ts, _InvSymbolTab) ->
Ts.
empty_member(['$empty' | _]) ->
true;
empty_member(_) ->
false.
empty_delete(['$empty' | Terminals]) ->
Terminals.
set_add_terminal({Symbol, _TerminalNum}, L) ->
set_add(Symbol, L).
is_terminal(Tab, SymbolName) ->
ets:lookup_element(Tab, SymbolName, 2) >= 0.
left_corner_symbol_table(St) ->
St#yecc.symbol_tab.
-endif. % SYMBOLS_AS_CODES
intersect(L1, L2) ->
ordsets:to_list(ordsets:intersection(ordsets:from_list(L1),
ordsets:from_list(L2))).
format_symbols([Sym | Syms]) ->
concat([format_symbol(Sym) | format_symbols1(Syms)]).
format_symbols1([]) ->
[];
format_symbols1([H | T]) ->
[" ", format_symbol(H) | format_symbols1(T)].
include(St, File, Outport) ->
case file:open(File, [read]) of
{error, Reason} ->
throw(add_error(File, none, {file_error, Reason}, St));
{ok, Inport} ->
Line = io:get_line(Inport, ''),
N_lines = include1(Line, Inport, Outport),
file:close(Inport),
N_lines
end.
include1(Line, Inport, Outport) ->
include1(Line, Inport, Outport, 0).
include1(eof, _, _, Nmbr_of_lines) ->
Nmbr_of_lines;
include1(Line, Inport, Outport, Nmbr_of_lines) ->
Incr = case member($\n, Line) of
true -> 1;
false -> 0
end,
io:put_chars(Outport, Line),
include1(io:get_line(Inport, ''), Inport, Outport, Nmbr_of_lines + Incr).
includefile_version([]) ->
{1,2};
includefile_version(Includefile) ->
case epp:open(Includefile, []) of
{ok, Epp} ->
try
parse_file(Epp)
after
epp:close(Epp)
end;
{error, _Error} ->
{1,1}
end.
parse_file(Epp) ->
case epp:parse_erl_form(Epp) of
{ok, {function,_Line,yeccpars1,7,_Clauses}} ->
{1,2};
{eof,_Line} ->
{1,1};
_Form ->
parse_file(Epp)
end.
%% Keeps the line breaks of the original code.
pp_tokens(Tokens, Line0) ->
concat(pp_tokens1(Tokens, Line0, [])).
pp_tokens1([], _Line0, _T0) ->
[];
pp_tokens1([T | Ts], Line0, T0) ->
Line = element(2, T),
[pp_sep(Line, Line0, T0), pp_symbol(T) | pp_tokens1(Ts, Line, T)].
pp_symbol({var,_,Var}) -> Var;
pp_symbol({_,_,Symbol}) -> io_lib:fwrite(<<"~p">>, [Symbol]);
pp_symbol({Symbol, _}) -> Symbol.
pp_sep(Line, Line0, T0) when Line > Line0 ->
["\n " | pp_sep(Line - 1, Line0, T0)];
pp_sep(_Line, _Line0, {'.',_}) ->
"";
pp_sep(_Line, _Line0, _T0) ->
" ".
output_file_directive(St, Filename, Line) when St#yecc.file_attrs ->
fwrite(St, <<"-file(~s, ~w).\n">>,
[format_filename(Filename), Line]);
output_file_directive(St, _Filename, _Line) ->
St.
first_line(Tokens) ->
element(2, hd(Tokens)).
last_line(Tokens) ->
element(2, lists:last(Tokens)).
%% Keep track of the current line in the generated file.
fwrite(#yecc{outport = Outport, line = Line}=St, Format, Args) ->
NLines = count_nl(Format),
io:fwrite(Outport, Format, Args),
St#yecc{line = Line + NLines}.
%% Assumes \n is used, and never ~n.
count_nl(<<$\n,Rest/binary>>) ->
1 + count_nl(Rest);
count_nl(<<_,Rest/binary>>) ->
count_nl(Rest);
count_nl(<<>>) ->
0.
nl(#yecc{outport = Outport, line = Line}=St) ->
io:nl(Outport),
St#yecc{line = Line + 1}.
format_filename(Filename) ->
io_lib:write_string(filename:flatten(Filename)).
format_assoc(left) ->
"Left";
format_assoc(right) ->
"Right";
format_assoc(unary) ->
"Unary";
format_assoc(nonassoc) ->
"Nonassoc".
format_symbol(Symbol) ->
String = concat([Symbol]),
case erl_scan:string(String) of
{ok, [{atom, _, _}], _} ->
io_lib:fwrite(<<"~w">>, [Symbol]);
{ok, [{Word, _}], _} when Word =/= ':', Word =/= '->' ->
case erl_scan:reserved_word(Word) of
true ->
String;
false ->
io_lib:fwrite(<<"~w">>, [Symbol])
end;
{ok, [{var, _, _}], _} ->
String;
_ ->
io_lib:fwrite(<<"~w">>, [Symbol])
end.
inverse(L) ->
sort([{A,B} || {B,A} <- L]).
family(L) ->
sofs:to_external(sofs:relation_to_family(sofs:relation(L))).
seq1(To) when To < 1 ->
[];
seq1(To) ->
lists:seq(1, To).
count(From, L) ->
lists:zip(L, lists:seq(From, length(L)-1+From)).
family_with_domain(L, DL) ->
sofs:to_external(sofs_family_with_domain(sofs:relation(L), sofs:set(DL))).
sofs_family_with_domain(R0, D) ->
R = sofs:restriction(R0, D),
F = sofs:relation_to_family(R),
FD = sofs:constant_function(D, sofs:from_term([])),
sofs:family_union(F, FD).