%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2008-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%
-module(public_key).
-include("public_key.hrl").
-export([pem_decode/1, pem_encode/1,
der_decode/2, der_encode/2,
pem_entry_decode/1,
pem_entry_decode/2,
pem_entry_encode/2,
pem_entry_encode/3,
pkix_decode_cert/2, pkix_encode/3,
encrypt_private/2, encrypt_private/3,
decrypt_private/2, decrypt_private/3,
encrypt_public/2, encrypt_public/3,
decrypt_public/2, decrypt_public/3,
sign/3, verify/4,
generate_key/1,
compute_key/2, compute_key/3,
pkix_sign/2, pkix_verify/2,
pkix_sign_types/1,
pkix_is_self_signed/1,
pkix_is_fixed_dh_cert/1,
pkix_is_issuer/2,
pkix_issuer_id/2,
pkix_normalize_name/1,
pkix_path_validation/3,
ssh_decode/2, ssh_encode/2,
pkix_crls_validate/3
]).
-type rsa_padding() :: 'rsa_pkcs1_padding' | 'rsa_pkcs1_oaep_padding'
| 'rsa_no_padding'.
-type public_crypt_options() :: [{rsa_pad, rsa_padding()}].
-type rsa_digest_type() :: 'md5' | 'sha'| 'sha224' | 'sha256' | 'sha384' | 'sha512'.
-type dss_digest_type() :: 'none' | 'sha'. %% None is for backwards compatibility
-type crl_reason() :: unspecified | keyCompromise | cACompromise | affiliationChanged | superseded
| cessationOfOperation | certificateHold | privilegeWithdrawn | aACompromise.
-type oid() :: tuple().
-define(UINT32(X), X:32/unsigned-big-integer).
-define(DER_NULL, <<5, 0>>).
%%====================================================================
%% API
%%====================================================================
%%--------------------------------------------------------------------
-spec pem_decode(binary()) -> [pem_entry()].
%%
%% Description: Decode PEM binary data and return
%% entries as asn1 der encoded entities.
%%--------------------------------------------------------------------
pem_decode(PemBin) when is_binary(PemBin) ->
pubkey_pem:decode(PemBin).
%%--------------------------------------------------------------------
-spec pem_encode([pem_entry()]) -> binary().
%%
%% Description: Creates a PEM binary.
%%--------------------------------------------------------------------
pem_encode(PemEntries) when is_list(PemEntries) ->
iolist_to_binary(pubkey_pem:encode(PemEntries)).
%%--------------------------------------------------------------------
-spec pem_entry_decode(pem_entry(), [string()]) -> term().
%
%% Description: Decodes a pem entry. pem_decode/1 returns a list of
%% pem entries.
%%--------------------------------------------------------------------
pem_entry_decode({'SubjectPublicKeyInfo', Der, _}) ->
{_, {'AlgorithmIdentifier', AlgId, Params}, {0, Key0}}
= der_decode('SubjectPublicKeyInfo', Der),
KeyType = pubkey_cert_records:supportedPublicKeyAlgorithms(AlgId),
case KeyType of
'RSAPublicKey' ->
der_decode(KeyType, Key0);
'DSAPublicKey' ->
{params, DssParams} = der_decode('DSAParams', Params),
{der_decode(KeyType, Key0), DssParams};
'ECPrivateKey' ->
der_decode(KeyType, Key0)
end;
pem_entry_decode({Asn1Type, Der, not_encrypted}) when is_atom(Asn1Type),
is_binary(Der) ->
der_decode(Asn1Type, Der).
pem_entry_decode({Asn1Type, Der, not_encrypted}, _) when is_atom(Asn1Type),
is_binary(Der) ->
der_decode(Asn1Type, Der);
pem_entry_decode({Asn1Type, CryptDer, {Cipher, #'PBES2-params'{}}} = PemEntry,
Password) when is_atom(Asn1Type) andalso
is_binary(CryptDer) andalso
is_list(Cipher) ->
do_pem_entry_decode(PemEntry, Password);
pem_entry_decode({Asn1Type, CryptDer, {Cipher, Salt}} = PemEntry,
Password) when is_atom(Asn1Type) andalso
is_binary(CryptDer) andalso
is_list(Cipher) andalso
is_binary(Salt) andalso
erlang:byte_size(Salt) == 8 ->
do_pem_entry_decode(PemEntry, Password).
%%--------------------------------------------------------------------
-spec pem_entry_encode(pki_asn1_type(), term()) -> pem_entry().
-spec pem_entry_encode(pki_asn1_type(), term(), term()) -> pem_entry().
%%
%% Description: Creates a pem entry that can be feed to pem_encode/1.
%%--------------------------------------------------------------------
pem_entry_encode('SubjectPublicKeyInfo', Entity=#'RSAPublicKey'{}) ->
Der = der_encode('RSAPublicKey', Entity),
Spki = {'SubjectPublicKeyInfo',
{'AlgorithmIdentifier', ?'rsaEncryption', ?DER_NULL}, {0, Der}},
pem_entry_encode('SubjectPublicKeyInfo', Spki);
pem_entry_encode('SubjectPublicKeyInfo',
{DsaInt, Params=#'Dss-Parms'{}}) when is_integer(DsaInt) ->
KeyDer = der_encode('DSAPublicKey', DsaInt),
ParamDer = der_encode('DSAParams', {params, Params}),
Spki = {'SubjectPublicKeyInfo',
{'AlgorithmIdentifier', ?'id-dsa', ParamDer}, {0, KeyDer}},
pem_entry_encode('SubjectPublicKeyInfo', Spki);
pem_entry_encode(Asn1Type, Entity) when is_atom(Asn1Type) ->
Der = der_encode(Asn1Type, Entity),
{Asn1Type, Der, not_encrypted}.
pem_entry_encode(Asn1Type, Entity, {{Cipher, #'PBES2-params'{}} = CipherInfo,
Password}) when is_atom(Asn1Type) andalso
is_list(Password) andalso
is_list(Cipher) ->
do_pem_entry_encode(Asn1Type, Entity, CipherInfo, Password);
pem_entry_encode(Asn1Type, Entity, {{Cipher, Salt} = CipherInfo,
Password}) when is_atom(Asn1Type) andalso
is_list(Password) andalso
is_list(Cipher) andalso
is_binary(Salt) andalso
erlang:byte_size(Salt) == 8 ->
do_pem_entry_encode(Asn1Type, Entity, CipherInfo, Password).
%%--------------------------------------------------------------------
-spec der_decode(asn1_type(), Der::binary()) -> term().
%%
%% Description: Decodes a public key asn1 der encoded entity.
%%--------------------------------------------------------------------
der_decode(Asn1Type, Der) when (Asn1Type == 'PrivateKeyInfo') or
(Asn1Type == 'EncryptedPrivateKeyInfo')
andalso is_binary(Der) ->
try
{ok, Decoded} = 'PKCS-FRAME':decode(Asn1Type, Der),
Decoded
catch
error:{badmatch, {error, _}} = Error ->
erlang:error(Error)
end;
der_decode(Asn1Type, Der) when is_atom(Asn1Type), is_binary(Der) ->
try
{ok, Decoded} = 'OTP-PUB-KEY':decode(Asn1Type, Der),
Decoded
catch
error:{badmatch, {error, _}} = Error ->
erlang:error(Error)
end.
%%--------------------------------------------------------------------
-spec der_encode(asn1_type(), term()) -> Der::binary().
%%
%% Description: Encodes a public key entity with asn1 DER encoding.
%%--------------------------------------------------------------------
der_encode(Asn1Type, Entity) when (Asn1Type == 'PrivateKeyInfo') or
(Asn1Type == 'EncryptedPrivateKeyInfo') ->
try
{ok, Encoded} = 'PKCS-FRAME':encode(Asn1Type, Entity),
iolist_to_binary(Encoded)
catch
error:{badmatch, {error, _}} = Error ->
erlang:error(Error)
end;
der_encode(Asn1Type, Entity) when is_atom(Asn1Type) ->
try
{ok, Encoded} = 'OTP-PUB-KEY':encode(Asn1Type, Entity),
iolist_to_binary(Encoded)
catch
error:{badmatch, {error, _}} = Error ->
erlang:error(Error)
end.
%%--------------------------------------------------------------------
-spec pkix_decode_cert(Cert::binary(), plain | otp) ->
#'Certificate'{} | #'OTPCertificate'{}.
%%
%% Description: Decodes an asn1 der encoded pkix certificate. The otp
%% option will use the customized asn1 specification OTP-PKIX.asn1 for
%% decoding and also recursively decode most of the standard
%% extensions.
%% --------------------------------------------------------------------
pkix_decode_cert(DerCert, plain) when is_binary(DerCert) ->
der_decode('Certificate', DerCert);
pkix_decode_cert(DerCert, otp) when is_binary(DerCert) ->
try
{ok, #'OTPCertificate'{}= Cert} =
pubkey_cert_records:decode_cert(DerCert),
Cert
catch
error:{badmatch, {error, _}} = Error ->
erlang:error(Error)
end.
%%--------------------------------------------------------------------
-spec pkix_encode(asn1_type(), term(), otp | plain) -> Der::binary().
%%
%% Description: Der encodes a certificate or part of a certificate.
%% This function must be used for encoding certificates or parts of certificates
%% that are decoded with the otp format, whereas for the plain format this
%% function will only call der_encode/2.
%%--------------------------------------------------------------------
pkix_encode(Asn1Type, Term, plain) when is_atom(Asn1Type) ->
der_encode(Asn1Type, Term);
pkix_encode(Asn1Type, Term0, otp) when is_atom(Asn1Type) ->
Term = pubkey_cert_records:transform(Term0, encode),
der_encode(Asn1Type, Term).
%%--------------------------------------------------------------------
-spec decrypt_private(CipherText :: binary(), rsa_private_key()) ->
PlainText :: binary().
-spec decrypt_private(CipherText :: binary(), rsa_private_key(),
public_crypt_options()) -> PlainText :: binary().
%%
%% Description: Public key decryption using the private key.
%%--------------------------------------------------------------------
decrypt_private(CipherText, Key) ->
decrypt_private(CipherText, Key, []).
decrypt_private(CipherText,
#'RSAPrivateKey'{modulus = N, publicExponent = E,
privateExponent = D} = Key,
Options)
when is_binary(CipherText),
is_list(Options) ->
Padding = proplists:get_value(rsa_pad, Options, rsa_pkcs1_padding),
crypto:rsa_private_decrypt(CipherText, format_rsa_private_key(Key), Padding).
%%--------------------------------------------------------------------
-spec decrypt_public(CipherText :: binary(), rsa_public_key() | rsa_private_key()) ->
PlainText :: binary().
-spec decrypt_public(CipherText :: binary(), rsa_public_key() | rsa_private_key(),
public_crypt_options()) -> PlainText :: binary().
%% NOTE: The rsa_private_key() is not part of the documented API it is
%% here for testing purposes, in a real situation this is not a relevant
%% thing to do.
%%
%% Description: Public key decryption using the public key.
%%--------------------------------------------------------------------
decrypt_public(CipherText, Key) ->
decrypt_public(CipherText, Key, []).
decrypt_public(CipherText, #'RSAPublicKey'{modulus = N, publicExponent = E},
Options) when is_binary(CipherText), is_list(Options) ->
decrypt_public(CipherText, N,E, Options);
decrypt_public(CipherText,#'RSAPrivateKey'{modulus = N, publicExponent = E},
Options) when is_binary(CipherText), is_list(Options) ->
decrypt_public(CipherText, N,E, Options).
%%--------------------------------------------------------------------
-spec encrypt_public(PlainText :: binary(), rsa_public_key() | rsa_private_key()) ->
CipherText :: binary().
-spec encrypt_public(PlainText :: binary(), rsa_public_key() | rsa_private_key(),
public_crypt_options()) -> CipherText :: binary().
%% NOTE: The rsa_private_key() is not part of the documented API it is
%% here for testing purposes, in a real situation this is not a relevant
%% thing to do.
%%
%% Description: Public key encryption using the public key.
%%--------------------------------------------------------------------
encrypt_public(PlainText, Key) ->
encrypt_public(PlainText, Key, []).
encrypt_public(PlainText, #'RSAPublicKey'{modulus=N,publicExponent=E},
Options) when is_binary(PlainText), is_list(Options) ->
encrypt_public(PlainText, N,E, Options);
encrypt_public(PlainText, #'RSAPrivateKey'{modulus=N,publicExponent=E},
Options) when is_binary(PlainText), is_list(Options) ->
encrypt_public(PlainText, N,E, Options).
%%--------------------------------------------------------------------
-spec encrypt_private(PlainText :: binary(), rsa_private_key()) ->
CipherText :: binary().
-spec encrypt_private(PlainText :: binary(), rsa_private_key(),
public_crypt_options()) -> CipherText :: binary().
%%
%% Description: Public key encryption using the private key.
%%--------------------------------------------------------------------
encrypt_private(PlainText, Key) ->
encrypt_private(PlainText, Key, []).
encrypt_private(PlainText,
#'RSAPrivateKey'{modulus = N, publicExponent = E,
privateExponent = D} = Key,
Options)
when is_binary(PlainText),
is_integer(N), is_integer(E), is_integer(D),
is_list(Options) ->
Padding = proplists:get_value(rsa_pad, Options, rsa_pkcs1_padding),
crypto:rsa_private_encrypt(PlainText, format_rsa_private_key(Key), Padding).
%%--------------------------------------------------------------------
-spec generate_key(#'ECPrivateKey'{} | {curve, Name ::atom()} | #'DHParameter'{}) -> {'ECKey', term()} | {binary(), binary()}.
%% Description: Generates new key(s)
%%--------------------------------------------------------------------
generate_key({curve, Name}) ->
%% TODO: Better crypto API
ECDHKey = crypto:ec_key_new(Name),
crypto:ec_key_generate(ECDHKey),
Term = crypto:ec_key_to_term(ECDHKey),
ec_key(Term);
generate_key(#'DHParameter'{prime = P, base = G}) ->
crypto:dh_generate_key([crypto:mpint(P), crypto:mpint(G)]);
generate_key({dh, Prime, Base}) when is_binary(Prime), is_binary(Base) ->
%% TODO: Is mpint could be normal binary!
crypto:dh_generate_key([Prime, Base]);
generate_key({srp, Version, Generator, Prime}) when is_binary(Generator), is_binary(Prime) ->
crypto:srp_generate_key(Generator, Prime, Version);
generate_key({srp, Version, Verifier, Generator, Prime}) when is_binary(Verifier), is_binary(Generator), is_binary(Prime) ->
crypto:srp_generate_key(Verifier, Generator, Prime, Version);
generate_key(Params) ->
%% TODO: Better crypto API
Name = ec_curve_spec(Params),
ECClntKey = crypto:ec_key_new(Name),
%% ECDHKey = format_ecdh_key(Params),
%% ECClntKey = crypto:term_to_ec_key(ECDHKey),
crypto:ec_key_generate(ECClntKey),
Term = crypto:ec_key_to_term(ECClntKey),
ec_key(Term, Params).
%%--------------------------------------------------------------------
-spec compute_key(#'ECPoint'{}, #'ECPrivateKey'{} | crypto:ecdh_key()) -> binary().
-spec compute_key(OthersKey ::binary(), MyKey::binary() | {binary(), binary()},
{dh, binary(), binary()} |
{srp,'3'|'6'| '6a' , binary(), binary()} |
{srp, string(), string(), binary(), '3'|'6'| '6a', binary(), binary()})
-> binary().
%% Description: Compute shared secret
%%--------------------------------------------------------------------
compute_key(PubKey, #'ECPrivateKey'{} = PrivateKey) ->
compute_key(PubKey, format_ecdh_key(PrivateKey));
compute_key(#'ECPoint'{point = Point}, ECDHKeys) ->
%% TODO: Better crypto API
ECKey = crypto:term_to_ec_key(ECDHKeys),
crypto:ecdh_compute_key(ECKey, Point).
compute_key(OthersKey, MyKey, {dh, Prime, Base}) when is_binary(OthersKey),
is_binary(MyKey),
is_binary(Prime),
is_binary(Base) ->
%% TODO: Is mpint could be binary!
crypto:dh_compute_key(OthersKey, MyKey, [Prime, Base]);
compute_key(ClientPub, {ServerPub, ServerPriv}, {srp, Version, Verifier, Prime}) ->
crypto:srp_compute_key(Verifier, Prime, ClientPub, ServerPub, ServerPriv, Version);
compute_key(ServerPub, {ClientPub, ClientPriv}, {srp, Username, Password, Salt, Version, Prime, Generator}) ->
DerivedKey = crypto:sha([Salt, crypto:sha([Username, <<$:>>, Password])]),
crypto:srp_compute_key(DerivedKey, Prime, Generator, ClientPub, ClientPriv, ServerPub, Version).
%%--------------------------------------------------------------------
-spec pkix_sign_types(SignatureAlg::oid()) ->
%% Relevant dsa digest type is subpart of rsa digest type
{ DigestType :: rsa_digest_type(),
SignatureType :: rsa | dsa
}.
%% Description:
%%--------------------------------------------------------------------
pkix_sign_types(?sha1WithRSAEncryption) ->
{sha, rsa};
pkix_sign_types(?'sha-1WithRSAEncryption') ->
{sha, rsa};
pkix_sign_types(?sha224WithRSAEncryption) ->
{sha224, rsa};
pkix_sign_types(?sha256WithRSAEncryption) ->
{sha256, rsa};
pkix_sign_types(?sha384WithRSAEncryption) ->
{sha384, rsa};
pkix_sign_types(?sha512WithRSAEncryption) ->
{sha512, rsa};
pkix_sign_types(?md5WithRSAEncryption) ->
{md5, rsa};
pkix_sign_types(?'id-dsa-with-sha1') ->
{sha, dsa};
pkix_sign_types(?'id-dsaWithSHA1') ->
{sha, dsa};
pkix_sign_types(?'ecdsa-with-SHA1') ->
{sha, ecdsa};
pkix_sign_types(?'ecdsa-with-SHA256') ->
{sha256, ecdsa};
pkix_sign_types(?'ecdsa-with-SHA384') ->
{sha384, ecdsa};
pkix_sign_types(?'ecdsa-with-SHA512') ->
{sha512, ecdsa}.
%%--------------------------------------------------------------------
-spec sign(binary() | {digest, binary()}, rsa_digest_type() | dss_digest_type(),
rsa_private_key() |
dsa_private_key()) -> Signature :: binary().
%% Description: Create digital signature.
%%--------------------------------------------------------------------
sign(DigestOrPlainText, DigestType, Key = #'RSAPrivateKey'{}) ->
crypto:sign(rsa, DigestType, DigestOrPlainText, format_rsa_private_key(Key));
sign(DigestOrPlainText, sha, #'DSAPrivateKey'{p = P, q = Q, g = G, x = X}) ->
crypto:sign(dss, sha, DigestOrPlainText, [P, Q, G, X]);
sign(DigestOrPlainText, DigestType, Key = #'ECPrivateKey'{}) ->
ECDHKey = format_ecdh_key(Key),
ECKey = crypto:term_to_ec_key(ECDHKey),
crypto:sign(ecdsa, DigestType, DigestOrPlainText, ECKey);
%% Backwards compatible
sign(Digest, none, #'DSAPrivateKey'{} = Key) ->
sign({digest,Digest}, sha, Key).
%%--------------------------------------------------------------------
-spec verify(binary() | {digest, binary()}, rsa_digest_type() | dss_digest_type(),
Signature :: binary(), rsa_public_key()
| dsa_public_key()) -> boolean().
%% Description: Verifies a digital signature.
%%--------------------------------------------------------------------
verify(DigestOrPlainText, DigestType, Signature,
#'RSAPublicKey'{modulus = Mod, publicExponent = Exp}) ->
crypto:verify(rsa, DigestType, DigestOrPlainText, Signature,
[Exp, Mod]);
verify(Digest, DigestType, Signature, Key = #'ECPrivateKey'{}) ->
ECDHKey = format_ecdh_key(Key),
ECKey = crypto:term_to_ec_key(ECDHKey),
crypto:verify(ecdsa, DigestType, Digest, Signature, ECKey);
verify(DigestOrPlaintext, DigestType, Signature, Key = {#'ECPoint'{}, _}) ->
ECDHKey = format_ecdh_key(Key),
ECKey = crypto:term_to_ec_key(ECDHKey),
crypto:verify(ecdsa, DigestType, DigestOrPlaintext, Signature, ECKey);
%% Backwards compatibility
verify(Digest, none, Signature, {_, #'Dss-Parms'{}} = Key ) ->
verify({digest,Digest}, sha, Signature, Key);
verify(DigestOrPlainText, sha = DigestType, Signature, {Key, #'Dss-Parms'{p = P, q = Q, g = G}})
when is_integer(Key), is_binary(Signature) ->
crypto:verify(dss, DigestType, DigestOrPlainText, Signature, [P, Q, G, Key]).
%%--------------------------------------------------------------------
-spec pkix_sign(#'OTPTBSCertificate'{},
rsa_private_key() | dsa_private_key()) -> Der::binary().
%%
%% Description: Sign a pkix x.509 certificate. Returns the corresponding
%% der encoded 'Certificate'{}
%%--------------------------------------------------------------------
pkix_sign(#'OTPTBSCertificate'{signature =
#'SignatureAlgorithm'{algorithm = Alg}
= SigAlg} = TBSCert, Key) ->
Msg = pkix_encode('OTPTBSCertificate', TBSCert, otp),
{DigestType, _} = pkix_sign_types(Alg),
Signature = sign(Msg, DigestType, Key),
Cert = #'OTPCertificate'{tbsCertificate= TBSCert,
signatureAlgorithm = SigAlg,
signature = {0, Signature}
},
pkix_encode('OTPCertificate', Cert, otp).
%%--------------------------------------------------------------------
-spec pkix_verify(Cert::binary(), rsa_public_key()|
dsa_public_key()) -> boolean().
%%
%% Description: Verify pkix x.509 certificate signature.
%%--------------------------------------------------------------------
pkix_verify(DerCert, {Key, #'Dss-Parms'{}} = DSAKey)
when is_binary(DerCert), is_integer(Key) ->
{DigestType, PlainText, Signature} = pubkey_cert:verify_data(DerCert),
verify(PlainText, DigestType, Signature, DSAKey);
pkix_verify(DerCert, #'RSAPublicKey'{} = RSAKey)
when is_binary(DerCert) ->
{DigestType, PlainText, Signature} = pubkey_cert:verify_data(DerCert),
verify(PlainText, DigestType, Signature, RSAKey);
pkix_verify(DerCert, #'ECPrivateKey'{} = ECKey)
when is_binary(DerCert) ->
{DigestType, PlainText, Signature} = pubkey_cert:verify_data(DerCert),
verify(PlainText, DigestType, Signature, ECKey);
pkix_verify(DerCert, Key = {'ECKey', _})
when is_binary(DerCert) ->
{DigestType, PlainText, Signature} = pubkey_cert:verify_data(DerCert),
verify(PlainText, DigestType, Signature, Key).
%%--------------------------------------------------------------------
-spec pkix_is_issuer(Cert :: der_encoded()| #'OTPCertificate'{} | #'CertificateList'{},
IssuerCert :: der_encoded()|
#'OTPCertificate'{}) -> boolean().
%%
%% Description: Checks if <IssuerCert> issued <Cert>.
%%--------------------------------------------------------------------
pkix_is_issuer(Cert, IssuerCert) when is_binary(Cert) ->
OtpCert = pkix_decode_cert(Cert, otp),
pkix_is_issuer(OtpCert, IssuerCert);
pkix_is_issuer(Cert, IssuerCert) when is_binary(IssuerCert) ->
OtpIssuerCert = pkix_decode_cert(IssuerCert, otp),
pkix_is_issuer(Cert, OtpIssuerCert);
pkix_is_issuer(#'OTPCertificate'{tbsCertificate = TBSCert},
#'OTPCertificate'{tbsCertificate = Candidate}) ->
pubkey_cert:is_issuer(TBSCert#'OTPTBSCertificate'.issuer,
Candidate#'OTPTBSCertificate'.subject);
pkix_is_issuer(#'CertificateList'{tbsCertList = TBSCRL},
#'OTPCertificate'{tbsCertificate = Candidate}) ->
pubkey_cert:is_issuer(Candidate#'OTPTBSCertificate'.subject,
pubkey_cert_records:transform(TBSCRL#'TBSCertList'.issuer, decode)).
%%--------------------------------------------------------------------
-spec pkix_is_self_signed(Cert::binary()| #'OTPCertificate'{}) -> boolean().
%%
%% Description: Checks if a Certificate is self signed.
%%--------------------------------------------------------------------
pkix_is_self_signed(#'OTPCertificate'{} = OTPCert) ->
pubkey_cert:is_self_signed(OTPCert);
pkix_is_self_signed(Cert) when is_binary(Cert) ->
OtpCert = pkix_decode_cert(Cert, otp),
pkix_is_self_signed(OtpCert).
%%--------------------------------------------------------------------
-spec pkix_is_fixed_dh_cert(Cert::binary()| #'OTPCertificate'{}) -> boolean().
%%
%% Description: Checks if a Certificate is a fixed Diffie-Hellman Cert.
%%--------------------------------------------------------------------
pkix_is_fixed_dh_cert(#'OTPCertificate'{} = OTPCert) ->
pubkey_cert:is_fixed_dh_cert(OTPCert);
pkix_is_fixed_dh_cert(Cert) when is_binary(Cert) ->
OtpCert = pkix_decode_cert(Cert, otp),
pkix_is_fixed_dh_cert(OtpCert).
%%--------------------------------------------------------------------
-spec pkix_issuer_id(Cert::binary()| #'OTPCertificate'{},
IssuedBy :: self | other) ->
{ok, {SerialNr :: integer(),
Issuer :: {rdnSequence,
[#'AttributeTypeAndValue'{}]}}}
| {error, Reason :: term()}.
%
%% Description: Returns the issuer id.
%%--------------------------------------------------------------------
pkix_issuer_id(#'OTPCertificate'{} = OtpCert, self) ->
pubkey_cert:issuer_id(OtpCert, self);
pkix_issuer_id(#'OTPCertificate'{} = OtpCert, other) ->
pubkey_cert:issuer_id(OtpCert, other);
pkix_issuer_id(Cert, Signed) when is_binary(Cert) ->
OtpCert = pkix_decode_cert(Cert, otp),
pkix_issuer_id(OtpCert, Signed).
%%--------------------------------------------------------------------
-spec pkix_normalize_name({rdnSequence,
[#'AttributeTypeAndValue'{}]}) ->
{rdnSequence,
[#'AttributeTypeAndValue'{}]}.
%%
%% Description: Normalizes a issuer name so that it can be easily
%% compared to another issuer name.
%%--------------------------------------------------------------------
pkix_normalize_name(Issuer) ->
pubkey_cert:normalize_general_name(Issuer).
%%--------------------------------------------------------------------
-spec pkix_path_validation(Cert::binary()| #'OTPCertificate'{} | atom(),
CertChain :: [binary()] ,
Options :: proplists:proplist()) ->
{ok, {PublicKeyInfo :: term(),
PolicyTree :: term()}} |
{error, {bad_cert, Reason :: term()}}.
%% Description: Performs a basic path validation according to RFC 5280.
%%--------------------------------------------------------------------
pkix_path_validation(PathErr, [Cert | Chain], Options0) when is_atom(PathErr)->
{VerifyFun, Userstat0} =
proplists:get_value(verify_fun, Options0, ?DEFAULT_VERIFYFUN),
Otpcert = otp_cert(Cert),
Reason = {bad_cert, PathErr},
try VerifyFun(Otpcert, Reason, Userstat0) of
{valid, Userstate} ->
Options = proplists:delete(verify_fun, Options0),
pkix_path_validation(Otpcert, Chain, [{verify_fun,
{VerifyFun, Userstate}}| Options]);
{fail, _} ->
{error, Reason}
catch
_:_ ->
{error, Reason}
end;
pkix_path_validation(TrustedCert, CertChain, Options)
when is_binary(TrustedCert) ->
OtpCert = pkix_decode_cert(TrustedCert, otp),
pkix_path_validation(OtpCert, CertChain, Options);
pkix_path_validation(#'OTPCertificate'{} = TrustedCert, CertChain, Options)
when is_list(CertChain), is_list(Options) ->
MaxPathDefault = length(CertChain),
ValidationState = pubkey_cert:init_validation_state(TrustedCert,
MaxPathDefault,
Options),
path_validation(CertChain, ValidationState).
%--------------------------------------------------------------------
-spec pkix_crls_validate(#'OTPCertificate'{},
[{DP::#'DistributionPoint'{} ,CRL::#'CertificateList'{}}],
Options :: proplists:proplist()) -> valid | {bad_cert, revocation_status_undetermined}
| {bad_cert, {revoked, crl_reason()}}.
%% Description: Performs a basic path validation according to RFC 5280.
%%--------------------------------------------------------------------
pkix_crls_validate(OtpCert, [{_,_,_} |_] = DPAndCRLs, Options) ->
pkix_crls_validate(OtpCert, DPAndCRLs, DPAndCRLs,
Options, pubkey_crl:init_revokation_state());
pkix_crls_validate(OtpCert, DPAndCRLs0, Options) ->
CallBack = proplists:get_value(update_crl, Options, fun(_, CurrCRL) ->
CurrCRL
end),
DPAndCRLs = sort_dp_crls(DPAndCRLs0, CallBack),
pkix_crls_validate(OtpCert, DPAndCRLs, DPAndCRLs,
Options, pubkey_crl:init_revokation_state()).
%%--------------------------------------------------------------------
-spec ssh_decode(binary(), public_key | ssh_file()) -> [{public_key(), Attributes::list()}].
%%
%% Description: Decodes a ssh file-binary. In the case of know_hosts
%% or auth_keys the binary may include one or more lines of the
%% file. Returns a list of public keys and their attributes, possible
%% attribute values depends on the file type represented by the
%% binary.
%%--------------------------------------------------------------------
ssh_decode(SshBin, Type) when is_binary(SshBin),
Type == public_key;
Type == rfc4716_public_key;
Type == openssh_public_key;
Type == auth_keys;
Type == known_hosts ->
pubkey_ssh:decode(SshBin, Type).
%%--------------------------------------------------------------------
-spec ssh_encode([{public_key(), Attributes::list()}], ssh_file()) ->
binary().
%% Description: Encodes a list of ssh file entries (public keys and
%% attributes) to a binary. Possible attributes depends on the file
%% type.
%%--------------------------------------------------------------------
ssh_encode(Entries, Type) when is_list(Entries),
Type == rfc4716_public_key;
Type == openssh_public_key;
Type == auth_keys;
Type == known_hosts ->
pubkey_ssh:encode(Entries, Type).
%%--------------------------------------------------------------------
%%% Internal functions
%%--------------------------------------------------------------------
do_pem_entry_encode(Asn1Type, Entity, CipherInfo, Password) ->
Der = der_encode(Asn1Type, Entity),
DecryptDer = pubkey_pem:cipher(Der, CipherInfo, Password),
{Asn1Type, DecryptDer, CipherInfo}.
do_pem_entry_decode({Asn1Type,_, _} = PemEntry, Password) ->
Der = pubkey_pem:decipher(PemEntry, Password),
der_decode(Asn1Type, Der).
encrypt_public(PlainText, N, E, Options)->
Padding = proplists:get_value(rsa_pad, Options, rsa_pkcs1_padding),
crypto:rsa_public_encrypt(PlainText, [E,N],
Padding).
decrypt_public(CipherText, N,E, Options) ->
Padding = proplists:get_value(rsa_pad, Options, rsa_pkcs1_padding),
crypto:rsa_public_decrypt(CipherText,[E, N],
Padding).
path_validation([], #path_validation_state{working_public_key_algorithm
= Algorithm,
working_public_key =
PublicKey,
working_public_key_parameters
= PublicKeyParams,
valid_policy_tree = Tree
}) ->
{ok, {{Algorithm, PublicKey, PublicKeyParams}, Tree}};
path_validation([DerCert | Rest], ValidationState = #path_validation_state{
max_path_length = Len}) when Len >= 0 ->
try validate(DerCert,
ValidationState#path_validation_state{last_cert=Rest=:=[]}) of
#path_validation_state{} = NewValidationState ->
path_validation(Rest, NewValidationState)
catch
throw:Reason ->
{error, Reason}
end;
path_validation([Cert | _] = Path,
#path_validation_state{user_state = UserState0,
verify_fun = VerifyFun} =
ValidationState) ->
Reason = {bad_cert, max_path_length_reached},
OtpCert = otp_cert(Cert),
try VerifyFun(OtpCert, Reason, UserState0) of
{valid, UserState} ->
path_validation(Path,
ValidationState#path_validation_state{
max_path_length = 0,
user_state = UserState});
{fail, _} ->
{error, Reason}
catch
_:_ ->
{error, Reason}
end.
validate(Cert, #path_validation_state{working_issuer_name = Issuer,
working_public_key = Key,
working_public_key_parameters =
KeyParams,
permitted_subtrees = Permit,
excluded_subtrees = Exclude,
last_cert = Last,
user_state = UserState0,
verify_fun = VerifyFun} =
ValidationState0) ->
OtpCert = otp_cert(Cert),
{ValidationState1, UserState1} =
pubkey_cert:validate_extensions(OtpCert, ValidationState0, UserState0,
VerifyFun),
%% We want the key_usage extension to be checked before we validate
%% other things so that CRL validation errors will comply to standard
%% test suite description
UserState2 = pubkey_cert:validate_time(OtpCert, UserState1, VerifyFun),
UserState3 = pubkey_cert:validate_issuer(OtpCert, Issuer, UserState2, VerifyFun),
UserState4 = pubkey_cert:validate_names(OtpCert, Permit, Exclude, Last,
UserState3, VerifyFun),
UserState5 = pubkey_cert:validate_signature(OtpCert, der_cert(Cert),
Key, KeyParams, UserState4, VerifyFun),
UserState = case Last of
false ->
pubkey_cert:verify_fun(OtpCert, valid, UserState5, VerifyFun);
true ->
pubkey_cert:verify_fun(OtpCert, valid_peer,
UserState5, VerifyFun)
end,
ValidationState =
ValidationState1#path_validation_state{user_state = UserState},
pubkey_cert:prepare_for_next_cert(OtpCert, ValidationState).
sized_binary(Binary) ->
Size = size(Binary),
<<?UINT32(Size), Binary/binary>>.
otp_cert(Der) when is_binary(Der) ->
pkix_decode_cert(Der, otp);
otp_cert(#'OTPCertificate'{} =Cert) ->
Cert.
der_cert(#'OTPCertificate'{} = Cert) ->
pkix_encode('OTPCertificate', Cert, otp);
der_cert(Der) when is_binary(Der) ->
Der.
pkix_crls_validate(_, [],_, _, _) ->
{bad_cert, revocation_status_undetermined};
pkix_crls_validate(OtpCert, [{DP, CRL, DeltaCRL} | Rest], All, Options, RevokedState0) ->
CallBack = proplists:get_value(update_crl, Options, fun(_, CurrCRL) ->
CurrCRL
end),
case pubkey_crl:fresh_crl(DP, CRL, CallBack) of
{fresh, CRL} ->
do_pkix_crls_validate(OtpCert, [{DP, CRL, DeltaCRL} | Rest],
All, Options, RevokedState0);
{fresh, NewCRL} ->
NewAll = [{DP, NewCRL, DeltaCRL} | All -- [{DP, CRL, DeltaCRL}]],
do_pkix_crls_validate(OtpCert, [{DP, NewCRL, DeltaCRL} | Rest],
NewAll, Options, RevokedState0);
no_fresh_crl ->
pkix_crls_validate(OtpCert, Rest, All, Options, RevokedState0)
end.
do_pkix_crls_validate(OtpCert, [{DP, CRL, DeltaCRL} | Rest], All, Options, RevokedState0) ->
OtherDPCRLs = All -- [{DP, CRL, DeltaCRL}],
case pubkey_crl:validate(OtpCert, OtherDPCRLs, DP, CRL, DeltaCRL, Options, RevokedState0) of
{undetermined, _, _} when Rest == []->
{bad_cert, revocation_status_undetermined};
{undetermined, _, RevokedState} when Rest =/= []->
pkix_crls_validate(OtpCert, Rest, All, Options, RevokedState);
{finished, unrevoked} ->
valid;
{finished, Status} ->
{bad_cert, Status}
end.
sort_dp_crls(DpsAndCrls, FreshCB) ->
Sorted = do_sort_dp_crls(DpsAndCrls, dict:new()),
sort_crls(Sorted, FreshCB, []).
do_sort_dp_crls([], Dict) ->
dict:to_list(Dict);
do_sort_dp_crls([{DP, CRL} | Rest], Dict0) ->
Dict = try dict:fetch(DP, Dict0) of
_ ->
dict:append(DP, CRL, Dict0)
catch _:_ ->
dict:store(DP, [CRL], Dict0)
end,
do_sort_dp_crls(Rest, Dict).
sort_crls([], _, Acc) ->
Acc;
sort_crls([{DP, AllCRLs} | Rest], FreshCB, Acc)->
{DeltaCRLs, CRLs} = do_sort_crls(AllCRLs),
DpsAndCRLs = combine(CRLs, DeltaCRLs, DP, FreshCB, []),
sort_crls(Rest, FreshCB, DpsAndCRLs ++ Acc).
do_sort_crls(CRLs) ->
lists:partition(fun({_, CRL}) ->
pubkey_crl:is_delta_crl(CRL)
end, CRLs).
combine([], _,_,_,Acc) ->
Acc;
combine([{_, CRL} = Entry | CRLs], DeltaCRLs, DP, FreshCB, Acc) ->
DeltaCRL = combine(CRL, DeltaCRLs),
case pubkey_crl:fresh_crl(DP, DeltaCRL, FreshCB) of
no_fresh_crl ->
combine(CRLs, DeltaCRLs, DP, FreshCB, [{DP, Entry, {undefined, undefined}} | Acc]);
{fresh, NewDeltaCRL} ->
combine(CRLs, DeltaCRLs, DP, FreshCB, [{DP, Entry, NewDeltaCRL} | Acc])
end.
combine(CRL, DeltaCRLs) ->
Deltas = lists:filter(fun({_,DeltaCRL}) ->
pubkey_crl:combines(CRL, DeltaCRL)
end, DeltaCRLs),
case Deltas of
[] ->
{undefined, undefined};
[Delta] ->
Delta;
[_,_|_] ->
Fun =
fun({_, #'CertificateList'{tbsCertList = FirstTBSCRL}} = CRL1,
{_, #'CertificateList'{tbsCertList = SecondTBSCRL}} = CRL2) ->
Time1 = pubkey_cert:time_str_2_gregorian_sec(
FirstTBSCRL#'TBSCertList'.thisUpdate),
Time2 = pubkey_cert:time_str_2_gregorian_sec(
SecondTBSCRL#'TBSCertList'.thisUpdate),
case Time1 > Time2 of
true ->
CRL1;
false ->
CRL2
end
end,
lists:foldl(Fun, hd(Deltas), tl(Deltas))
end.
format_rsa_private_key(#'RSAPrivateKey'{modulus = N, publicExponent = E,
privateExponent = D,
prime1 = P1, prime2 = P2,
exponent1 = E1, exponent2 = E2,
coefficient = C})
when is_integer(N), is_integer(E), is_integer(D),
is_integer(P1), is_integer(P2),
is_integer(E1), is_integer(E2), is_integer(C) ->
[E, N, D, P1, P2, E1, E2, C];
format_rsa_private_key(#'RSAPrivateKey'{modulus = N, publicExponent = E,
privateExponent = D}) when is_integer(N),
is_integer(E),
is_integer(D) ->
[E, N, D].
format_ecdh_key(#'ECPrivateKey'{privateKey = PrivKey,
parameters = Param,
publicKey = _}) ->
ECCurve = ec_curve_spec(Param),
{ECCurve, list2int(PrivKey), undefined};
format_ecdh_key({#'ECPoint'{point = Point}, Param}) ->
ECCurve = ec_curve_spec(Param),
{ECCurve, undefined, Point}.
ec_curve_spec( #'OTPECParameters'{fieldID = FieldId, curve = PCurve, base = Base, order = Order, cofactor = CoFactor }) ->
Field = {pubkey_cert_records:supportedCurvesTypes(FieldId#'OTPFieldID'.fieldType),
FieldId#'OTPFieldID'.parameters},
Curve = {list2int(PCurve#'Curve'.a), list2int(PCurve#'Curve'.b), none},
{Field, Curve, erlang:list_to_binary(Base), Order, CoFactor};
ec_curve_spec({namedCurve, OID}) ->
pubkey_cert_records:namedCurves(OID).
ec_key({Curve, PrivateKey, PubKey}) when is_atom(Curve) ->
#'ECPrivateKey'{version = 1,
privateKey = int2list(PrivateKey),
parameters = {namedCurve, pubkey_cert_records:namedCurves(Curve)},
publicKey = {0, PubKey}}.
ec_key({Curve, PrivateKey, PubKey}, _Params) when is_atom(Curve) ->
#'ECPrivateKey'{version = 1,
privateKey = int2list(PrivateKey),
parameters = {namedCurve, pubkey_cert_records:namedCurves(Curve)},
publicKey = {0, PubKey}};
ec_key({_Curve, PrivateKey, PubKey}, Params) ->
#'ECPrivateKey'{version = 1,
privateKey = int2list(PrivateKey),
parameters = Params,
publicKey = {0, PubKey}}.
list2int(L) ->
S = length(L) * 8,
<<R:S/integer>> = erlang:iolist_to_binary(L),
R.
int2list(I) ->
L = (length(integer_to_list(I, 16)) + 1) div 2,
binary_to_list(<<I:(L*8)>>).