%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2007-2010. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%
%%----------------------------------------------------------------------
%% Purpose: Record and constant defenitions for the SSL ciphers and
%% the SSL-cipher protocol see RFC 4346, RFC 3268
%%----------------------------------------------------------------------
-ifndef(ssl_cipher).
-define(ssl_cipher, true).
-type cipher() :: null |rc4_128 | idea_cbc | des40_cbc | des_cbc | '3des_ede_cbc'
| aes_128_cbc | aes_256_cbc.
-type hash() :: null | sha | md5.
-type erl_cipher_suite() :: {key_algo(), cipher(), hash()}.
-type cipher_suite() :: binary().
-type cipher_enum() :: integer().
-type openssl_cipher_suite() :: string().
%%% SSL cipher protocol %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-define(CHANGE_CIPHER_SPEC_PROTO, 1). % _PROTO to not clash with
% SSL record protocol
-record(change_cipher_spec, {
type = 1
}).
%%% SSL cipher suites %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% -record(cipher_state,
%% {
%% suite,
%% name,
%% state
%% }).
-record(cipher_state, {
iv,
key,
state
}).
%%% TLS_NULL_WITH_NULL_NULL is specified and is the initial state of a
%%% TLS connection during the first handshake on that channel, but
%%% must not be negotiated, as it provides no more protection than an
%%% unsecured connection.
%% TLS_NULL_WITH_NULL_NULL = { 0x00,0x00 };
-define(TLS_NULL_WITH_NULL_NULL, <<?BYTE(16#00), ?BYTE(16#00)>>).
%%% The following cipher suite definitions require that the server
%%% provide an RSA certificate that can be used for key exchange. The
%%% server may request either an RSA or a DSS signature-capable
%%% certificate in the certificate request message.
%% TLS_RSA_WITH_NULL_MD5 = { 0x00,0x01 };
-define(TLS_RSA_WITH_NULL_MD5, <<?BYTE(16#00), ?BYTE(16#01)>>).
%% TLS_RSA_WITH_NULL_SHA = { 0x00,0x02 };
-define(TLS_RSA_WITH_NULL_SHA, <<?BYTE(16#00), ?BYTE(16#02)>>).
%% TLS_RSA_WITH_RC4_128_MD5 = { 0x00,0x04 };
-define(TLS_RSA_WITH_RC4_128_MD5, <<?BYTE(16#00), ?BYTE(16#04)>>).
%% TLS_RSA_WITH_RC4_128_SHA = { 0x00,0x05 };
-define(TLS_RSA_WITH_RC4_128_SHA, <<?BYTE(16#00), ?BYTE(16#05)>>).
%% TLS_RSA_WITH_IDEA_CBC_SHA = { 0x00,0x07 };
-define(TLS_RSA_WITH_IDEA_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#07)>>).
%% TLS_RSA_WITH_DES_CBC_SHA = { 0x00,0x09 };
-define(TLS_RSA_WITH_DES_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#09)>>).
%% TLS_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x0A };
-define(TLS_RSA_WITH_3DES_EDE_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#0A)>>).
%%% The following CipherSuite definitions are used for server-
%%% authenticated (and optionally client-authenticated)
%%% Diffie-Hellman. DH denotes cipher suites in which the server's
%%% certificate contains the Diffie-Hellman parameters signed by the
%%% certificate authority (CA). DHE denotes ephemeral Diffie-Hellman,
%%% where the Diffie-Hellman parameters are signed by a DSS or RSA
%%% certificate, which has been signed by the CA. The signing
%%% algorithm used is specified after the DH or DHE parameter. The
%%% server can request an RSA or DSS signature- capable certificate
%%% from the client for client authentication or it may request a
%%% Diffie-Hellman certificate. Any Diffie-Hellman certificate
%%% provided by the client must use the parameters (group and
%%% generator) described by the server.
%% TLS_DH_DSS_WITH_DES_CBC_SHA = { 0x00,0x0C };
-define(TLS_DH_DSS_WITH_DES_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#0C)>>).
%% TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x0D };
-define(TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#0D)>>).
%% TLS_DH_RSA_WITH_DES_CBC_SHA = { 0x00,0x0F };
-define(TLS_DH_RSA_WITH_DES_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#0F)>>).
%% TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x10 };
-define(TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#10)>>).
%% TLS_DHE_DSS_WITH_DES_CBC_SHA = { 0x00,0x12 };
-define(TLS_DHE_DSS_WITH_DES_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#12)>>).
%% TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA = { 0x00,0x13 };
-define(TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#13)>>).
%% TLS_DHE_RSA_WITH_DES_CBC_SHA = { 0x00,0x15 };
-define(TLS_DHE_RSA_WITH_DES_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#15)>>).
%% TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA = { 0x00,0x16 };
-define(TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#16)>>).
%% TLS_DH_anon_WITH_RC4_128_MD5 = { 0x00,0x18 };
-define(TLS_DH_anon_WITH_RC4_128_MD5, <<?BYTE(16#00),?BYTE(16#18)>>).
%% TLS_DH_anon_WITH_DES_CBC_SHA = { 0x00,0x1A };
-define(TLS_DH_anon_WITH_DES_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#1A)>>).
%% TLS_DH_anon_WITH_3DES_EDE_CBC_SHA = { 0x00,0x1B };
-define(TLS_DH_anon_WITH_3DES_EDE_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#1B)>>).
%%% AES Cipher Suites RFC 3268
%% TLS_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x2F };
-define(TLS_RSA_WITH_AES_128_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#2F)>>).
%% TLS_DH_DSS_WITH_AES_128_CBC_SHA = { 0x00, 0x30 };
-define(TLS_DH_DSS_WITH_AES_128_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#30)>>).
%% TLS_DH_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x31 };
-define(TLS_DH_RSA_WITH_AES_128_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#31)>>).
%% TLS_DHE_DSS_WITH_AES_128_CBC_SHA = { 0x00, 0x32 };
-define(TLS_DHE_DSS_WITH_AES_128_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#32)>>).
%% TLS_DHE_RSA_WITH_AES_128_CBC_SHA = { 0x00, 0x33 };
-define(TLS_DHE_RSA_WITH_AES_128_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#33)>>).
%% TLS_DH_anon_WITH_AES_128_CBC_SHA = { 0x00, 0x34 };
-define(TLS_DH_anon_WITH_AES_128_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#34)>>).
%% TLS_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x35 };
-define(TLS_RSA_WITH_AES_256_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#35)>>).
%% TLS_DH_DSS_WITH_AES_256_CBC_SHA = { 0x00, 0x36 };
-define(TLS_DH_DSS_WITH_AES_256_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#36)>>).
%% TLS_DH_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x37 };
-define(TLS_DH_RSA_WITH_AES_256_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#37)>>).
%% TLS_DHE_DSS_WITH_AES_256_CBC_SHA = { 0x00, 0x38 };
-define(TLS_DHE_DSS_WITH_AES_256_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#38)>>).
%% TLS_DHE_RSA_WITH_AES_256_CBC_SHA = { 0x00, 0x39 };
-define(TLS_DHE_RSA_WITH_AES_256_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#39)>>).
%% TLS_DH_anon_WITH_AES_256_CBC_SHA = { 0x00, 0x3A };
-define(TLS_DH_anon_WITH_AES_256_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#3A)>>).
%%% Kerberos Cipher Suites
%% TLS_KRB5_WITH_DES_CBC_SHA = { 0x00,0x1E };
-define(TLS_KRB5_WITH_DES_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#1E)>>).
%% TLS_KRB5_WITH_3DES_EDE_CBC_SHA = { 0x00,0x1F };
-define(TLS_KRB5_WITH_3DES_EDE_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#1F)>>).
%% TLS_KRB5_WITH_RC4_128_SHA = { 0x00,0x20 };
-define(TLS_KRB5_WITH_RC4_128_SHA, <<?BYTE(16#00), ?BYTE(16#20)>>).
%% TLS_KRB5_WITH_IDEA_CBC_SHA = { 0x00,0x21 };
-define(TLS_KRB5_WITH_IDEA_CBC_SHA, <<?BYTE(16#00), ?BYTE(16#21)>>).
%% TLS_KRB5_WITH_DES_CBC_MD5 = { 0x00,0x22 };
-define(TLS_KRB5_WITH_DES_CBC_MD5, <<?BYTE(16#00), ?BYTE(16#22)>>).
%% TLS_KRB5_WITH_3DES_EDE_CBC_MD5 = { 0x00,0x23 };
-define(TLS_KRB5_WITH_3DES_EDE_CBC_MD5, <<?BYTE(16#00), ?BYTE(16#23)>>).
%% TLS_KRB5_WITH_RC4_128_MD5 = { 0x00,0x24 };
-define(TLS_KRB5_WITH_RC4_128_MD5, <<?BYTE(16#00), ?BYTE(16#24)>>).
%% TLS_KRB5_WITH_IDEA_CBC_MD5 = { 0x00,0x25 };
-define(TLS_KRB5_WITH_IDEA_CBC_MD5, <<?BYTE(16#00), ?BYTE(16#25)>>).
%% RFC 5746 - Not a real cipher suite used to signal empty "renegotiation_info" extension
%% to avoid handshake failure from old servers that do not ignore
%% hello extension data as they should.
-define(TLS_EMPTY_RENEGOTIATION_INFO_SCSV, <<?BYTE(16#00), ?BYTE(16#FF)>>).
-endif. % -ifdef(ssl_cipher).