%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2007-2013. All Rights Reserved.
%%
%% The contents of this file are subject to the Erlang Public License,
%% Version 1.1, (the "License"); you may not use this file except in
%% compliance with the License. You should have received a copy of the
%% Erlang Public License along with this software. If not, it can be
%% retrieved online at http://www.erlang.org/.
%%
%% Software distributed under the License is distributed on an "AS IS"
%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%% the License for the specific language governing rights and limitations
%% under the License.
%%
%% %CopyrightEnd%
%%
%%----------------------------------------------------------------------
%% Purpose: Help funtions for handling the SSL-handshake protocol
%%----------------------------------------------------------------------
-module(tls_handshake).
-include("tls_handshake.hrl").
-include("tls_record.hrl").
-include("ssl_cipher.hrl").
-include("ssl_alert.hrl").
-include("ssl_internal.hrl").
-include("ssl_srp.hrl").
-include_lib("public_key/include/public_key.hrl").
-export([master_secret/4, client_hello/8, server_hello/7, hello/4,
hello_request/0, certify/7, certificate/4,
client_certificate_verify/6, certificate_verify/6, verify_signature/5,
certificate_request/3, key_exchange/3, server_key_exchange_hash/2,
finished/5, verify_connection/6, get_tls_handshake/3,
decode_client_key/3, decode_server_key/3, server_hello_done/0,
encode_handshake/2, init_handshake_history/0, update_handshake_history/2,
decrypt_premaster_secret/2, prf/5, next_protocol/1]).
-export([dec_hello_extensions/2]).
-type tls_handshake() :: #client_hello{} | #server_hello{} |
#server_hello_done{} | #certificate{} | #certificate_request{} |
#client_key_exchange{} | #finished{} | #certificate_verify{} |
#hello_request{} | #next_protocol{}.
-define(NAMED_CURVE_TYPE, 3).
%%====================================================================
%% Internal application API
%%====================================================================
%%--------------------------------------------------------------------
-spec client_hello(host(), inet:port_number(), #connection_states{},
#ssl_options{}, integer(), atom(), boolean(), der_cert()) ->
#client_hello{}.
%%
%% Description: Creates a client hello message.
%%--------------------------------------------------------------------
client_hello(Host, Port, ConnectionStates,
#ssl_options{versions = Versions,
ciphers = UserSuites
} = SslOpts,
Cache, CacheCb, Renegotiation, OwnCert) ->
Version = tls_record:highest_protocol_version(Versions),
Pending = tls_record:pending_connection_state(ConnectionStates, read),
SecParams = Pending#connection_state.security_parameters,
Ciphers = available_suites(UserSuites, Version),
SRP = srp_user(SslOpts),
{EcPointFormats, EllipticCurves} = default_ecc_extensions(Version),
Id = ssl_session:client_id({Host, Port, SslOpts}, Cache, CacheCb, OwnCert),
#client_hello{session_id = Id,
client_version = Version,
cipher_suites = cipher_suites(Ciphers, Renegotiation),
compression_methods = tls_record:compressions(),
random = SecParams#security_parameters.client_random,
renegotiation_info =
renegotiation_info(client, ConnectionStates, Renegotiation),
srp = SRP,
hash_signs = default_hash_signs(),
ec_point_formats = EcPointFormats,
elliptic_curves = EllipticCurves,
next_protocol_negotiation =
encode_client_protocol_negotiation(SslOpts#ssl_options.next_protocol_selector, Renegotiation)
}.
encode_protocol(Protocol, Acc) ->
Len = byte_size(Protocol),
<<Acc/binary, ?BYTE(Len), Protocol/binary>>.
encode_protocols_advertised_on_server(undefined) ->
undefined;
encode_protocols_advertised_on_server(Protocols) ->
#next_protocol_negotiation{extension_data = lists:foldl(fun encode_protocol/2, <<>>, Protocols)}.
%%--------------------------------------------------------------------
-spec server_hello(session_id(), tls_version(), #connection_states{},
boolean(), [binary()] | undefined,
#ec_point_formats{} | undefined,
#elliptic_curves{} | undefined) -> #server_hello{}.
%%
%% Description: Creates a server hello message.
%%--------------------------------------------------------------------
server_hello(SessionId, Version, ConnectionStates, Renegotiation,
ProtocolsAdvertisedOnServer, EcPointFormats, EllipticCurves) ->
Pending = tls_record:pending_connection_state(ConnectionStates, read),
SecParams = Pending#connection_state.security_parameters,
#server_hello{server_version = Version,
cipher_suite = SecParams#security_parameters.cipher_suite,
compression_method =
SecParams#security_parameters.compression_algorithm,
random = SecParams#security_parameters.server_random,
session_id = SessionId,
renegotiation_info =
renegotiation_info(server, ConnectionStates, Renegotiation),
ec_point_formats = EcPointFormats,
elliptic_curves = EllipticCurves,
next_protocol_negotiation = encode_protocols_advertised_on_server(ProtocolsAdvertisedOnServer)
}.
%%--------------------------------------------------------------------
-spec hello_request() -> #hello_request{}.
%%
%% Description: Creates a hello request message sent by server to
%% trigger renegotiation.
%%--------------------------------------------------------------------
hello_request() ->
#hello_request{}.
%%--------------------------------------------------------------------
-spec hello(#server_hello{} | #client_hello{}, #ssl_options{},
#connection_states{} | {inet:port_number(), #session{}, db_handle(),
atom(), #connection_states{}, binary()},
boolean()) ->
{tls_version(), session_id(), #connection_states{}, binary() | undefined}|
{tls_version(), {resumed | new, #session{}}, #connection_states{}, [binary()] | undefined,
[oid()] | undefined, [oid()] | undefined} |
#alert{}.
%%
%% Description: Handles a recieved hello message
%%--------------------------------------------------------------------
hello(#server_hello{cipher_suite = CipherSuite, server_version = Version,
compression_method = Compression, random = Random,
session_id = SessionId, renegotiation_info = Info,
hash_signs = _HashSigns} = Hello,
#ssl_options{secure_renegotiate = SecureRenegotation, next_protocol_selector = NextProtocolSelector,
versions = SupportedVersions},
ConnectionStates0, Renegotiation) ->
%%TODO: select hash and signature algorigthm
case tls_record:is_acceptable_version(Version, SupportedVersions) of
true ->
case handle_renegotiation_info(client, Info, ConnectionStates0,
Renegotiation, SecureRenegotation, []) of
{ok, ConnectionStates1} ->
ConnectionStates =
hello_pending_connection_states(client, Version, CipherSuite, Random,
Compression, ConnectionStates1),
case handle_next_protocol(Hello, NextProtocolSelector, Renegotiation) of
#alert{} = Alert ->
Alert;
Protocol ->
{Version, SessionId, ConnectionStates, Protocol}
end;
#alert{} = Alert ->
Alert
end;
false ->
?ALERT_REC(?FATAL, ?PROTOCOL_VERSION)
end;
hello(#client_hello{client_version = ClientVersion} = Hello,
#ssl_options{versions = Versions} = SslOpts,
{Port, Session0, Cache, CacheCb, ConnectionStates0, Cert}, Renegotiation) ->
%% TODO: select hash and signature algorithm
Version = select_version(ClientVersion, Versions),
case tls_record:is_acceptable_version(Version, Versions) of
true ->
%% TODO: need to take supported Curves into Account when selecting the CipherSuite....
%% if whe have an ECDSA cert with an unsupported curve, we need to drop ECDSA ciphers
{Type, #session{cipher_suite = CipherSuite} = Session1}
= select_session(Hello, Port, Session0, Version,
SslOpts, Cache, CacheCb, Cert),
case CipherSuite of
no_suite ->
?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY);
_ ->
try handle_hello_extensions(Hello, Version, SslOpts, Session1, ConnectionStates0, Renegotiation) of
{Session, ConnectionStates, ProtocolsToAdvertise, ECPointFormats, EllipticCurves} ->
{Version, {Type, Session}, ConnectionStates,
ProtocolsToAdvertise, ECPointFormats, EllipticCurves}
catch throw:Alert ->
Alert
end
end;
false ->
?ALERT_REC(?FATAL, ?PROTOCOL_VERSION)
end.
%%--------------------------------------------------------------------
-spec certify(#certificate{}, db_handle(), certdb_ref(), integer() | nolimit,
verify_peer | verify_none, {fun(), term},
client | server) -> {der_cert(), public_key_info()} | #alert{}.
%%
%% Description: Handles a certificate handshake message
%%--------------------------------------------------------------------
certify(#certificate{asn1_certificates = ASN1Certs}, CertDbHandle, CertDbRef,
MaxPathLen, _Verify, VerifyFunAndState, Role) ->
[PeerCert | _] = ASN1Certs,
ValidationFunAndState =
case VerifyFunAndState of
undefined ->
{fun(OtpCert, ExtensionOrVerifyResult, SslState) ->
ssl_certificate:validate_extension(OtpCert,
ExtensionOrVerifyResult, SslState)
end, Role};
{Fun, UserState0} ->
{fun(OtpCert, {extension, _} = Extension, {SslState, UserState}) ->
case ssl_certificate:validate_extension(OtpCert,
Extension,
SslState) of
{valid, NewSslState} ->
{valid, {NewSslState, UserState}};
{fail, Reason} ->
apply_user_fun(Fun, OtpCert, Reason, UserState,
SslState);
{unknown, _} ->
apply_user_fun(Fun, OtpCert,
Extension, UserState, SslState)
end;
(OtpCert, VerifyResult, {SslState, UserState}) ->
apply_user_fun(Fun, OtpCert, VerifyResult, UserState,
SslState)
end, {Role, UserState0}}
end,
try
{TrustedErlCert, CertPath} =
ssl_certificate:trusted_cert_and_path(ASN1Certs, CertDbHandle, CertDbRef),
case public_key:pkix_path_validation(TrustedErlCert,
CertPath,
[{max_path_length,
MaxPathLen},
{verify_fun, ValidationFunAndState}]) of
{ok, {PublicKeyInfo,_}} ->
{PeerCert, PublicKeyInfo};
{error, Reason} ->
path_validation_alert(Reason)
end
catch
error:_ ->
%% ASN-1 decode of certificate somehow failed
?ALERT_REC(?FATAL, ?CERTIFICATE_UNKNOWN)
end.
%%--------------------------------------------------------------------
-spec certificate(der_cert(), db_handle(), certdb_ref(), client | server) -> #certificate{} | #alert{}.
%%
%% Description: Creates a certificate message.
%%--------------------------------------------------------------------
certificate(OwnCert, CertDbHandle, CertDbRef, client) ->
Chain =
case ssl_certificate:certificate_chain(OwnCert, CertDbHandle, CertDbRef) of
{ok, CertChain} ->
CertChain;
{error, _} ->
%% If no suitable certificate is available, the client
%% SHOULD send a certificate message containing no
%% certificates. (chapter 7.4.6. RFC 4346)
[]
end,
#certificate{asn1_certificates = Chain};
certificate(OwnCert, CertDbHandle, CertDbRef, server) ->
case ssl_certificate:certificate_chain(OwnCert, CertDbHandle, CertDbRef) of
{ok, Chain} ->
#certificate{asn1_certificates = Chain};
{error, _} ->
?ALERT_REC(?FATAL, ?INTERNAL_ERROR)
end.
%%--------------------------------------------------------------------
-spec client_certificate_verify(undefined | der_cert(), binary(),
tls_version(), term(), private_key(),
tls_handshake_history()) ->
#certificate_verify{} | ignore | #alert{}.
%%
%% Description: Creates a certificate_verify message, called by the client.
%%--------------------------------------------------------------------
client_certificate_verify(undefined, _, _, _, _, _) ->
ignore;
client_certificate_verify(_, _, _, _, undefined, _) ->
ignore;
client_certificate_verify(OwnCert, MasterSecret, Version,
{HashAlgo, SignAlgo},
PrivateKey, {Handshake, _}) ->
case public_key:pkix_is_fixed_dh_cert(OwnCert) of
true ->
?ALERT_REC(?FATAL, ?UNSUPPORTED_CERTIFICATE);
false ->
Hashes =
calc_certificate_verify(Version, HashAlgo, MasterSecret, Handshake),
Signed = digitally_signed(Version, Hashes, HashAlgo, PrivateKey),
#certificate_verify{signature = Signed, hashsign_algorithm = {HashAlgo, SignAlgo}}
end.
%%--------------------------------------------------------------------
-spec certificate_verify(binary(), public_key_info(), tls_version(), term(),
binary(), tls_handshake_history()) -> valid | #alert{}.
%%
%% Description: Checks that the certificate_verify message is valid.
%%--------------------------------------------------------------------
certificate_verify(Signature, PublicKeyInfo, Version,
HashSign = {HashAlgo, _}, MasterSecret, {_, Handshake}) ->
Hash = calc_certificate_verify(Version, HashAlgo, MasterSecret, Handshake),
case verify_signature(Version, Hash, HashSign, Signature, PublicKeyInfo) of
true ->
valid;
_ ->
?ALERT_REC(?FATAL, ?BAD_CERTIFICATE)
end.
%%--------------------------------------------------------------------
-spec verify_signature(tls_version(), binary(), {term(), term()}, binary(),
public_key_info()) -> true | false.
%%
%% Description: Checks that a public_key signature is valid.
%%--------------------------------------------------------------------
verify_signature(_Version, _Hash, {_HashAlgo, anon}, _Signature, _) ->
true;
verify_signature({3, Minor}, Hash, {HashAlgo, rsa}, Signature, {?rsaEncryption, PubKey, _PubKeyParams})
when Minor >= 3 ->
public_key:verify({digest, Hash}, HashAlgo, Signature, PubKey);
verify_signature(_Version, Hash, _HashAlgo, Signature, {?rsaEncryption, PubKey, _PubKeyParams}) ->
case public_key:decrypt_public(Signature, PubKey,
[{rsa_pad, rsa_pkcs1_padding}]) of
Hash -> true;
_ -> false
end;
verify_signature(_Version, Hash, {HashAlgo, dsa}, Signature, {?'id-dsa', PublicKey, PublicKeyParams}) ->
public_key:verify({digest, Hash}, HashAlgo, Signature, {PublicKey, PublicKeyParams});
verify_signature(_Version, Hash, {HashAlgo, ecdsa}, Signature, {?'id-ecPublicKey', PublicKey, PublicKeyParams}) ->
public_key:verify({digest, Hash}, HashAlgo, Signature, {PublicKey, PublicKeyParams}).
%%--------------------------------------------------------------------
-spec certificate_request(#connection_states{}, db_handle(), certdb_ref()) ->
#certificate_request{}.
%%
%% Description: Creates a certificate_request message, called by the server.
%%--------------------------------------------------------------------
certificate_request(ConnectionStates, CertDbHandle, CertDbRef) ->
#connection_state{security_parameters =
#security_parameters{cipher_suite = CipherSuite}} =
tls_record:pending_connection_state(ConnectionStates, read),
Types = certificate_types(CipherSuite),
HashSigns = default_hash_signs(),
Authorities = certificate_authorities(CertDbHandle, CertDbRef),
#certificate_request{
certificate_types = Types,
hashsign_algorithms = HashSigns,
certificate_authorities = Authorities
}.
%%--------------------------------------------------------------------
-spec key_exchange(client | server, tls_version(),
{premaster_secret, binary(), public_key_info()} |
{dh, binary()} |
{dh, {binary(), binary()}, #'DHParameter'{}, {HashAlgo::atom(), SignAlgo::atom()},
binary(), binary(), private_key()} |
{ecdh, #'ECPrivateKey'{}} |
{psk, binary()} |
{dhe_psk, binary(), binary()} |
{srp, {binary(), binary()}, #srp_user{}, {HashAlgo::atom(), SignAlgo::atom()},
binary(), binary(), private_key()}) ->
#client_key_exchange{} | #server_key_exchange{}.
%%
%% Description: Creates a keyexchange message.
%%--------------------------------------------------------------------
key_exchange(client, _Version, {premaster_secret, Secret, {_, PublicKey, _}}) ->
EncPremasterSecret =
encrypted_premaster_secret(Secret, PublicKey),
#client_key_exchange{exchange_keys = EncPremasterSecret};
key_exchange(client, _Version, {dh, PublicKey}) ->
#client_key_exchange{
exchange_keys = #client_diffie_hellman_public{
dh_public = PublicKey}
};
key_exchange(client, _Version, {ecdh, #'ECPrivateKey'{publicKey = {0, ECPublicKey}}}) ->
#client_key_exchange{
exchange_keys = #client_ec_diffie_hellman_public{
dh_public = ECPublicKey}
};
key_exchange(client, _Version, {psk, Identity}) ->
#client_key_exchange{
exchange_keys = #client_psk_identity{
identity = Identity}
};
key_exchange(client, _Version, {dhe_psk, Identity, PublicKey}) ->
#client_key_exchange{
exchange_keys = #client_dhe_psk_identity{
identity = Identity,
dh_public = PublicKey}
};
key_exchange(client, _Version, {psk_premaster_secret, PskIdentity, Secret, {_, PublicKey, _}}) ->
EncPremasterSecret =
encrypted_premaster_secret(Secret, PublicKey),
#client_key_exchange{
exchange_keys = #client_rsa_psk_identity{
identity = PskIdentity,
exchange_keys = EncPremasterSecret}};
key_exchange(client, _Version, {srp, PublicKey}) ->
#client_key_exchange{
exchange_keys = #client_srp_public{
srp_a = PublicKey}
};
key_exchange(server, Version, {dh, {PublicKey, _},
#'DHParameter'{prime = P, base = G},
HashSign, ClientRandom, ServerRandom, PrivateKey}) ->
ServerDHParams = #server_dh_params{dh_p = int_to_bin(P),
dh_g = int_to_bin(G), dh_y = PublicKey},
enc_server_key_exchange(Version, ServerDHParams, HashSign,
ClientRandom, ServerRandom, PrivateKey);
key_exchange(server, Version, {ecdh, #'ECPrivateKey'{publicKey = {0, ECPublicKey},
parameters = ECCurve}, HashSign, ClientRandom, ServerRandom,
PrivateKey}) ->
ServerECParams = #server_ecdh_params{curve = ECCurve, public = ECPublicKey},
enc_server_key_exchange(Version, ServerECParams, HashSign,
ClientRandom, ServerRandom, PrivateKey);
key_exchange(server, Version, {psk, PskIdentityHint,
HashSign, ClientRandom, ServerRandom, PrivateKey}) ->
ServerPSKParams = #server_psk_params{hint = PskIdentityHint},
enc_server_key_exchange(Version, ServerPSKParams, HashSign,
ClientRandom, ServerRandom, PrivateKey);
key_exchange(server, Version, {dhe_psk, PskIdentityHint, {PublicKey, _},
#'DHParameter'{prime = P, base = G},
HashSign, ClientRandom, ServerRandom, PrivateKey}) ->
ServerEDHPSKParams = #server_dhe_psk_params{
hint = PskIdentityHint,
dh_params = #server_dh_params{dh_p = int_to_bin(P),
dh_g = int_to_bin(G), dh_y = PublicKey}
},
enc_server_key_exchange(Version, ServerEDHPSKParams,
HashSign, ClientRandom, ServerRandom, PrivateKey);
key_exchange(server, Version, {srp, {PublicKey, _},
#srp_user{generator = Generator, prime = Prime,
salt = Salt},
HashSign, ClientRandom, ServerRandom, PrivateKey}) ->
ServerSRPParams = #server_srp_params{srp_n = Prime, srp_g = Generator,
srp_s = Salt, srp_b = PublicKey},
enc_server_key_exchange(Version, ServerSRPParams, HashSign,
ClientRandom, ServerRandom, PrivateKey).
enc_server_key_exchange(Version, Params, {HashAlgo, SignAlgo},
ClientRandom, ServerRandom, PrivateKey) ->
EncParams = enc_server_key(Params),
case HashAlgo of
null ->
#server_key_params{params = Params,
params_bin = EncParams,
hashsign = {null, anon},
signature = <<>>};
_ ->
Hash =
server_key_exchange_hash(HashAlgo, <<ClientRandom/binary,
ServerRandom/binary,
EncParams/binary>>),
Signature = digitally_signed(Version, Hash, HashAlgo, PrivateKey),
#server_key_params{params = Params,
params_bin = EncParams,
hashsign = {HashAlgo, SignAlgo},
signature = Signature}
end.
%%--------------------------------------------------------------------
-spec master_secret(tls_version(), #session{} | binary(), #connection_states{},
client | server) -> {binary(), #connection_states{}} | #alert{}.
%%
%% Description: Sets or calculates the master secret and calculate keys,
%% updating the pending connection states. The Mastersecret and the update
%% connection states are returned or an alert if the calculation fails.
%%-------------------------------------------------------------------
master_secret(Version, #session{master_secret = Mastersecret},
ConnectionStates, Role) ->
ConnectionState =
tls_record:pending_connection_state(ConnectionStates, read),
SecParams = ConnectionState#connection_state.security_parameters,
try master_secret(Version, Mastersecret, SecParams,
ConnectionStates, Role)
catch
exit:Reason ->
Report = io_lib:format("Key calculation failed due to ~p",
[Reason]),
error_logger:error_report(Report),
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)
end;
master_secret(Version, PremasterSecret, ConnectionStates, Role) ->
ConnectionState =
tls_record:pending_connection_state(ConnectionStates, read),
SecParams = ConnectionState#connection_state.security_parameters,
#security_parameters{prf_algorithm = PrfAlgo,
client_random = ClientRandom,
server_random = ServerRandom} = SecParams,
try master_secret(Version,
calc_master_secret(Version,PrfAlgo,PremasterSecret,
ClientRandom, ServerRandom),
SecParams, ConnectionStates, Role)
catch
exit:Reason ->
Report = io_lib:format("Master secret calculation failed"
" due to ~p", [Reason]),
error_logger:error_report(Report),
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)
end.
-spec next_protocol(binary()) -> #next_protocol{}.
next_protocol(SelectedProtocol) ->
#next_protocol{selected_protocol = SelectedProtocol}.
%%--------------------------------------------------------------------
-spec finished(tls_version(), client | server, integer(), binary(), tls_handshake_history()) ->
#finished{}.
%%
%% Description: Creates a handshake finished message
%%-------------------------------------------------------------------
finished(Version, Role, PrfAlgo, MasterSecret, {Handshake, _}) -> % use the current handshake
#finished{verify_data =
calc_finished(Version, Role, PrfAlgo, MasterSecret, Handshake)}.
%%--------------------------------------------------------------------
-spec verify_connection(tls_version(), #finished{}, client | server, integer(), binary(),
tls_handshake_history()) -> verified | #alert{}.
%%
%% Description: Checks the ssl handshake finished message to verify
%% the connection.
%%-------------------------------------------------------------------
verify_connection(Version, #finished{verify_data = Data},
Role, PrfAlgo, MasterSecret, {_, Handshake}) ->
%% use the previous hashes
case calc_finished(Version, Role, PrfAlgo, MasterSecret, Handshake) of
Data ->
verified;
_ ->
?ALERT_REC(?FATAL, ?DECRYPT_ERROR)
end.
%%--------------------------------------------------------------------
-spec server_hello_done() -> #server_hello_done{}.
%%
%% Description: Creates a server hello done message.
%%--------------------------------------------------------------------
server_hello_done() ->
#server_hello_done{}.
%%--------------------------------------------------------------------
-spec encode_handshake(tls_handshake(), tls_version()) -> iolist().
%%
%% Description: Encode a handshake packet to binary
%%--------------------------------------------------------------------x
encode_handshake(Package, Version) ->
{MsgType, Bin} = enc_hs(Package, Version),
Len = byte_size(Bin),
[MsgType, ?uint24(Len), Bin].
%%--------------------------------------------------------------------
-spec get_tls_handshake(tls_version(), binary(), binary() | iolist()) ->
{[tls_handshake()], binary()}.
%%
%% Description: Given buffered and new data from ssl_record, collects
%% and returns it as a list of handshake messages, also returns leftover
%% data.
%%--------------------------------------------------------------------
get_tls_handshake(Version, Data, <<>>) ->
get_tls_handshake_aux(Version, Data, []);
get_tls_handshake(Version, Data, Buffer) ->
get_tls_handshake_aux(Version, list_to_binary([Buffer, Data]), []).
%%--------------------------------------------------------------------
-spec decode_client_key(binary(), key_algo(), tls_version()) ->
#encrypted_premaster_secret{}
| #client_diffie_hellman_public{}
| #client_ec_diffie_hellman_public{}
| #client_psk_identity{}
| #client_dhe_psk_identity{}
| #client_rsa_psk_identity{}
| #client_srp_public{}.
%%
%% Description: Decode client_key data and return appropriate type
%%--------------------------------------------------------------------
decode_client_key(ClientKey, Type, Version) ->
dec_client_key(ClientKey, key_exchange_alg(Type), Version).
%%--------------------------------------------------------------------
-spec decode_server_key(binary(), key_algo(), tls_version()) ->
#server_key_params{}.
%%
%% Description: Decode server_key data and return appropriate type
%%--------------------------------------------------------------------
decode_server_key(ServerKey, Type, Version) ->
dec_server_key(ServerKey, key_exchange_alg(Type), Version).
%%--------------------------------------------------------------------
-spec init_handshake_history() -> tls_handshake_history().
%%
%% Description: Initialize the empty handshake history buffer.
%%--------------------------------------------------------------------
init_handshake_history() ->
{[], []}.
%%--------------------------------------------------------------------
-spec update_handshake_history(tls_handshake_history(), Data ::term()) ->
tls_handshake_history().
%%
%% Description: Update the handshake history buffer with Data.
%%--------------------------------------------------------------------
update_handshake_history(Handshake, % special-case SSL2 client hello
<<?CLIENT_HELLO, ?UINT24(_), ?BYTE(Major), ?BYTE(Minor),
?UINT16(CSLength), ?UINT16(0),
?UINT16(CDLength),
CipherSuites:CSLength/binary,
ChallengeData:CDLength/binary>>) ->
update_handshake_history(Handshake,
<<?CLIENT_HELLO, ?BYTE(Major), ?BYTE(Minor),
?UINT16(CSLength), ?UINT16(0),
?UINT16(CDLength),
CipherSuites:CSLength/binary,
ChallengeData:CDLength/binary>>);
update_handshake_history({Handshake0, _Prev}, Data) ->
{[Data|Handshake0], Handshake0}.
%%--------------------------------------------------------------------
-spec decrypt_premaster_secret(binary(), #'RSAPrivateKey'{}) -> binary().
%%
%% Description: Public key decryption using the private key.
%%--------------------------------------------------------------------
decrypt_premaster_secret(Secret, RSAPrivateKey) ->
try public_key:decrypt_private(Secret, RSAPrivateKey,
[{rsa_pad, rsa_pkcs1_padding}])
catch
_:_ ->
io:format("decrypt_premaster_secret error"),
throw(?ALERT_REC(?FATAL, ?DECRYPT_ERROR))
end.
%%--------------------------------------------------------------------
-spec server_key_exchange_hash(md5sha | md5 | sha | sha224 |sha256 | sha384 | sha512, binary()) -> binary().
%%
%% Description: Calculate server key exchange hash
%%--------------------------------------------------------------------
server_key_exchange_hash(md5sha, Value) ->
MD5 = crypto:hash(md5, Value),
SHA = crypto:hash(sha, Value),
<<MD5/binary, SHA/binary>>;
server_key_exchange_hash(Hash, Value) ->
crypto:hash(Hash, Value).
%%--------------------------------------------------------------------
-spec prf(tls_version(), binary(), binary(), [binary()], non_neg_integer()) ->
{ok, binary()} | {error, undefined}.
%%
%% Description: use the TLS PRF to generate key material
%%--------------------------------------------------------------------
prf({3,0}, _, _, _, _) ->
{error, undefined};
prf({3,1}, Secret, Label, Seed, WantedLength) ->
{ok, ssl_tls1:prf(?MD5SHA, Secret, Label, Seed, WantedLength)};
prf({3,_N}, Secret, Label, Seed, WantedLength) ->
{ok, ssl_tls1:prf(?SHA256, Secret, Label, Seed, WantedLength)}.
%%--------------------------------------------------------------------
%%% Internal functions
%%--------------------------------------------------------------------
get_tls_handshake_aux(Version, <<?BYTE(Type), ?UINT24(Length),
Body:Length/binary,Rest/binary>>, Acc) ->
Raw = <<?BYTE(Type), ?UINT24(Length), Body/binary>>,
H = dec_hs(Version, Type, Body),
get_tls_handshake_aux(Version, Rest, [{H,Raw} | Acc]);
get_tls_handshake_aux(_Version, Data, Acc) ->
{lists:reverse(Acc), Data}.
path_validation_alert({bad_cert, cert_expired}) ->
?ALERT_REC(?FATAL, ?CERTIFICATE_EXPIRED);
path_validation_alert({bad_cert, invalid_issuer}) ->
?ALERT_REC(?FATAL, ?BAD_CERTIFICATE);
path_validation_alert({bad_cert, invalid_signature}) ->
?ALERT_REC(?FATAL, ?BAD_CERTIFICATE);
path_validation_alert({bad_cert, name_not_permitted}) ->
?ALERT_REC(?FATAL, ?BAD_CERTIFICATE);
path_validation_alert({bad_cert, unknown_critical_extension}) ->
?ALERT_REC(?FATAL, ?UNSUPPORTED_CERTIFICATE);
path_validation_alert({bad_cert, cert_revoked}) ->
?ALERT_REC(?FATAL, ?CERTIFICATE_REVOKED);
path_validation_alert({bad_cert, selfsigned_peer}) ->
?ALERT_REC(?FATAL, ?BAD_CERTIFICATE);
path_validation_alert({bad_cert, unknown_ca}) ->
?ALERT_REC(?FATAL, ?UNKNOWN_CA);
path_validation_alert(_) ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE).
select_session(Hello, Port, Session, Version,
#ssl_options{ciphers = UserSuites} = SslOpts, Cache, CacheCb, Cert) ->
SuggestedSessionId = Hello#client_hello.session_id,
{SessionId, Resumed} = ssl_session:server_id(Port, SuggestedSessionId,
SslOpts, Cert,
Cache, CacheCb),
Suites = available_suites(Cert, UserSuites, Version),
case Resumed of
undefined ->
CipherSuite = select_cipher_suite(Hello#client_hello.cipher_suites, Suites),
Compressions = Hello#client_hello.compression_methods,
Compression = select_compression(Compressions),
{new, Session#session{session_id = SessionId,
cipher_suite = CipherSuite,
compression_method = Compression}};
_ ->
{resumed, Resumed}
end.
available_suites(UserSuites, Version) ->
case UserSuites of
[] ->
ssl_cipher:suites(Version);
_ ->
UserSuites
end.
available_suites(ServerCert, UserSuites, Version) ->
ssl_cipher:filter(ServerCert, available_suites(UserSuites, Version)).
cipher_suites(Suites, false) ->
[?TLS_EMPTY_RENEGOTIATION_INFO_SCSV | Suites];
cipher_suites(Suites, true) ->
Suites.
srp_user(#ssl_options{srp_identity = {UserName, _}}) ->
#srp{username = UserName};
srp_user(_) ->
undefined.
renegotiation_info(client, _, false) ->
#renegotiation_info{renegotiated_connection = undefined};
renegotiation_info(server, ConnectionStates, false) ->
CS = tls_record:current_connection_state(ConnectionStates, read),
case CS#connection_state.secure_renegotiation of
true ->
#renegotiation_info{renegotiated_connection = ?byte(0)};
false ->
#renegotiation_info{renegotiated_connection = undefined}
end;
renegotiation_info(client, ConnectionStates, true) ->
CS = tls_record:current_connection_state(ConnectionStates, read),
case CS#connection_state.secure_renegotiation of
true ->
Data = CS#connection_state.client_verify_data,
#renegotiation_info{renegotiated_connection = Data};
false ->
#renegotiation_info{renegotiated_connection = undefined}
end;
renegotiation_info(server, ConnectionStates, true) ->
CS = tls_record:current_connection_state(ConnectionStates, read),
case CS#connection_state.secure_renegotiation of
true ->
CData = CS#connection_state.client_verify_data,
SData =CS#connection_state.server_verify_data,
#renegotiation_info{renegotiated_connection = <<CData/binary, SData/binary>>};
false ->
#renegotiation_info{renegotiated_connection = undefined}
end.
decode_next_protocols({next_protocol_negotiation, Protocols}) ->
decode_next_protocols(Protocols, []).
decode_next_protocols(<<>>, Acc) ->
lists:reverse(Acc);
decode_next_protocols(<<?BYTE(Len), Protocol:Len/binary, Rest/binary>>, Acc) ->
case Len of
0 ->
{error, invalid_next_protocols};
_ ->
decode_next_protocols(Rest, [Protocol|Acc])
end;
decode_next_protocols(_Bytes, _Acc) ->
{error, invalid_next_protocols}.
next_protocol_extension_allowed(NextProtocolSelector, Renegotiating) ->
NextProtocolSelector =/= undefined andalso not Renegotiating.
handle_next_protocol_on_server(#client_hello{next_protocol_negotiation = undefined}, _Renegotiation, _SslOpts) ->
undefined;
handle_next_protocol_on_server(#client_hello{next_protocol_negotiation = {next_protocol_negotiation, <<>>}},
false, #ssl_options{next_protocols_advertised = Protocols}) ->
Protocols;
handle_next_protocol_on_server(_Hello, _Renegotiation, _SSLOpts) ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE). % unexpected next protocol extension
handle_next_protocol(#server_hello{next_protocol_negotiation = undefined},
_NextProtocolSelector, _Renegotiating) ->
undefined;
handle_next_protocol(#server_hello{next_protocol_negotiation = Protocols},
NextProtocolSelector, Renegotiating) ->
case next_protocol_extension_allowed(NextProtocolSelector, Renegotiating) of
true ->
select_next_protocol(decode_next_protocols(Protocols), NextProtocolSelector);
false ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE) % unexpected next protocol extension
end.
select_next_protocol({error, _Reason}, _NextProtocolSelector) ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE);
select_next_protocol(Protocols, NextProtocolSelector) ->
case NextProtocolSelector(Protocols) of
?NO_PROTOCOL ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE);
Protocol when is_binary(Protocol) ->
Protocol
end.
default_ecc_extensions(Version) ->
CryptoSupport = proplists:get_value(public_keys, crypto:supports()),
case proplists:get_bool(ecdh, CryptoSupport) of
true ->
EcPointFormats = #ec_point_formats{ec_point_format_list = [?ECPOINT_UNCOMPRESSED]},
EllipticCurves = #elliptic_curves{elliptic_curve_list = ssl_tls1:ecc_curves(Version)},
{EcPointFormats, EllipticCurves};
_ ->
{undefined, undefined}
end.
handle_ecc_extensions(Version, EcPointFormats0, EllipticCurves0) ->
CryptoSupport = proplists:get_value(public_keys, crypto:supports()),
case proplists:get_bool(ecdh, CryptoSupport) of
true ->
EcPointFormats1 = handle_ecc_point_fmt_extension(EcPointFormats0),
EllipticCurves1 = handle_ecc_curves_extension(Version, EllipticCurves0),
{EcPointFormats1, EllipticCurves1};
_ ->
{undefined, undefined}
end.
handle_ecc_point_fmt_extension(undefined) ->
undefined;
handle_ecc_point_fmt_extension(_) ->
#ec_point_formats{ec_point_format_list = [?ECPOINT_UNCOMPRESSED]}.
handle_ecc_curves_extension(Version, undefined) ->
undefined;
handle_ecc_curves_extension(Version, _) ->
#elliptic_curves{elliptic_curve_list = ssl_tls1:ecc_curves(Version)}.
handle_renegotiation_info(_, #renegotiation_info{renegotiated_connection = ?byte(0)},
ConnectionStates, false, _, _) ->
{ok, tls_record:set_renegotiation_flag(true, ConnectionStates)};
handle_renegotiation_info(server, undefined, ConnectionStates, _, _, CipherSuites) ->
case is_member(?TLS_EMPTY_RENEGOTIATION_INFO_SCSV, CipherSuites) of
true ->
{ok, tls_record:set_renegotiation_flag(true, ConnectionStates)};
false ->
{ok, tls_record:set_renegotiation_flag(false, ConnectionStates)}
end;
handle_renegotiation_info(_, undefined, ConnectionStates, false, _, _) ->
{ok, tls_record:set_renegotiation_flag(false, ConnectionStates)};
handle_renegotiation_info(client, #renegotiation_info{renegotiated_connection = ClientServerVerify},
ConnectionStates, true, _, _) ->
CS = tls_record:current_connection_state(ConnectionStates, read),
CData = CS#connection_state.client_verify_data,
SData = CS#connection_state.server_verify_data,
case <<CData/binary, SData/binary>> == ClientServerVerify of
true ->
{ok, ConnectionStates};
false ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)
end;
handle_renegotiation_info(server, #renegotiation_info{renegotiated_connection = ClientVerify},
ConnectionStates, true, _, CipherSuites) ->
case is_member(?TLS_EMPTY_RENEGOTIATION_INFO_SCSV, CipherSuites) of
true ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE);
false ->
CS = tls_record:current_connection_state(ConnectionStates, read),
Data = CS#connection_state.client_verify_data,
case Data == ClientVerify of
true ->
{ok, ConnectionStates};
false ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)
end
end;
handle_renegotiation_info(client, undefined, ConnectionStates, true, SecureRenegotation, _) ->
handle_renegotiation_info(ConnectionStates, SecureRenegotation);
handle_renegotiation_info(server, undefined, ConnectionStates, true, SecureRenegotation, CipherSuites) ->
case is_member(?TLS_EMPTY_RENEGOTIATION_INFO_SCSV, CipherSuites) of
true ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE);
false ->
handle_renegotiation_info(ConnectionStates, SecureRenegotation)
end.
handle_renegotiation_info(ConnectionStates, SecureRenegotation) ->
CS = tls_record:current_connection_state(ConnectionStates, read),
case {SecureRenegotation, CS#connection_state.secure_renegotiation} of
{_, true} ->
?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE);
{true, false} ->
?ALERT_REC(?FATAL, ?NO_RENEGOTIATION);
{false, false} ->
{ok, ConnectionStates}
end.
%% Update pending connection states with parameters exchanged via
%% hello messages
%% NOTE : Role is the role of the receiver of the hello message
%% currently being processed.
hello_pending_connection_states(Role, Version, CipherSuite, Random, Compression,
ConnectionStates) ->
ReadState =
tls_record:pending_connection_state(ConnectionStates, read),
WriteState =
tls_record:pending_connection_state(ConnectionStates, write),
NewReadSecParams =
hello_security_parameters(Role, Version, ReadState, CipherSuite,
Random, Compression),
NewWriteSecParams =
hello_security_parameters(Role, Version, WriteState, CipherSuite,
Random, Compression),
tls_record:update_security_params(NewReadSecParams,
NewWriteSecParams,
ConnectionStates).
hello_security_parameters(client, Version, ConnectionState, CipherSuite, Random,
Compression) ->
SecParams = ConnectionState#connection_state.security_parameters,
NewSecParams = ssl_cipher:security_parameters(Version, CipherSuite, SecParams),
NewSecParams#security_parameters{
server_random = Random,
compression_algorithm = Compression
};
hello_security_parameters(server, Version, ConnectionState, CipherSuite, Random,
Compression) ->
SecParams = ConnectionState#connection_state.security_parameters,
NewSecParams = ssl_cipher:security_parameters(Version, CipherSuite, SecParams),
NewSecParams#security_parameters{
client_random = Random,
compression_algorithm = Compression
}.
select_version(ClientVersion, Versions) ->
ServerVersion = tls_record:highest_protocol_version(Versions),
tls_record:lowest_protocol_version(ClientVersion, ServerVersion).
select_cipher_suite([], _) ->
no_suite;
select_cipher_suite([Suite | ClientSuites], SupportedSuites) ->
case is_member(Suite, SupportedSuites) of
true ->
Suite;
false ->
select_cipher_suite(ClientSuites, SupportedSuites)
end.
is_member(Suite, SupportedSuites) ->
lists:member(Suite, SupportedSuites).
select_compression(_CompressionMetodes) ->
?NULL.
master_secret(Version, MasterSecret, #security_parameters{
client_random = ClientRandom,
server_random = ServerRandom,
hash_size = HashSize,
prf_algorithm = PrfAlgo,
key_material_length = KML,
expanded_key_material_length = EKML,
iv_size = IVS},
ConnectionStates, Role) ->
{ClientWriteMacSecret, ServerWriteMacSecret, ClientWriteKey,
ServerWriteKey, ClientIV, ServerIV} =
setup_keys(Version, PrfAlgo, MasterSecret, ServerRandom,
ClientRandom, HashSize, KML, EKML, IVS),
ConnStates1 = tls_record:set_master_secret(MasterSecret, ConnectionStates),
ConnStates2 =
tls_record:set_mac_secret(ClientWriteMacSecret, ServerWriteMacSecret,
Role, ConnStates1),
ClientCipherState = #cipher_state{iv = ClientIV, key = ClientWriteKey},
ServerCipherState = #cipher_state{iv = ServerIV, key = ServerWriteKey},
{MasterSecret,
tls_record:set_pending_cipher_state(ConnStates2, ClientCipherState,
ServerCipherState, Role)}.
dec_hs(_, ?NEXT_PROTOCOL, <<?BYTE(SelectedProtocolLength), SelectedProtocol:SelectedProtocolLength/binary,
?BYTE(PaddingLength), _Padding:PaddingLength/binary>>) ->
#next_protocol{selected_protocol = SelectedProtocol};
dec_hs(_, ?HELLO_REQUEST, <<>>) ->
#hello_request{};
%% Client hello v2.
%% The server must be able to receive such messages, from clients that
%% are willing to use ssl v3 or higher, but have ssl v2 compatibility.
dec_hs(_Version, ?CLIENT_HELLO, <<?BYTE(Major), ?BYTE(Minor),
?UINT16(CSLength), ?UINT16(0),
?UINT16(CDLength),
CipherSuites:CSLength/binary,
ChallengeData:CDLength/binary>>) ->
#client_hello{client_version = {Major, Minor},
random = ssl_ssl2:client_random(ChallengeData, CDLength),
session_id = 0,
cipher_suites = from_3bytes(CipherSuites),
compression_methods = [?NULL],
renegotiation_info = undefined
};
dec_hs(_Version, ?CLIENT_HELLO, <<?BYTE(Major), ?BYTE(Minor), Random:32/binary,
?BYTE(SID_length), Session_ID:SID_length/binary,
?UINT16(Cs_length), CipherSuites:Cs_length/binary,
?BYTE(Cm_length), Comp_methods:Cm_length/binary,
Extensions/binary>>) ->
DecodedExtensions = dec_hello_extensions(Extensions),
RenegotiationInfo = proplists:get_value(renegotiation_info, DecodedExtensions, undefined),
SRP = proplists:get_value(srp, DecodedExtensions, undefined),
HashSigns = proplists:get_value(hash_signs, DecodedExtensions, undefined),
EllipticCurves = proplists:get_value(elliptic_curves, DecodedExtensions,
undefined),
NextProtocolNegotiation = proplists:get_value(next_protocol_negotiation, DecodedExtensions, undefined),
#client_hello{
client_version = {Major,Minor},
random = Random,
session_id = Session_ID,
cipher_suites = from_2bytes(CipherSuites),
compression_methods = Comp_methods,
renegotiation_info = RenegotiationInfo,
srp = SRP,
hash_signs = HashSigns,
elliptic_curves = EllipticCurves,
next_protocol_negotiation = NextProtocolNegotiation
};
dec_hs(_Version, ?SERVER_HELLO, <<?BYTE(Major), ?BYTE(Minor), Random:32/binary,
?BYTE(SID_length), Session_ID:SID_length/binary,
Cipher_suite:2/binary, ?BYTE(Comp_method)>>) ->
#server_hello{
server_version = {Major,Minor},
random = Random,
session_id = Session_ID,
cipher_suite = Cipher_suite,
compression_method = Comp_method,
renegotiation_info = undefined,
hash_signs = undefined,
elliptic_curves = undefined};
dec_hs(_Version, ?SERVER_HELLO, <<?BYTE(Major), ?BYTE(Minor), Random:32/binary,
?BYTE(SID_length), Session_ID:SID_length/binary,
Cipher_suite:2/binary, ?BYTE(Comp_method),
?UINT16(ExtLen), Extensions:ExtLen/binary>>) ->
HelloExtensions = dec_hello_extensions(Extensions, []),
RenegotiationInfo = proplists:get_value(renegotiation_info, HelloExtensions,
undefined),
HashSigns = proplists:get_value(hash_signs, HelloExtensions,
undefined),
EllipticCurves = proplists:get_value(elliptic_curves, HelloExtensions,
undefined),
NextProtocolNegotiation = proplists:get_value(next_protocol_negotiation, HelloExtensions, undefined),
#server_hello{
server_version = {Major,Minor},
random = Random,
session_id = Session_ID,
cipher_suite = Cipher_suite,
compression_method = Comp_method,
renegotiation_info = RenegotiationInfo,
hash_signs = HashSigns,
elliptic_curves = EllipticCurves,
next_protocol_negotiation = NextProtocolNegotiation};
dec_hs(_Version, ?CERTIFICATE, <<?UINT24(ACLen), ASN1Certs:ACLen/binary>>) ->
#certificate{asn1_certificates = certs_to_list(ASN1Certs)};
dec_hs(_Version, ?SERVER_KEY_EXCHANGE, Keys) ->
#server_key_exchange{exchange_keys = Keys};
dec_hs({Major, Minor}, ?CERTIFICATE_REQUEST,
<<?BYTE(CertTypesLen), CertTypes:CertTypesLen/binary,
?UINT16(HashSignsLen), HashSigns:HashSignsLen/binary,
?UINT16(CertAuthsLen), CertAuths:CertAuthsLen/binary>>)
when Major == 3, Minor >= 3 ->
HashSignAlgos = [{ssl_cipher:hash_algorithm(Hash), ssl_cipher:sign_algorithm(Sign)} ||
<<?BYTE(Hash), ?BYTE(Sign)>> <= HashSigns],
#certificate_request{certificate_types = CertTypes,
hashsign_algorithms = #hash_sign_algos{hash_sign_algos = HashSignAlgos},
certificate_authorities = CertAuths};
dec_hs(_Version, ?CERTIFICATE_REQUEST,
<<?BYTE(CertTypesLen), CertTypes:CertTypesLen/binary,
?UINT16(CertAuthsLen), CertAuths:CertAuthsLen/binary>>) ->
#certificate_request{certificate_types = CertTypes,
certificate_authorities = CertAuths};
dec_hs(_Version, ?SERVER_HELLO_DONE, <<>>) ->
#server_hello_done{};
dec_hs({Major, Minor}, ?CERTIFICATE_VERIFY,<<HashSign:2/binary, ?UINT16(SignLen), Signature:SignLen/binary>>)
when Major == 3, Minor >= 3 ->
#certificate_verify{hashsign_algorithm = hashsign_dec(HashSign), signature = Signature};
dec_hs(_Version, ?CERTIFICATE_VERIFY,<<?UINT16(SignLen), Signature:SignLen/binary>>)->
#certificate_verify{signature = Signature};
dec_hs(_Version, ?CLIENT_KEY_EXCHANGE, PKEPMS) ->
#client_key_exchange{exchange_keys = PKEPMS};
dec_hs(_Version, ?FINISHED, VerifyData) ->
#finished{verify_data = VerifyData};
dec_hs(_, _, _) ->
throw(?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)).
dec_client_key(PKEPMS, ?KEY_EXCHANGE_RSA, {3, 0}) ->
#encrypted_premaster_secret{premaster_secret = PKEPMS};
dec_client_key(<<?UINT16(_), PKEPMS/binary>>, ?KEY_EXCHANGE_RSA, _) ->
#encrypted_premaster_secret{premaster_secret = PKEPMS};
dec_client_key(<<>>, ?KEY_EXCHANGE_DIFFIE_HELLMAN, _) ->
throw(?ALERT_REC(?FATAL, ?UNSUPPORTED_CERTIFICATE));
dec_client_key(<<?UINT16(DH_YLen), DH_Y:DH_YLen/binary>>,
?KEY_EXCHANGE_DIFFIE_HELLMAN, _) ->
#client_diffie_hellman_public{dh_public = DH_Y};
dec_client_key(<<>>, ?KEY_EXCHANGE_EC_DIFFIE_HELLMAN, _) ->
throw(?ALERT_REC(?FATAL, ?UNSUPPORTED_CERTIFICATE));
dec_client_key(<<?BYTE(DH_YLen), DH_Y:DH_YLen/binary>>,
?KEY_EXCHANGE_EC_DIFFIE_HELLMAN, _) ->
#client_ec_diffie_hellman_public{dh_public = DH_Y};
dec_client_key(<<?UINT16(Len), Id:Len/binary>>,
?KEY_EXCHANGE_PSK, _) ->
#client_psk_identity{identity = Id};
dec_client_key(<<?UINT16(Len), Id:Len/binary,
?UINT16(DH_YLen), DH_Y:DH_YLen/binary>>,
?KEY_EXCHANGE_DHE_PSK, _) ->
#client_dhe_psk_identity{identity = Id, dh_public = DH_Y};
dec_client_key(<<?UINT16(Len), Id:Len/binary, PKEPMS/binary>>,
?KEY_EXCHANGE_RSA_PSK, {3, 0}) ->
#client_rsa_psk_identity{identity = Id, exchange_keys = #encrypted_premaster_secret{premaster_secret = PKEPMS}};
dec_client_key(<<?UINT16(Len), Id:Len/binary, ?UINT16(_), PKEPMS/binary>>,
?KEY_EXCHANGE_RSA_PSK, _) ->
#client_rsa_psk_identity{identity = Id, exchange_keys = #encrypted_premaster_secret{premaster_secret = PKEPMS}};
dec_client_key(<<?UINT16(ALen), A:ALen/binary>>,
?KEY_EXCHANGE_SRP, _) ->
#client_srp_public{srp_a = A}.
dec_ske_params(Len, Keys, Version) ->
<<Params:Len/bytes, Signature/binary>> = Keys,
dec_ske_signature(Params, Signature, Version).
dec_ske_signature(Params, <<?BYTE(HashAlgo), ?BYTE(SignAlgo),
?UINT16(0)>>, {Major, Minor})
when Major == 3, Minor >= 3 ->
HashSign = {ssl_cipher:hash_algorithm(HashAlgo), ssl_cipher:sign_algorithm(SignAlgo)},
{Params, HashSign, <<>>};
dec_ske_signature(Params, <<?BYTE(HashAlgo), ?BYTE(SignAlgo),
?UINT16(Len), Signature:Len/binary>>, {Major, Minor})
when Major == 3, Minor >= 3 ->
HashSign = {ssl_cipher:hash_algorithm(HashAlgo), ssl_cipher:sign_algorithm(SignAlgo)},
{Params, HashSign, Signature};
dec_ske_signature(Params, <<>>, _) ->
{Params, {null, anon}, <<>>};
dec_ske_signature(Params, <<?UINT16(0)>>, _) ->
{Params, {null, anon}, <<>>};
dec_ske_signature(Params, <<?UINT16(Len), Signature:Len/binary>>, _) ->
{Params, undefined, Signature};
dec_ske_signature(_, _, _) ->
throw(?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)).
dec_server_key(<<?UINT16(PLen), P:PLen/binary,
?UINT16(GLen), G:GLen/binary,
?UINT16(YLen), Y:YLen/binary, _/binary>> = KeyStruct,
?KEY_EXCHANGE_DIFFIE_HELLMAN, Version) ->
Params = #server_dh_params{dh_p = P, dh_g = G, dh_y = Y},
{BinMsg, HashSign, Signature} = dec_ske_params(PLen + GLen + YLen + 6, KeyStruct, Version),
#server_key_params{params = Params,
params_bin = BinMsg,
hashsign = HashSign,
signature = Signature};
%% ECParameters with named_curve
%% TODO: explicit curve
dec_server_key(<<?BYTE(?NAMED_CURVE), ?UINT16(CurveID),
?BYTE(PointLen), ECPoint:PointLen/binary,
_/binary>> = KeyStruct,
?KEY_EXCHANGE_EC_DIFFIE_HELLMAN, Version) ->
Params = #server_ecdh_params{curve = {namedCurve, ssl_tls1:enum_to_oid(CurveID)},
public = ECPoint},
{BinMsg, HashSign, Signature} = dec_ske_params(PointLen + 4, KeyStruct, Version),
#server_key_params{params = Params,
params_bin = BinMsg,
hashsign = HashSign,
signature = Signature};
dec_server_key(<<?UINT16(Len), PskIdentityHint:Len/binary>> = KeyStruct,
KeyExchange, Version)
when KeyExchange == ?KEY_EXCHANGE_PSK; KeyExchange == ?KEY_EXCHANGE_RSA_PSK ->
Params = #server_psk_params{
hint = PskIdentityHint},
{BinMsg, HashSign, Signature} = dec_ske_params(Len + 2, KeyStruct, Version),
#server_key_params{params = Params,
params_bin = BinMsg,
hashsign = HashSign,
signature = Signature};
dec_server_key(<<?UINT16(Len), IdentityHint:Len/binary,
?UINT16(PLen), P:PLen/binary,
?UINT16(GLen), G:GLen/binary,
?UINT16(YLen), Y:YLen/binary, _/binary>> = KeyStruct,
?KEY_EXCHANGE_DHE_PSK, Version) ->
DHParams = #server_dh_params{dh_p = P, dh_g = G, dh_y = Y},
Params = #server_dhe_psk_params{
hint = IdentityHint,
dh_params = DHParams},
{BinMsg, HashSign, Signature} = dec_ske_params(Len + PLen + GLen + YLen + 8, KeyStruct, Version),
#server_key_params{params = Params,
params_bin = BinMsg,
hashsign = HashSign,
signature = Signature};
dec_server_key(<<?UINT16(NLen), N:NLen/binary,
?UINT16(GLen), G:GLen/binary,
?BYTE(SLen), S:SLen/binary,
?UINT16(BLen), B:BLen/binary, _/binary>> = KeyStruct,
?KEY_EXCHANGE_SRP, Version) ->
Params = #server_srp_params{srp_n = N, srp_g = G, srp_s = S, srp_b = B},
{BinMsg, HashSign, Signature} = dec_ske_params(NLen + GLen + SLen + BLen + 7, KeyStruct, Version),
#server_key_params{params = Params,
params_bin = BinMsg,
hashsign = HashSign,
signature = Signature};
dec_server_key(_, _, _) ->
throw(?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE)).
dec_hello_extensions(<<>>) ->
[];
dec_hello_extensions(<<?UINT16(ExtLen), Extensions:ExtLen/binary>>) ->
dec_hello_extensions(Extensions, []);
dec_hello_extensions(_) ->
[].
dec_hello_extensions(<<>>, Acc) ->
Acc;
dec_hello_extensions(<<?UINT16(?NEXTPROTONEG_EXT), ?UINT16(Len), ExtensionData:Len/binary, Rest/binary>>, Acc) ->
Prop = {next_protocol_negotiation, #next_protocol_negotiation{extension_data = ExtensionData}},
dec_hello_extensions(Rest, [Prop | Acc]);
dec_hello_extensions(<<?UINT16(?RENEGOTIATION_EXT), ?UINT16(Len), Info:Len/binary, Rest/binary>>, Acc) ->
RenegotiateInfo = case Len of
1 -> % Initial handshake
Info; % should be <<0>> will be matched in handle_renegotiation_info
_ ->
VerifyLen = Len - 1,
<<?BYTE(VerifyLen), VerifyInfo/binary>> = Info,
VerifyInfo
end,
dec_hello_extensions(Rest, [{renegotiation_info,
#renegotiation_info{renegotiated_connection = RenegotiateInfo}} | Acc]);
dec_hello_extensions(<<?UINT16(?SRP_EXT), ?UINT16(Len), ?BYTE(SRPLen), SRP:SRPLen/binary, Rest/binary>>, Acc)
when Len == SRPLen + 2 ->
dec_hello_extensions(Rest, [{srp,
#srp{username = SRP}} | Acc]);
dec_hello_extensions(<<?UINT16(?SIGNATURE_ALGORITHMS_EXT), ?UINT16(Len),
ExtData:Len/binary, Rest/binary>>, Acc) ->
SignAlgoListLen = Len - 2,
<<?UINT16(SignAlgoListLen), SignAlgoList/binary>> = ExtData,
HashSignAlgos = [{ssl_cipher:hash_algorithm(Hash), ssl_cipher:sign_algorithm(Sign)} ||
<<?BYTE(Hash), ?BYTE(Sign)>> <= SignAlgoList],
dec_hello_extensions(Rest, [{hash_signs,
#hash_sign_algos{hash_sign_algos = HashSignAlgos}} | Acc]);
dec_hello_extensions(<<?UINT16(?ELLIPTIC_CURVES_EXT), ?UINT16(Len),
ExtData:Len/binary, Rest/binary>>, Acc) ->
EllipticCurveListLen = Len - 2,
<<?UINT16(EllipticCurveListLen), EllipticCurveList/binary>> = ExtData,
EllipticCurves = [ssl_tls1:enum_to_oid(X) || <<X:16>> <= EllipticCurveList],
dec_hello_extensions(Rest, [{elliptic_curves,
#elliptic_curves{elliptic_curve_list = EllipticCurves}} | Acc]);
dec_hello_extensions(<<?UINT16(?EC_POINT_FORMATS_EXT), ?UINT16(Len),
ExtData:Len/binary, Rest/binary>>, Acc) ->
ECPointFormatListLen = Len - 1,
<<?BYTE(ECPointFormatListLen), ECPointFormatList/binary>> = ExtData,
ECPointFormats = binary_to_list(ECPointFormatList),
dec_hello_extensions(Rest, [{ec_point_formats,
#ec_point_formats{ec_point_format_list = ECPointFormats}} | Acc]);
%% Ignore data following the ClientHello (i.e.,
%% extensions) if not understood.
dec_hello_extensions(<<?UINT16(_), ?UINT16(Len), _Unknown:Len/binary, Rest/binary>>, Acc) ->
dec_hello_extensions(Rest, Acc);
%% This theoretically should not happen if the protocol is followed, but if it does it is ignored.
dec_hello_extensions(_, Acc) ->
Acc.
encrypted_premaster_secret(Secret, RSAPublicKey) ->
try
PreMasterSecret = public_key:encrypt_public(Secret, RSAPublicKey,
[{rsa_pad,
rsa_pkcs1_padding}]),
#encrypted_premaster_secret{premaster_secret = PreMasterSecret}
catch
_:_->
throw(?ALERT_REC(?FATAL, ?HANDSHAKE_FAILURE))
end.
%% encode/decode stream of certificate data to/from list of certificate data
certs_to_list(ASN1Certs) ->
certs_to_list(ASN1Certs, []).
certs_to_list(<<?UINT24(CertLen), Cert:CertLen/binary, Rest/binary>>, Acc) ->
certs_to_list(Rest, [Cert | Acc]);
certs_to_list(<<>>, Acc) ->
lists:reverse(Acc, []).
certs_from_list(ACList) ->
list_to_binary([begin
CertLen = byte_size(Cert),
<<?UINT24(CertLen), Cert/binary>>
end || Cert <- ACList]).
enc_hs(#next_protocol{selected_protocol = SelectedProtocol}, _Version) ->
PaddingLength = 32 - ((byte_size(SelectedProtocol) + 2) rem 32),
{?NEXT_PROTOCOL, <<?BYTE((byte_size(SelectedProtocol))), SelectedProtocol/binary,
?BYTE(PaddingLength), 0:(PaddingLength * 8)>>};
enc_hs(#hello_request{}, _Version) ->
{?HELLO_REQUEST, <<>>};
enc_hs(#client_hello{client_version = {Major, Minor},
random = Random,
session_id = SessionID,
cipher_suites = CipherSuites,
compression_methods = CompMethods,
renegotiation_info = RenegotiationInfo,
srp = SRP,
hash_signs = HashSigns,
ec_point_formats = EcPointFormats,
elliptic_curves = EllipticCurves,
next_protocol_negotiation = NextProtocolNegotiation}, _Version) ->
SIDLength = byte_size(SessionID),
BinCompMethods = list_to_binary(CompMethods),
CmLength = byte_size(BinCompMethods),
BinCipherSuites = list_to_binary(CipherSuites),
CsLength = byte_size(BinCipherSuites),
Extensions0 = hello_extensions(RenegotiationInfo, SRP, NextProtocolNegotiation)
++ ec_hello_extensions(lists:map(fun ssl_cipher:suite_definition/1, CipherSuites), EcPointFormats)
++ ec_hello_extensions(lists:map(fun ssl_cipher:suite_definition/1, CipherSuites), EllipticCurves),
Extensions1 = if
Major == 3, Minor >=3 -> Extensions0 ++ hello_extensions(HashSigns);
true -> Extensions0
end,
ExtensionsBin = enc_hello_extensions(Extensions1),
{?CLIENT_HELLO, <<?BYTE(Major), ?BYTE(Minor), Random:32/binary,
?BYTE(SIDLength), SessionID/binary,
?UINT16(CsLength), BinCipherSuites/binary,
?BYTE(CmLength), BinCompMethods/binary, ExtensionsBin/binary>>};
enc_hs(#server_hello{server_version = {Major, Minor},
random = Random,
session_id = Session_ID,
cipher_suite = CipherSuite,
compression_method = Comp_method,
renegotiation_info = RenegotiationInfo,
ec_point_formats = EcPointFormats,
elliptic_curves = EllipticCurves,
next_protocol_negotiation = NextProtocolNegotiation}, _Version) ->
SID_length = byte_size(Session_ID),
CipherSuites = [ssl_cipher:suite_definition(CipherSuite)],
Extensions = hello_extensions(RenegotiationInfo, NextProtocolNegotiation)
++ ec_hello_extensions(CipherSuites, EcPointFormats)
++ ec_hello_extensions(CipherSuites, EllipticCurves),
ExtensionsBin = enc_hello_extensions(Extensions),
{?SERVER_HELLO, <<?BYTE(Major), ?BYTE(Minor), Random:32/binary,
?BYTE(SID_length), Session_ID/binary,
CipherSuite/binary, ?BYTE(Comp_method), ExtensionsBin/binary>>};
enc_hs(#certificate{asn1_certificates = ASN1CertList}, _Version) ->
ASN1Certs = certs_from_list(ASN1CertList),
ACLen = erlang:iolist_size(ASN1Certs),
{?CERTIFICATE, <<?UINT24(ACLen), ASN1Certs:ACLen/binary>>};
enc_hs(#server_key_exchange{exchange_keys = Keys}, _Version) ->
{?SERVER_KEY_EXCHANGE, Keys};
enc_hs(#server_key_params{params_bin = Keys, hashsign = HashSign,
signature = Signature}, Version) ->
EncSign = enc_sign(HashSign, Signature, Version),
{?SERVER_KEY_EXCHANGE, <<Keys/binary, EncSign/binary>>};
enc_hs(#certificate_request{certificate_types = CertTypes,
hashsign_algorithms = #hash_sign_algos{hash_sign_algos = HashSignAlgos},
certificate_authorities = CertAuths},
{Major, Minor})
when Major == 3, Minor >= 3 ->
HashSigns= << <<(ssl_cipher:hash_algorithm(Hash)):8, (ssl_cipher:sign_algorithm(Sign)):8>> ||
{Hash, Sign} <- HashSignAlgos >>,
CertTypesLen = byte_size(CertTypes),
HashSignsLen = byte_size(HashSigns),
CertAuthsLen = byte_size(CertAuths),
{?CERTIFICATE_REQUEST,
<<?BYTE(CertTypesLen), CertTypes/binary,
?UINT16(HashSignsLen), HashSigns/binary,
?UINT16(CertAuthsLen), CertAuths/binary>>
};
enc_hs(#certificate_request{certificate_types = CertTypes,
certificate_authorities = CertAuths},
_Version) ->
CertTypesLen = byte_size(CertTypes),
CertAuthsLen = byte_size(CertAuths),
{?CERTIFICATE_REQUEST,
<<?BYTE(CertTypesLen), CertTypes/binary,
?UINT16(CertAuthsLen), CertAuths/binary>>
};
enc_hs(#server_hello_done{}, _Version) ->
{?SERVER_HELLO_DONE, <<>>};
enc_hs(#client_key_exchange{exchange_keys = ExchangeKeys}, Version) ->
{?CLIENT_KEY_EXCHANGE, enc_cke(ExchangeKeys, Version)};
enc_hs(#certificate_verify{signature = BinSig, hashsign_algorithm = HashSign}, Version) ->
EncSig = enc_sign(HashSign, BinSig, Version),
{?CERTIFICATE_VERIFY, EncSig};
enc_hs(#finished{verify_data = VerifyData}, _Version) ->
{?FINISHED, VerifyData}.
enc_cke(#encrypted_premaster_secret{premaster_secret = PKEPMS},{3, 0}) ->
PKEPMS;
enc_cke(#encrypted_premaster_secret{premaster_secret = PKEPMS}, _) ->
PKEPMSLen = byte_size(PKEPMS),
<<?UINT16(PKEPMSLen), PKEPMS/binary>>;
enc_cke(#client_diffie_hellman_public{dh_public = DHPublic}, _) ->
Len = byte_size(DHPublic),
<<?UINT16(Len), DHPublic/binary>>;
enc_cke(#client_ec_diffie_hellman_public{dh_public = DHPublic}, _) ->
Len = byte_size(DHPublic),
<<?BYTE(Len), DHPublic/binary>>;
enc_cke(#client_psk_identity{identity = undefined}, _) ->
Id = <<"psk_identity">>,
Len = byte_size(Id),
<<?UINT16(Len), Id/binary>>;
enc_cke(#client_psk_identity{identity = Id}, _) ->
Len = byte_size(Id),
<<?UINT16(Len), Id/binary>>;
enc_cke(Identity = #client_dhe_psk_identity{identity = undefined}, Version) ->
enc_cke(Identity#client_dhe_psk_identity{identity = <<"psk_identity">>}, Version);
enc_cke(#client_dhe_psk_identity{identity = Id, dh_public = DHPublic}, _) ->
Len = byte_size(Id),
DHLen = byte_size(DHPublic),
<<?UINT16(Len), Id/binary, ?UINT16(DHLen), DHPublic/binary>>;
enc_cke(Identity = #client_rsa_psk_identity{identity = undefined}, Version) ->
enc_cke(Identity#client_rsa_psk_identity{identity = <<"psk_identity">>}, Version);
enc_cke(#client_rsa_psk_identity{identity = Id, exchange_keys = ExchangeKeys}, Version) ->
EncPMS = enc_cke(ExchangeKeys, Version),
Len = byte_size(Id),
<<?UINT16(Len), Id/binary, EncPMS/binary>>;
enc_cke(#client_srp_public{srp_a = A}, _) ->
Len = byte_size(A),
<<?UINT16(Len), A/binary>>.
enc_server_key(#server_dh_params{dh_p = P, dh_g = G, dh_y = Y}) ->
PLen = byte_size(P),
GLen = byte_size(G),
YLen = byte_size(Y),
<<?UINT16(PLen), P/binary, ?UINT16(GLen), G/binary, ?UINT16(YLen), Y/binary>>;
enc_server_key(#server_ecdh_params{curve = {namedCurve, ECCurve}, public = ECPubKey}) ->
%%TODO: support arbitrary keys
KLen = size(ECPubKey),
<<?BYTE(?NAMED_CURVE_TYPE), ?UINT16((ssl_tls1:oid_to_enum(ECCurve))),
?BYTE(KLen), ECPubKey/binary>>;
enc_server_key(#server_psk_params{hint = PskIdentityHint}) ->
Len = byte_size(PskIdentityHint),
<<?UINT16(Len), PskIdentityHint/binary>>;
enc_server_key(Params = #server_dhe_psk_params{hint = undefined}) ->
enc_server_key(Params#server_dhe_psk_params{hint = <<>>});
enc_server_key(#server_dhe_psk_params{
hint = PskIdentityHint,
dh_params = #server_dh_params{dh_p = P, dh_g = G, dh_y = Y}}) ->
Len = byte_size(PskIdentityHint),
PLen = byte_size(P),
GLen = byte_size(G),
YLen = byte_size(Y),
<<?UINT16(Len), PskIdentityHint/binary,
?UINT16(PLen), P/binary, ?UINT16(GLen), G/binary, ?UINT16(YLen), Y/binary>>;
enc_server_key(#server_srp_params{srp_n = N, srp_g = G, srp_s = S, srp_b = B}) ->
NLen = byte_size(N),
GLen = byte_size(G),
SLen = byte_size(S),
BLen = byte_size(B),
<<?UINT16(NLen), N/binary, ?UINT16(GLen), G/binary,
?BYTE(SLen), S/binary, ?UINT16(BLen), B/binary>>.
enc_sign({_, anon}, _Sign, _Version) ->
<<>>;
enc_sign({HashAlg, SignAlg}, Signature, _Version = {Major, Minor})
when Major == 3, Minor >= 3->
SignLen = byte_size(Signature),
HashSign = hashsign_enc(HashAlg, SignAlg),
<<HashSign/binary, ?UINT16(SignLen), Signature/binary>>;
enc_sign(_HashSign, Sign, _Version) ->
SignLen = byte_size(Sign),
<<?UINT16(SignLen), Sign/binary>>.
ec_hello_extensions(CipherSuites, #elliptic_curves{} = Info) ->
case advertises_ec_ciphers(CipherSuites) of
true ->
[Info];
false ->
[]
end;
ec_hello_extensions(CipherSuites, #ec_point_formats{} = Info) ->
case advertises_ec_ciphers(CipherSuites) of
true ->
[Info];
false ->
[]
end;
ec_hello_extensions(_, undefined) ->
[].
hello_extensions(RenegotiationInfo, NextProtocolNegotiation) ->
hello_extensions(RenegotiationInfo) ++ next_protocol_extension(NextProtocolNegotiation).
hello_extensions(RenegotiationInfo, SRP, NextProtocolNegotiation) ->
hello_extensions(RenegotiationInfo)
++ hello_extensions(SRP)
++ next_protocol_extension(NextProtocolNegotiation).
advertises_ec_ciphers([]) ->
false;
advertises_ec_ciphers([{ecdh_ecdsa, _,_,_} | _]) ->
true;
advertises_ec_ciphers([{ecdhe_ecdsa, _,_,_} | _]) ->
true;
advertises_ec_ciphers([{ecdh_rsa, _,_,_} | _]) ->
true;
advertises_ec_ciphers([{ecdhe_rsa, _,_,_} | _]) ->
true;
advertises_ec_ciphers([{ecdh_anon, _,_,_} | _]) ->
true;
advertises_ec_ciphers([_| Rest]) ->
advertises_ec_ciphers(Rest).
%% Renegotiation info
hello_extensions(#renegotiation_info{renegotiated_connection = undefined}) ->
[];
hello_extensions(#renegotiation_info{} = Info) ->
[Info];
hello_extensions(#srp{} = Info) ->
[Info];
hello_extensions(#hash_sign_algos{} = Info) ->
[Info];
hello_extensions(undefined) ->
[].
next_protocol_extension(undefined) ->
[];
next_protocol_extension(#next_protocol_negotiation{} = Info) ->
[Info].
enc_hello_extensions(Extensions) ->
enc_hello_extensions(Extensions, <<>>).
enc_hello_extensions([], <<>>) ->
<<>>;
enc_hello_extensions([], Acc) ->
Size = byte_size(Acc),
<<?UINT16(Size), Acc/binary>>;
enc_hello_extensions([#next_protocol_negotiation{extension_data = ExtensionData} | Rest], Acc) ->
Len = byte_size(ExtensionData),
enc_hello_extensions(Rest, <<?UINT16(?NEXTPROTONEG_EXT), ?UINT16(Len), ExtensionData/binary, Acc/binary>>);
enc_hello_extensions([#renegotiation_info{renegotiated_connection = ?byte(0) = Info} | Rest], Acc) ->
Len = byte_size(Info),
enc_hello_extensions(Rest, <<?UINT16(?RENEGOTIATION_EXT), ?UINT16(Len), Info/binary, Acc/binary>>);
enc_hello_extensions([#renegotiation_info{renegotiated_connection = Info} | Rest], Acc) ->
InfoLen = byte_size(Info),
Len = InfoLen +1,
enc_hello_extensions(Rest, <<?UINT16(?RENEGOTIATION_EXT), ?UINT16(Len), ?BYTE(InfoLen), Info/binary, Acc/binary>>);
enc_hello_extensions([#elliptic_curves{elliptic_curve_list = EllipticCurves} | Rest], Acc) ->
EllipticCurveList = << <<(ssl_tls1:oid_to_enum(X)):16>> || X <- EllipticCurves>>,
ListLen = byte_size(EllipticCurveList),
Len = ListLen + 2,
enc_hello_extensions(Rest, <<?UINT16(?ELLIPTIC_CURVES_EXT),
?UINT16(Len), ?UINT16(ListLen), EllipticCurveList/binary, Acc/binary>>);
enc_hello_extensions([#ec_point_formats{ec_point_format_list = ECPointFormats} | Rest], Acc) ->
ECPointFormatList = list_to_binary(ECPointFormats),
ListLen = byte_size(ECPointFormatList),
Len = ListLen + 1,
enc_hello_extensions(Rest, <<?UINT16(?EC_POINT_FORMATS_EXT),
?UINT16(Len), ?BYTE(ListLen), ECPointFormatList/binary, Acc/binary>>);
enc_hello_extensions([#srp{username = UserName} | Rest], Acc) ->
SRPLen = byte_size(UserName),
Len = SRPLen + 2,
enc_hello_extensions(Rest, <<?UINT16(?SRP_EXT), ?UINT16(Len), ?BYTE(SRPLen), UserName/binary, Acc/binary>>);
enc_hello_extensions([#hash_sign_algos{hash_sign_algos = HashSignAlgos} | Rest], Acc) ->
SignAlgoList = << <<(ssl_cipher:hash_algorithm(Hash)):8, (ssl_cipher:sign_algorithm(Sign)):8>> ||
{Hash, Sign} <- HashSignAlgos >>,
ListLen = byte_size(SignAlgoList),
Len = ListLen + 2,
enc_hello_extensions(Rest, <<?UINT16(?SIGNATURE_ALGORITHMS_EXT),
?UINT16(Len), ?UINT16(ListLen), SignAlgoList/binary, Acc/binary>>).
encode_client_protocol_negotiation(undefined, _) ->
undefined;
encode_client_protocol_negotiation(_, false) ->
#next_protocol_negotiation{extension_data = <<>>};
encode_client_protocol_negotiation(_, _) ->
undefined.
from_3bytes(Bin3) ->
from_3bytes(Bin3, []).
from_3bytes(<<>>, Acc) ->
lists:reverse(Acc);
from_3bytes(<<?UINT24(N), Rest/binary>>, Acc) ->
from_3bytes(Rest, [?uint16(N) | Acc]).
from_2bytes(Bin2) ->
from_2bytes(Bin2, []).
from_2bytes(<<>>, Acc) ->
lists:reverse(Acc);
from_2bytes(<<?UINT16(N), Rest/binary>>, Acc) ->
from_2bytes(Rest, [?uint16(N) | Acc]).
certificate_types({KeyExchange, _, _, _})
when KeyExchange == rsa;
KeyExchange == dhe_dss;
KeyExchange == dhe_rsa;
KeyExchange == ecdhe_rsa ->
<<?BYTE(?RSA_SIGN), ?BYTE(?DSS_SIGN)>>;
certificate_types({KeyExchange, _, _, _})
when KeyExchange == dh_ecdsa;
KeyExchange == dhe_ecdsa ->
<<?BYTE(?ECDSA_SIGN)>>;
certificate_types(_) ->
<<?BYTE(?RSA_SIGN)>>.
hashsign_dec(<<?BYTE(HashAlgo), ?BYTE(SignAlgo)>>) ->
{ssl_cipher:hash_algorithm(HashAlgo), ssl_cipher:sign_algorithm(SignAlgo)}.
hashsign_enc(HashAlgo, SignAlgo) ->
Hash = ssl_cipher:hash_algorithm(HashAlgo),
Sign = ssl_cipher:sign_algorithm(SignAlgo),
<<?BYTE(Hash), ?BYTE(Sign)>>.
certificate_authorities(CertDbHandle, CertDbRef) ->
Authorities = certificate_authorities_from_db(CertDbHandle, CertDbRef),
Enc = fun(#'OTPCertificate'{tbsCertificate=TBSCert}) ->
OTPSubj = TBSCert#'OTPTBSCertificate'.subject,
DNEncodedBin = public_key:pkix_encode('Name', OTPSubj, otp),
DNEncodedLen = byte_size(DNEncodedBin),
<<?UINT16(DNEncodedLen), DNEncodedBin/binary>>
end,
list_to_binary([Enc(Cert) || {_, Cert} <- Authorities]).
certificate_authorities_from_db(CertDbHandle, CertDbRef) ->
ConnectionCerts = fun({{Ref, _, _}, Cert}, Acc) when Ref == CertDbRef ->
[Cert | Acc];
(_, Acc) ->
Acc
end,
ssl_pkix_db:foldl(ConnectionCerts, [], CertDbHandle).
digitally_signed({3, Minor}, Hash, HashAlgo, Key) when Minor >= 3 ->
public_key:sign({digest, Hash}, HashAlgo, Key);
digitally_signed(_Version, Hash, HashAlgo, #'DSAPrivateKey'{} = Key) ->
public_key:sign({digest, Hash}, HashAlgo, Key);
digitally_signed(_Version, Hash, _HashAlgo, #'RSAPrivateKey'{} = Key) ->
public_key:encrypt_private(Hash, Key,
[{rsa_pad, rsa_pkcs1_padding}]);
digitally_signed(_Version, Hash, HashAlgo, Key) ->
public_key:sign({digest, Hash}, HashAlgo, Key).
calc_master_secret({3,0}, _PrfAlgo, PremasterSecret, ClientRandom, ServerRandom) ->
ssl_ssl3:master_secret(PremasterSecret, ClientRandom, ServerRandom);
calc_master_secret({3,_}, PrfAlgo, PremasterSecret, ClientRandom, ServerRandom) ->
ssl_tls1:master_secret(PrfAlgo, PremasterSecret, ClientRandom, ServerRandom).
setup_keys({3,0}, _PrfAlgo, MasterSecret,
ServerRandom, ClientRandom, HashSize, KML, EKML, IVS) ->
ssl_ssl3:setup_keys(MasterSecret, ServerRandom,
ClientRandom, HashSize, KML, EKML, IVS);
setup_keys({3,N}, PrfAlgo, MasterSecret,
ServerRandom, ClientRandom, HashSize, KML, _EKML, IVS) ->
ssl_tls1:setup_keys(N, PrfAlgo, MasterSecret, ServerRandom, ClientRandom, HashSize,
KML, IVS).
calc_finished({3, 0}, Role, _PrfAlgo, MasterSecret, Handshake) ->
ssl_ssl3:finished(Role, MasterSecret, lists:reverse(Handshake));
calc_finished({3, N}, Role, PrfAlgo, MasterSecret, Handshake) ->
ssl_tls1:finished(Role, N, PrfAlgo, MasterSecret, lists:reverse(Handshake)).
calc_certificate_verify({3, 0}, HashAlgo, MasterSecret, Handshake) ->
ssl_ssl3:certificate_verify(HashAlgo, MasterSecret, lists:reverse(Handshake));
calc_certificate_verify({3, N}, HashAlgo, _MasterSecret, Handshake) ->
ssl_tls1:certificate_verify(HashAlgo, N, lists:reverse(Handshake)).
key_exchange_alg(rsa) ->
?KEY_EXCHANGE_RSA;
key_exchange_alg(Alg) when Alg == dhe_rsa; Alg == dhe_dss;
Alg == dh_dss; Alg == dh_rsa; Alg == dh_anon ->
?KEY_EXCHANGE_DIFFIE_HELLMAN;
key_exchange_alg(Alg) when Alg == ecdhe_rsa; Alg == ecdh_rsa;
Alg == ecdhe_ecdsa; Alg == ecdh_ecdsa;
Alg == ecdh_anon ->
?KEY_EXCHANGE_EC_DIFFIE_HELLMAN;
key_exchange_alg(psk) ->
?KEY_EXCHANGE_PSK;
key_exchange_alg(dhe_psk) ->
?KEY_EXCHANGE_DHE_PSK;
key_exchange_alg(rsa_psk) ->
?KEY_EXCHANGE_RSA_PSK;
key_exchange_alg(Alg)
when Alg == srp_rsa; Alg == srp_dss; Alg == srp_anon ->
?KEY_EXCHANGE_SRP;
key_exchange_alg(_) ->
?NULL.
apply_user_fun(Fun, OtpCert, ExtensionOrError, UserState0, SslState) ->
case Fun(OtpCert, ExtensionOrError, UserState0) of
{valid, UserState} ->
{valid, {SslState, UserState}};
{fail, _} = Fail ->
Fail;
{unknown, UserState} ->
{unknown, {SslState, UserState}}
end.
-define(TLSEXT_SIGALG_RSA(MD), {MD, rsa}).
-define(TLSEXT_SIGALG_DSA(MD), {MD, dsa}).
-define(TLSEXT_SIGALG_ECDSA(MD), {MD, ecdsa}).
-define(TLSEXT_SIGALG(MD), ?TLSEXT_SIGALG_ECDSA(MD), ?TLSEXT_SIGALG_RSA(MD)).
default_hash_signs() ->
HashSigns = [?TLSEXT_SIGALG(sha512),
?TLSEXT_SIGALG(sha384),
?TLSEXT_SIGALG(sha256),
?TLSEXT_SIGALG(sha224),
?TLSEXT_SIGALG(sha),
?TLSEXT_SIGALG_DSA(sha),
?TLSEXT_SIGALG_RSA(md5)],
CryptoSupport = proplists:get_value(public_keys, crypto:supports()),
HasECC = proplists:get_bool(ecdsa, CryptoSupport),
#hash_sign_algos{hash_sign_algos =
lists:filter(fun({_, ecdsa}) -> HasECC;
(_) -> true end, HashSigns)}.
handle_hello_extensions(#client_hello{random = Random,
cipher_suites = CipherSuites,
renegotiation_info = Info,
srp = SRP,
ec_point_formats = EcPointFormats0,
elliptic_curves = EllipticCurves0} = Hello, Version,
#ssl_options{secure_renegotiate = SecureRenegotation} = Opts,
Session0, ConnectionStates0, Renegotiation) ->
Session = handle_srp_extension(SRP, Session0),
ConnectionStates = handle_renegotiation_extension(Version, Info, Random, Session, ConnectionStates0,
Renegotiation, SecureRenegotation, CipherSuites),
ProtocolsToAdvertise = handle_next_protocol_extension(Hello, Renegotiation, Opts),
{EcPointFormats, EllipticCurves} = handle_ecc_extensions(Version, EcPointFormats0, EllipticCurves0),
%%TODO make extensions compund data structure
{Session, ConnectionStates, ProtocolsToAdvertise, EcPointFormats, EllipticCurves}.
handle_renegotiation_extension(Version, Info, Random, #session{cipher_suite = CipherSuite,
compression_method = Compression},
ConnectionStates0, Renegotiation, SecureRenegotation, CipherSuites) ->
case handle_renegotiation_info(server, Info, ConnectionStates0,
Renegotiation, SecureRenegotation,
CipherSuites) of
{ok, ConnectionStates1} ->
hello_pending_connection_states(server,
Version,
CipherSuite,
Random,
Compression,
ConnectionStates1);
#alert{} = Alert ->
throw(Alert)
end.
handle_next_protocol_extension(Hello, Renegotiation, SslOpts)->
case handle_next_protocol_on_server(Hello, Renegotiation, SslOpts) of
#alert{} = Alert ->
throw(Alert);
ProtocolsToAdvertise ->
ProtocolsToAdvertise
end.
handle_srp_extension(undefined, Session) ->
Session;
handle_srp_extension(#srp{username = Username}, Session) ->
Session#session{srp_username = Username}.
int_to_bin(I) ->
L = (length(integer_to_list(I, 16)) + 1) div 2,
<<I:(L*8)>>.