%%
%% %CopyrightBegin%
%%
%% Copyright Ericsson AB 2007-2018. All Rights Reserved.
%%
%% Licensed under the Apache License, Version 2.0 (the "License");
%% you may not use this file except in compliance with the License.
%% You may obtain a copy of the License at
%%
%% http://www.apache.org/licenses/LICENSE-2.0
%%
%% Unless required by applicable law or agreed to in writing, software
%% distributed under the License is distributed on an "AS IS" BASIS,
%% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
%% See the License for the specific language governing permissions and
%% limitations under the License.
%%
%% %CopyrightEnd%
%%
%%----------------------------------------------------------------------
%% Purpose: Help funtions for handling the TLS 1.3 (specific parts of)
%%% TLS handshake protocol
%%----------------------------------------------------------------------
-module(tls_handshake_1_3).
-include("tls_handshake_1_3.hrl").
-include("ssl_alert.hrl").
-include("ssl_cipher.hrl").
-include("ssl_connection.hrl").
-include("ssl_internal.hrl").
-include("ssl_record.hrl").
-include_lib("public_key/include/public_key.hrl").
%% Encode
-export([encode_handshake/1, decode_handshake/2]).
%% Handshake
-export([handle_client_hello/3]).
%% Create handshake messages
-export([certificate/5,
certificate_verify/5,
server_hello/4]).
-export([do_negotiated/2]).
%%====================================================================
%% Create handshake messages
%%====================================================================
server_hello(SessionId, KeyShare, ConnectionStates, _Map) ->
#{security_parameters := SecParams} =
ssl_record:pending_connection_state(ConnectionStates, read),
Extensions = server_hello_extensions(KeyShare),
#server_hello{server_version = {3,3}, %% legacy_version
cipher_suite = SecParams#security_parameters.cipher_suite,
compression_method = 0, %% legacy attribute
random = SecParams#security_parameters.server_random,
session_id = SessionId,
extensions = Extensions
}.
server_hello_extensions(KeyShare) ->
SupportedVersions = #server_hello_selected_version{selected_version = {3,4}},
Extensions = #{server_hello_selected_version => SupportedVersions},
ssl_handshake:add_server_share(Extensions, KeyShare).
%% TODO: use maybe monad for error handling!
certificate(OwnCert, CertDbHandle, CertDbRef, _CRContext, server) ->
case ssl_certificate:certificate_chain(OwnCert, CertDbHandle, CertDbRef) of
{ok, _, Chain} ->
CertList = chain_to_cert_list(Chain),
%% If this message is in response to a CertificateRequest, the value of
%% certificate_request_context in that message. Otherwise (in the case
%%of server authentication), this field SHALL be zero length.
#certificate_1_3{
certificate_request_context = <<>>,
certificate_list = CertList};
{error, Error} ->
?ALERT_REC(?FATAL, ?INTERNAL_ERROR, {server_has_no_suitable_certificates, Error})
end.
%% TODO: use maybe monad for error handling!
certificate_verify(OwnCert, PrivateKey, SignatureScheme, Messages, server) ->
{HashAlgo, _, _} =
ssl_cipher:scheme_to_components(SignatureScheme),
%% Transcript-Hash(Handshake Context, Certificate)
Context = [Messages, OwnCert],
THash = tls_v1:transcript_hash(Context, HashAlgo),
Signature = digitally_sign(THash, <<"TLS 1.3, server CertificateVerify">>,
HashAlgo, PrivateKey),
#certificate_verify_1_3{
algorithm = SignatureScheme,
signature = Signature
}.
%%====================================================================
%% Encode handshake
%%====================================================================
encode_handshake(#certificate_request_1_3{
certificate_request_context = Context,
extensions = Exts})->
EncContext = encode_cert_req_context(Context),
BinExts = encode_extensions(Exts),
{?CERTIFICATE_REQUEST, <<EncContext/binary, BinExts/binary>>};
encode_handshake(#certificate_1_3{
certificate_request_context = Context,
certificate_list = Entries}) ->
EncContext = encode_cert_req_context(Context),
EncEntries = encode_cert_entries(Entries),
{?CERTIFICATE, <<EncContext/binary, EncEntries/binary>>};
encode_handshake(#certificate_verify_1_3{
algorithm = Algorithm,
signature = Signature}) ->
EncAlgo = encode_algorithm(Algorithm),
EncSign = encode_signature(Signature),
{?CERTIFICATE_VERIFY, <<EncAlgo/binary, EncSign/binary>>};
encode_handshake(#encrypted_extensions{extensions = Exts})->
{?ENCRYPTED_EXTENSIONS, encode_extensions(Exts)};
encode_handshake(#new_session_ticket{
ticket_lifetime = LifeTime,
ticket_age_add = Age,
ticket_nonce = Nonce,
ticket = Ticket,
extensions = Exts}) ->
TicketSize = byte_size(Ticket),
BinExts = encode_extensions(Exts),
{?NEW_SESSION_TICKET, <<?UINT32(LifeTime), ?UINT32(Age),
?BYTE(Nonce), ?UINT16(TicketSize), Ticket/binary,
BinExts/binary>>};
encode_handshake(#end_of_early_data{}) ->
{?END_OF_EARLY_DATA, <<>>};
encode_handshake(#key_update{request_update = Update}) ->
{?KEY_UPDATE, <<?BYTE(Update)>>};
encode_handshake(HandshakeMsg) ->
ssl_handshake:encode_handshake(HandshakeMsg, {3,4}).
%%====================================================================
%% Decode handshake
%%====================================================================
decode_handshake(?CERTIFICATE_REQUEST, <<?BYTE(0), ?UINT16(Size), EncExts:Size/binary>>) ->
Exts = decode_extensions(EncExts, certificate_request),
#certificate_request_1_3{
certificate_request_context = <<>>,
extensions = Exts};
decode_handshake(?CERTIFICATE_REQUEST, <<?BYTE(CSize), Context:CSize/binary,
?UINT16(Size), EncExts:Size/binary>>) ->
Exts = decode_extensions(EncExts, certificate_request),
#certificate_request_1_3{
certificate_request_context = Context,
extensions = Exts};
decode_handshake(?CERTIFICATE, <<?BYTE(0), ?UINT24(Size), Certs:Size/binary>>) ->
CertList = decode_cert_entries(Certs),
#certificate_1_3{
certificate_request_context = <<>>,
certificate_list = CertList
};
decode_handshake(?CERTIFICATE, <<?BYTE(CSize), Context:CSize/binary,
?UINT24(Size), Certs:Size/binary>>) ->
CertList = decode_cert_entries(Certs),
#certificate_1_3{
certificate_request_context = Context,
certificate_list = CertList
};
decode_handshake(?CERTIFICATE_VERIFY, <<?UINT16(EncAlgo), ?UINT16(Size), Signature:Size/binary>>) ->
Algorithm = ssl_cipher:signature_scheme(EncAlgo),
#certificate_verify_1_3{
algorithm = Algorithm,
signature = Signature};
decode_handshake(?ENCRYPTED_EXTENSIONS, <<?UINT16(Size), EncExts:Size/binary>>) ->
#encrypted_extensions{
extensions = decode_extensions(EncExts, encrypted_extensions)
};
decode_handshake(?NEW_SESSION_TICKET, <<?UINT32(LifeTime), ?UINT32(Age),
?BYTE(Nonce), ?UINT16(TicketSize), Ticket:TicketSize/binary,
BinExts/binary>>) ->
Exts = decode_extensions(BinExts, encrypted_extensions),
#new_session_ticket{ticket_lifetime = LifeTime,
ticket_age_add = Age,
ticket_nonce = Nonce,
ticket = Ticket,
extensions = Exts};
decode_handshake(?END_OF_EARLY_DATA, _) ->
#end_of_early_data{};
decode_handshake(?KEY_UPDATE, <<?BYTE(Update)>>) ->
#key_update{request_update = Update};
decode_handshake(Tag, HandshakeMsg) ->
ssl_handshake:decode_handshake({3,4}, Tag, HandshakeMsg).
%%--------------------------------------------------------------------
%%% Internal functions
%%--------------------------------------------------------------------
encode_cert_req_context(<<>>) ->
<<?BYTE(0)>>;
encode_cert_req_context(Bin) ->
Size = byte_size(Bin),
<<?BYTE(Size), Bin/binary>>.
encode_cert_entries(Entries) ->
CertEntryList = encode_cert_entries(Entries, []),
Size = byte_size(CertEntryList),
<<?UINT24(Size), CertEntryList/binary>>.
encode_cert_entries([], Acc) ->
iolist_to_binary(lists:reverse(Acc));
encode_cert_entries([#certificate_entry{data = Data,
extensions = Exts} | Rest], Acc) ->
DSize = byte_size(Data),
BinExts = encode_extensions(Exts),
ExtSize = byte_size(BinExts),
encode_cert_entries(Rest,
[<<?UINT24(DSize), Data/binary, ?UINT16(ExtSize), BinExts/binary>> | Acc]).
encode_algorithm(Algo) ->
Scheme = ssl_cipher:signature_scheme(Algo),
<<?UINT16(Scheme)>>.
encode_signature(Signature) ->
Size = byte_size(Signature),
<<?UINT16(Size), Signature/binary>>.
decode_cert_entries(Entries) ->
decode_cert_entries(Entries, []).
decode_cert_entries(<<>>, Acc) ->
lists:reverse(Acc);
decode_cert_entries(<<?UINT24(DSize), Data:DSize/binary, ?UINT16(Esize), BinExts:Esize/binary,
Rest/binary>>, Acc) ->
Exts = decode_extensions(BinExts, certificate_request),
decode_cert_entries(Rest, [#certificate_entry{data = Data,
extensions = Exts} | Acc]).
encode_extensions(Exts)->
ssl_handshake:encode_extensions(extensions_list(Exts)).
decode_extensions(Exts, MessageType) ->
ssl_handshake:decode_extensions(Exts, {3,4}, MessageType).
extensions_list(HelloExtensions) ->
[Ext || {_, Ext} <- maps:to_list(HelloExtensions)].
%% TODO: add extensions!
chain_to_cert_list(L) ->
chain_to_cert_list(L, []).
%%
chain_to_cert_list([], Acc) ->
lists:reverse(Acc);
chain_to_cert_list([H|T], Acc) ->
chain_to_cert_list(T, [certificate_entry(H)|Acc]).
certificate_entry(DER) ->
#certificate_entry{
data = DER,
extensions = #{} %% Extensions not supported.
}.
%% The digital signature is then computed over the concatenation of:
%% - A string that consists of octet 32 (0x20) repeated 64 times
%% - The context string
%% - A single 0 byte which serves as the separator
%% - The content to be signed
%%
%% For example, if the transcript hash was 32 bytes of 01 (this length
%% would make sense for SHA-256), the content covered by the digital
%% signature for a server CertificateVerify would be:
%%
%% 2020202020202020202020202020202020202020202020202020202020202020
%% 2020202020202020202020202020202020202020202020202020202020202020
%% 544c5320312e332c207365727665722043657274696669636174655665726966
%% 79
%% 00
%% 0101010101010101010101010101010101010101010101010101010101010101
digitally_sign(THash, Context, HashAlgo, PrivateKey = #'RSAPrivateKey'{}) ->
Content = build_content(Context, THash),
%% The length of the Salt MUST be equal to the length of the output
%% of the digest algorithm.
PadLen = ssl_cipher:hash_size(HashAlgo),
public_key:sign(Content, HashAlgo, PrivateKey,
[{rsa_padding, rsa_pkcs1_pss_padding},
{rsa_pss_saltlen, PadLen}]).
build_content(Context, THash) ->
<<" ",
" ",
Context/binary,?BYTE(0),THash/binary>>.
%%====================================================================
%% Handle handshake messages
%%====================================================================
handle_client_hello(#client_hello{cipher_suites = ClientCiphers,
session_id = SessionId,
extensions = Extensions} = _Hello,
#ssl_options{ciphers = ServerCiphers,
signature_algs = ServerSignAlgs,
signature_algs_cert = _SignatureSchemes, %% TODO: Check??
supported_groups = ServerGroups0} = _SslOpts,
Env) ->
Cert = maps:get(cert, Env, undefined),
ClientGroups0 = maps:get(elliptic_curves, Extensions, undefined),
ClientGroups = get_supported_groups(ClientGroups0),
ServerGroups = get_supported_groups(ServerGroups0),
ClientShares0 = maps:get(key_share, Extensions, undefined),
ClientShares = get_key_shares(ClientShares0),
ClientSignAlgs = get_signature_scheme_list(
maps:get(signature_algs, Extensions, undefined)),
ClientSignAlgsCert = get_signature_scheme_list(
maps:get(signature_algs_cert, Extensions, undefined)),
%% TODO: use library function if it exists
%% Init the maybe "monad"
{Ref,Maybe} = maybe(),
try
%% If the server does not select a PSK, then the server independently selects a
%% cipher suite, an (EC)DHE group and key share for key establishment,
%% and a signature algorithm/certificate pair to authenticate itself to
%% the client.
Cipher = Maybe(select_cipher_suite(ClientCiphers, ServerCiphers)),
Group = Maybe(select_server_group(ServerGroups, ClientGroups)),
Maybe(validate_key_share(ClientGroups, ClientShares)),
ClientPubKey = Maybe(get_client_public_key(Group, ClientShares)),
{PublicKeyAlgo, SignAlgo, SignHash} = get_certificate_params(Cert),
%% Check if client supports signature algorithm of server certificate
Maybe(check_cert_sign_algo(SignAlgo, SignHash, ClientSignAlgs, ClientSignAlgsCert)),
%% Select signature algorithm (used in CertificateVerify message).
SelectedSignAlg = Maybe(select_sign_algo(PublicKeyAlgo, ClientSignAlgs, ServerSignAlgs)),
%% Generate server_share
KeyShare = ssl_cipher:generate_server_share(Group),
_Ret = #{cipher => Cipher,
group => Group,
sign_alg => SelectedSignAlg,
client_share => ClientPubKey,
key_share => KeyShare,
session_id => SessionId}
%% TODO:
%% - session handling
%% - handle extensions: ALPN
%% (do not handle: NPN, srp, renegotiation_info, ec_point_formats)
catch
{Ref, {insufficient_security, no_suitable_groups}} ->
?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY, no_suitable_groups);
{Ref, illegal_parameter} ->
?ALERT_REC(?FATAL, ?ILLEGAL_PARAMETER);
{Ref, {hello_retry_request, _Group0}} ->
%% TODO
?ALERT_REC(?FATAL, ?INTERNAL_ERROR, "hello_retry_request not implemented");
{Ref, no_suitable_cipher} ->
?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY, no_suitable_cipher);
{Ref, {insufficient_security, no_suitable_signature_algorithm}} ->
?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY, no_suitable_signature_algorithm);
{Ref, {insufficient_security, no_suitable_public_key}} ->
?ALERT_REC(?FATAL, ?INSUFFICIENT_SECURITY, no_suitable_public_key)
end.
do_negotiated(#{client_share := ClientKey,
group := SelectedGroup,
sign_alg := SignatureScheme
} = Map,
#state{connection_states = ConnectionStates0,
session = #session{session_id = SessionId,
own_certificate = OwnCert},
ssl_options = #ssl_options{} = SslOpts,
key_share = KeyShare,
handshake_env = #handshake_env{tls_handshake_history = HHistory0},
private_key = CertPrivateKey,
static_env = #static_env{
cert_db = CertDbHandle,
cert_db_ref = CertDbRef,
socket = Socket,
transport_cb = Transport}
} = State0) ->
{Ref,Maybe} = maybe(),
try
%% Create server_hello
%% Extensions: supported_versions, key_share, (pre_shared_key)
ServerHello = server_hello(SessionId, KeyShare, ConnectionStates0, Map),
{State1, _} = tls_connection:send_handshake(ServerHello, State0),
{HandshakeSecret, ReadKey, ReadIV, WriteKey, WriteIV} =
calculate_security_parameters(ClientKey, SelectedGroup, KeyShare, State1),
State2 =
update_pending_connection_states(State1, HandshakeSecret,
ReadKey, ReadIV, WriteKey, WriteIV),
State3 = ssl_record:step_encryption_state(State2),
%% Create Certificate
Certificate = certificate(OwnCert, CertDbHandle, CertDbRef, <<>>, server),
%% Encode Certificate
State4 = tls_connection:queue_handshake(Certificate, State3),
%% Create CertificateVerify
#state{handshake_env =
#handshake_env{tls_handshake_history = {Messages, _}}} = State4,
%% Use selected signature_alg from here, HKDF only used for key_schedule
CertificateVerify =
tls_handshake_1_3:certificate_verify(OwnCert, CertPrivateKey, SignatureScheme,
Messages, server),
%% Encode CertificateVerify
%% Send Certificate, CertifricateVerify
{_State5, _} = tls_connection:send_handshake(CertificateVerify, State4),
%% Send finished
%% Next record/Next event
Maybe(not_implemented(negotiated))
catch
{Ref, {state_not_implemented, State}} ->
%% TODO
?ALERT_REC(?FATAL, ?INTERNAL_ERROR, {state_not_implemented, State})
end.
%% TODO: Remove this function!
not_implemented(State) ->
{error, {state_not_implemented, State}}.
log_handshake(SslOpts, Message) ->
Msg = #{direction => outbound,
protocol => 'handshake',
message => Message},
ssl_logger:debug(SslOpts#ssl_options.log_level, Msg, #{domain => [otp,ssl,handshake]}).
log_tls_record(SslOpts, BinMsg) ->
Report = #{direction => outbound,
protocol => 'tls_record',
message => BinMsg},
ssl_logger:debug(SslOpts#ssl_options.log_level, Report, #{domain => [otp,ssl,tls_record]}).
calculate_security_parameters(ClientKey, SelectedGroup, KeyShare,
#state{connection_states = ConnectionStates,
handshake_env =
#handshake_env{
tls_handshake_history = HHistory}}) ->
#{security_parameters := SecParamsR} =
ssl_record:pending_connection_state(ConnectionStates, read),
#security_parameters{prf_algorithm = HKDFAlgo,
cipher_suite = CipherSuite} = SecParamsR,
%% Calculate handshake_secret
PSK = binary:copy(<<0>>, ssl_cipher:hash_size(HKDFAlgo)),
EarlySecret = tls_v1:key_schedule(early_secret, HKDFAlgo , {psk, PSK}),
PrivateKey = get_server_private_key(KeyShare), %% #'ECPrivateKey'{}
IKM = calculate_shared_secret(ClientKey, PrivateKey, SelectedGroup),
HandshakeSecret = tls_v1:key_schedule(handshake_secret, HKDFAlgo, IKM, EarlySecret),
%% Calculate [sender]_handshake_traffic_secret
{Messages, _} = HHistory,
ClientHSTrafficSecret =
tls_v1:client_handshake_traffic_secret(HKDFAlgo, HandshakeSecret, lists:reverse(Messages)),
ServerHSTrafficSecret =
tls_v1:server_handshake_traffic_secret(HKDFAlgo, HandshakeSecret, lists:reverse(Messages)),
%% Calculate traffic keys
#{cipher := Cipher} = ssl_cipher_format:suite_definition(CipherSuite),
{ReadKey, ReadIV} = tls_v1:calculate_traffic_keys(HKDFAlgo, Cipher, ClientHSTrafficSecret),
{WriteKey, WriteIV} = tls_v1:calculate_traffic_keys(HKDFAlgo, Cipher, ServerHSTrafficSecret),
{HandshakeSecret, ReadKey, ReadIV, WriteKey, WriteIV}.
%% %% Update pending connection state
%% PendingRead0 = ssl_record:pending_connection_state(ConnectionStates, read),
%% PendingWrite0 = ssl_record:pending_connection_state(ConnectionStates, write),
%% PendingRead = update_conn_state(PendingRead0, HandshakeSecret, ReadKey, ReadIV),
%% PendingWrite = update_conn_state(PendingWrite0, HandshakeSecret, WriteKey, WriteIV),
%% %% Update pending and copy to current (activate)
%% %% All subsequent handshake messages are encrypted
%% %% ([sender]_handshake_traffic_secret)
%% #{current_read => PendingRead,
%% current_write => PendingWrite,
%% pending_read => PendingRead,
%% pending_write => PendingWrite}.
get_server_private_key(#key_share_server_hello{server_share = ServerShare}) ->
get_private_key(ServerShare).
get_private_key(#key_share_entry{
key_exchange = #'ECPrivateKey'{} = PrivateKey}) ->
PrivateKey;
get_private_key(#key_share_entry{
key_exchange =
{_, PrivateKey}}) ->
PrivateKey.
%% X25519, X448
calculate_shared_secret(OthersKey, MyKey, Group)
when is_binary(OthersKey) andalso is_binary(MyKey) andalso
(Group =:= x25519 orelse Group =:= x448)->
crypto:compute_key(ecdh, OthersKey, MyKey, Group);
%% FFDHE
calculate_shared_secret(OthersKey, MyKey, Group)
when is_binary(OthersKey) andalso is_binary(MyKey) ->
Params = #'DHParameter'{prime = P} = ssl_dh_groups:dh_params(Group),
S = public_key:compute_key(OthersKey, MyKey, Params),
Size = byte_size(binary:encode_unsigned(P)),
ssl_cipher:add_zero_padding(S, Size);
%% ECDHE
calculate_shared_secret(OthersKey, MyKey = #'ECPrivateKey'{}, _Group)
when is_binary(OthersKey) ->
Point = #'ECPoint'{point = OthersKey},
public_key:compute_key(Point, MyKey).
update_pending_connection_states(#state{connection_states =
CS = #{pending_read := PendingRead0,
pending_write := PendingWrite0}} = State,
HandshakeSecret, ReadKey, ReadIV, WriteKey, WriteIV) ->
PendingRead = update_connection_state(PendingRead0, HandshakeSecret, ReadKey, ReadIV),
PendingWrite = update_connection_state(PendingWrite0, HandshakeSecret, WriteKey, WriteIV),
State#state{connection_states = CS#{pending_read => PendingRead,
pending_write => PendingWrite}}.
update_connection_state(ConnectionState = #{security_parameters := SecurityParameters0},
HandshakeSecret, Key, IV) ->
%% Store secret
SecurityParameters = SecurityParameters0#security_parameters{
master_secret = HandshakeSecret},
ConnectionState#{security_parameters => SecurityParameters,
cipher_state => cipher_init(Key, IV)}.
cipher_init(Key, IV) ->
#cipher_state{key = Key, iv = IV, tag_len = 16}.
%% If there is no overlap between the received
%% "supported_groups" and the groups supported by the server, then the
%% server MUST abort the handshake with a "handshake_failure" or an
%% "insufficient_security" alert.
select_server_group(_, []) ->
{error, {insufficient_security, no_suitable_groups}};
select_server_group(ServerGroups, [C|ClientGroups]) ->
case lists:member(C, ServerGroups) of
true ->
{ok, C};
false ->
select_server_group(ServerGroups, ClientGroups)
end.
%% RFC 8446 - 4.2.8. Key Share
%% This vector MAY be empty if the client is requesting a
%% HelloRetryRequest. Each KeyShareEntry value MUST correspond to a
%% group offered in the "supported_groups" extension and MUST appear in
%% the same order. However, the values MAY be a non-contiguous subset
%% of the "supported_groups" extension and MAY omit the most preferred
%% groups.
%%
%% Clients can offer as many KeyShareEntry values as the number of
%% supported groups it is offering, each representing a single set of
%% key exchange parameters.
%%
%% Clients MUST NOT offer multiple KeyShareEntry values
%% for the same group. Clients MUST NOT offer any KeyShareEntry values
%% for groups not listed in the client's "supported_groups" extension.
%% Servers MAY check for violations of these rules and abort the
%% handshake with an "illegal_parameter" alert if one is violated.
validate_key_share(_ ,[]) ->
ok;
validate_key_share([], _) ->
{error, illegal_parameter};
validate_key_share([G|ClientGroups], [{_, G, _}|ClientShares]) ->
validate_key_share(ClientGroups, ClientShares);
validate_key_share([_|ClientGroups], [_|_] = ClientShares) ->
validate_key_share(ClientGroups, ClientShares).
get_client_public_key(Group, ClientShares) ->
case lists:keysearch(Group, 2, ClientShares) of
{value, {_, _, ClientPublicKey}} ->
{ok, ClientPublicKey};
false ->
%% 4.1.4. Hello Retry Request
%%
%% The server will send this message in response to a ClientHello
%% message if it is able to find an acceptable set of parameters but the
%% ClientHello does not contain sufficient information to proceed with
%% the handshake.
{error, {hello_retry_request, Group}}
end.
select_cipher_suite([], _) ->
{error, no_suitable_cipher};
select_cipher_suite([Cipher|ClientCiphers], ServerCiphers) ->
case lists:member(Cipher, tls_v1:suites('TLS_v1.3')) andalso
lists:member(Cipher, ServerCiphers) of
true ->
{ok, Cipher};
false ->
select_cipher_suite(ClientCiphers, ServerCiphers)
end.
%% RFC 8446 (TLS 1.3)
%% TLS 1.3 provides two extensions for indicating which signature
%% algorithms may be used in digital signatures. The
%% "signature_algorithms_cert" extension applies to signatures in
%% certificates and the "signature_algorithms" extension, which
%% originally appeared in TLS 1.2, applies to signatures in
%% CertificateVerify messages.
%%
%% If no "signature_algorithms_cert" extension is
%% present, then the "signature_algorithms" extension also applies to
%% signatures appearing in certificates.
%% Check if the signature algorithm of the server certificate is supported
%% by the client.
check_cert_sign_algo(SignAlgo, SignHash, ClientSignAlgs, undefined) ->
do_check_cert_sign_algo(SignAlgo, SignHash, ClientSignAlgs);
check_cert_sign_algo(SignAlgo, SignHash, _, ClientSignAlgsCert) ->
do_check_cert_sign_algo(SignAlgo, SignHash, ClientSignAlgsCert).
%% DSA keys are not supported by TLS 1.3
select_sign_algo(dsa, _ClientSignAlgs, _ServerSignAlgs) ->
{error, {insufficient_security, no_suitable_public_key}};
%% TODO: Implement support for ECDSA keys!
select_sign_algo(_, [], _) ->
{error, {insufficient_security, no_suitable_signature_algorithm}};
select_sign_algo(PublicKeyAlgo, [C|ClientSignAlgs], ServerSignAlgs) ->
{_, S, _} = ssl_cipher:scheme_to_components(C),
%% RSASSA-PKCS1-v1_5 and Legacy algorithms are not defined for use in signed
%% TLS handshake messages: filter sha-1 and rsa_pkcs1.
case ((PublicKeyAlgo =:= rsa andalso S =:= rsa_pss_rsae)
orelse (PublicKeyAlgo =:= rsa_pss andalso S =:= rsa_pss_rsae))
andalso
lists:member(C, ServerSignAlgs) of
true ->
{ok, C};
false ->
select_sign_algo(PublicKeyAlgo, ClientSignAlgs, ServerSignAlgs)
end.
do_check_cert_sign_algo(_, _, []) ->
{error, {insufficient_security, no_suitable_signature_algorithm}};
do_check_cert_sign_algo(SignAlgo, SignHash, [Scheme|T]) ->
{Hash, Sign, _Curve} = ssl_cipher:scheme_to_components(Scheme),
case compare_sign_algos(SignAlgo, SignHash, Sign, Hash) of
true ->
ok;
_Else ->
do_check_cert_sign_algo(SignAlgo, SignHash, T)
end.
%% id-RSASSA-PSS (rsa_pss) indicates that the key may only be used for PSS signatures.
%% TODO: Uncomment when rsa_pss signatures are supported in certificates
%% compare_sign_algos(rsa_pss, Hash, Algo, Hash)
%% when Algo =:= rsa_pss_pss ->
%% true;
%% rsaEncryption (rsa) allows the key to be used for any of the standard encryption or
%% signature schemes.
compare_sign_algos(rsa, Hash, Algo, Hash)
when Algo =:= rsa_pss_rsae orelse
Algo =:= rsa_pkcs1 ->
true;
compare_sign_algos(Algo, Hash, Algo, Hash) ->
true;
compare_sign_algos(_, _, _, _) ->
false.
get_certificate_params(Cert) ->
{SignAlgo0, _Param, PublicKeyAlgo0} = ssl_handshake:get_cert_params(Cert),
{SignHash0, SignAlgo} = public_key:pkix_sign_types(SignAlgo0),
%% Convert hash to new format
SignHash = case SignHash0 of
sha ->
sha1;
H -> H
end,
PublicKeyAlgo = public_key_algo(PublicKeyAlgo0),
{PublicKeyAlgo, SignAlgo, SignHash}.
%% Note: copied from ssl_handshake
public_key_algo(?'id-RSASSA-PSS') ->
rsa_pss;
public_key_algo(?rsaEncryption) ->
rsa;
public_key_algo(?'id-ecPublicKey') ->
ecdsa;
public_key_algo(?'id-dsa') ->
dsa.
get_signature_scheme_list(undefined) ->
undefined;
get_signature_scheme_list(#signature_algorithms_cert{
signature_scheme_list = ClientSignatureSchemes}) ->
ClientSignatureSchemes;
get_signature_scheme_list(#signature_algorithms{
signature_scheme_list = ClientSignatureSchemes}) ->
ClientSignatureSchemes.
get_supported_groups(#supported_groups{supported_groups = Groups}) ->
Groups.
get_key_shares(#key_share_client_hello{client_shares = ClientShares}) ->
ClientShares.
maybe() ->
Ref = erlang:make_ref(),
Ok = fun(ok) -> ok;
({ok,R}) -> R;
({error,Reason}) ->
throw({Ref,Reason})
end,
{Ref,Ok}.