<?xml version="1.0" encoding="latin1" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>2009</year>
<year>2010</year>
<holder>Ericsson AB, All Rights Reserved</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved on line at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
The Initial Developer of the Original Code is Ericsson AB.
</legalnotice>
<title>binary</title>
<prepared>Patrik Nyblom</prepared>
<responsible>Kenneth Lundin</responsible>
<docno>1</docno>
<approved></approved>
<checked></checked>
<date>2010-05-05</date>
<rev>A</rev>
<file>binary.xml</file>
</header>
<module>binary</module>
<modulesummary>Library for handling binary data</modulesummary>
<description>
<p>This module contains functions for manipulating byte-oriented
binaries. Although the majority of functions could be implemented
using bit-syntax, the functions in this library are highly
optimized and are expected to either execute faster or consume
less memory (or both) than a counterpart written in pure Erlang.</p>
<p>The module is implemented according to the EEP (Erlang Enhancement Proposal) 31.</p>
<note>
<p>
The library handles byte-oriented data. Bitstrings that are not
binaries (does not contain whole octets of bits) will result in a <c>badarg</c>
exception being thrown from any of the functions in this
module.
</p>
</note>
</description>
<section>
<title>DATA TYPES</title>
<code type="none">
cp()
- Opaque data-type representing a compiled search-pattern. Guaranteed to be a tuple()
to allow programs to distinguish it from non precompiled search patterns.
</code>
<code type="none">
part() = {Start,Length}
Start = int()
Length = int()
- A representaion of a part (or range) in a binary. Start is a
zero-based offset into a binary() and Length is the length of
that part. As input to functions in this module, a reverse
part specification is allowed, constructed with a negative
Length, so that the part of the binary begins at Start +
Length and is -Length long. This is useful for referencing the
last N bytes of a binary as {size(Binary), -N}. The functions
in this module always return part()'s with positive Length.
</code>
</section>
<funcs>
<func>
<name>at(Subject, Pos) -> int()</name>
<fsummary>Returns the byte at a specific position in a binary</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pos = int() >= 0</v>
</type>
<desc>
<p>Returns the byte at position <c>Pos</c> (zero-based) in the binary
<c>Subject</c> as an integer. If <c>Pos</c> >= <c>byte_size(Subject)</c>,
a <c>badarg</c>
exception is raised.</p>
</desc>
</func>
<func>
<name>bin_to_list(Subject) -> list()</name>
<fsummary>Convert a binary to a list of integers</fsummary>
<type>
<v>Subject = binary()</v>
</type>
<desc>
<p>The same as <c>bin_to_list(Subject,{0,byte_size(Subject)})</c>.</p>
</desc>
</func>
<func>
<name>bin_to_list(Subject, PosLen) -> list()</name>
<fsummary>Convert a binary to a list of integers</fsummary>
<type>
<v>Subject = binary()</v>
<v>PosLen = part()</v>
</type>
<desc>
<p>Converts <c>Subject</c> to a list of <c>int()</c>s, each representing
the value of one byte. The <c>part()</c> denotes which part of the
<c>binary()</c> to convert. Example:</p>
<code>
1> binary:bin_to_list(<<"erlang">>,{1,3}).
"rla"
%% or [114,108,97] in list notation.
</code>
<p>If <c>PosLen</c> in any way references outside the binary, a <c>badarg</c> exception is raised.</p>
</desc>
</func>
<func>
<name>bin_to_list(Subject, Pos, Len) -> list()</name>
<fsummary>Convert a binary to a list of integers</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pos = int()</v>
<v>Len = int()</v>
</type>
<desc>
<p>The same as<c> bin_to_list(Subject,{Pos,Len})</c>.</p>
</desc>
</func>
<func>
<name>compile_pattern(Pattern) -> cp()</name>
<fsummary>Pre-compiles a binary search pattern</fsummary>
<type>
<v>Pattern = binary() | [ binary() ]</v>
</type>
<desc>
<p>Builds an internal structure representing a compilation of a
search-pattern, later to be used in the <seealso marker="#match-3">match/3</seealso>,
<seealso marker="#matches-3">matches/3</seealso>,
<seealso marker="#split-3">split/3</seealso> or
<seealso marker="#replace-4">replace/4</seealso>
functions. The <c>cp()</c> returned is guaranteed to be a
<c>tuple()</c> to allow programs to distinguish it from non
pre-compiled search patterns</p>
<p>When a list of binaries is given, it denotes a set of
alternative binaries to search for. I.e if
<c>[<<"functional">>,<<"programming">>]</c>
is given as <c>Pattern</c>, this
means "either <c><<"functional">></c> or
<c><<"programming">></c>". The pattern is a set of
alternatives; when only a single binary is given, the set has
only one element. The order of alternatives in a pattern is not significant.</p>
<p>The list of binaries used for search alternatives shall be flat and proper.</p>
<p>If <c>Pattern</c> is not a binary or a flat proper list of binaries with length > 0,
a <c>badarg</c> exception will be raised.</p>
</desc>
</func>
<func>
<name>copy(Subject) -> binary()</name>
<fsummary>Creates a duplicate of a binary</fsummary>
<type>
<v>Subject = binary()</v>
</type>
<desc>
<p>The same as <c>copy(Subject, 1)</c>.</p>
</desc>
</func>
<func>
<name>copy(Subject,N) -> binary()</name>
<fsummary>Duplicates a binary N times and creates a new</fsummary>
<type>
<v>Subject = binary()</v>
<v>N = int() >= 0</v>
</type>
<desc>
<p>Creates a binary with the content of <c>Subject</c> duplicated <c>N</c> times.</p>
<p>This function will always create a new binary, even if <c>N =
1</c>. By using <c>copy/1</c> on a binary referencing a larger binary, one
might free up the larger binary for garbage collection.</p>
<note>
<p>By deliberately copying a single binary to avoid referencing
a larger binary, one might, instead of freeing up the larger
binary for later garbage collection, create much more binary
data than needed. Sharing binary data is usually good. Only in
special cases, when small parts reference large binaries and the
large binaries are no longer used in any process, deliberate
copying might be a good idea.</p> </note>
<p>If <c>N</c> < <c>0</c>, a <c>badarg</c> exception is raised.</p>
</desc>
</func>
<func>
<name>decode_unsigned(Subject) -> Unsigned</name>
<fsummary>Decode a whole binary into an integer of arbitrary size</fsummary>
<type>
<v>Subject = binary()</v>
<v>Unsigned = int() >= 0</v>
</type>
<desc>
<p>The same as <c>decode_unsigned(Subject,big)</c>.</p>
</desc>
</func>
<func>
<name>decode_unsigned(Subject, Endianess) -> Unsigned</name>
<fsummary>Decode a whole binary into an integer of arbitrary size</fsummary>
<type>
<v>Subject = binary()</v>
<v>Endianess = big | little</v>
<v>Unsigned = int() >= 0</v>
</type>
<desc>
<p>Converts the binary digit representation, in big or little
endian, of a positive integer in <c>Subject</c> to an Erlang <c>int()</c>.</p>
<p>Example:</p>
<code>
1> binary:decode_unsigned(<<169,138,199>>,big).
11111111
</code>
</desc>
</func>
<func>
<name>encode_unsigned(Unsigned) -> binary()</name>
<fsummary>Encodes an unsigned integer into the minimal binary</fsummary>
<type>
<v>Unsigned = int() >= 0</v>
</type>
<desc>
<p>The same as <c>encode_unsigned(Unsigned,big)</c>.</p>
</desc>
</func>
<func>
<name>encode_unsigned(Unsigned,Endianess) -> binary()</name>
<fsummary>Encodes an unsigned integer into the minimal binary</fsummary>
<type>
<v>Unsigned = int() >= 0</v>
<v>Endianess = big | little</v>
</type>
<desc>
<p>Converts a positive integer to the smallest possible
representation in a binary digit representation, either big
or little endian.</p>
<p>Example:</p>
<code>
1> binary:encode_unsigned(11111111,big).
<<169,138,199>>
</code>
</desc>
</func>
<func>
<name>first(Subject) -> int()</name>
<fsummary>Returns the first byte of a binary</fsummary>
<type>
<v>Subject = binary()</v>
</type>
<desc>
<p>Returns the first byte of the binary <c>Subject</c> as an integer. If the
size of <c>Subject</c> is zero, a <c>badarg</c> exception is raised.</p>
</desc>
</func>
<func>
<name>last(Subject) -> int()</name>
<fsummary>Returns the last byte of a binary</fsummary>
<type>
<v>Subject = binary()</v>
</type>
<desc>
<p>Returns the last byte of the binary <c>Subject</c> as an integer. If the
size of <c>Subject</c> is zero, a <c>badarg</c> exception is raised.</p>
</desc>
</func>
<func>
<name>list_to_bin(ByteList) -> binary()</name>
<fsummary>Convert a list of integers and binaries to a binary</fsummary>
<type>
<v>ByteList = iodata() (see module erlang)</v>
</type>
<desc>
<p>Works exactly as <c>erlang:list_to_binary/1</c>, added for completeness.</p>
</desc>
</func>
<func>
<name>longest_common_prefix(Binaries) -> int()</name>
<fsummary>Returns length of longest common prefix for a set of binaries</fsummary>
<type>
<v>Binaries = [ binary() ]</v>
</type>
<desc>
<p>Returns the length of the longest common prefix of the
binaries in the list <c>Binaries</c>. Example:</p>
<code>
1> binary:longest_common_prefix([<<"erlang">>,<<"ergonomy">>]).
2
2> binary:longest_common_prefix([<<"erlang">>,<<"perl">>]).
0
</code>
<p>If <c>Binaries</c> is not a flat list of binaries, a <c>badarg</c> exception is raised.</p>
</desc>
</func>
<func>
<name>longest_common_suffix(Binaries) -> int()</name>
<fsummary>Returns length of longest common suffix for a set of binaries</fsummary>
<type>
<v>Binaries = [ binary() ]</v>
</type>
<desc>
<p>Returns the length of the longest common suffix of the
binaries in the list <c>Binaries</c>. Example:</p>
<code>
1> binary:longest_common_suffix([<<"erlang">>,<<"fang">>]).
3
2> binary:longest_common_suffix([<<"erlang">>,<<"perl">>]).
0
</code>
<p>If <c>Binaries</c> is not a flat list of binaries, a <c>badarg</c> exception is raised.</p>
</desc>
</func>
<func>
<name>match(Subject, Pattern) -> Found | <c>nomatch</c></name>
<fsummary>Searches for the first match of a pattern in a binary</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pattern = binary() | [ binary() ] | cp()</v>
<v>Found = part()</v>
</type>
<desc>
<p>The same as <c>match(Subject, Pattern, [])</c>.</p>
</desc>
</func>
<func>
<name>match(Subject,Pattern,Options) -> Found | <c>nomatch</c></name>
<fsummary>Searches for the first match of a pattern in a binary</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pattern = binary() | [ binary() ] | cp()</v>
<v>Found = part()</v>
<v>Options = [ Option ]</v>
<v>Option = {scope, part()}</v>
</type>
<desc>
<p>Searches for the first occurrence of <c>Pattern</c> in <c>Subject</c> and
returns the position and length.</p>
<p>The function will return <c>{Pos,Length}</c> for the binary
in <c>Pattern</c> starting at the lowest position in
<c>Subject</c>, Example:</p>
<code>
1> binary:match(<<"abcde">>, [<<"bcde">>,<<"cd">>],[]).
{1,4}
</code>
<p>Even though <c><<"cd">></c> ends before
<c><<"bcde">></c>, <c><<"bcde">></c>
begins first and is therefore the first match. If two
overlapping matches begin at the same position, the longest is
returned.</p>
<p>Summary of the options:</p>
<taglist>
<tag>{scope, {Start, Length}}</tag>
<item><p>Only the given part is searched. Return values still have
offsets from the beginning of <c>Subject</c>. A negative <c>Length</c> is
allowed as described in the <c>TYPES</c> section of this manual.</p></item>
</taglist>
<p>If none of the strings in
<c>Pattern</c> is found, the atom <c>nomatch</c> is returned.</p>
<p>For a description of <c>Pattern</c>, see
<seealso marker="#compile_pattern-1">compile_pattern/1</seealso>.</p>
<p>If <c>{scope, {Start,Length}}</c> is given in the options
such that <c>Start</c> is larger than the size of
<c>Subject</c>, <c>Start + Length</c> is less than zero or
<c>Start + Length</c> is larger than the size of
<c>Subject</c>, a <c>badarg</c> exception is raised.</p>
</desc>
</func>
<func>
<name>matches(Subject, Pattern) -> Found</name>
<fsummary>Searches for all matches of a pattern in a binary</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pattern = binary() | [ binary() ] | cp()</v>
<v>Found = [ part() ] | []</v>
</type>
<desc>
<p>The same as <c>matches(Subject, Pattern, [])</c>.</p>
</desc>
</func>
<func>
<name>matches(Subject,Pattern,Options) -> Found</name>
<fsummary>Searches for all matches of a pattern in a binary</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pattern = binary() | [ binary() ] | cp()</v>
<v>Found = [ part() ] | []</v>
<v>Options = [ Option ]</v>
<v>Option = {scope, part()}</v>
</type>
<desc>
<p>Works like match, but the <c>Subject</c> is searched until
exhausted and a list of all non-overlapping parts matching
<c>Pattern</c> is returned (in order). </p>
<p>The first and longest match is preferred to a shorter,
which is illustrated by the following example:</p>
<code>
1> binary:matches(<<"abcde">>,
[<<"bcde">>,<<"bc">>>,<<"de">>],[]).
[{1,4}]
</code>
<p>The result shows that <<bcde">> is selected instead of the
shorter match <<"bc">> (which would have given raise to one
more match,<<"de">>). This corresponds to the behavior of posix
regular expressions (and programs like awk), but is not
consistent with alternative matches in re (and Perl), where
instead lexical ordering in the search pattern selects which
string matches.</p>
<p>If none of the strings in pattern is found, an empty list is returned.</p>
<p>For a description of <c>Pattern</c>, see <seealso marker="#compile_pattern-1">compile_pattern/1</seealso> and for a
description of available options, see <seealso marker="#match-3">match/3</seealso>.</p>
<p>If <c>{scope, {Start,Length}}</c> is given in the options such that
<c>Start</c> is larger than the size of <c>Subject</c>, <c>Start + Length</c> is
less than zero or <c>Start + Length</c> is larger than the size of
<c>Subject</c>, a <c>badarg</c> exception is raised.</p>
</desc>
</func>
<func>
<name>part(Subject, PosLen) -> binary()</name>
<fsummary>Extracts a part of a binary</fsummary>
<type>
<v>Subject = binary()</v>
<v>PosLen = part()</v>
</type>
<desc>
<p>Extracts the part of the binary <c>Subject</c> described by <c>PosLen</c>.</p>
<p>Negative length can be used to extract bytes at the end of a binary:</p>
<code>
1> Bin = <<1,2,3,4,5,6,7,8,9,10>>.
2> binary:part(Bin,{byte_size(Bin), -5)}).
<<6,7,8,9,10>>
</code>
<note>
<p><seealso marker="#part-2">part/2</seealso>and <seealso
marker="#part-3">part/3</seealso> are also available in the
<c>erlang</c> module under the names <c>binary_part/2</c> and
<c>binary_part/3</c>. Those BIFs are allowed in guard tests.</p>
</note>
<p>If <c>PosLen</c> in any way references outside the binary, a <c>badarg</c> exception
is raised.</p>
</desc>
</func>
<func>
<name>part(Subject, Pos, Len) -> binary()</name>
<fsummary>Extracts a part of a binary</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pos = int()</v>
<v>Len = int()</v>
</type>
<desc>
<p>The same as <c>part(Subject, {Pos, Len})</c>.</p>
</desc>
</func>
<func>
<name>referenced_byte_size(binary()) -> int()</name>
<fsummary>Determines the size of the actual binary pointed out by a sub-binary</fsummary>
<desc>
<p>If a binary references a larger binary (often described as
being a sub-binary), it can be useful to get the size of the
actual referenced binary. This function can be used in a program
to trigger the use of <c>copy/1</c>. By copying a binary, one might
dereference the original, possibly large, binary which a smaller
binary is a reference to.</p>
<p>Example:</p>
<code>
store(Binary, GBSet) ->
NewBin =
case binary:referenced_byte_size(Binary) of
Large when Large > 2 * byte_size(Binary) ->
binary:copy(Binary);
_ ->
Binary
end,
gb_sets:insert(NewBin,GBSet).
</code>
<p>In this example, we chose to copy the binary content before
inserting it in the <c>gb_set()</c> if it references a binary more than
twice the size of the data we're going to keep. Of course
different rules for when copying will apply to different
programs.</p>
<p>Binary sharing will occur whenever binaries are taken apart,
this is the fundamental reason why binaries are fast,
decomposition can always be done with O(1) complexity. In rare
circumstances this data sharing is however undesirable, why this
function together with <c>copy/1</c> might be useful when optimizing
for memory use.</p>
<p>Example of binary sharing:</p>
<code>
1> A = binary:copy(<<1>>,100).
<<1,1,1,1,1 ...
2> byte_size(A).
100
3> binary:referenced_byte_size(A)
100
4> <<_:10/binary,B:10/binary,_/binary>> = A.
<<1,1,1,1,1 ...
5> byte_size(B).
10
6> binary:referenced_byte_size(B)
100
</code>
<note>
<p>Binary data is shared among processes. If another process
still references the larger binary, copying the part this
process uses only consumes more memory and will not free up the
larger binary for garbage collection. Use this kind of intrusive
functions with extreme care, and only if a real problem is
detected.</p>
</note>
</desc>
</func>
<func>
<name>replace(Subject,Pattern,Replacement) -> Result</name>
<fsummary>Replaces bytes in a binary according to a pattern</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pattern = binary() | [ binary() ] | cp()</v>
<v>Replacement = binary()</v>
<v>Result = binary()</v>
</type>
<desc>
<p>The same as <c>replace(Subject,Pattern,Replacement,[])</c>.</p>
</desc>
</func>
<func>
<name>replace(Subject,Pattern,Replacement,Options) -> Result</name>
<fsummary>Replaces bytes in a binary according to a pattern</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pattern = binary() | [ binary() ] | cp()</v>
<v>Replacement = binary()</v>
<v>Result = binary()</v>
<v>Options = [ Option ]</v>
<v>Option = global | {scope, part()} | {insert_replaced, InsPos}</v>
<v>InsPos = OnePos | [ OnePos ]</v>
<v>OnePos = int() =< byte_size(Replacement)</v>
</type>
<desc>
<p>Constructs a new binary by replacing the parts in
<c>Subject</c> matching <c>Pattern</c> with the content of
<c>Replacement</c>.</p>
<p>If the matching sub-part of <c>Subject</c> giving raise to the
replacement is to be inserted in the result, the option
<c>{insert_replaced, InsPos}</c> will insert the matching part into
<c>Replacement</c> at the given position (or positions) before actually
inserting <c>Replacement</c> into the <c>Subject</c>. Example:</p>
<code>
1> binary:replace(<<"abcde">>,<<"b">>,<<"[]">>,[{insert_replaced,1}]).
<<"a[b]cde">>
2> binary:replace(<<"abcde">>,[<<"b">>,<<"d">>],<<"[]">>,
[global,{insert_replaced,1}]).
<<"a[b]c[d]e">>
3> binary:replace(<<"abcde">>,[<<"b">>,<<"d">>],<<"[]">>,
[global,{insert_replaced,[1,1]}]).
<<"a[bb]c[dd]e">>
4> binary:replace(<<"abcde">>,[<<"b">>,<<"d">>],<<"[-]">>,
[global,{insert_replaced,[1,2]}]).
<<"a[b-b]c[d-d]e">>
</code>
<p>If any position given in <c>InsPos</c> is greater than the size of the replacement binary, a <c>badarg</c> exception is raised.</p>
<p>The options <c>global</c> and <c>{scope, part()}</c> work as for <seealso marker="#split-3">split/3</seealso>. The return type is always a <c>binary()</c>.</p>
<p>For a description of <c>Pattern</c>, see <seealso marker="#compile_pattern-1">compile_pattern/1</seealso>.</p>
</desc>
</func>
<func>
<name>split(Subject,Pattern) -> Parts</name>
<fsummary>Splits a binary according to a pattern</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pattern = binary() | [ binary() ] | cp()</v>
<v>Parts = [ binary() ]</v>
</type>
<desc>
<p>The same as <c>split(Subject, Pattern, [])</c>.</p>
</desc>
</func>
<func>
<name>split(Subject,Pattern,Options) -> Parts</name>
<fsummary>Splits a binary according to a pattern</fsummary>
<type>
<v>Subject = binary()</v>
<v>Pattern = binary() | [ binary() ] | cp()</v>
<v>Parts = [ binary() ]</v>
<v>Options = [ Option ]</v>
<v>Option = {scope, part()} | trim | global</v>
</type>
<desc>
<p>Splits Binary into a list of binaries based on Pattern. If
the option global is not given, only the first occurrence of
Pattern in Subject will give rise to a split.</p>
<p>The parts of Pattern actually found in Subject are not included in the result.</p>
<p>Example:</p>
<code>
1> binary:split(<<1,255,4,0,0,0,2,3>>, [<<0,0,0>>,<<2>>],[]).
[<<1,255,4>>, <<2,3>>]
2> binary:split(<<0,1,0,0,4,255,255,9>>, [<<0,0>>, <<255,255>>],[global]).
[<<0,1>>,<<4>>,<<9>>]
</code>
<p>Summary of options:</p>
<taglist>
<tag>{scope, part()}</tag>
<item><p>Works as in <seealso marker="#match-3">match/3</seealso> and
<seealso marker="#matches-3">matches/3</seealso>. Note that
this only defines the scope of the search for matching strings,
it does not cut the binary before splitting. The bytes before
and after the scope will be kept in the result. See example
below.</p></item>
<tag>trim</tag>
<item><p>Removes trailing empty parts of the result (as does trim in <c>re:split/3</c>)</p></item>
<tag>global</tag>
<item><p>Repeats the split until the <c>Subject</c> is
exhausted. Conceptually the global option makes split work on
the positions returned by <seealso marker="#matches-3">matches/3</seealso>,
while it normally
works on the position returned by
<seealso marker="#match-3">match/3</seealso>.</p></item>
</taglist>
<p>Example of the difference between a scope and taking the
binary apart before splitting:</p>
<code>
1> binary:split(<<"banana">>,[<<"a">>],[{scope,{2,3}}]).
[<<"ban">>,<<"na">>]
2> binary:split(binary:part(<<"banana">>,{2,3}),[<<"a">>],[]).
[<<"n">>,<<"n">>]
</code>
<p>The return type is always a list of binaries that are all
referencing <c>Subject</c>. This means that the data in <c>Subject</c> is not
actually copied to new binaries and that <c>Subject</c> cannot be
garbage collected until the results of the split are no longer
referenced.</p>
<p>For a description of <c>Pattern</c>, see <seealso marker="#compile_pattern-1">compile_pattern/1</seealso>.</p>
</desc>
</func>
</funcs>
</erlref>