<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>2016</year><year>2018</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
</legalnotice>
<title>gen_statem</title>
<prepared></prepared>
<docno></docno>
<date></date>
<rev></rev>
</header>
<module>gen_statem</module>
<modulesummary>Generic state machine behavior.</modulesummary>
<description>
<p>
<c>gen_statem</c> provides a generic state machine behaviour
and replaces its predecessor
<seealso marker="gen_fsm"><c>gen_fsm</c></seealso>
since Erlang/OTP 20.0.
</p>
<p>
This reference manual describes types generated from the types
in the <c>gen_statem</c> source code, so they are correct.
However, the generated descriptions also reflect the type hiearchy,
which makes them kind of hard to read.
</p>
<p>
To get an overview of the concepts and operation of <c>gen_statem</c>,
do read the
<seealso marker="doc/design_principles:statem">
<c>gen_statem</c> Behaviour
</seealso>
in
<seealso marker="doc/design_principles:users_guide">
OTP Design Principles
</seealso>
which frequently links back to this reference manual to avoid
containing detailed facts that may rot by age.
</p>
<note>
<p>
This behavior appeared in Erlang/OTP 19.0.
In OTP 19.1 a backwards incompatible change of
the return tuple from
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
was made and the mandatory callback function
<seealso marker="#Module:callback_mode/0">
<c>Module:callback_mode/0</c>
</seealso>
was introduced. In OTP 20.0 the
<seealso marker="#type-generic_timeout"><c>generic timeouts</c></seealso>
were added.
</p>
</note>
<p>
<c>gen_statem</c> has got the same features that
<seealso marker="gen_fsm"><c>gen_fsm</c></seealso>
had and adds some really useful:
</p>
<list type="bulleted">
<item>Co-located state code</item>
<item>Arbitrary term state</item>
<item>Event postponing</item>
<item>Self-generated events</item>
<item>State time-out</item>
<item>Multiple generic named time-outs</item>
<item>Absolute time-out time</item>
<item>Automatic state enter calls</item>
<item>
Reply from other state than the request, <c>sys</c> traceable
</item>
<item>Multiple <c>sys</c> traceable replies</item>
</list>
<p>
Two
<seealso marker="#type-callback_mode"><em>callback modes</em></seealso>
are supported:
</p>
<list type="bulleted">
<item>
<p>One for finite-state machines
(<seealso marker="gen_fsm"><c>gen_fsm</c></seealso> like),
which requires the state to be an atom and uses that state as
the name of the current callback function
</p>
</item>
<item>
<p>One without restriction on the state data type
that uses one callback function for all states
</p>
</item>
</list>
<p>
The callback model(s) for <c>gen_statem</c> differs from
the one for <seealso marker="gen_fsm"><c>gen_fsm</c></seealso>,
but it is still fairly easy to
<seealso marker="gen_fsm#Migration to gen_statem">
rewrite from
</seealso> <c>gen_fsm</c> to <c>gen_statem</c>.
</p>
<p>
A generic state machine process (<c>gen_statem</c>) implemented
using this module has a standard set of interface functions
and includes functionality for tracing and error reporting.
It also fits into an OTP supervision tree. For more information, see
<seealso marker="doc/design_principles:statem">OTP Design Principles</seealso>.
</p>
<p>
A <c>gen_statem</c> assumes all specific parts to be located in a
callback module exporting a predefined set of functions.
The relationship between the behavior functions and the callback
functions is as follows:</p>
<pre>
gen_statem module Callback module
----------------- ---------------
gen_statem:start
gen_statem:start_link -----> Module:init/1
Server start or code change
-----> Module:callback_mode/0
gen_statem:stop -----> Module:terminate/3
gen_statem:call
gen_statem:cast
erlang:send
erlang:'!' -----> Module:StateName/3
Module:handle_event/4
- -----> Module:terminate/3
- -----> Module:code_change/4</pre>
<p>
Events are of different
<seealso marker="#type-event_type">types</seealso>,
so the callback functions can know the origin of an event
and how to respond.
</p>
<p>
If a callback function fails or returns a bad value,
the <c>gen_statem</c> terminates, unless otherwise stated.
However, an exception of class
<seealso marker="erts:erlang#throw/1"><c>throw</c></seealso>
is not regarded as an error but as a valid return
from all callback functions.
</p>
<marker id="state callback"/>
<p>
The "<em>state callback</em>" for a specific
<seealso marker="#type-state">state</seealso>
in a <c>gen_statem</c> is the callback function that is called
for all events in this state. It is selected depending on which
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
that the callback module defines with the callback function
<seealso marker="#Module:callback_mode/0"><c>Module:callback_mode/0</c></seealso>.
</p>
<p>
When the
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
is <c>state_functions</c>, the state must be an atom and
is used as the state callback name; see
<seealso marker="#Module:StateName/3"><c>Module:StateName/3</c></seealso>.
This co-locates all code for a specific state
in one function as the <c>gen_statem</c> engine
branches depending on state name.
Note the fact that the callback function
<seealso marker="#Module:terminate/3"><c>Module:terminate/3</c></seealso>
makes the state name <c>terminate</c> unusable in this mode.
</p>
<p>
When the
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
is <c>handle_event_function</c>, the state can be any term
and the state callback name is
<seealso marker="#Module:handle_event/4"><c>Module:handle_event/4</c></seealso>.
This makes it easy to branch depending on state or event as you desire.
Be careful about which events you handle in which
states so that you do not accidentally postpone an event
forever creating an infinite busy loop.
</p>
<p>
The <c>gen_statem</c> enqueues incoming events in order of arrival
and presents these to the
<seealso marker="#state callback">state callback</seealso>
in that order. The state callback can postpone an event
so it is not retried in the current state.
After a state change the queue restarts with the postponed events.
</p>
<p>
The <c>gen_statem</c> event queue model is sufficient
to emulate the normal process message queue with selective receive.
Postponing an event corresponds to not matching it
in a receive statement, and changing states corresponds
to entering a new receive statement.
</p>
<p>
The <seealso marker="#state callback">state callback</seealso>
can insert events using the
<seealso marker="#type-action"><c>action()</c></seealso>
<c>next_event</c>
and such an event is inserted as the next to present
to the state callback. That is, as if it is
the oldest incoming event. A dedicated
<seealso marker="#type-event_type"><c>event_type()</c></seealso>
<c>internal</c> can be used for such events making them impossible
to mistake for external events.
</p>
<p>
Inserting an event replaces the trick of calling your own
state handling functions that you often would have to
resort to in, for example,
<seealso marker="gen_fsm"><c>gen_fsm</c></seealso>
to force processing an inserted event before others.
</p>
<p>
The <c>gen_statem</c> engine can automatically
make a specialized call to the
<seealso marker="#state callback">state callback</seealso>
whenever a new state is entered; see
<seealso marker="#type-state_enter"><c>state_enter()</c></seealso>.
This is for writing code common to all state entries.
Another way to do it is to insert an event at the state transition,
and/or to use a dedicated state transition function,
but that is something you will have to remember
at every state transition to the state(s) that need it.
</p>
<note>
<p>If you in <c>gen_statem</c>, for example, postpone
an event in one state and then call another state callback
of yours, you have not changed states and hence the postponed event
is not retried, which is logical but can be confusing.
</p>
</note>
<p>
For the details of a state transition, see type
<seealso marker="#type-transition_option"><c>transition_option()</c></seealso>.
</p>
<p>
A <c>gen_statem</c> handles system messages as described in
<seealso marker="sys"><c>sys</c></seealso>.
The <c>sys</c> module can be used for debugging a <c>gen_statem</c>.
</p>
<p>
Notice that a <c>gen_statem</c> does not trap exit signals
automatically, this must be explicitly initiated in
the callback module (by calling
<seealso marker="erts:erlang#process_flag/2"><c>process_flag(trap_exit, true)</c></seealso>.
</p>
<p>
Unless otherwise stated, all functions in this module fail if
the specified <c>gen_statem</c> does not exist or
if bad arguments are specified.
</p>
<p>
The <c>gen_statem</c> process can go into hibernation; see
<seealso marker="proc_lib#hibernate/3"><c>proc_lib:hibernate/3</c></seealso>.
It is done when a
<seealso marker="#state callback">state callback</seealso> or
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
specifies <c>hibernate</c> in the returned
<seealso marker="#type-action"><c>Actions</c></seealso>
list. This feature can be useful to reclaim process heap memory
while the server is expected to be idle for a long time.
However, use this feature with care,
as hibernation can be too costly
to use after every event; see
<seealso marker="erts:erlang#hibernate/3"><c>erlang:hibernate/3</c></seealso>.
</p>
<p>
There is also a server start option
<seealso marker="#type-hibernate_after_opt">
<c>{hibernate_after, Timeout}</c>
</seealso>
for
<seealso marker="#start/3"><c>start/3,4</c></seealso> or
<seealso marker="#start_link/3"><c>start_link/3,4</c></seealso>
that may be used to automatically hibernate the server.
</p>
</description>
<section>
<title>Example</title>
<p>
The following example shows a simple pushbutton model
for a toggling pushbutton implemented with
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
<c>state_functions</c>.
You can push the button and it replies if it went on or off,
and you can ask for a count of how many times it has been
pushed to switch on.
</p>
<p>The following is the complete callback module file
<c>pushbutton.erl</c>:</p>
<code type="erl">
-module(pushbutton).
-behaviour(gen_statem).
-export([start/0,push/0,get_count/0,stop/0]).
-export([terminate/3,code_change/4,init/1,callback_mode/0]).
-export([on/3,off/3]).
name() -> pushbutton_statem. % The registered server name
%% API. This example uses a registered name name()
%% and does not link to the caller.
start() ->
gen_statem:start({local,name()}, ?MODULE, [], []).
push() ->
gen_statem:call(name(), push).
get_count() ->
gen_statem:call(name(), get_count).
stop() ->
gen_statem:stop(name()).
%% Mandatory callback functions
terminate(_Reason, _State, _Data) ->
void.
code_change(_Vsn, State, Data, _Extra) ->
{ok,State,Data}.
init([]) ->
%% Set the initial state + data. Data is used only as a counter.
State = off, Data = 0,
{ok,State,Data}.
callback_mode() -> state_functions.
%%% state callback(s)
off({call,From}, push, Data) ->
%% Go to 'on', increment count and reply
%% that the resulting status is 'on'
{next_state,on,Data+1,[{reply,From,on}]};
off(EventType, EventContent, Data) ->
handle_event(EventType, EventContent, Data).
on({call,From}, push, Data) ->
%% Go to 'off' and reply that the resulting status is 'off'
{next_state,off,Data,[{reply,From,off}]};
on(EventType, EventContent, Data) ->
handle_event(EventType, EventContent, Data).
%% Handle events common to all states
handle_event({call,From}, get_count, Data) ->
%% Reply with the current count
{keep_state,Data,[{reply,From,Data}]};
handle_event(_, _, Data) ->
%% Ignore all other events
{keep_state,Data}.
</code>
<p>The following is a shell session when running it:</p>
<pre>
1> pushbutton:start().
{ok,<0.36.0>}
2> pushbutton:get_count().
0
3> pushbutton:push().
on
4> pushbutton:get_count().
1
5> pushbutton:push().
off
6> pushbutton:get_count().
1
7> pushbutton:stop().
ok
8> pushbutton:push().
** exception exit: {noproc,{gen_statem,call,[pushbutton_statem,push,infinity]}}
in function gen:do_for_proc/2 (gen.erl, line 261)
in call from gen_statem:call/3 (gen_statem.erl, line 386)
</pre>
<p>
To compare styles, here follows the same example using
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
<c>handle_event_function</c>, or rather the code to replace
after function <c>init/1</c> of the <c>pushbutton.erl</c>
example file above:
</p>
<code type="erl">
callback_mode() -> handle_event_function.
%%% state callback(s)
handle_event({call,From}, push, off, Data) ->
%% Go to 'on', increment count and reply
%% that the resulting status is 'on'
{next_state,on,Data+1,[{reply,From,on}]};
handle_event({call,From}, push, on, Data) ->
%% Go to 'off' and reply that the resulting status is 'off'
{next_state,off,Data,[{reply,From,off}]};
%%
%% Event handling common to all states
handle_event({call,From}, get_count, State, Data) ->
%% Reply with the current count
{next_state,State,Data,[{reply,From,Data}]};
handle_event(_, _, State, Data) ->
%% Ignore all other events
{next_state,State,Data}.
</code>
</section>
<datatypes>
<datatype>
<name name="server_name"/>
<desc>
<p>
Name specification to use when starting
a <c>gen_statem</c> server. See
<seealso marker="#start_link/3"><c>start_link/3</c></seealso>
and
<seealso marker="#type-server_ref"><c>server_ref()</c></seealso>
below.
</p>
</desc>
</datatype>
<datatype>
<name name="server_ref"/>
<desc>
<p>
Server specification to use when addressing
a <c>gen_statem</c> server.
See <seealso marker="#call/2"><c>call/2</c></seealso> and
<seealso marker="#type-server_name"><c>server_name()</c></seealso>
above.
</p>
<p>It can be:</p>
<taglist>
<tag><c>pid() | LocalName</c></tag>
<item>
<p>
The <c>gen_statem</c> is locally registered.
</p>
</item>
<tag><c>{Name,Node}</c></tag>
<item>
<p>
The <c>gen_statem</c> is locally registered
on another node.
</p>
</item>
<tag><c>{global,GlobalName}</c></tag>
<item>
<p>
The <c>gen_statem</c> is globally registered in
<seealso marker="kernel:global"><c>global</c></seealso>.
</p>
</item>
<tag><c>{via,RegMod,ViaName}</c></tag>
<item>
<p>
The <c>gen_statem</c> is registered in
an alternative process registry.
The registry callback module <c>RegMod</c>
is to export functions
<c>register_name/2</c>, <c>unregister_name/1</c>,
<c>whereis_name/1</c>, and <c>send/2</c>,
which are to behave like the corresponding functions in
<seealso marker="kernel:global"><c>global</c></seealso>.
Thus, <c>{via,global,GlobalName}</c> is the same as
<c>{global,GlobalName}</c>.
</p>
</item>
</taglist>
</desc>
</datatype>
<datatype>
<name name="debug_opt"/>
<desc>
<p>
Debug option that can be used when starting
a <c>gen_statem</c> server through,
<seealso marker="#enter_loop/4"><c>enter_loop/4-6</c></seealso>.
</p>
<p>
For every entry in <c><anno>Dbgs</anno></c>,
the corresponding function in
<seealso marker="sys"><c>sys</c></seealso> is called.
</p>
</desc>
</datatype>
<datatype>
<name name="hibernate_after_opt"/>
<desc>
<p>
hibernate_after option that can be used when starting
a <c>gen_statem</c> server through,
<seealso marker="#enter_loop/4"><c>enter_loop/4-6</c></seealso>.
</p>
<p>If option<seealso marker="#type-hibernate_after_opt"><c>{hibernate_after,HibernateAfterTimeout}</c></seealso> is present, the <c>gen_statem</c>
process awaits any message for <c>HibernateAfterTimeout</c> milliseconds and
if no message is received, the process goes into hibernation automatically
(by calling <seealso marker="proc_lib#hibernate/3"><c>proc_lib:hibernate/3</c></seealso>).
</p>
</desc>
</datatype>
<datatype>
<name name="start_opt"/>
<desc>
<p>
Options that can be used when starting
a <c>gen_statem</c> server through, for example,
<seealso marker="#start_link/3"><c>start_link/3</c></seealso>.
</p>
</desc>
</datatype>
<datatype>
<name name="start_ret"/>
<desc>
<p>
Return value from the start functions, for example,
<seealso marker="#start_link/3"><c>start_link/3</c></seealso>.
</p>
</desc>
</datatype>
<datatype>
<name name="from"/>
<desc>
<p>
Destination to use when replying through, for example, the
<seealso marker="#type-action"><c>action()</c></seealso>
<c>{reply,From,Reply}</c>
to a process that has called the <c>gen_statem</c> server using
<seealso marker="#call/2"><c>call/2</c></seealso>.
</p>
</desc>
</datatype>
<datatype>
<name name="state"/>
<desc>
<p>
If the
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
is <c>handle_event_function</c>,
the state can be any term.
After a state change (<c>NextState =/= State</c>),
all postponed events are retried.
</p>
</desc>
</datatype>
<datatype>
<name name="state_name"/>
<desc>
<p>
If the
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
is <c>state_functions</c>,
the state must be of this type.
After a state change (<c>NextState =/= State</c>),
all postponed events are retried.
</p>
</desc>
</datatype>
<datatype>
<name name="data"/>
<desc>
<p>
A term in which the state machine implementation
is to store any server data it needs. The difference between
this and the <seealso marker="#type-state"><c>state()</c></seealso>
itself is that a change in this data does not cause
postponed events to be retried. Hence, if a change
in this data would change the set of events that
are handled, then that data item is to be made
a part of the state.
</p>
</desc>
</datatype>
<datatype>
<name name="event_type"/>
<desc>
<p>
There are 3 categories of events:
<seealso marker="#type-external_event_type">external</seealso>,
<seealso marker="#type-timeout_event_type">timeout</seealso>,
and <c>internal</c>.
</p>
<p>
<c>internal</c> events can only be generated by the
state machine itself through the state transition action
<seealso marker="#type-action"><c>next_event</c></seealso>.
</p>
</desc>
</datatype>
<datatype>
<name name="external_event_type"/>
<desc>
<p>
External events are of 3 types:
<c>{call,<anno>From</anno>}</c>, <c>cast</c>, or <c>info</c>.
<seealso marker="#call/2">Calls</seealso>
(synchronous) and
<seealso marker="#cast/2">casts</seealso>
originate from the corresponding API functions.
For calls, the event contains whom to reply to.
Type <c>info</c> originates from regular process messages sent
to the <c>gen_statem</c>.
</p>
</desc>
</datatype>
<datatype>
<name name="timeout_event_type"/>
<desc>
<p>
There are 3 types of timeout events that the state machine
can generate for itself with the corresponding
<seealso marker="#type-timeout_action">timeout_action()</seealso>s.
</p>
</desc>
</datatype>
<datatype>
<name name="callback_mode_result"/>
<desc>
<p>
This is the return type from
<seealso marker="#Module:callback_mode/0"><c>Module:callback_mode/0</c></seealso>
and selects
<seealso marker="#type-callback_mode">callback mode</seealso>
and whether to do
<seealso marker="#type-state_enter">state enter calls</seealso>,
or not.
</p>
</desc>
</datatype>
<datatype>
<name name="callback_mode"/>
<desc>
<p>
The <em>callback mode</em> is selected when starting the
<c>gen_statem</c> and after code change
using the return value from
<seealso marker="#Module:callback_mode/0"><c>Module:callback_mode/0</c></seealso>.
</p>
<taglist>
<tag><c>state_functions</c></tag>
<item>
<p>
The state must be of type
<seealso marker="#type-state_name"><c>state_name()</c></seealso>
and one callback function per state, that is,
<seealso marker="#Module:StateName/3"><c>Module:StateName/3</c></seealso>,
is used.
</p>
</item>
<tag><c>handle_event_function</c></tag>
<item>
<p>
The state can be any term and the callback function
<seealso marker="#Module:handle_event/4"><c>Module:handle_event/4</c></seealso>
is used for all states.
</p>
</item>
</taglist>
</desc>
</datatype>
<datatype>
<name name="state_enter"/>
<desc>
<p>
Whether the state machine should use <em>state enter calls</em>
or not is selected when starting the <c>gen_statem</c>
and after code change using the return value from
<seealso marker="#Module:callback_mode/0"><c>Module:callback_mode/0</c></seealso>.
</p>
<p>
If
<seealso marker="#Module:callback_mode/0"><c>Module:callback_mode/0</c></seealso>
returns a list containing <c>state_enter</c>,
the <c>gen_statem</c> engine will, at every state change,
call the
<seealso marker="#state callback">state callback</seealso>
with arguments <c>(enter, OldState, Data)</c>.
This may look like an event but is really a call
performed after the previous state callback returned
and before any event is delivered to the new state callback.
See
<seealso marker="#Module:StateName/3"><c>Module:StateName/3</c></seealso>
and
<seealso marker="#Module:handle_event/4"><c>Module:handle_event/4</c></seealso>.
Such a call can be repeated by returning a
<seealso marker="#type-state_callback_result">
<c>repeat_state</c>
</seealso>
or
<seealso marker="#type-state_callback_result">
<c>repeat_state_and_data</c>
</seealso>
tuple from the state callback.
</p>
<p>
If
<seealso marker="#Module:callback_mode/0"><c>Module:callback_mode/0</c></seealso>
does not return such a list, no state enter calls are done.
</p>
<p>
If
<seealso marker="#Module:code_change/4"><c>Module:code_change/4</c></seealso>
should transform the state,
it is regarded as a state rename and not a state change,
which will not cause a state enter call.
</p>
<p>
Note that a state enter call <em>will</em> be done
right before entering the initial state even though this
formally is not a state change.
In this case <c>OldState</c> will be the same as <c>State</c>,
which cannot happen for a subsequent state change,
but will happen when repeating the state enter call.
</p>
</desc>
</datatype>
<datatype>
<name name="transition_option"/>
<desc>
<p>
Transition options can be set by
<seealso marker="#type-action">actions</seealso>
and modify the state transition.
Here are the sequence of steps for a state transition:
</p>
<list type="ordered">
<item>
<p>
If
<seealso marker="#type-state_enter">
<em>state enter calls</em>
</seealso>
are used, and either:
the state changes, it is the initial state,
or one of the callback results
<seealso marker="#type-state_callback_result">
<c>repeat_state</c>
</seealso>
or
<seealso marker="#type-state_callback_result">
<c>repeat_state_and_data</c>
</seealso>
is used; the <c>gen_statem</c> calls
the new state callback with arguments
<seealso marker="#type-state_enter"><c>(enter, OldState, Data)</c></seealso>.
</p>
<p>
Any
<seealso marker="#type-enter_action">actions</seealso>
returned from this call are handled as if they were
appended to the actions
returned by the state callback that caused the state entry.
</p>
<p>
Should this state enter call return any of
the mentioned <c>repeat_*</c> callback results
it is repeated again, with the updated <c>Data</c>.
</p>
</item>
<item>
<p>
All
<seealso marker="#type-action">actions</seealso>
are processed in order of appearance.
</p>
</item>
<item>
<p>
If
<seealso marker="#type-postpone"><c>postpone()</c></seealso>
is <c>true</c>,
the current event is postponed.
</p>
</item>
<item>
<p>
If the state changes, the queue of incoming events
is reset to start with the oldest postponed.
</p>
</item>
<item>
<p>
All events stored with
<seealso marker="#type-action"><c>action()</c></seealso>
<c>next_event</c>
are inserted to be processed before previously queued events.
</p>
</item>
<item>
<p>
Time-out timers
<seealso marker="#type-event_timeout"><c>event_timeout()</c></seealso>,
<seealso marker="#type-generic_timeout"><c>generic_timeout()</c></seealso>
and
<seealso marker="#type-state_timeout"><c>state_timeout()</c></seealso>
are handled. Time-outs with zero time are guaranteed to be
delivered to the state machine before any external
not yet received event so if there is such a time-out requested,
the corresponding time-out zero event is enqueued as
the newest received event;
that is after already queued events
such as inserted and postponed events.
</p>
<p>
Any event cancels an
<seealso marker="#type-event_timeout"><c>event_timeout()</c></seealso>
so a zero time event time-out is only generated
if the event queue is empty.
</p>
<p>
A state change cancels a
<seealso marker="#type-state_timeout"><c>state_timeout()</c></seealso>
and any new transition option of this type
belongs to the new state.
</p>
</item>
<item>
<p>
If there are enqueued events the
<seealso marker="#state callback">state callback</seealso>
for the possibly new state
is called with the oldest enqueued event,
and we start again from the top of this list.
</p>
</item>
<item>
<p>
Otherwise the <c>gen_statem</c> goes into <c>receive</c>
or hibernation
(if
<seealso marker="#type-hibernate"><c>hibernate()</c></seealso>
is <c>true</c>)
to wait for the next message. In hibernation the next
non-system event awakens the <c>gen_statem</c>, or rather
the next incoming message awakens the <c>gen_statem</c>,
but if it is a system event it goes right back into hibernation.
When a new message arrives the
<seealso marker="#state callback">state callback</seealso>
is called with the corresponding event,
and we start again from the top of this sequence.
</p>
</item>
</list>
</desc>
</datatype>
<datatype>
<name name="postpone"/>
<desc>
<p>
If <c>true</c>, postpones the current event and retries
it when the state changes
(<c>NextState =/= State</c>).
</p>
</desc>
</datatype>
<datatype>
<name name="hibernate"/>
<desc>
<p>
If <c>true</c>, hibernates the <c>gen_statem</c>
by calling
<seealso marker="proc_lib#hibernate/3"><c>proc_lib:hibernate/3</c></seealso>
before going into <c>receive</c>
to wait for a new external event.
</p>
<note>
<p>
If there are enqueued events to process
when hibrnation is requested,
this is optimized by not hibernating but instead calling
<seealso marker="erts:erlang#garbage_collect/0">
<c>erlang:garbage_collect/0</c>
</seealso>
to simulate that the <c>gen_statem</c> entered hibernation
and immediately got awakened by an enqueued event.
</p>
</note>
</desc>
</datatype>
<datatype>
<name name="event_timeout"/>
<desc>
<p>
Starts a timer set by
<seealso marker="#type-enter_action"><c>enter_action()</c></seealso>
<c>timeout</c>.
When the timer expires an event of
<seealso marker="#type-event_type"><c>event_type()</c></seealso>
<c>timeout</c> will be generated.
See
<seealso marker="erts:erlang#start_timer/4"><c>erlang:start_timer/4</c></seealso>
for how <c>Time</c> and
<seealso marker="#type-timeout_option"><c>Options</c></seealso>
are interpreted. Future <c>erlang:start_timer/4</c> <c>Options</c>
will not necessarily be supported.
</p>
<p>
Any event that arrives cancels this time-out.
Note that a retried or inserted event counts as arrived.
So does a state time-out zero event, if it was generated
before this time-out is requested.
</p>
<p>
If <c>Time</c> is <c>infinity</c>,
no timer is started, as it never would expire anyway.
</p>
<p>
If <c>Time</c> is relative and <c>0</c>
no timer is actually started,
instead the the time-out event is enqueued to ensure
that it gets processed before any not yet
received external event, but after already queued events.
</p>
<p>
Note that it is not possible nor needed to cancel this time-out,
as it is cancelled automatically by any other event.
</p>
</desc>
</datatype>
<datatype>
<name name="generic_timeout"/>
<desc>
<p>
Starts a timer set by
<seealso marker="#type-enter_action"><c>enter_action()</c></seealso>
<c>{timeout,Name}</c>.
When the timer expires an event of
<seealso marker="#type-event_type"><c>event_type()</c></seealso>
<c>{timeout,Name}</c> will be generated.
See
<seealso marker="erts:erlang#start_timer/4"><c>erlang:start_timer/4</c></seealso>
for how <c>Time</c> and
<seealso marker="#type-timeout_option"><c>Options</c></seealso>
are interpreted. Future <c>erlang:start_timer/4</c> <c>Options</c>
will not necessarily be supported.
</p>
<p>
If <c>Time</c> is <c>infinity</c>,
no timer is started, as it never would expire anyway.
</p>
<p>
If <c>Time</c> is relative and <c>0</c>
no timer is actually started,
instead the the time-out event is enqueued to ensure
that it gets processed before any not yet
received external event.
</p>
<p>
Setting a timer with the same <c>Name</c> while it is running
will restart it with the new time-out value.
Therefore it is possible to cancel
a specific time-out by setting it to <c>infinity</c>.
</p>
</desc>
</datatype>
<datatype>
<name name="state_timeout"/>
<desc>
<p>
Starts a timer set by
<seealso marker="#type-enter_action"><c>enter_action()</c></seealso>
<c>state_timeout</c>.
When the timer expires an event of
<seealso marker="#type-event_type"><c>event_type()</c></seealso>
<c>state_timeout</c> will be generated.
See
<seealso marker="erts:erlang#start_timer/4"><c>erlang:start_timer/4</c></seealso>
for how <c>Time</c> and
<seealso marker="#type-timeout_option"><c>Options</c></seealso>
are interpreted. Future <c>erlang:start_timer/4</c> <c>Options</c>
will not necessarily be supported.
</p>
<p>
If <c>Time</c> is <c>infinity</c>,
no timer is started, as it never would expire anyway.
</p>
<p>
If <c>Time</c> is relative and <c>0</c>
no timer is actually started,
instead the the time-out event is enqueued to ensure
that it gets processed before any not yet
received external event.
</p>
<p>
Setting this timer while it is running will restart it with
the new time-out value. Therefore it is possible to cancel
this time-out by setting it to <c>infinity</c>.
</p>
</desc>
</datatype>
<datatype>
<name name="timeout_option"/>
<desc>
<p>
If <c>Abs</c> is <c>true</c> an absolute timer is started,
and if it is <c>false</c> a relative, which is the default.
See
<seealso marker="erts:erlang#start_timer/4">
<c>erlang:start_timer/4</c>
</seealso>
for details.
</p>
<p>
</p>
</desc>
</datatype>
<datatype>
<name name="action"/>
<desc>
<p>
These state transition actions can be invoked by
returning them from the
<seealso marker="#state callback">state callback</seealso>
when it is called with an
<seealso marker="#type-event_type">event</seealso>,
from
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
or by giving them to
<seealso marker="#enter_loop/5"><c>enter_loop/5,6</c></seealso>.
</p>
<p>
Actions are executed in the containing list order.
</p>
<p>
Actions that set
<seealso marker="#type-transition_option">
transition options
</seealso>
override any previous of the same type,
so the last in the containing list wins.
For example, the last
<seealso marker="#type-postpone"><c>postpone()</c></seealso>
overrides any previous <c>postpone()</c> in the list.
</p>
<taglist>
<tag><c>postpone</c></tag>
<item>
<p>
Sets the
<seealso marker="#type-transition_option">
<c>transition_option()</c>
</seealso>
<seealso marker="#type-postpone"><c>postpone()</c></seealso>
for this state transition.
This action is ignored when returned from
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
or given to
<seealso marker="#enter_loop/5"><c>enter_loop/5,6</c></seealso>,
as there is no event to postpone in those cases.
</p>
</item>
<tag><c>next_event</c></tag>
<item>
<p>
This action does not set any
<seealso marker="#type-transition_option">
<c>transition_option()</c>
</seealso>
but instead stores the specified <c><anno>EventType</anno></c>
and <c><anno>EventContent</anno></c> for insertion after all
actions have been executed.
</p>
<p>
The stored events are inserted in the queue as the next to process
before any already queued events. The order of these stored events
is preserved, so the first <c>next_event</c> in the containing
list becomes the first to process.
</p>
<p>
An event of type
<seealso marker="#type-event_type"><c>internal</c></seealso>
is to be used when you want to reliably distinguish
an event inserted this way from any external event.
</p>
</item>
</taglist>
</desc>
</datatype>
<datatype>
<name name="enter_action"/>
<desc>
<p>
These state transition actions can be invoked by
returning them from the
<seealso marker="#state callback">state callback</seealso>, from
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
or by giving them to
<seealso marker="#enter_loop/5"><c>enter_loop/5,6</c></seealso>.
</p>
<p>
Actions are executed in the containing list order.
</p>
<p>
Actions that set
<seealso marker="#type-transition_option">transition options</seealso>
override any previous of the same type,
so the last in the containing list wins.
For example, the last
<seealso marker="#type-event_timeout"><c>event_timeout()</c></seealso>
overrides any previous <c>event_timeout()</c> in the list.
</p>
<taglist>
<tag><c>hibernate</c></tag>
<item>
<p>
Sets the
<seealso marker="#type-transition_option"><c>transition_option()</c></seealso>
<seealso marker="#type-hibernate"><c>hibernate()</c></seealso>
for this state transition.
</p>
</item>
</taglist>
</desc>
</datatype>
<datatype>
<name name="timeout_action"/>
<desc>
<p>
These state transition actions can be invoked by
returning them from the
<seealso marker="#state callback">state callback</seealso>, from
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
or by giving them to
<seealso marker="#enter_loop/5"><c>enter_loop/5,6</c></seealso>.
</p>
<p>
These timeout actions sets timeout
<seealso marker="#type-transition_option">transition options</seealso>.
</p>
<taglist>
<tag><c>Time</c></tag>
<item>
<p>
Short for <c>{timeout,Time,Time}</c>, that is,
the time-out message is the time-out time.
This form exists to make the
<seealso marker="#state callback">state callback</seealso>
return value <c>{next_state,NextState,NewData,Time}</c>
allowed like for <c>gen_fsm</c>.
</p>
</item>
<tag><c>timeout</c></tag>
<item>
<p>
Sets the
<seealso marker="#type-transition_option"><c>transition_option()</c></seealso>
<seealso marker="#type-event_timeout"><c>event_timeout()</c></seealso>
to <c><anno>Time</anno></c> with <c><anno>EventContent</anno></c>
and time-out options
<seealso marker="#type-timeout_option"><c><anno>Options</anno></c></seealso>.
</p>
</item>
<tag><c>{timeout,<anno>Name</anno>}</c></tag>
<item>
<p>
Sets the
<seealso marker="#type-transition_option"><c>transition_option()</c></seealso>
<seealso marker="#type-generic_timeout"><c>generic_timeout()</c></seealso>
to <c><anno>Time</anno></c> for <c><anno>Name</anno></c>
with <c><anno>EventContent</anno></c>
and time-out options
<seealso marker="#type-timeout_option"><c><anno>Options</anno></c></seealso>.
</p>
</item>
<tag><c>state_timeout</c></tag>
<item>
<p>
Sets the
<seealso marker="#type-transition_option"><c>transition_option()</c></seealso>
<seealso marker="#type-state_timeout"><c>state_timeout()</c></seealso>
to <c><anno>Time</anno></c> with <c><anno>EventContent</anno></c>
and time-out options
<seealso marker="#type-timeout_option"><c><anno>Options</anno></c></seealso>.
</p>
</item>
</taglist>
</desc>
</datatype>
<datatype>
<name name="reply_action"/>
<desc>
<p>
This state transition action can be invoked by
returning it from the
<seealso marker="#state callback">state callback</seealso>, from
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
or by giving it to
<seealso marker="#enter_loop/5"><c>enter_loop/5,6</c></seealso>.
</p>
<p>
It does not set any
<seealso marker="#type-transition_option">
<c>transition_option()</c>
</seealso>
but instead replies to a caller waiting for a reply in
<seealso marker="#call/2"><c>call/2</c></seealso>.
<c><anno>From</anno></c> must be the term from argument
<seealso marker="#type-event_type"><c>{call,<anno>From</anno>}</c></seealso>
in a call to a
<seealso marker="#state callback">state callback</seealso>.
</p>
<p>
Note that using this action from
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
or
<seealso marker="#enter_loop/5"><c>enter_loop/5,6</c></seealso>
would be weird on the border of witchcraft
since there has been no earlier call to a
<seealso marker="#state callback">state callback</seealso>
in this server.
</p>
</desc>
</datatype>
<datatype>
<name name="init_result"/>
<desc>
<p>
For a succesful initialization,
<c><anno>State</anno></c> is the initial
<seealso marker="#type-state"><c>state()</c></seealso>
and <c><anno>Data</anno></c> the initial server
<seealso marker="#type-data"><c>data()</c></seealso>
of the <c>gen_statem</c>.
</p>
<p>
The <seealso marker="#type-action"><c>Actions</c></seealso>
are executed when entering the first
<seealso marker="#type-state">state</seealso> just as for a
<seealso marker="#state callback">state callback</seealso>,
except that the action <c>postpone</c> is forced to
<c>false</c> since there is no event to postpone.
</p>
<p>
For an unsuccesful initialization,
<c>{stop,<anno>Reason</anno>}</c>
or <c>ignore</c> should be used; see
<seealso marker="#start_link/3"><c>start_link/3,4</c></seealso>.
</p>
</desc>
</datatype>
<datatype>
<name name="state_enter_result"/>
<desc>
<p>
<c><anno>State</anno></c> is the current state
and it cannot be changed since the state callback
was called with a
<seealso marker="#type-state_enter"><em>state enter call</em></seealso>.
</p>
<taglist>
<tag><c>next_state</c></tag>
<item>
<p>
The <c>gen_statem</c> does a state transition to
<c><anno>State</anno></c>, which has to be
the current state,
sets <c><anno>NewData</anno></c>,
and executes all <c><anno>Actions</anno></c>.
</p>
</item>
</taglist>
</desc>
</datatype>
<datatype>
<name name="event_handler_result"/>
<desc>
<p>
<c><anno>StateType</anno></c> is
<seealso marker="#type-state_name"><c>state_name()</c></seealso>
if
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
is <c>state_functions</c>, or
<seealso marker="#type-state"><c>state()</c></seealso>
if
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
is <c>handle_event_function</c>.
</p>
<taglist>
<tag><c>next_state</c></tag>
<item>
<p>
The <c>gen_statem</c> does a state transition to
<c><anno>NextState</anno></c>
(which can be the same as the current state),
sets <c><anno>NewData</anno></c>,
and executes all <c><anno>Actions</anno></c>.
</p>
</item>
</taglist>
</desc>
</datatype>
<datatype>
<name name="state_callback_result"/>
<desc>
<p>
<c><anno>ActionType</anno></c> is
<seealso marker="#type-enter_action"><c>enter_action()</c></seealso>
if the state callback was called with a
<seealso marker="#type-state_enter"><em>state enter call</em></seealso>
and
<seealso marker="#type-action"><c>action()</c></seealso>
if the state callback was called with an event.
</p>
<taglist>
<tag><c>keep_state</c></tag>
<item>
<p>
The <c>gen_statem</c> keeps the current state, or
does a state transition to the current state if you like,
sets <c><anno>NewData</anno></c>,
and executes all <c><anno>Actions</anno></c>.
This is the same as
<c>{next_state,CurrentState,<anno>NewData</anno>,<anno>Actions</anno>}</c>.
</p>
</item>
<tag><c>keep_state_and_data</c></tag>
<item>
<p>
The <c>gen_statem</c> keeps the current state or
does a state transition to the current state if you like,
keeps the current server data,
and executes all <c><anno>Actions</anno></c>.
This is the same as
<c>{next_state,CurrentState,CurrentData,<anno>Actions</anno>}</c>.
</p>
</item>
<tag><c>repeat_state</c></tag>
<item>
<p>
The <c>gen_statem</c> keeps the current state, or
does a state transition to the current state if you like,
sets <c><anno>NewData</anno></c>,
and executes all <c><anno>Actions</anno></c>.
If the <c>gen_statem</c> runs with
<seealso marker="#type-state_enter"><em>state enter calls</em></seealso>,
the state enter call is repeated, see type
<seealso marker="#type-transition_option"><c>transition_option()</c></seealso>,
otherwise <c>repeat_state</c> is the same as
<c>keep_state</c>.
</p>
</item>
<tag><c>repeat_state_and_data</c></tag>
<item>
<p>
The <c>gen_statem</c> keeps the current state and data, or
does a state transition to the current state if you like,
and executes all <c><anno>Actions</anno></c>.
This is the same as
<c>{repeat_state,CurrentData,<anno>Actions</anno>}</c>.
If the <c>gen_statem</c> runs with
<seealso marker="#type-state_enter"><em>state enter calls</em></seealso>,
the state enter call is repeated, see type
<seealso marker="#type-transition_option"><c>transition_option()</c></seealso>,
otherwise <c>repeat_state_and_data</c> is the same as
<c>keep_state_and_data</c>.
</p>
</item>
<tag><c>stop</c></tag>
<item>
<p>
Terminates the <c>gen_statem</c> by calling
<seealso marker="#Module:terminate/3"><c>Module:terminate/3</c></seealso>
with <c>Reason</c> and
<c><anno>NewData</anno></c>, if specified.
</p>
</item>
<tag><c>stop_and_reply</c></tag>
<item>
<p>
Sends all <c><anno>Replies</anno></c>,
then terminates the <c>gen_statem</c> by calling
<seealso marker="#Module:terminate/3"><c>Module:terminate/3</c></seealso>
with <c>Reason</c> and
<c><anno>NewData</anno></c>, if specified.
</p>
</item>
</taglist>
<p>
All these terms are tuples or atoms and this property
will hold in any future version of <c>gen_statem</c>.
</p>
</desc>
</datatype>
</datatypes>
<funcs>
<func>
<name name="call" arity="2"/>
<name name="call" arity="3"/>
<fsummary>Make a synchronous call to a <c>gen_statem</c>.</fsummary>
<desc>
<p>
Makes a synchronous call to the <c>gen_statem</c>
<seealso marker="#type-server_ref"><c><anno>ServerRef</anno></c></seealso>
by sending a request
and waiting until its reply arrives.
The <c>gen_statem</c> calls the
<seealso marker="#state callback">state callback</seealso> with
<seealso marker="#type-event_type"><c>event_type()</c></seealso>
<c>{call,From}</c> and event content
<c><anno>Request</anno></c>.
</p>
<p>
A <c><anno>Reply</anno></c> is generated when a
<seealso marker="#state callback">state callback</seealso>
returns with
<c>{reply,From,<anno>Reply</anno>}</c> as one
<seealso marker="#type-action"><c>action()</c></seealso>,
and that <c><anno>Reply</anno></c> becomes the return value
of this function.
</p>
<p>
<c><anno>Timeout</anno></c> is an integer > 0,
which specifies how many milliseconds to wait for a reply,
or the atom <c>infinity</c> to wait indefinitely,
which is the default. If no reply is received within
the specified time, the function call fails.
</p>
<note>
<p>
For <c><anno>Timeout</anno> < infinity</c>,
to avoid getting a late reply in the caller's
inbox if the caller should catch exceptions,
this function spawns a proxy process that
does the call. A late reply gets delivered to the
dead proxy process, hence gets discarded. This is
less efficient than using
<c><anno>Timeout</anno> == infinity</c>.
</p>
</note>
<p>
<c><anno>Timeout</anno></c> can also be a tuple
<c>{clean_timeout,<anno>T</anno>}</c> or
<c>{dirty_timeout,<anno>T</anno>}</c>, where
<c><anno>T</anno></c> is the time-out time.
<c>{clean_timeout,<anno>T</anno>}</c> works like
just <c>T</c> described in the note above
and uses a proxy process
while <c>{dirty_timeout,<anno>T</anno>}</c>
bypasses the proxy process which is more lightweight.
</p>
<note>
<p>
If you combine catching exceptions from this function
with <c>{dirty_timeout,<anno>T</anno>}</c>
to avoid that the calling process dies when the call
times out, you will have to be prepared to handle
a late reply. Note that there is an odd chance
to get a late reply even with
<c>{dirty_timeout,infinity}</c> or <c>infinity</c>
for example in the event of network problems.
So why not just let the calling process die
by not catching the exception?
</p>
</note>
<p>
The call can also fail, for example, if the <c>gen_statem</c>
dies before or during this function call.
</p>
</desc>
</func>
<func>
<name name="cast" arity="2"/>
<fsummary>Send an asynchronous event to a <c>gen_statem</c>.</fsummary>
<desc>
<p>
Sends an asynchronous event to the <c>gen_statem</c>
<seealso marker="#type-server_ref"><c><anno>ServerRef</anno></c></seealso>
and returns <c>ok</c> immediately,
ignoring if the destination node or <c>gen_statem</c>
does not exist.
The <c>gen_statem</c> calls the
<seealso marker="#state callback">state callback</seealso> with
<seealso marker="#type-event_type"><c>event_type()</c></seealso>
<c>cast</c> and event content
<c><anno>Msg</anno></c>.
</p>
</desc>
</func>
<func>
<name name="enter_loop" arity="4"/>
<fsummary>Enter the <c>gen_statem</c> receive loop.</fsummary>
<desc>
<p>
The same as
<seealso marker="#enter_loop/6"><c>enter_loop/6</c></seealso>
with <c>Actions = []</c> except that no
<seealso marker="#type-server_name"><c>server_name()</c></seealso>
must have been registered. This creates an anonymous server.
</p>
</desc>
</func>
<func>
<name name="enter_loop" arity="5"/>
<fsummary>Enter the <c>gen_statem</c> receive loop.</fsummary>
<desc>
<p>
If <c><anno>Server_or_Actions</anno></c> is a <c>list()</c>,
the same as
<seealso marker="#enter_loop/6"><c>enter_loop/6</c></seealso>
except that no
<seealso marker="#type-server_name"><c>server_name()</c></seealso>
must have been registered and
<c>Actions = <anno>Server_or_Actions</anno></c>.
This creates an anonymous server.
</p>
<p>
Otherwise the same as
<seealso marker="#enter_loop/6"><c>enter_loop/6</c></seealso>
with
<c>Server = <anno>Server_or_Actions</anno></c> and
<c>Actions = []</c>.
</p>
</desc>
</func>
<func>
<name name="enter_loop" arity="6"/>
<fsummary>Enter the <c>gen_statem</c> receive loop.</fsummary>
<desc>
<p>
Makes the calling process become a <c>gen_statem</c>.
Does not return, instead the calling process enters
the <c>gen_statem</c> receive loop and becomes
a <c>gen_statem</c> server.
The process <em>must</em> have been started
using one of the start functions in
<seealso marker="proc_lib"><c>proc_lib</c></seealso>.
The user is responsible for any initialization of the process,
including registering a name for it.
</p>
<p>
This function is useful when a more complex initialization
procedure is needed than
the <c>gen_statem</c> behavior provides.
</p>
<p>
<c><anno>Module</anno></c>, <c><anno>Opts</anno></c>
have the same meaning as when calling
<seealso marker="#start_link/3"><c>start[_link]/3,4</c></seealso>.
</p>
<p>
If <c><anno>Server</anno></c> is <c>self()</c> an anonymous
server is created just as when using
<seealso marker="#start_link/3"><c>start[_link]/3</c></seealso>.
If <c><anno>Server</anno></c> is a
<seealso marker="#type-server_name"><c>server_name()</c></seealso>
a named server is created just as when using
<seealso marker="#start_link/4"><c>start[_link]/4</c></seealso>.
However, the
<seealso marker="#type-server_name"><c>server_name()</c></seealso>
name must have been registered accordingly
<em>before</em> this function is called.
</p>
<p>
<c><anno>State</anno></c>, <c><anno>Data</anno></c>,
and <c><anno>Actions</anno></c>
have the same meanings as in the return value of
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>.
Also, the callback module does not need to export a
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
function.
</p>
<p>
The function fails if the calling process was not started by a
<seealso marker="proc_lib"><c>proc_lib</c></seealso>
start function, or if it is not registered
according to
<seealso marker="#type-server_name"><c>server_name()</c></seealso>.
</p>
</desc>
</func>
<func>
<name name="reply" arity="1"/>
<name name="reply" arity="2"/>
<fsummary>Reply to a caller.</fsummary>
<desc>
<p>
This function can be used by a <c>gen_statem</c>
to explicitly send a reply to a process that waits in
<seealso marker="#call/2"><c>call/2</c></seealso>
when the reply cannot be defined in
the return value of a
<seealso marker="#state callback">state callback</seealso>.
</p>
<p>
<c><anno>From</anno></c> must be the term from argument
<seealso marker="#type-event_type"><c>{call,<anno>From</anno>}</c></seealso>
to the
<seealso marker="#state callback">state callback</seealso>.
A reply or multiple replies canalso be sent
using one or several
<seealso marker="#type-reply_action"><c>reply_action()</c></seealso>s
from a
<seealso marker="#state callback">state callback</seealso>.
</p>
<note>
<p>
A reply sent with this function is not visible
in <seealso marker="sys"><c>sys</c></seealso> debug output.
</p>
</note>
</desc>
</func>
<func>
<name name="start" arity="3"/>
<name name="start" arity="4"/>
<fsummary>Create a standalone <c>gen_statem</c> process.</fsummary>
<desc>
<p>
Creates a standalone <c>gen_statem</c> process according to
OTP design principles (using
<seealso marker="proc_lib"><c>proc_lib</c></seealso>
primitives).
As it does not get linked to the calling process,
this start function cannot be used by a supervisor
to start a child.
</p>
<p>
For a description of arguments and return values, see
<seealso marker="#start_link/3"><c>start_link/3,4</c></seealso>.
</p>
</desc>
</func>
<func>
<name name="start_link" arity="3"/>
<name name="start_link" arity="4"/>
<fsummary>Create a linked <c>gen_statem</c> process.</fsummary>
<desc>
<p>
Creates a <c>gen_statem</c> process according
to OTP design principles
(using
<seealso marker="proc_lib"><c>proc_lib</c></seealso>
primitives)
that is linked to the calling process.
This is essential when the <c>gen_statem</c> must be part of
a supervision tree so it gets linked to its supervisor.
</p>
<p>
The <c>gen_statem</c> process calls
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
to initialize the server. To ensure a synchronized startup
procedure, <c>start_link/3,4</c> does not return until
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
has returned.
</p>
<p>
<c><anno>ServerName</anno></c> specifies the
<seealso marker="#type-server_name"><c>server_name()</c></seealso>
to register for the <c>gen_statem</c>.
If the <c>gen_statem</c> is started with <c>start_link/3</c>,
no <c><anno>ServerName</anno></c> is provided and
the <c>gen_statem</c> is not registered.
</p>
<p><c><anno>Module</anno></c> is the name of the callback module.</p>
<p>
<c><anno>Args</anno></c> is an arbitrary term that is passed as
the argument to
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>.
</p>
<list type="bulleted">
<item>
<p>
If option <c>{timeout,Time}</c> is present in
<c><anno>Opts</anno></c>, the <c>gen_statem</c>
is allowed to spend <c>Time</c> milliseconds initializing
or it terminates and the start function returns
<seealso marker="#type-start_ret"><c>{error,timeout}</c></seealso>.
</p>
</item>
<item>
<p>If option<seealso marker="#type-hibernate_after_opt"><c>{hibernate_after,HibernateAfterTimeout}</c></seealso> is present, the <c>gen_statem</c>
process awaits any message for <c>HibernateAfterTimeout</c> milliseconds and
if no message is received, the process goes into hibernation automatically
(by calling <seealso marker="proc_lib#hibernate/3"><c>proc_lib:hibernate/3</c></seealso>).
</p>
</item>
<item>
<p>
If option
<seealso marker="#type-debug_opt"><c>{debug,Dbgs}</c></seealso>
is present in <c><anno>Opts</anno></c>, debugging through
<seealso marker="sys"><c>sys</c></seealso> is activated.
</p>
</item>
<item>
<p>
If option <c>{spawn_opt,SpawnOpts}</c> is present in
<c><anno>Opts</anno></c>, <c>SpawnOpts</c> is passed
as option list to
<seealso marker="erts:erlang#spawn_opt/2"><c>erlang:spawn_opt/2</c></seealso>,
which is used to spawn the <c>gen_statem</c> process.
</p>
</item>
</list>
<note>
<p>
Using spawn option <c>monitor</c> is not
allowed, it causes this function to fail with reason
<c>badarg</c>.
</p>
</note>
<p>
If the <c>gen_statem</c> is successfully created
and initialized, this function returns
<seealso marker="#type-start_ret"><c>{ok,Pid}</c></seealso>,
where <c>Pid</c> is the <c>pid()</c>
of the <c>gen_statem</c>.
If a process with the specified <c><anno>ServerName</anno></c>
exists already, this function returns
<seealso marker="#type-start_ret"><c>{error,{already_started,Pid}}</c></seealso>,
where <c>Pid</c> is the <c>pid()</c> of that process.
</p>
<p>
If <c>Module:init/1</c> fails with <c>Reason</c>,
this function returns
<seealso marker="#type-start_ret"><c>{error,Reason}</c></seealso>.
If <c>Module:init/1</c> returns
<seealso marker="#type-start_ret"><c>{stop,Reason}</c></seealso>
or
<seealso marker="#type-start_ret"><c>ignore</c></seealso>,
the process is terminated and this function
returns
<seealso marker="#type-start_ret"><c>{error,Reason}</c></seealso>
or
<seealso marker="#type-start_ret"><c>ignore</c></seealso>,
respectively.
</p>
</desc>
</func>
<func>
<name name="stop" arity="1"/>
<fsummary>Synchronously stop a generic server.</fsummary>
<desc>
<p>
The same as
<seealso marker="#stop/3"><c>stop(<anno>ServerRef</anno>, normal, infinity)</c></seealso>.
</p>
</desc>
</func>
<func>
<name name="stop" arity="3"/>
<fsummary>Synchronously stop a generic server.</fsummary>
<desc>
<p>
Orders the <c>gen_statem</c>
<seealso marker="#type-server_ref"><c><anno>ServerRef</anno></c></seealso>
to exit with the specified <c><anno>Reason</anno></c>
and waits for it to terminate.
The <c>gen_statem</c> calls
<seealso marker="#Module:terminate/3"><c>Module:terminate/3</c></seealso>
before exiting.
</p>
<p>
This function returns <c>ok</c> if the server terminates
with the expected reason. Any other reason than <c>normal</c>,
<c>shutdown</c>, or <c>{shutdown,Term}</c> causes an
error report to be issued through
<seealso marker="kernel:logger"><c>logger(3)</c></seealso>.
The default <c><anno>Reason</anno></c> is <c>normal</c>.
</p>
<p>
<c><anno>Timeout</anno></c> is an integer > 0,
which specifies how many milliseconds to wait for the server to
terminate, or the atom <c>infinity</c> to wait indefinitely.
Defaults to <c>infinity</c>.
If the server does not terminate within the specified time,
a <c>timeout</c> exception is raised.
</p>
<p>
If the process does not exist, a <c>noproc</c> exception
is raised.
</p>
</desc>
</func>
</funcs>
<section>
<title>Callback Functions</title>
<p>
The following functions are to be exported from a
<c>gen_statem</c> callback module.
</p>
</section>
<funcs>
<func>
<name>Module:callback_mode() -> CallbackMode</name>
<fsummary>Update the internal state during upgrade/downgrade.</fsummary>
<type>
<v>
CallbackMode =
<seealso marker="#type-callback_mode">callback_mode()</seealso> |
[ <seealso marker="#type-callback_mode">callback_mode()</seealso>
| <seealso marker="#type-state_enter">state_enter()</seealso> ]
</v>
</type>
<desc>
<p>
This function is called by a <c>gen_statem</c>
when it needs to find out the
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
of the callback module. The value is cached by <c>gen_statem</c>
for efficiency reasons, so this function is only called
once after server start and after code change,
but before the first
<seealso marker="#state callback">state callback</seealso>
in the current code version is called.
More occasions may be added in future versions
of <c>gen_statem</c>.
</p>
<p>
Server start happens either when
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
returns or when
<seealso marker="#enter_loop/4"><c>enter_loop/4-6</c></seealso>
is called. Code change happens when
<seealso marker="#Module:code_change/4"><c>Module:code_change/4</c></seealso>
returns.
</p>
<p>
The <c>CallbackMode</c> is either just
<seealso marker="#type-callback_mode"><c>callback_mode()</c></seealso>
or a list containing
<seealso marker="#type-callback_mode"><c>callback_mode()</c></seealso>
and possibly the atom
<seealso marker="#type-state_enter"><c>state_enter</c></seealso>.
</p>
<note>
<p>
If this function's body does not return an inline constant
value the callback module is doing something strange.
</p>
</note>
</desc>
</func>
<func>
<name>Module:code_change(OldVsn, OldState, OldData, Extra) ->
Result
</name>
<fsummary>Update the internal state during upgrade/downgrade.</fsummary>
<type>
<v>OldVsn = Vsn | {down,Vsn}</v>
<v> Vsn = term()</v>
<v>OldState = NewState = term()</v>
<v>Extra = term()</v>
<v>Result = {ok,NewState,NewData} | Reason</v>
<v>
OldState = NewState =
<seealso marker="#type-state">state()</seealso>
</v>
<v>
OldData = NewData =
<seealso marker="#type-data">data()</seealso>
</v>
<v>Reason = term()</v>
</type>
<desc>
<note>
<p>
This callback is optional, so callback modules need not export it.
If a release upgrade/downgrade with
<c>Change={advanced,Extra}</c>
specified in the <c>.appup</c> file is made
when <c>code_change/4</c> is not implemented
the process will crash with exit reason <c>undef</c>.
</p>
</note>
<p>
This function is called by a <c>gen_statem</c> when it is to
update its internal state during a release upgrade/downgrade,
that is, when the instruction <c>{update,Module,Change,...}</c>,
where <c>Change={advanced,Extra}</c>, is specified in the
<seealso marker="sasl:appup"><c>appup</c></seealso>
file. For more information, see
<seealso marker="doc/design_principles:release_handling#instr">OTP Design Principles</seealso>.
</p>
<p>
For an upgrade, <c>OldVsn</c> is <c>Vsn</c>, and
for a downgrade, <c>OldVsn</c> is
<c>{down,Vsn}</c>. <c>Vsn</c> is defined by the <c>vsn</c>
attribute(s) of the old version of the callback module
<c>Module</c>. If no such attribute is defined, the version
is the checksum of the Beam file.
</p>
<p>
<c>OldState</c> and <c>OldData</c> is the internal state
of the <c>gen_statem</c>.
</p>
<p>
<c>Extra</c> is passed "as is" from the <c>{advanced,Extra}</c>
part of the update instruction.
</p>
<p>
If successful, the function must return the updated
internal state in an
<c>{ok,NewState,NewData}</c> tuple.
</p>
<p>
If the function returns a failure <c>Reason</c>, the ongoing
upgrade fails and rolls back to the old release.
Note that <c>Reason</c> cannot be an <c>{ok,_,_}</c> tuple
since that will be regarded as a
<c>{ok,NewState,NewData}</c> tuple,
and that a tuple matching <c>{ok,_}</c>
is an also invalid failure <c>Reason</c>.
It is recommended to use an atom as <c>Reason</c> since
it will be wrapped in an <c>{error,Reason}</c> tuple.
</p>
<p>
Also note when upgrading a <c>gen_statem</c>,
this function and hence
the <c>Change={advanced,Extra}</c> parameter in the
<seealso marker="sasl:appup"><c>appup</c></seealso> file
is not only needed to update the internal state
or to act on the <c>Extra</c> argument.
It is also needed if an upgrade or downgrade should change
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>,
or else the callback mode after the code change
will not be honoured,
most probably causing a server crash.
</p>
</desc>
</func>
<func>
<name>Module:init(Args) -> Result(StateType)</name>
<fsummary>
Initializing process and internal state.
</fsummary>
<type>
<v>Args = term()</v>
<v>
Result(StateType) =
<seealso marker="#type-init_result">init_result(StateType)</seealso>
</v>
</type>
<desc>
<marker id="Module:init-1"/>
<p>
Whenever a <c>gen_statem</c> is started using
<seealso marker="#start_link/3"><c>start_link/3,4</c></seealso>
or
<seealso marker="#start/3"><c>start/3,4</c></seealso>,
this function is called by the new process to initialize
the implementation state and server data.
</p>
<p>
<c>Args</c> is the <c>Args</c> argument provided to that start
function.
</p>
<note>
<p>
Note that if the <c>gen_statem</c> is started through
<seealso marker="proc_lib"><c>proc_lib</c></seealso>
and
<seealso marker="#enter_loop/4"><c>enter_loop/4-6</c></seealso>,
this callback will never be called.
Since this callback is not optional it can
in that case be implemented as:
</p>
<pre>
init(Args) -> erlang:error(not_implemented, [Args]).</pre>
</note>
</desc>
</func>
<func>
<name>Module:format_status(Opt, [PDict,State,Data]) ->
Status
</name>
<fsummary>Optional function for providing a term describing the
current <c>gen_statem</c> status.</fsummary>
<type>
<v>Opt = normal | terminate</v>
<v>PDict = [{Key, Value}]</v>
<v>
State =
<seealso marker="#type-state">state()</seealso>
</v>
<v>
Data =
<seealso marker="#type-data">data()</seealso>
</v>
<v>Key = term()</v>
<v>Value = term()</v>
<v>Status = term()</v>
</type>
<desc>
<note>
<p>
This callback is optional, so a callback module does not need
to export it. The <c>gen_statem</c> module provides a default
implementation of this function that returns
<c>{State,Data}</c>.
</p>
<p>
If this callback is exported but fails,
to hide possibly sensitive data,
the default function will instead return <c>{State,Info}</c>,
where <c>Info</c> says nothing but the fact that
<c>format_status/2</c> has crashed.
</p>
</note>
<p>This function is called by a <c>gen_statem</c> process when
any of the following apply:</p>
<list type="bulleted">
<item>
One of
<seealso marker="sys#get_status/1"><c>sys:get_status/1,2</c></seealso>
is invoked to get the <c>gen_statem</c> status. <c>Opt</c> is set
to the atom <c>normal</c> for this case.
</item>
<item>
The <c>gen_statem</c> terminates abnormally and logs an error.
<c>Opt</c> is set to the atom <c>terminate</c> for this case.
</item>
</list>
<p>
This function is useful for changing the form and
appearance of the <c>gen_statem</c> status for these cases. A
callback module wishing to change the
<seealso marker="sys#get_status/1"><c>sys:get_status/1,2</c></seealso>
return value and how
its status appears in termination error logs exports an
instance of <c>format_status/2</c>, which returns a term
describing the current status of the <c>gen_statem</c>.
</p>
<p>
<c>PDict</c> is the current value of the process dictionary
of the <c>gen_statem</c>.
</p>
<p>
<seealso marker="#type-state"><c>State</c></seealso>
is the internal state of the <c>gen_statem</c>.
</p>
<p>
<seealso marker="#type-data"><c>Data</c></seealso>
is the internal server data of the <c>gen_statem</c>.
</p>
<p>
The function is to return <c>Status</c>, a term that
contains the appropriate details
of the current state and status of
the <c>gen_statem</c>. There are no restrictions on the
form <c>Status</c> can take, but for the
<seealso marker="sys#get_status/1"><c>sys:get_status/1,2</c></seealso>
case (when <c>Opt</c>
is <c>normal</c>), the recommended form for
the <c>Status</c> value is <c>[{data, [{"State",
Term}]}]</c>, where <c>Term</c> provides relevant details of
the <c>gen_statem</c> state. Following this recommendation is not
required, but it makes the callback module status
consistent with the rest of the
<seealso marker="sys#get_status/1"><c>sys:get_status/1,2</c></seealso>
return value.
</p>
<p>
One use for this function is to return compact alternative
state representations to avoid having large state terms
printed in log files. Another use is to hide sensitive data from
being written to the error log.
</p>
</desc>
</func>
<func>
<name>Module:StateName(enter, OldState, Data) ->
StateEnterResult(StateName)
</name>
<name>Module:StateName(EventType, EventContent, Data) ->
StateFunctionResult
</name>
<name>Module:handle_event(enter, OldState, State, Data) ->
StateEnterResult(State)
</name>
<name>Module:handle_event(EventType, EventContent, State, Data) ->
HandleEventResult
</name>
<fsummary>Handle an event.</fsummary>
<type>
<v>
EventType =
<seealso marker="#type-event_type">event_type()</seealso>
</v>
<v>EventContent = term()</v>
<v>
State =
<seealso marker="#type-state">state()</seealso>
</v>
<v>
Data = NewData =
<seealso marker="#type-data">data()</seealso>
</v>
<v>
StateEnterResult(StateName) =
<seealso marker="#type-state_enter_result">state_enter_result(StateName)</seealso>
</v>
<v>
StateFunctionResult =
<seealso marker="#type-event_handler_result">event_handler_result</seealso>(<seealso marker="#type-state_name">state_name()</seealso>)
</v>
<v>
StateEnterResult(State) =
<seealso marker="#type-state_enter_result">state_enter_result(State)</seealso>
</v>
<v>
HandleEventResult =
<seealso marker="#type-event_handler_result">event_handler_result</seealso>(<seealso marker="#type-state">state()</seealso>)
</v>
</type>
<desc>
<p>
Whenever a <c>gen_statem</c> receives an event from
<seealso marker="#call/2"><c>call/2</c></seealso>,
<seealso marker="#cast/2"><c>cast/2</c></seealso>, or
as a normal process message, one of these functions is called. If
<seealso marker="#type-callback_mode"><em>callback mode</em></seealso>
is <c>state_functions</c>, <c>Module:StateName/3</c> is called,
and if it is <c>handle_event_function</c>,
<c>Module:handle_event/4</c> is called.
</p>
<p>
If <c>EventType</c> is
<seealso marker="#type-event_type"><c>{call,From}</c></seealso>,
the caller waits for a reply. The reply can be sent
from this or from any other
<seealso marker="#state callback">state callback</seealso>
by returning with <c>{reply,From,Reply}</c> in
<seealso marker="#type-action"><c>Actions</c></seealso>, in
<seealso marker="#type-reply_action"><c>Replies</c></seealso>,
or by calling
<seealso marker="#reply/2"><c>reply(From, Reply)</c></seealso>.
</p>
<p>
If this function returns with a next state that
does not match equal (<c>=/=</c>) to the current state,
all postponed events are retried in the next state.
</p>
<p>
The only difference between <c>StateFunctionResult</c> and
<c>HandleEventResult</c> is that for <c>StateFunctionResult</c>
the next state must be an atom, but for <c>HandleEventResult</c>
there is no restriction on the next state.
</p>
<p>
For options that can be set and actions that can be done
by <c>gen_statem</c> after returning from this function,
see <seealso marker="#type-action"><c>action()</c></seealso>.
</p>
<p>
When the <c>gen_statem</c> runs with
<seealso marker="#type-state_enter">state enter calls</seealso>,
these functions are also called with arguments
<c>(enter, OldState, ...)</c> whenever the state changes.
In this case there are some restrictions on the
<seealso marker="#type-enter_action">actions</seealso>
that may be returned:
<seealso marker="#type-postpone"><c>postpone()</c></seealso>
is not allowed since a <em>state enter call</em> is not
an event so there is no event to postpone, and
<seealso marker="#type-action"><c>{next_event,_,_}</c></seealso>
is not allowed since using <em>state enter calls</em>
should not affect how events are consumed and produced.
You may also not change states from this call.
Should you return <c>{next_state,NextState, ...}</c>
with <c>NextState =/= State</c> the <c>gen_statem</c> crashes.
Note that it is actually allowed to use
<c>{repeat_state, NewData, ...}</c> although it makes little
sense since you immediately will be called again with a new
<em>state enter call</em> making this just a weird way
of looping, and there are better ways to loop in Erlang.
If you do not update <c>NewData</c> and have some
loop termination condition, or if you use
<c>{repeat_state_and_data, _}</c> or
<c>repeat_state_and_data</c> you have an infinite loop!
You are advised to use <c>{keep_state,...}</c>,
<c>{keep_state_and_data,_}</c> or
<c>keep_state_and_data</c>
since changing states from a <em>state enter call</em>
is not possible anyway.
</p>
<p>
Note the fact that you can use
<seealso marker="erts:erlang#throw/1"><c>throw</c></seealso>
to return the result, which can be useful.
For example to bail out with <c>throw(keep_state_and_data)</c>
from deep within complex code that cannot
return <c>{next_state,State,Data}</c> because
<c>State</c> or <c>Data</c> is no longer in scope.
</p>
</desc>
</func>
<func>
<name>Module:terminate(Reason, State, Data) -> Ignored</name>
<fsummary>Clean up before termination.</fsummary>
<type>
<v>Reason = normal | shutdown | {shutdown,term()} | term()</v>
<v>State = <seealso marker="#type-state">state()</seealso></v>
<v>Data = <seealso marker="#type-data">data()</seealso></v>
<v>Ignored = term()</v>
</type>
<desc>
<note>
<p>This callback is optional, so callback modules need not
export it. The <c>gen_statem</c> module provides a default
implementation without cleanup.</p>
</note>
<p>
This function is called by a <c>gen_statem</c>
when it is about to terminate. It is to be the opposite of
<seealso marker="#Module:init/1"><c>Module:init/1</c></seealso>
and do any necessary cleaning up. When it returns,
the <c>gen_statem</c> terminates with <c>Reason</c>. The return
value is ignored.</p>
<p>
<c>Reason</c> is a term denoting the stop reason and
<seealso marker="#type-state"><c>State</c></seealso>
is the internal state of the <c>gen_statem</c>.
</p>
<p>
<c>Reason</c> depends on why the <c>gen_statem</c>
is terminating.
If it is because another callback function has returned, a
stop tuple <c>{stop,Reason}</c> in
<seealso marker="#type-action"><c>Actions</c></seealso>,
<c>Reason</c> has the value specified in that tuple.
If it is because of a failure, <c>Reason</c> is the error reason.
</p>
<p>
If the <c>gen_statem</c> is part of a supervision tree and is
ordered by its supervisor to terminate, this function is
called with <c>Reason = shutdown</c> if both the following
conditions apply:</p>
<list type="bulleted">
<item>
<p>
The <c>gen_statem</c> has been set
to trap exit signals.
</p>
</item>
<item>
<p>
The shutdown strategy as defined in the supervisor's
child specification is an integer time-out value, not
<c>brutal_kill</c>.
</p>
</item>
</list>
<p>
Even if the <c>gen_statem</c> is <em>not</em>
part of a supervision tree, this function is called
if it receives an <c>'EXIT'</c> message from its parent.
<c>Reason</c> is the same as
in the <c>'EXIT'</c> message.
</p>
<p>
Otherwise, the <c>gen_statem</c> is immediately terminated.
</p>
<p>
Notice that for any other reason than <c>normal</c>,
<c>shutdown</c>, or <c>{shutdown,Term}</c>,
the <c>gen_statem</c> is assumed to terminate because of an error
and an error report is issued using
<seealso marker="kernel:logger"><c>logger(3)</c></seealso>.
</p>
</desc>
</func>
</funcs>
<section>
<title>See Also</title>
<p>
<seealso marker="gen_event"><c>gen_event(3)</c></seealso>,
<seealso marker="gen_fsm"><c>gen_fsm(3)</c></seealso>,
<seealso marker="gen_server"><c>gen_server(3)</c></seealso>,
<seealso marker="proc_lib"><c>proc_lib(3)</c></seealso>,
<seealso marker="supervisor"><c>supervisor(3)</c></seealso>,
<seealso marker="sys"><c>sys(3)</c></seealso>.
</p>
</section>
</erlref>