<?xml version="1.0" encoding="latin1" ?>
<!DOCTYPE erlref SYSTEM "erlref.dtd">
<erlref>
<header>
<copyright>
<year>2001</year><year>2010</year>
<holder>Ericsson AB. All Rights Reserved.</holder>
</copyright>
<legalnotice>
The contents of this file are subject to the Erlang Public License,
Version 1.1, (the "License"); you may not use this file except in
compliance with the License. You should have received a copy of the
Erlang Public License along with this software. If not, it can be
retrieved online at http://www.erlang.org/.
Software distributed under the License is distributed on an "AS IS"
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations
under the License.
</legalnotice>
<title>sofs</title>
<prepared>Hans Bolinder</prepared>
<responsible>nobody</responsible>
<docno></docno>
<approved>nobody</approved>
<checked>no</checked>
<date>2001-08-25</date>
<rev>PA1</rev>
<file>sofs.sgml</file>
</header>
<module>sofs</module>
<modulesummary>Functions for Manipulating Sets of Sets</modulesummary>
<description>
<p>The <c>sofs</c> module implements operations on finite sets and
relations represented as sets. Intuitively, a set is a
collection of elements; every element belongs to the set, and
the set contains every element.</p>
<p>Given a set A and a sentence S(x), where x is a free variable,
a new set B whose elements are exactly those elements of A for
which S(x) holds can be formed, this is denoted B =
{x in A : S(x)}. Sentences are expressed using
the logical operators "for some" (or "there exists"), "for all",
"and", "or", "not". If the existence of a set containing all the
specified elements is known (as will always be the case in this
module), we write B = {x : S(x)}. </p>
<p>The <em>unordered set</em> containing the elements a, b and c
is denoted {a, b, c}. This notation is not to be
confused with tuples. The <em>ordered pair</em> of a and b, with
first <em>coordinate</em> a and second coordinate b, is denoted
(a, b). An ordered pair is an <em>ordered set</em> of two
elements. In this module ordered sets can contain one, two or
more elements, and parentheses are used to enclose the elements.
Unordered sets and ordered sets are orthogonal, again in this
module; there is no unordered set equal to any ordered set.</p>
<p>The set that contains no elements is called the <em>empty set</em>.
If two sets A and B contain the same elements, then A
is <marker id="equal"></marker><em>equal</em> to B, denoted
A = B. Two ordered sets are equal if they contain the
same number of elements and have equal elements at each
coordinate. If a set A contains all elements that B contains,
then B is a <marker id="subset"></marker><em>subset</em> of A.
The <marker id="union"></marker><em>union</em> of two sets A and B is
the smallest set that contains all elements of A and all elements of
B. The <marker id="intersection"></marker><em>intersection</em> of two
sets A and B is the set that contains all elements of A that
belong to B.
Two sets are <marker id="disjoint"></marker><em>disjoint</em> if their
intersection is the empty set.
The <marker id="difference"></marker><em>difference</em> of
two sets A and B is the set that contains all elements of A that
do not belong to B.
The <marker id="symmetric_difference"></marker><em>symmetric
difference</em> of
two sets is the set that contains those element that belong to
either of the two sets, but not both.
The <marker id="union_n"></marker><em>union</em> of a collection
of sets is the smallest set that contains all the elements that
belong to at least one set of the collection.
The <marker id="intersection_n"></marker><em>intersection</em> of
a non-empty collection of sets is the set that contains all elements
that belong to every set of the collection.</p>
<p>The <marker id="Cartesian_product"></marker><em>Cartesian
product</em> of
two sets X and Y, denoted X × Y, is the set
{a : a = (x, y) for some x in X and for
some y in Y}.
A <marker id="relation"></marker><em>relation</em> is a subset of
X × Y. Let R be a relation. The fact that
(x, y) belongs to R is written as x R y. Since
relations are sets, the definitions of the last paragraph
(subset, union, and so on) apply to relations as well.
The <marker id="domain"></marker><em>domain</em> of R is the
set {x : x R y for some y in Y}.
The <marker id="range"></marker><em>range</em> of R is the
set {y : x R y for some x in X}.
The <marker id="converse"></marker><em>converse</em> of R is the
set {a : a = (y, x) for some
(x, y) in R}. If A is a subset of X, then
the <marker id="image"></marker><em>image</em> of
A under R is the set {y : x R y for some
x in A}, and if B is a subset of Y, then
the <marker id="inverse_image"></marker><em>inverse image</em> of B is
the set {x : x R y for some y in B}. If R is a
relation from X to Y and S is a relation from Y to Z, then
the <marker id="relative_product"></marker><em>relative product</em> of
R and S is the relation T from X to Z defined so that x T z
if and only if there exists an element y in Y such that
x R y and y S z.
The <marker id="restriction"></marker><em>restriction</em> of R to A is
the set S defined so that x S y if and only if there exists an
element x in A such that x R y. If S is a restriction
of R to A, then R is
an <marker id="extension"></marker><em>extension</em> of S to X.
If X = Y then we call R a relation <em>in</em> X.
The <marker id="field"></marker><em>field</em> of a relation R in X
is the union of the domain of R and the range of R.
If R is a relation in X, and
if S is defined so that x S y if x R y and
not x = y, then S is
the <marker id="strict_relation"></marker><em>strict</em> relation
corresponding to
R, and vice versa, if S is a relation in X, and if R is defined
so that x R y if x S y or x = y,
then R is the <marker id="weak_relation"></marker><em>weak</em> relation
corresponding to S. A relation R in X is <em>reflexive</em> if
x R x for every element x of X; it is
<em>symmetric</em> if x R y implies that
y R x; and it is <em>transitive</em> if
x R y and y R z imply that x R z.</p>
<p>A <marker id="function"></marker><em>function</em> F is a relation, a
subset of X × Y, such that the domain of F is
equal to X and such that for every x in X there is a unique
element y in Y with (x, y) in F. The latter condition can
be formulated as follows: if x F y and x F z
then y = z. In this module, it will not be required
that the domain of F be equal to X for a relation to be
considered a function. Instead of writing
(x, y) in F or x F y, we write
F(x) = y when F is a function, and say that F maps x
onto y, or that the value of F at x is y. Since functions are
relations, the definitions of the last paragraph (domain, range,
and so on) apply to functions as well. If the converse of a
function F is a function F', then F' is called
the <marker id="inverse"></marker><em>inverse</em> of F.
The relative product of two functions F1 and F2 is called
the <marker id="composite"></marker><em>composite</em> of F1 and F2
if the range of F1 is a subset of the domain of F2. </p>
<p>Sometimes, when the range of a function is more important than
the function itself, the function is called a <em>family</em>.
The domain of a family is called the <em>index set</em>, and the
range is called the <em>indexed set</em>. If x is a family from
I to X, then x[i] denotes the value of the function at index i.
The notation "a family in X" is used for such a family. When the
indexed set is a set of subsets of a set X, then we call x
a <marker id="family"></marker><em>family of subsets</em> of X. If x
is a family of subsets of X, then the union of the range of x is
called the <em>union of the family</em> x. If x is non-empty
(the index set is non-empty),
the <em>intersection of the family</em> x is the intersection of
the range of x. In this
module, the only families that will be considered are families
of subsets of some set X; in the following the word "family"
will be used for such families of subsets.</p>
<p>A <marker id="partition"></marker><em>partition</em> of a set X is a
collection S of non-empty subsets of X whose union is X and
whose elements are pairwise disjoint. A relation in a set is an
<em>equivalence relation</em> if it is reflexive, symmetric and
transitive. If R is an equivalence relation in X, and x is an
element of X,
the <marker id="equivalence_class"></marker><em>equivalence
class</em> of x with respect to R is the set of all those
elements y of X for which x R y holds. The equivalence
classes constitute a partitioning of X. Conversely, if C is a
partition of X, then the relation that holds for any two
elements of X if they belong to the same equivalence class, is
an equivalence relation induced by the partition C. If R is an
equivalence relation in X, then
the <marker id="canonical_map"></marker><em>canonical map</em> is
the function that maps every element of X onto its equivalence class.
</p>
<p>Relations as defined above (as sets of ordered pairs) will from
now on be referred to as <em>binary relations</em>. We call a
set of ordered sets (x[1], ..., x[n])
an <em>(n-ary) relation</em>, and say that the relation is a subset of
the <marker id="Cartesian_product_tuple"></marker>Cartesian product
X[1] × ... × X[n] where x[i] is
an element of X[i], 1 <= i <= n.
The <marker id="projection"></marker><em>projection</em> of an n-ary
relation R onto coordinate i is the set {x[i] :
(x[1], ..., x[i], ..., x[n]) in R for some
x[j] in X[j], 1 <= j <= n
and not i = j}. The projections of a binary relation R
onto the first and second coordinates are the domain and the
range of R respectively. The relative product of binary
relations can be generalized to n-ary relations as follows. Let
TR be an ordered set (R[1], ..., R[n]) of binary
relations from X to Y[i] and S a binary relation from
(Y[1] × ... × Y[n]) to Z.
The <marker id="tuple_relative_product"></marker><em>relative
product</em> of
TR and S is the binary relation T from X to Z defined so that
x T z if and only if there exists an element y[i] in
Y[i] for each 1 <= i <= n such that
x R[i] y[i] and
(y[1], ..., y[n]) S z. Now let TR be a an
ordered set (R[1], ..., R[n]) of binary relations from
X[i] to Y[i] and S a subset of
X[1] × ... × X[n].
The <marker id="multiple_relative_product"></marker><em>multiple
relative product</em> of TR and and S is defined to be the
set {z : z = ((x[1], ..., x[n]), (y[1],...,y[n]))
for some (x[1], ..., x[n]) in S and for some
(x[i], y[i]) in R[i],
1 <= i <= n}.
The <marker id="natural_join"></marker><em>natural join</em> of
an n-ary relation R
and an m-ary relation S on coordinate i and j is defined to be
the set {z : z = (x[1], ..., x[n],
y[1], ..., y[j-1], y[j+1], ..., y[m])
for some (x[1], ..., x[n]) in R and for some
(y[1], ..., y[m]) in S such that
x[i] = y[j]}.</p>
<p><marker id="sets_definition"></marker>The sets recognized by this
module will be represented by elements of the relation Sets, defined as
the smallest set such that:</p>
<list type="bulleted">
<item>for every atom T except '_' and for every term X,
(T, X) belongs to Sets (<em>atomic sets</em>);
</item>
<item>(['_'], []) belongs to Sets (the <em>untyped empty set</em>);
</item>
<item>for every tuple T = {T[1], ..., T[n]} and
for every tuple X = {X[1], ..., X[n]}, if
(T[i], X[i]) belongs to Sets for every
1 <= i <= n then (T, X) belongs
to Sets (<em>ordered sets</em>);
</item>
<item>for every term T, if X is the empty list or a non-empty
sorted list [X[1], ..., X[n]] without duplicates
such that (T, X[i]) belongs to Sets for every
1 <= i <= n, then ([T], X)
belongs to Sets (<em>typed unordered sets</em>).</item>
</list>
<p>An <marker id="external_set"></marker><em>external set</em> is an
element of the range of Sets.
A <marker id="type"></marker><em>type</em>
is an element of the domain of Sets. If S is an element
(T, X) of Sets, then T is
a <marker id="valid_type"></marker><em>valid type</em> of X,
T is the type of S, and X is the external set
of S. <seealso marker="#from_term">from_term/2</seealso> creates a
set from a type and an Erlang term turned into an external set.</p>
<p>The actual sets represented by Sets are the elements of the
range of the function Set from Sets to Erlang terms and sets of
Erlang terms:</p>
<list type="bulleted">
<item>Set(T,Term) = Term, where T is an atom;</item>
<item>Set({T[1], ..., T[n]}, {X[1], ..., X[n]})
= (Set(T[1], X[1]), ..., Set(T[n], X[n]));</item>
<item>Set([T], [X[1], ..., X[n]])
= {Set(T, X[1]), ..., Set(T, X[n])};</item>
<item>Set([T], []) = {}.</item>
</list>
<p>When there is no risk of confusion, elements of Sets will be
identified with the sets they represent. For instance, if U is
the result of calling <c>union/2</c> with S1 and S2 as
arguments, then U is said to be the union of S1 and S2. A more
precise formulation would be that Set(U) is the union of Set(S1)
and Set(S2).</p>
<p>The types are used to implement the various conditions that
sets need to fulfill. As an example, consider the relative
product of two sets R and S, and recall that the relative
product of R and S is defined if R is a binary relation to Y and
S is a binary relation from Y. The function that implements the relative
product, <seealso marker="#relprod_impl">relative_product/2</seealso>, checks
that the arguments represent binary relations by matching [{A,B}]
against the type of the first argument (Arg1 say), and [{C,D}]
against the type of the second argument (Arg2 say). The fact
that [{A,B}] matches the type of Arg1 is to be interpreted as
Arg1 representing a binary relation from X to Y, where X is
defined as all sets Set(x) for some element x in Sets the type
of which is A, and similarly for Y. In the same way Arg2 is
interpreted as representing a binary relation from W to Z.
Finally it is checked that B matches C, which is sufficient to
ensure that W is equal to Y. The untyped empty set is handled
separately: its type, ['_'], matches the type of any unordered
set.</p>
<p>A few functions of this module (<c>drestriction/3</c>,
<c>family_projection/2</c>, <c>partition/2</c>,
<c>partition_family/2</c>, <c>projection/2</c>,
<c>restriction/3</c>, <c>substitution/2</c>) accept an Erlang
function as a means to modify each element of a given unordered
set. Such a function, called SetFun in the following, can be
specified as a functional object (fun), a tuple
<c>{external, Fun}</c>, or an integer. If SetFun is
specified as a fun, the fun is applied to each element of the
given set and the return value is assumed to be a set. If SetFun
is specified as a tuple <c>{external, Fun}</c>, Fun is applied
to the external set of each element of the given set and the
return value is assumed to be an external set. Selecting the
elements of an unordered set as external sets and assembling a
new unordered set from a list of external sets is in the present
implementation more efficient than modifying each element as a
set. However, this optimization can only be utilized when the
elements of the unordered set are atomic or ordered sets. It
must also be the case that the type of the elements matches some
clause of Fun (the type of the created set is the result of
applying Fun to the type of the given set), and that Fun does
nothing but selecting, duplicating or rearranging parts of the
elements. Specifying a SetFun as an integer I is equivalent to
specifying <c>{external, fun(X) -> element(I, X) end}</c>,
but is to be preferred since it makes it possible to handle this
case even more efficiently. Examples of SetFuns:</p>
<pre>
{sofs, union}
fun(S) -> sofs:partition(1, S) end
{external, fun(A) -> A end}
{external, fun({A,_,C}) -> {C,A} end}
{external, fun({_,{_,C}}) -> C end}
{external, fun({_,{_,{_,E}=C}}) -> {E,{E,C}} end}
2</pre>
<p>The order in which a SetFun is applied to the elements of an
unordered set is not specified, and may change in future
versions of sofs.</p>
<p>The execution time of the functions of this module is dominated
by the time it takes to sort lists. When no sorting is needed,
the execution time is in the worst case proportional to the sum
of the sizes of the input arguments and the returned value. A
few functions execute in constant time: <c>from_external</c>,
<c>is_empty_set</c>, <c>is_set</c>, <c>is_sofs_set</c>,
<c>to_external</c>, <c>type</c>.</p>
<p>The functions of this module exit the process with a
<c>badarg</c>, <c>bad_function</c>, or <c>type_mismatch</c>
message when given badly formed arguments or sets the types of
which are not compatible.</p>
<p>When comparing external sets the operator <c>==/2</c> is used.</p>
<p><em>Types</em></p>
<pre>
anyset() = - an unordered, ordered or atomic set -
binary_relation() = - a binary relation -
bool() = true | false
external_set() = - an external set -
family() = - a family (of subsets) -
function() = - a function -
ordset() = - an ordered set -
relation() = - an n-ary relation -
set() = - an unordered set -
set_of_sets() = - an unordered set of set() -
set_fun() = integer() >= 1
| {external, fun(external_set()) -> external_set()}
| fun(anyset()) -> anyset()
spec_fun() = {external, fun(external_set()) -> bool()}
| fun(anyset()) -> bool()
type() = - a type - </pre>
</description>
<funcs>
<func>
<name>a_function(Tuples [, Type]) -> Function</name>
<fsummary>Create a function.</fsummary>
<type>
<v>Function = function()</v>
<v>Tuples = [tuple()]</v>
<v>Type = type()</v>
</type>
<desc>
<p>Creates a <seealso marker="#function">function</seealso>.
<c>a_function(F, T)</c> is equivalent to
<c>from_term(F, T)</c>, if the result is a function. If
no <seealso marker="#type">type</seealso> is explicitly
given, <c>[{atom, atom}]</c> is used as type of the
function.</p>
</desc>
</func>
<func>
<name>canonical_relation(SetOfSets) -> BinRel</name>
<fsummary>Return the canonical map.</fsummary>
<type>
<v>BinRel = binary_relation()</v>
<v>SetOfSets = set_of_sets()</v>
</type>
<desc>
<p>Returns the binary relation containing the elements
(E, Set) such that Set belongs to SetOfSets and E
belongs to Set. If SetOfSets is
a <seealso marker="#partition">partition</seealso> of a set X and
R is the equivalence relation in X induced by SetOfSets, then the
returned relation is
the <seealso marker="#canonical_map">canonical map</seealso> from
X onto the equivalence classes with respect to R.</p>
<pre>
1> <input>Ss = sofs:from_term([[a,b],[b,c]]),</input>
<input>CR = sofs:canonical_relation(Ss),</input>
<input>sofs:to_external(CR).</input>
[{a,[a,b]},{b,[a,b]},{b,[b,c]},{c,[b,c]}]</pre>
</desc>
</func>
<func>
<name>composite(Function1, Function2) -> Function3</name>
<fsummary>Return the composite of two functions.</fsummary>
<type>
<v>Function1 = Function2 = Function3 = function()</v>
</type>
<desc>
<p>Returns the <seealso marker="#composite">composite</seealso> of
the functions Function1 and Function2.</p>
<pre>
1> <input>F1 = sofs:a_function([{a,1},{b,2},{c,2}]),</input>
<input>F2 = sofs:a_function([{1,x},{2,y},{3,z}]),</input>
<input>F = sofs:composite(F1, F2),</input>
<input>sofs:to_external(F).</input>
[{a,x},{b,y},{c,y}]</pre>
</desc>
</func>
<func>
<name>constant_function(Set, AnySet) -> Function</name>
<fsummary>Create the function that maps each element of a
set onto another set.</fsummary>
<type>
<v>AnySet = anyset()</v>
<v>Function = function()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Creates the <seealso marker="#function">function</seealso>
that maps each element of the set Set onto AnySet.</p>
<pre>
1> <input>S = sofs:set([a,b]),</input>
<input>E = sofs:from_term(1),</input>
<input>R = sofs:constant_function(S, E),</input>
<input>sofs:to_external(R).</input>
[{a,1},{b,1}]</pre>
</desc>
</func>
<func>
<name>converse(BinRel1) -> BinRel2</name>
<fsummary>Return the converse of a binary relation.</fsummary>
<type>
<v>BinRel1 = BinRel2 = binary_relation()</v>
</type>
<desc>
<p>Returns the <seealso marker="#converse">converse</seealso>
of the binary relation BinRel1.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,a}]),</input>
<input>R2 = sofs:converse(R1),</input>
<input>sofs:to_external(R2).</input>
[{a,1},{a,3},{b,2}]</pre>
</desc>
</func>
<func>
<name>difference(Set1, Set2) -> Set3</name>
<fsummary>Return the difference of two sets.</fsummary>
<type>
<v>Set1 = Set2 = Set3 = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#difference">difference</seealso> of
the sets Set1 and Set2.</p>
</desc>
</func>
<func>
<name>digraph_to_family(Graph [, Type]) -> Family</name>
<fsummary>Create a family from a directed graph.</fsummary>
<type>
<v>Graph = digraph() - see digraph(3) -</v>
<v>Family = family()</v>
<v>Type = type()</v>
</type>
<desc>
<p>Creates a <seealso marker="#family">family</seealso> from
the directed graph Graph. Each vertex a of Graph is
represented by a pair (a, {b[1], ..., b[n]})
where the b[i]'s are the out-neighbours of a. If no type is
explicitly given, [{atom, [atom]}] is used as type of
the family. It is assumed that Type is
a <seealso marker="#valid_type">valid type</seealso> of the
external set of the family.</p>
<p>If G is a directed graph, it holds that the vertices and
edges of G are the same as the vertices and edges of
<c>family_to_digraph(digraph_to_family(G))</c>.</p>
</desc>
</func>
<func>
<name>domain(BinRel) -> Set</name>
<fsummary>Return the domain of a binary relation.</fsummary>
<type>
<v>BinRel = binary_relation()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#domain">domain</seealso> of
the binary relation BinRel.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),</input>
<input>S = sofs:domain(R),</input>
<input>sofs:to_external(S).</input>
[1,2]</pre>
</desc>
</func>
<func>
<name>drestriction(BinRel1, Set) -> BinRel2</name>
<fsummary>Return a restriction of a binary relation.</fsummary>
<type>
<v>BinRel1 = BinRel2 = binary_relation()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the difference between the binary relation BinRel1
and the <seealso marker="#restriction">restriction</seealso>
of BinRel1 to Set.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>S = sofs:set([2,4,6]),</input>
<input>R2 = sofs:drestriction(R1, S),</input>
<input>sofs:to_external(R2).</input>
[{1,a},{3,c}]</pre>
<p><c>drestriction(R, S)</c> is equivalent to
<c>difference(R, restriction(R, S))</c>.</p>
</desc>
</func>
<func>
<name>drestriction(SetFun, Set1, Set2) -> Set3</name>
<fsummary>Return a restriction of a relation.</fsummary>
<type>
<v>SetFun = set_fun()</v>
<v>Set1 = Set2 = Set3 = set()</v>
</type>
<desc>
<p>Returns a subset of Set1 containing those elements that do
not yield an element in Set2 as the result of applying
SetFun.</p>
<pre>
1> <input>SetFun = {external, fun({_A,B,C}) -> {B,C} end},</input>
<input>R1 = sofs:relation([{a,aa,1},{b,bb,2},{c,cc,3}]),</input>
<input>R2 = sofs:relation([{bb,2},{cc,3},{dd,4}]),</input>
<input>R3 = sofs:drestriction(SetFun, R1, R2),</input>
<input>sofs:to_external(R3).</input>
[{a,aa,1}]</pre>
<p><c>drestriction(F, S1, S2)</c> is equivalent to
<c>difference(S1, restriction(F, S1, S2))</c>.</p>
</desc>
</func>
<func>
<name>empty_set() -> Set</name>
<fsummary>Return the untyped empty set.</fsummary>
<type>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#sets_definition">untyped empty
set</seealso>. <c>empty_set()</c> is equivalent to
<c>from_term([], ['_'])</c>.</p>
</desc>
</func>
<func>
<name>extension(BinRel1, Set, AnySet) -> BinRel2</name>
<fsummary>Extend the domain of a binary relation.</fsummary>
<type>
<v>AnySet = anyset()</v>
<v>BinRel1 = BinRel2 = binary_relation()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#extension">extension</seealso> of
BinRel1 such that
for each element E in Set that does not belong to the
<seealso marker="#domain">domain</seealso> of BinRel1,
BinRel2 contains the pair (E, AnySet).</p>
<pre>
1> <input>S = sofs:set([b,c]),</input>
<input>A = sofs:empty_set(),</input>
<input>R = sofs:family([{a,[1,2]},{b,[3]}]),</input>
<input>X = sofs:extension(R, S, A),</input>
<input>sofs:to_external(X).</input>
[{a,[1,2]},{b,[3]},{c,[]}]</pre>
</desc>
</func>
<func>
<name>family(Tuples [, Type]) -> Family</name>
<fsummary>Create a family of subsets.</fsummary>
<type>
<v>Family = family()</v>
<v>Tuples = [tuple()]</v>
<v>Type = type()</v>
</type>
<desc>
<p>Creates a <seealso marker="#family">family of subsets</seealso>.
<c>family(F, T)</c> is equivalent to
<c>from_term(F, T)</c>, if the result is a family. If
no <seealso marker="#type">type</seealso> is explicitly
given, <c>[{atom, [atom]}]</c> is used as type of the
family.</p>
</desc>
</func>
<func>
<name>family_difference(Family1, Family2) -> Family3</name>
<fsummary>Return the difference of two families.</fsummary>
<type>
<v>Family1 = Family2 = Family3 = family()</v>
</type>
<desc>
<p>If Family1 and Family2
are <seealso marker="#family">families</seealso>, then
Family3 is the family
such that the index set is equal to the index set of
Family1, and Family3[i] is the difference between Family1[i]
and Family2[i] if Family2 maps i, Family1[i] otherwise.</p>
<pre>
1> <input>F1 = sofs:family([{a,[1,2]},{b,[3,4]}]),</input>
<input>F2 = sofs:family([{b,[4,5]},{c,[6,7]}]),</input>
<input>F3 = sofs:family_difference(F1, F2),</input>
<input>sofs:to_external(F3).</input>
[{a,[1,2]},{b,[3]}]</pre>
</desc>
</func>
<func>
<name>family_domain(Family1) -> Family2</name>
<fsummary>Return a family of domains.</fsummary>
<type>
<v>Family1 = Family2 = family()</v>
</type>
<desc>
<p>If Family1 is a <seealso marker="#family">family</seealso>
and Family1[i] is a binary relation for every i in the index
set of Family1, then Family2 is the family with the same
index set as Family1 such that Family2[i] is
the <seealso marker="#domain">domain</seealso> of Family1[i].</p>
<pre>
1> <input>FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),</input>
<input>F = sofs:family_domain(FR),</input>
<input>sofs:to_external(F).</input>
[{a,[1,2,3]},{b,[]},{c,[4,5]}]</pre>
</desc>
</func>
<func>
<name>family_field(Family1) -> Family2</name>
<fsummary>Return a family of fields.</fsummary>
<type>
<v>Family1 = Family2 = family()</v>
</type>
<desc>
<p>If Family1 is a <seealso marker="#family">family</seealso>
and Family1[i] is a binary relation for every i in the index
set of Family1, then Family2 is the family with the same
index set as Family1 such that Family2[i] is
the <seealso marker="#field">field</seealso> of Family1[i].</p>
<pre>
1> <input>FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),</input>
<input>F = sofs:family_field(FR),</input>
<input>sofs:to_external(F).</input>
[{a,[1,2,3,a,b,c]},{b,[]},{c,[4,5,d,e]}]</pre>
<p><c>family_field(Family1)</c> is equivalent to
<c>family_union(family_domain(Family1), family_range(Family1))</c>.</p>
</desc>
</func>
<func>
<name>family_intersection(Family1) -> Family2</name>
<fsummary>Return the intersection of a family
of sets of sets.</fsummary>
<type>
<v>Family1 = Family2 = family()</v>
</type>
<desc>
<p>If Family1 is a <seealso marker="#family">family</seealso>
and Family1[i] is a set of sets for every i in the index set
of Family1, then Family2 is the family with the same index
set as Family1 such that Family2[i] is
the <seealso marker="#intersection_n">intersection</seealso> of
Family1[i].</p>
<p>If Family1[i] is an empty set for some i, then the process
exits with a <c>badarg</c> message.</p>
<pre>
1> <input>F1 = sofs:from_term([{a,[[1,2,3],[2,3,4]]},{b,[[x,y,z],[x,y]]}]),</input>
<input>F2 = sofs:family_intersection(F1),</input>
<input>sofs:to_external(F2).</input>
[{a,[2,3]},{b,[x,y]}]</pre>
</desc>
</func>
<func>
<name>family_intersection(Family1, Family2) -> Family3</name>
<fsummary>Return the intersection of two families.</fsummary>
<type>
<v>Family1 = Family2 = Family3 = family()</v>
</type>
<desc>
<p>If Family1 and Family2
are <seealso marker="#family">families</seealso>, then Family3
is the family such that the index set is the intersection of
Family1's and Family2's index sets, and Family3[i] is the
intersection of Family1[i] and Family2[i].</p>
<pre>
1> <input>F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),</input>
<input>F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),</input>
<input>F3 = sofs:family_intersection(F1, F2),</input>
<input>sofs:to_external(F3).</input>
[{b,[4]},{c,[]}]</pre>
</desc>
</func>
<func>
<name>family_projection(SetFun, Family1) -> Family2</name>
<fsummary>Return a family of modified subsets.</fsummary>
<type>
<v>SetFun = set_fun()</v>
<v>Family1 = Family2 = family()</v>
<v>Set = set()</v>
</type>
<desc>
<p>If Family1 is a <seealso marker="#family">family</seealso>
then Family2 is the family with the same index set as
Family1 such that Family2[i] is the result of calling SetFun
with Family1[i] as argument.</p>
<pre>
1> <input>F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),</input>
<input>F2 = sofs:family_projection({sofs, union}, F1),</input>
<input>sofs:to_external(F2).</input>
[{a,[1,2,3]},{b,[]}]</pre>
</desc>
</func>
<func>
<name>family_range(Family1) -> Family2</name>
<fsummary>Return a family of ranges.</fsummary>
<type>
<v>Family1 = Family2 = family()</v>
</type>
<desc>
<p>If Family1 is a <seealso marker="#family">family</seealso>
and Family1[i] is a binary relation for every i in the index
set of Family1, then Family2 is the family with the same
index set as Family1 such that Family2[i] is
the <seealso marker="#range">range</seealso> of Family1[i].</p>
<pre>
1> <input>FR = sofs:from_term([{a,[{1,a},{2,b},{3,c}]},{b,[]},{c,[{4,d},{5,e}]}]),</input>
<input>F = sofs:family_range(FR),</input>
<input>sofs:to_external(F).</input>
[{a,[a,b,c]},{b,[]},{c,[d,e]}]</pre>
</desc>
</func>
<func>
<name>family_specification(Fun, Family1) -> Family2</name>
<fsummary>Select a subset of a family using a predicate.</fsummary>
<type>
<v>Fun = spec_fun()</v>
<v>Family1 = Family2 = family()</v>
</type>
<desc>
<p>If Family1 is a <seealso marker="#family">family</seealso>,
then Family2 is
the <seealso marker="#restriction">restriction</seealso> of
Family1 to those elements i of the
index set for which Fun applied to Family1[i] returns
<c>true</c>. If Fun is a tuple <c>{external, Fun2}</c>,
Fun2 is applied to
the <seealso marker="#external_set">external set</seealso> of
Family1[i], otherwise Fun is applied to Family1[i].</p>
<pre>
1> <input>F1 = sofs:family([{a,[1,2,3]},{b,[1,2]},{c,[1]}]),</input>
<input>SpecFun = fun(S) -> sofs:no_elements(S) =:= 2 end,</input>
<input>F2 = sofs:family_specification(SpecFun, F1),</input>
<input>sofs:to_external(F2).</input>
[{b,[1,2]}]</pre>
</desc>
</func>
<func>
<name>family_to_digraph(Family [, GraphType]) -> Graph</name>
<fsummary>Create a directed graph from a family.</fsummary>
<type>
<v>Graph = digraph()</v>
<v>Family = family()</v>
<v>GraphType = - see digraph(3) -</v>
</type>
<desc>
<p>Creates a directed graph from
the <seealso marker="#family">family</seealso> Family. For each
pair (a, {b[1], ..., b[n]}) of Family, the vertex
a as well the edges (a, b[i]) for
1 <= i <= n are added to a newly
created directed graph.</p>
<p>If no graph type is given, <c>digraph:new/1</c> is used for
creating the directed graph, otherwise the GraphType
argument is passed on as second argument to
<c>digraph:new/2</c>.</p>
<p>It F is a family, it holds that F is a subset of
<c>digraph_to_family(family_to_digraph(F), type(F))</c>.
Equality holds if <c>union_of_family(F)</c> is a subset of
<c>domain(F)</c>.</p>
<p>Creating a cycle in an acyclic graph exits the process with
a <c>cyclic</c> message.</p>
</desc>
</func>
<func>
<name>family_to_relation(Family) -> BinRel</name>
<fsummary>Create a binary relation from a family.</fsummary>
<type>
<v>Family = family()</v>
<v>BinRel = binary_relation()</v>
</type>
<desc>
<p>If Family is a <seealso marker="#family">family</seealso>,
then BinRel is the binary relation containing all pairs
(i, x) such that i belongs to the index set of Family
and x belongs to Family[i].</p>
<pre>
1> <input>F = sofs:family([{a,[]}, {b,[1]}, {c,[2,3]}]),</input>
<input>R = sofs:family_to_relation(F),</input>
<input>sofs:to_external(R).</input>
[{b,1},{c,2},{c,3}]</pre>
</desc>
</func>
<func>
<name>family_union(Family1) -> Family2</name>
<fsummary>Return the union of a family of sets of sets.</fsummary>
<type>
<v>Family1 = Family2 = family()</v>
</type>
<desc>
<p>If Family1 is a <seealso marker="#family">family</seealso>
and Family1[i] is a set of sets for each i in the index set
of Family1, then Family2 is the family with the same index
set as Family1 such that Family2[i] is
the <seealso marker="#union_n">union</seealso> of Family1[i].</p>
<pre>
1> <input>F1 = sofs:from_term([{a,[[1,2],[2,3]]},{b,[[]]}]),</input>
<input>F2 = sofs:family_union(F1),</input>
<input>sofs:to_external(F2).</input>
[{a,[1,2,3]},{b,[]}]</pre>
<p><c>family_union(F)</c> is equivalent to
<c>family_projection({sofs,union}, F)</c>.</p>
</desc>
</func>
<func>
<name>family_union(Family1, Family2) -> Family3</name>
<fsummary>Return the union of two families.</fsummary>
<type>
<v>Family1 = Family2 = Family3 = family()</v>
</type>
<desc>
<p>If Family1 and Family2
are <seealso marker="#family">families</seealso>, then Family3
is the family such that the index set is the union of Family1's
and Family2's index sets, and Family3[i] is the union of
Family1[i] and Family2[i] if both maps i, Family1[i] or
Family2[i] otherwise.</p>
<pre>
1> <input>F1 = sofs:family([{a,[1,2]},{b,[3,4]},{c,[5,6]}]),</input>
<input>F2 = sofs:family([{b,[4,5]},{c,[7,8]},{d,[9,10]}]),</input>
<input>F3 = sofs:family_union(F1, F2),</input>
<input>sofs:to_external(F3).</input>
[{a,[1,2]},{b,[3,4,5]},{c,[5,6,7,8]},{d,[9,10]}]</pre>
</desc>
</func>
<func>
<name>field(BinRel) -> Set</name>
<fsummary>Return the field of a binary relation.</fsummary>
<type>
<v>BinRel = binary_relation()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#field">field</seealso> of the
binary relation BinRel.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),</input>
<input>S = sofs:field(R),</input>
<input>sofs:to_external(S).</input>
[1,2,a,b,c]</pre>
<p><c>field(R)</c> is equivalent
to <c>union(domain(R), range(R))</c>.</p>
</desc>
</func>
<func>
<name>from_external(ExternalSet, Type) -> AnySet</name>
<fsummary>Create a set.</fsummary>
<type>
<v>ExternalSet = external_set()</v>
<v>AnySet = anyset()</v>
<v>Type = type()</v>
</type>
<desc>
<p>Creates a set from the <seealso marker="#external_set">external
set</seealso> ExternalSet
and the <seealso marker="#type">type</seealso> Type. It is
assumed that Type is a <seealso marker="#valid_type">valid
type</seealso> of ExternalSet.</p>
</desc>
</func>
<func>
<name>from_sets(ListOfSets) -> Set</name>
<fsummary>Create a set out of a list of sets.</fsummary>
<type>
<v>Set = set()</v>
<v>ListOfSets = [anyset()]</v>
</type>
<desc>
<p>Returns the <seealso marker="#sets_definition">unordered
set</seealso> containing the sets of the list ListOfSets.</p>
<pre>
1> <input>S1 = sofs:relation([{a,1},{b,2}]),</input>
<input>S2 = sofs:relation([{x,3},{y,4}]),</input>
<input>S = sofs:from_sets([S1,S2]),</input>
<input>sofs:to_external(S).</input>
[[{a,1},{b,2}],[{x,3},{y,4}]]</pre>
</desc>
</func>
<func>
<name>from_sets(TupleOfSets) -> Ordset</name>
<fsummary>Create an ordered set out of a tuple of sets.</fsummary>
<type>
<v>Ordset = ordset()</v>
<v>TupleOfSets = tuple-of(anyset())</v>
</type>
<desc>
<p>Returns the <seealso marker="#sets_definition">ordered
set</seealso> containing the sets of the non-empty tuple
TupleOfSets.</p>
</desc>
</func>
<func>
<name>from_term(Term [, Type]) -> AnySet</name>
<fsummary>Create a set.</fsummary>
<type>
<v>AnySet = anyset()</v>
<v>Term = term()</v>
<v>Type = type()</v>
</type>
<desc>
<p><marker id="from_term"></marker>Creates an element
of <seealso marker="#sets_definition">Sets</seealso> by
traversing the term Term, sorting lists, removing duplicates and
deriving or verifying a <seealso marker="#valid_type">valid
type</seealso> for the so obtained external set. An
explicitly given <seealso marker="#type">type</seealso> Type
can be used to limit the depth of the traversal; an atomic
type stops the traversal, as demonstrated by this example
where "foo" and {"foo"} are left unmodified:</p>
<pre>
1> <input>S = sofs:from_term([{{"foo"},[1,1]},{"foo",[2,2]}], [{atom,[atom]}]),</input>
<input>sofs:to_external(S).</input>
[{{"foo"},[1]},{"foo",[2]}]</pre>
<p><c>from_term</c> can be used for creating atomic or ordered
sets. The only purpose of such a set is that of later
building unordered sets since all functions in this module
that <em>do</em> anything operate on unordered sets.
Creating unordered sets from a collection of ordered sets
may be the way to go if the ordered sets are big and one
does not want to waste heap by rebuilding the elements of
the unordered set. An example showing that a set can be
built "layer by layer":</p>
<pre>
1> <input>A = sofs:from_term(a),</input>
<input>S = sofs:set([1,2,3]),</input>
<input>P1 = sofs:from_sets({A,S}),</input>
<input>P2 = sofs:from_term({b,[6,5,4]}),</input>
<input>Ss = sofs:from_sets([P1,P2]),</input>
<input>sofs:to_external(Ss).</input>
[{a,[1,2,3]},{b,[4,5,6]}]</pre>
<p>Other functions that create sets are <c>from_external/2</c>
and <c>from_sets/1</c>. Special cases of <c>from_term/2</c>
are <c>a_function/1,2</c>, <c>empty_set/0</c>,
<c>family/1,2</c>, <c>relation/1,2</c>, and <c>set/1,2</c>.</p>
</desc>
</func>
<func>
<name>image(BinRel, Set1) -> Set2</name>
<fsummary>Return the image of a set under a binary relation.</fsummary>
<type>
<v>BinRel = binary_relation()</v>
<v>Set1 = Set2 = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#image">image</seealso> of the
set Set1 under the binary relation BinRel.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),</input>
<input>S1 = sofs:set([1,2]),</input>
<input>S2 = sofs:image(R, S1),</input>
<input>sofs:to_external(S2).</input>
[a,b,c]</pre>
</desc>
</func>
<func>
<name>intersection(SetOfSets) -> Set</name>
<fsummary>Return the intersection of a set of sets.</fsummary>
<type>
<v>Set = set()</v>
<v>SetOfSets = set_of_sets()</v>
</type>
<desc>
<p>Returns
the <seealso marker="#intersection_n">intersection</seealso> of
the set of sets SetOfSets.</p>
<p>Intersecting an empty set of sets exits the process with a
<c>badarg</c> message.</p>
</desc>
</func>
<func>
<name>intersection(Set1, Set2) -> Set3</name>
<fsummary>Return the intersection of two sets.</fsummary>
<type>
<v>Set1 = Set2 = Set3 = set()</v>
</type>
<desc>
<p>Returns
the <seealso marker="#intersection">intersection</seealso> of
Set1 and Set2.</p>
</desc>
</func>
<func>
<name>intersection_of_family(Family) -> Set</name>
<fsummary>Return the intersection of a family.</fsummary>
<type>
<v>Family = family()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the intersection of
the <seealso marker="#family">family</seealso> Family.</p>
<p>Intersecting an empty family exits the process with a
<c>badarg</c> message.</p>
<pre>
1> <input>F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),</input>
<input>S = sofs:intersection_of_family(F),</input>
<input>sofs:to_external(S).</input>
[2]</pre>
</desc>
</func>
<func>
<name>inverse(Function1) -> Function2</name>
<fsummary>Return the inverse of a function.</fsummary>
<type>
<v>Function1 = Function2 = function()</v>
</type>
<desc>
<p>Returns the <seealso marker="#inverse">inverse</seealso>
of the function Function1.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>R2 = sofs:inverse(R1),</input>
<input>sofs:to_external(R2).</input>
[{a,1},{b,2},{c,3}]</pre>
</desc>
</func>
<func>
<name>inverse_image(BinRel, Set1) -> Set2</name>
<fsummary>Return the inverse image of a set under
a binary relation.</fsummary>
<type>
<v>BinRel = binary_relation()</v>
<v>Set1 = Set2 = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#inverse_image">inverse
image</seealso> of Set1 under the binary relation BinRel.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{2,b},{2,c},{3,d}]),</input>
<input>S1 = sofs:set([c,d,e]),</input>
<input>S2 = sofs:inverse_image(R, S1),</input>
<input>sofs:to_external(S2).</input>
[2,3]</pre>
</desc>
</func>
<func>
<name>is_a_function(BinRel) -> Bool</name>
<fsummary>Test for a function.</fsummary>
<type>
<v>Bool = bool()</v>
<v>BinRel = binary_relation()</v>
</type>
<desc>
<p>Returns <c>true</c> if the binary relation BinRel is a
<seealso marker="#function">function</seealso> or the
untyped empty set, <c>false</c> otherwise.</p>
</desc>
</func>
<func>
<name>is_disjoint(Set1, Set2) -> Bool</name>
<fsummary>Test for disjoint sets.</fsummary>
<type>
<v>Bool = bool()</v>
<v>Set1 = Set2 = set()</v>
</type>
<desc>
<p>Returns <c>true</c> if Set1 and Set2
are <seealso marker="#disjoint">disjoint</seealso>, <c>false</c>
otherwise.</p>
</desc>
</func>
<func>
<name>is_empty_set(AnySet) -> Bool</name>
<fsummary>Test for an empty set.</fsummary>
<type>
<v>AnySet = anyset()</v>
<v>Bool = bool()</v>
</type>
<desc>
<p>Returns <c>true</c> if Set is an empty unordered set,
<c>false</c> otherwise.</p>
</desc>
</func>
<func>
<name>is_equal(AnySet1, AnySet2) -> Bool</name>
<fsummary>Test two sets for equality.</fsummary>
<type>
<v>AnySet1 = AnySet2 = anyset()</v>
<v>Bool = bool()</v>
</type>
<desc>
<p>Returns <c>true</c> if the AnySet1 and AnySet2
are <seealso marker="#equal">equal</seealso>, <c>false</c>
otherwise. This example shows that <c>==/2</c> is used when
comparing sets for equality:</p>
<pre>
1> <input>S1 = sofs:set([1.0]),</input>
<input>S2 = sofs:set([1]),</input>
<input>sofs:is_equal(S1, S2).</input>
true</pre>
</desc>
</func>
<func>
<name>is_set(AnySet) -> Bool</name>
<fsummary>Test for an unordered set.</fsummary>
<type>
<v>AnySet = anyset()</v>
<v>Bool = bool()</v>
</type>
<desc>
<p>Returns <c>true</c> if AnySet is
an <seealso marker="#sets_definition">unordered set</seealso>, and
<c>false</c> if AnySet is an ordered set or an atomic set.</p>
</desc>
</func>
<func>
<name>is_sofs_set(Term) -> Bool</name>
<fsummary>Test for an unordered set.</fsummary>
<type>
<v>Bool = bool()</v>
<v>Term = term()</v>
</type>
<desc>
<p>Returns <c>true</c> if Term is
an <seealso marker="#sets_definition">unordered set</seealso>, an
ordered set or an atomic set, <c>false</c> otherwise.</p>
</desc>
</func>
<func>
<name>is_subset(Set1, Set2) -> Bool</name>
<fsummary>Test two sets for subset.</fsummary>
<type>
<v>Bool = bool()</v>
<v>Set1 = Set2 = set()</v>
</type>
<desc>
<p>Returns <c>true</c> if Set1 is
a <seealso marker="#subset">subset</seealso> of Set2, <c>false</c>
otherwise.</p>
</desc>
</func>
<func>
<name>is_type(Term) -> Bool</name>
<fsummary>Test for a type.</fsummary>
<type>
<v>Bool = bool()</v>
<v>Term = term()</v>
</type>
<desc>
<p>Returns <c>true</c> if the term Term is
a <seealso marker="#type">type</seealso>.</p>
</desc>
</func>
<func>
<name>join(Relation1, I, Relation2, J) -> Relation3</name>
<fsummary>Return the join of two relations.</fsummary>
<type>
<v>Relation1 = Relation2 = Relation3 = relation()</v>
<v>I = J = integer() > 0</v>
</type>
<desc>
<p>Returns the <seealso marker="#natural_join">natural
join</seealso> of the relations Relation1 and Relation2 on
coordinates I and J.</p>
<pre>
1> <input>R1 = sofs:relation([{a,x,1},{b,y,2}]),</input>
<input>R2 = sofs:relation([{1,f,g},{1,h,i},{2,3,4}]),</input>
<input>J = sofs:join(R1, 3, R2, 1),</input>
<input>sofs:to_external(J).</input>
[{a,x,1,f,g},{a,x,1,h,i},{b,y,2,3,4}]</pre>
</desc>
</func>
<func>
<name>multiple_relative_product(TupleOfBinRels, BinRel1) -> BinRel2</name>
<fsummary>Return the multiple relative product of a tuple of binary
relations and a relation.</fsummary>
<type>
<v>TupleOfBinRels = tuple-of(BinRel)</v>
<v>BinRel = BinRel1 = BinRel2 = binary_relation()</v>
</type>
<desc>
<p>If TupleOfBinRels is a non-empty tuple
{R[1], ..., R[n]} of binary relations and BinRel1
is a binary relation, then BinRel2 is
the <seealso marker="#multiple_relative_product">multiple relative
product</seealso> of the ordered set
(R[i], ..., R[n]) and BinRel1.</p>
<pre>
1> <input>Ri = sofs:relation([{a,1},{b,2},{c,3}]),</input>
<input>R = sofs:relation([{a,b},{b,c},{c,a}]),</input>
<input>MP = sofs:multiple_relative_product({Ri, Ri}, R),</input>
<input>sofs:to_external(sofs:range(MP)).</input>
[{1,2},{2,3},{3,1}]</pre>
</desc>
</func>
<func>
<name>no_elements(ASet) -> NoElements</name>
<fsummary>Return the number of elements of a set.</fsummary>
<type>
<v>ASet = set() | ordset()</v>
<v>NoElements = integer() >= 0 </v>
</type>
<desc>
<p>Returns the number of elements of the ordered or unordered
set ASet.</p>
</desc>
</func>
<func>
<name>partition(SetOfSets) -> Partition</name>
<fsummary>Return the coarsest partition given a set of sets.</fsummary>
<type>
<v>SetOfSets = set_of_sets()</v>
<v>Partition = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#partition">partition</seealso> of
the union of the set of sets SetOfSets such that two
elements are considered equal if they belong to the same
elements of SetOfSets.</p>
<pre>
1> <input>Sets1 = sofs:from_term([[a,b,c],[d,e,f],[g,h,i]]),</input>
<input>Sets2 = sofs:from_term([[b,c,d],[e,f,g],[h,i,j]]),</input>
<input>P = sofs:partition(sofs:union(Sets1, Sets2)),</input>
<input>sofs:to_external(P).</input>
[[a],[b,c],[d],[e,f],[g],[h,i],[j]]</pre>
</desc>
</func>
<func>
<name>partition(SetFun, Set) -> Partition</name>
<fsummary>Return a partition of a set.</fsummary>
<type>
<v>SetFun = set_fun()</v>
<v>Partition = set()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#partition">partition</seealso> of
Set such that two elements are considered equal if the
results of applying SetFun are equal.</p>
<pre>
1> <input>Ss = sofs:from_term([[a],[b],[c,d],[e,f]]),</input>
<input>SetFun = fun(S) -> sofs:from_term(sofs:no_elements(S)) end,</input>
<input>P = sofs:partition(SetFun, Ss),</input>
<input>sofs:to_external(P).</input>
[[[a],[b]],[[c,d],[e,f]]]</pre>
</desc>
</func>
<func>
<name>partition(SetFun, Set1, Set2) -> {Set3, Set4}</name>
<fsummary>Return a partition of a set.</fsummary>
<type>
<v>SetFun = set_fun()</v>
<v>Set1 = Set2 = Set3 = Set4 = set()</v>
</type>
<desc>
<p>Returns a pair of sets that, regarded as constituting a
set, forms a <seealso marker="#partition">partition</seealso> of
Set1. If the
result of applying SetFun to an element of Set1 yields an
element in Set2, the element belongs to Set3, otherwise the
element belongs to Set4.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>S = sofs:set([2,4,6]),</input>
<input>{R2,R3} = sofs:partition(1, R1, S),</input>
<input>{sofs:to_external(R2),sofs:to_external(R3)}.</input>
{[{2,b}],[{1,a},{3,c}]}</pre>
<p><c>partition(F, S1, S2)</c> is equivalent to
<c>{restriction(F, S1, S2),
drestriction(F, S1, S2)}</c>.</p>
</desc>
</func>
<func>
<name>partition_family(SetFun, Set) -> Family</name>
<fsummary>Return a family indexing a partition.</fsummary>
<type>
<v>Family = family()</v>
<v>SetFun = set_fun()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#family">family</seealso>
Family where the indexed set is
a <seealso marker="#partition">partition</seealso> of Set
such that two elements are considered equal if the results
of applying SetFun are the same value i. This i is the index
that Family maps onto
the <seealso marker="#equivalence_class">equivalence
class</seealso>.</p>
<pre>
1> <input>S = sofs:relation([{a,a,a,a},{a,a,b,b},{a,b,b,b}]),</input>
<input>SetFun = {external, fun({A,_,C,_}) -> {A,C} end},</input>
<input>F = sofs:partition_family(SetFun, S),</input>
<input>sofs:to_external(F).</input>
[{{a,a},[{a,a,a,a}]},{{a,b},[{a,a,b,b},{a,b,b,b}]}]</pre>
</desc>
</func>
<func>
<name>product(TupleOfSets) -> Relation</name>
<fsummary>Return the Cartesian product of a tuple of sets.</fsummary>
<type>
<v>Relation = relation()</v>
<v>TupleOfSets = tuple-of(set())</v>
</type>
<desc>
<p>Returns the <seealso marker="#Cartesian_product_tuple">Cartesian
product</seealso> of the non-empty tuple of sets
TupleOfSets. If (x[1], ..., x[n]) is an element of
the n-ary relation Relation, then x[i] is drawn from element
i of TupleOfSets.</p>
<pre>
1> <input>S1 = sofs:set([a,b]),</input>
<input>S2 = sofs:set([1,2]),</input>
<input>S3 = sofs:set([x,y]),</input>
<input>P3 = sofs:product({S1,S2,S3}),</input>
<input>sofs:to_external(P3).</input>
[{a,1,x},{a,1,y},{a,2,x},{a,2,y},{b,1,x},{b,1,y},{b,2,x},{b,2,y}]</pre>
</desc>
</func>
<func>
<name>product(Set1, Set2) -> BinRel</name>
<fsummary>Return the Cartesian product of two sets.</fsummary>
<type>
<v>BinRel = binary_relation()</v>
<v>Set1 = Set2 = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#Cartesian_product">Cartesian
product</seealso> of Set1 and Set2.</p>
<pre>
1> <input>S1 = sofs:set([1,2]),</input>
<input>S2 = sofs:set([a,b]),</input>
<input>R = sofs:product(S1, S2),</input>
<input>sofs:to_external(R).</input>
[{1,a},{1,b},{2,a},{2,b}]</pre>
<p><c>product(S1, S2)</c> is equivalent to
<c>product({S1, S2})</c>.</p>
</desc>
</func>
<func>
<name>projection(SetFun, Set1) -> Set2</name>
<fsummary>Return a set of substituted elements.</fsummary>
<type>
<v>SetFun = set_fun()</v>
<v>Set1 = Set2 = set()</v>
</type>
<desc>
<p>Returns the set created by substituting each element of
Set1 by the result of applying SetFun to the element.</p>
<p>If SetFun is a number i >= 1 and Set1 is a
relation, then the returned set is
the <seealso marker="#projection">projection</seealso> of Set1
onto coordinate i.</p>
<pre>
1> <input>S1 = sofs:from_term([{1,a},{2,b},{3,a}]),</input>
<input>S2 = sofs:projection(2, S1),</input>
<input>sofs:to_external(S2).</input>
[a,b]</pre>
</desc>
</func>
<func>
<name>range(BinRel) -> Set</name>
<fsummary>Return the range of a binary relation.</fsummary>
<type>
<v>BinRel = binary_relation()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#range">range</seealso> of the
binary relation BinRel.</p>
<pre>
1> <input>R = sofs:relation([{1,a},{1,b},{2,b},{2,c}]),</input>
<input>S = sofs:range(R),</input>
<input>sofs:to_external(S).</input>
[a,b,c]</pre>
</desc>
</func>
<func>
<name>relation(Tuples [, Type]) -> Relation</name>
<fsummary>Create a relation.</fsummary>
<type>
<v>N = integer()</v>
<v>Type = N | type()</v>
<v>Relation = relation()</v>
<v>Tuples = [tuple()]</v>
</type>
<desc>
<p>Creates a <seealso marker="#relation">relation</seealso>.
<c>relation(R, T)</c> is equivalent to
<c>from_term(R, T)</c>, if T is
a <seealso marker="#type">type</seealso> and the result is a
relation. If Type is an integer N, then
<c>[{atom, ..., atom}])</c>, where the size of the
tuple is N, is used as type of the relation. If no type is
explicitly given, the size of the first tuple of Tuples is
used if there is such a tuple. <c>relation([])</c> is
equivalent to <c>relation([], 2)</c>.</p>
</desc>
</func>
<func>
<name>relation_to_family(BinRel) -> Family</name>
<fsummary>Create a family from a binary relation.</fsummary>
<type>
<v>Family = family()</v>
<v>BinRel = binary_relation()</v>
</type>
<desc>
<p>Returns the <seealso marker="#family">family</seealso>
Family such that the index set is equal to
the <seealso marker="#domain">domain</seealso> of the binary
relation BinRel, and Family[i] is
the <seealso marker="#image">image</seealso> of the set of i
under BinRel.</p>
<pre>
1> <input>R = sofs:relation([{b,1},{c,2},{c,3}]),</input>
<input>F = sofs:relation_to_family(R),</input>
<input>sofs:to_external(F).</input>
[{b,[1]},{c,[2,3]}]</pre>
</desc>
</func>
<func>
<name>relative_product(TupleOfBinRels [, BinRel1]) -> BinRel2</name>
<fsummary>Return the relative product of a tuple of binary relations
and a binary relation.</fsummary>
<type>
<v>TupleOfBinRels = tuple-of(BinRel)</v>
<v>BinRel = BinRel1 = BinRel2 = binary_relation()</v>
</type>
<desc>
<p>If TupleOfBinRels is a non-empty tuple
{R[1], ..., R[n]} of binary relations and BinRel1
is a binary relation, then BinRel2 is
the <seealso marker="#tuple_relative_product">relative
product</seealso> of the ordered set (R[i], ..., R[n])
and BinRel1.</p>
<p>If BinRel1 is omitted, the relation of equality between the
elements of
the <seealso marker="#Cartesian_product_tuple">Cartesian
product</seealso> of the ranges of R[i],
range R[1] × ... × range R[n],
is used instead (intuitively, nothing is "lost").</p>
<pre>
1> <input>TR = sofs:relation([{1,a},{1,aa},{2,b}]),</input>
<input>R1 = sofs:relation([{1,u},{2,v},{3,c}]),</input>
<input>R2 = sofs:relative_product({TR, R1}),</input>
<input>sofs:to_external(R2).</input>
[{1,{a,u}},{1,{aa,u}},{2,{b,v}}]</pre>
<p>Note that <c>relative_product({R1}, R2)</c> is
different from <c>relative_product(R1, R2)</c>; the
tuple of one element is not identified with the element
itself.</p>
</desc>
</func>
<func>
<name>relative_product(BinRel1, BinRel2) -> BinRel3</name>
<fsummary>Return the relative product of
two binary relations.</fsummary>
<type>
<v>BinRel1 = BinRel2 = BinRel3 = binary_relation()</v>
</type>
<desc>
<p><marker id="relprod_impl"></marker>Returns
the <seealso marker="#relative_product">relative
product</seealso> of the binary relations BinRel1 and BinRel2.</p>
</desc>
</func>
<func>
<name>relative_product1(BinRel1, BinRel2) -> BinRel3</name>
<fsummary>Return the relative_product of
two binary relations.</fsummary>
<type>
<v>BinRel1 = BinRel2 = BinRel3 = binary_relation()</v>
</type>
<desc>
<p>Returns the <seealso marker="#relative_product">relative
product</seealso> of
the <seealso marker="#converse">converse</seealso> of the
binary relation BinRel1 and the binary relation BinRel2.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{1,aa},{2,b}]),</input>
<input>R2 = sofs:relation([{1,u},{2,v},{3,c}]),</input>
<input>R3 = sofs:relative_product1(R1, R2),</input>
<input>sofs:to_external(R3).</input>
[{a,u},{aa,u},{b,v}]</pre>
<p><c>relative_product1(R1, R2)</c> is equivalent to
<c>relative_product(converse(R1), R2)</c>.</p>
</desc>
</func>
<func>
<name>restriction(BinRel1, Set) -> BinRel2</name>
<fsummary>Return a restriction of a binary relation.</fsummary>
<type>
<v>BinRel1 = BinRel2 = binary_relation()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#restriction">restriction</seealso> of
the binary relation BinRel1 to Set.</p>
<pre>
1> <input>R1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>S = sofs:set([1,2,4]),</input>
<input>R2 = sofs:restriction(R1, S),</input>
<input>sofs:to_external(R2).</input>
[{1,a},{2,b}]</pre>
</desc>
</func>
<func>
<name>restriction(SetFun, Set1, Set2) -> Set3</name>
<fsummary>Return a restriction of a set.</fsummary>
<type>
<v>SetFun = set_fun()</v>
<v>Set1 = Set2 = Set3 = set()</v>
</type>
<desc>
<p>Returns a subset of Set1 containing those elements that
yield an element in Set2 as the result of applying SetFun.</p>
<pre>
1> <input>S1 = sofs:relation([{1,a},{2,b},{3,c}]),</input>
<input>S2 = sofs:set([b,c,d]),</input>
<input>S3 = sofs:restriction(2, S1, S2),</input>
<input>sofs:to_external(S3).</input>
[{2,b},{3,c}]</pre>
</desc>
</func>
<func>
<name>set(Terms [, Type]) -> Set</name>
<fsummary>Create a set of atoms or any type of sets.</fsummary>
<type>
<v>Set = set()</v>
<v>Terms = [term()]</v>
<v>Type = type()</v>
</type>
<desc>
<p>Creates an <seealso marker="#sets_definition">unordered
set</seealso>. <c>set(L, T)</c> is equivalent to
<c>from_term(L, T)</c>, if the result is an unordered
set. If no <seealso marker="#type">type</seealso> is
explicitly given, <c>[atom]</c> is used as type of the set.</p>
</desc>
</func>
<func>
<name>specification(Fun, Set1) -> Set2</name>
<fsummary>Select a subset using a predicate.</fsummary>
<type>
<v>Fun = spec_fun()</v>
<v>Set1 = Set2 = set()</v>
</type>
<desc>
<p>Returns the set containing every element of Set1 for which
Fun returns <c>true</c>. If Fun is a tuple
<c>{external, Fun2}</c>, Fun2 is applied to the
<seealso marker="#external_set">external set</seealso> of
each element, otherwise Fun is applied to each element.</p>
<pre>
1> <input>R1 = sofs:relation([{a,1},{b,2}]),</input>
<input>R2 = sofs:relation([{x,1},{x,2},{y,3}]),</input>
<input>S1 = sofs:from_sets([R1,R2]),</input>
<input>S2 = sofs:specification({sofs,is_a_function}, S1),</input>
<input>sofs:to_external(S2).</input>
[[{a,1},{b,2}]]</pre>
</desc>
</func>
<func>
<name>strict_relation(BinRel1) -> BinRel2</name>
<fsummary>Return the strict relation corresponding to
a given relation.</fsummary>
<type>
<v>BinRel1 = BinRel2 = binary_relation()</v>
</type>
<desc>
<p>Returns the <seealso marker="#strict_relation">strict
relation</seealso> corresponding to the binary relation BinRel1.</p>
<pre>
1> <input>R1 = sofs:relation([{1,1},{1,2},{2,1},{2,2}]),</input>
<input>R2 = sofs:strict_relation(R1),</input>
<input>sofs:to_external(R2).</input>
[{1,2},{2,1}]</pre>
</desc>
</func>
<func>
<name>substitution(SetFun, Set1) -> Set2</name>
<fsummary>Return a function with a given set as domain.</fsummary>
<type>
<v>SetFun = set_fun()</v>
<v>Set1 = Set2 = set()</v>
</type>
<desc>
<p>Returns a function, the domain of which is Set1. The value
of an element of the domain is the result of applying SetFun
to the element.</p>
<pre>
1> <input>L = [{a,1},{b,2}].</input>
[{a,1},{b,2}]
2> <input>sofs:to_external(sofs:projection(1,sofs:relation(L))).</input>
[a,b]
3> <input>sofs:to_external(sofs:substitution(1,sofs:relation(L))).</input>
[{{a,1},a},{{b,2},b}]
4> <input>SetFun = {external, fun({A,_}=E) -> {E,A} end},</input>
<input>sofs:to_external(sofs:projection(SetFun,sofs:relation(L))).</input>
[{{a,1},a},{{b,2},b}]</pre>
<p>The relation of equality between the elements of {a,b,c}:</p>
<pre>
1> <input>I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),</input>
<input>sofs:to_external(I).</input>
[{a,a},{b,b},{c,c}]</pre>
<p>Let SetOfSets be a set of sets and BinRel a binary
relation. The function that maps each element Set of
SetOfSets onto the <seealso marker="#image">image</seealso>
of Set under BinRel is returned by this function:</p>
<pre>
images(SetOfSets, BinRel) ->
Fun = fun(Set) -> sofs:image(BinRel, Set) end,
sofs:substitution(Fun, SetOfSets).</pre>
<p>Here might be the place to reveal something that was more
or less stated before, namely that external unordered sets
are represented as sorted lists. As a consequence, creating
the image of a set under a relation R may traverse all
elements of R (to that comes the sorting of results, the
image). In <c>images/2</c>, BinRel will be traversed once
for each element of SetOfSets, which may take too long. The
following efficient function could be used instead under the
assumption that the image of each element of SetOfSets under
BinRel is non-empty:</p>
<pre>
images2(SetOfSets, BinRel) ->
CR = sofs:canonical_relation(SetOfSets),
R = sofs:relative_product1(CR, BinRel),
sofs:relation_to_family(R).</pre>
</desc>
</func>
<func>
<name>symdiff(Set1, Set2) -> Set3</name>
<fsummary>Return the symmetric difference of two sets.</fsummary>
<type>
<v>Set1 = Set2 = Set3 = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#symmetric_difference">symmetric
difference</seealso> (or the Boolean sum) of Set1 and Set2.</p>
<pre>
1> <input>S1 = sofs:set([1,2,3]),</input>
<input>S2 = sofs:set([2,3,4]),</input>
<input>P = sofs:symdiff(S1, S2),</input>
<input>sofs:to_external(P).</input>
[1,4]</pre>
</desc>
</func>
<func>
<name>symmetric_partition(Set1, Set2) -> {Set3, Set4, Set5}</name>
<fsummary>Return a partition of two sets.</fsummary>
<type>
<v>Set1 = Set2 = Set3 = Set4 = Set5 = set()</v>
</type>
<desc>
<p>Returns a triple of sets: Set3 contains the elements
of Set1 that do not belong to Set2; Set4 contains the
elements of Set1 that belong to Set2; Set5 contains the
elements of Set2 that do not belong to Set1.</p>
</desc>
</func>
<func>
<name>to_external(AnySet) -> ExternalSet</name>
<fsummary>Return the elements of a set.</fsummary>
<type>
<v>ExternalSet = external_set()</v>
<v>AnySet = anyset()</v>
</type>
<desc>
<p>Returns the <seealso marker="#external_set">external
set</seealso> of an atomic, ordered or unordered set.</p>
</desc>
</func>
<func>
<name>to_sets(ASet) -> Sets</name>
<fsummary>Return a list or a tuple of the elements of set.</fsummary>
<type>
<v>ASet = set() | ordset()</v>
<v>Sets = tuple_of(AnySet) | [AnySet]</v>
</type>
<desc>
<p>Returns the elements of the ordered set ASet as a tuple of
sets, and the elements of the unordered set ASet as a sorted
list of sets without duplicates.</p>
</desc>
</func>
<func>
<name>type(AnySet) -> Type</name>
<fsummary>Return the type of a set.</fsummary>
<type>
<v>AnySet = anyset()</v>
<v>Type = type()</v>
</type>
<desc>
<p>Returns the <seealso marker="#type">type</seealso> of an
atomic, ordered or unordered set.</p>
</desc>
</func>
<func>
<name>union(SetOfSets) -> Set</name>
<fsummary>Return the union of a set of sets.</fsummary>
<type>
<v>Set = set()</v>
<v>SetOfSets = set_of_sets()</v>
</type>
<desc>
<p>Returns the <seealso marker="#union_n">union</seealso> of the
set of sets SetOfSets.</p>
</desc>
</func>
<func>
<name>union(Set1, Set2) -> Set3</name>
<fsummary>Return the union of two sets.</fsummary>
<type>
<v>Set1 = Set2 = Set3 = set()</v>
</type>
<desc>
<p>Returns the <seealso marker="#union">union</seealso> of
Set1 and Set2.</p>
</desc>
</func>
<func>
<name>union_of_family(Family) -> Set</name>
<fsummary>Return the union of a family.</fsummary>
<type>
<v>Family = family()</v>
<v>Set = set()</v>
</type>
<desc>
<p>Returns the union of
the <seealso marker="#family">family</seealso> Family.</p>
<pre>
1> <input>F = sofs:family([{a,[0,2,4]},{b,[0,1,2]},{c,[2,3]}]),</input>
<input>S = sofs:union_of_family(F),</input>
<input>sofs:to_external(S).</input>
[0,1,2,3,4]</pre>
</desc>
</func>
<func>
<name>weak_relation(BinRel1) -> BinRel2</name>
<fsummary>Return the weak relation corresponding to
a given relation.</fsummary>
<type>
<v>BinRel1 = BinRel2 = binary_relation()</v>
</type>
<desc>
<p>Returns a subset S of the <seealso marker="#weak_relation">weak
relation</seealso> W
corresponding to the binary relation BinRel1. Let F be the
<seealso marker="#field">field</seealso> of BinRel1. The
subset S is defined so that x S y if x W y for some x in F
and for some y in F.</p>
<pre>
1> <input>R1 = sofs:relation([{1,1},{1,2},{3,1}]),</input>
<input>R2 = sofs:weak_relation(R1),</input>
<input>sofs:to_external(R2).</input>
[{1,1},{1,2},{2,2},{3,1},{3,3}]</pre>
</desc>
</func>
</funcs>
<section>
<title>See Also</title>
<p><seealso marker="dict">dict(3)</seealso>,
<seealso marker="digraph">digraph(3)</seealso>,
<seealso marker="orddict">orddict(3)</seealso>,
<seealso marker="ordsets">ordsets(3)</seealso>,
<seealso marker="sets">sets(3)</seealso></p>
</section>
</erlref>